

$$
\left\{\sin _{2}^{\infty}, 1\right.
$$

\because

A

PHILOSOPHICAL AND MATHEMATICAL DICTIONARY.

V O L. II.

PRINTED BY S. HAMILTON, Wegbridge, Suerey.

PHILOSOPHICAL AND MATHEMATICAL D I CTION A RO:

CONTAINING
an explanation of the terms, and an account of the several subjects, comprased under the heads MATHEMATICS, ASTRONOMY, AND PHILOSOPHY
with an
historical account of the rise, phogress, and present state of these sciences;
also
MEMOIRS OF THE LIVES AND WRITINGS OF THE MOST EMINENT AUTHORS, both ancient and modern,
who ay their discovenies or inprovements bave contributed to the advanctiment of them.

BY CHARLES HUTTON, LL.D.

FELLOW OF THE ROYAL SOCIETIES OF LONDON AND EDINBURGH, AND OF THE PHILOSOPHICAL SOCIETIES OF HAARLEM AND AMERICA ; AND EMERTTUS PROFESSOR OF MATHEMATICS IN TEE ROYAL

MILITARY ACADEMY, wOoLwlCH.

IN TWO VOLUMES:
 WITH MANY CUTS AND COPPER-PLATES.

A NEW EDITION,
WITH NUXLROUS ADDITIONS AND IMPROVEMENTS.

VOL. II.

LONDON:
PRINTED FOR THE AUTHOR;
F. C. AND J. RIVINGTON ; J. CUTHELL ; LAW AND WHITTAEER ; LONGMAN, HURST, REES, ORMR, AND BROWN; CADELL AND DAVIEs; J. MAWMAN; BLACK, PARRY, AND CO; BALDWIN, CRADOCK AND JOY; J. bOOKER; G. AND S. ROBINSON; T. GAMILTON; WALKER AND BDWARDS; JOHN RODINSON; B. REYNOLDS; AND sIMPEIN AND MARSHALL.

0

PHILOSOPHICAL AND MATHEMATICAL

, DICTIONARY.

M, Itu Astronomical Tables, \& c, is used for meridional or southern; and sometimes for meridian, or mid-day.In the Roman numeration, it denotes a thousand.

MACIIIN (Jous), a very distinguished mathenutician, was some time professor of astronomy at Gresham-college, (to which be was elected May 16,1713 , on the resignation of Dr. 'Torriano,) and secrutary of the Royal Sucicty, died June 9, 1751 . His papers in the Philos. Trans, were, 1. 'To find the curve wbich a descending body describes in the shortest time, vol. 30; 2. On a Distemperral Skin, vol. 37 ; 3. A solution of Kipler's Problem. Besiden these, by an approximatung series of Dr. Halley's, Mr. Machin computed the circuralerence of the circle to 100 places of tidures. And another ingenious approximatitg series of liis own is given in Mr. Jones's Synopsis Palmariorum Matheseos, 1706 , the investigation of which was first given in Dr. Hutton's Mensuration, 1772. Mr. Machin's Laws of the Moon's Motion were printed in Motte's translation of Newton's Priticipia.

MACHINE, denotes any thing that serves to augment, of to regulate inoving powers: or it is any berdy destined to profluce motion, so as to save either time or torce. The word, in Greek, signties an invention, or art: and hence, in strictness, a machine is something that consists more in art and invention, than in the strength and solidity of the materials; for which reason it is that the inventors of machines are called Ingrtieurs, or Engineers.

Machines are rither simple or compound. The simple machines are the 6 mechanical powers, viz, the lever, pulley, wheel-and-axle, inclined plane, wedge, and screw; which are otherwise called the simple mechanic powers. The balance also is a lever.

These simple machines serve for different purposes, according to their difficent structures; and it is the business of the shilful techanist to choose and combine tbem, in the mamer that may be best adapted to produce the $\begin{aligned} & \text { esired effect. The lever is a sery useful machine for }\end{aligned}$ many purpuses, its power being reartily varied as the occasion may require; when weights are to be raised only a little way, such as stones out of quarries, \&c. On the other hand, the whed-and-axle serves to reise weights from the greatest depth, or to the greatest height. Pulleys, being easily carried, are therefore much employed in ships. The balance is uxcful for nscertaining an equality of weight. The wedge is sery useful for separating the parts Yot. II.
of bodies; and being impelied by the force of percussion. it is incomparably greater than any of the other powers. The screw is uscful for compressing or squeezing bodies together, and also for ruisiug very heavy weights to a small height; its great friction is even of considerable use, to preserve the effect already produced by the machine.

Compound Machine, is formed from these simple machines, combined together for different purposes. The number of compound machines is almost infinite; and yet it would seem that the ancients went far beyond the moderns in the powers and eftects of them; especially their machines of war and architecture.

Accurate descriptions and drawings of machines would be a very curious and useful work. But to make a collection of this kind as beneficial as possible, it should contain also an analysis of them; pointing out their advantages and disadvantages, with the reasons of the constructions; also the general problems implied in these constructions, with their solutions \&c, should be noticed. Though a complete work of this kind be still watating, yet many curious and useful particulars may be gathered from Strada, Besson, Bervaldus, Augustinus de Ramellis, Bockler, Leupold, Beyer, Limpergh, Van ZjI, Peravit, and others; a short account of whose works may be found in Wolfii Commentatio de Precipuis Scriptis Minthematic is; Elem. Mathes. Univ, tom, 5, pa. 84. To these may be added, Belidor's Architecture Hydraulique, Desaguliers's Course of Experimental Philosophy, Emerson's Mechanics, and Dr. Gregory's Mechanics, which contains a description of a great mumber of the most useful and modern machines. The lloyal Academy of Sciences at Paris huve also given a collection of machines and inventions npproved of by them. This work, published by M. Gallon, consists of 6 vols. in 4to, contaiming engraved draughts of the machines, with their descriptions annexed.

Machine, Archifectonical, is, an assemblage of pieces of wood so disposed as that, by means of ropes and pulless, a small number of men thay raise great loads, and lay then in their places; such as crates, \&c.-It is hard to conccive what sort of machines the ancients must have used to raise those immense stones found in some of the antique buildings; as some of those still found in the walls of Balbeck in Turkey, the ancient Heliopolis, which are 63 feet loug, 12 feet broad, and 12 feet thich, and uhich must weigh 6 or 7 hundred tons a-piece.

B

M AC
tors of that university being desirous that he should supply the place of Mr. Jumes Gregory, whose great age and infirmities had rendered bim incapable of teaching. He laad bere some difficulties to encounter, arising from competitors, who had good interest with the pations of the universty, and also from the want of an additional fund for the tiew professor; which however at length were all surinounted, principally through the means of Sir Isaac Newton. Accordingly, in Not. 1725, be was introdaced into the university; after which the mathematical'classes soon trecame very numerous, there being generally upwards of 100 stuctents attenting his lectures every year; who being of different standings and proficiency, he was obliged to divide them into tour or five classes, in each of which be employed a full hour every day from the first of November to the first of Junc. In the first class be taught the first 6 books of Euclid's Elements, Plane 'Trigonometry, Practical Grometry, the Elements of Fortification, and an Introduction tu Algebia. The second class studied Algebra, with the 11 th and 12 th books of Euclid, Spherical Trigonometry, Conic Sections, and the general Principles of Astronomy. The third studied Astronomy and Peropective, and read a part of Newton's Principa, he having performel a course of experiments for illustrating them: he afterwards read and demonstrated the Eleinents of Fluxions. Those in the fourth class read a System of Fluxions, the Doctrine of Chances, aud the remander of Newton's Principia.

In 1734, Dr. Berkeley, bishop of Cloyne, published a piece called the Analyst; in which he took occasion, from some disputes that had arisen concerning the grounds of the fluxionary method, to explode the methed itself; and also to charge mathenaticians in general with intidelity int religion. Maclaurin thought himself included in this charge, and began an answer to Berkeley's booh:'but othey answers coming out, and as he procerdel, so many discoveries, so many new theories and problems occurred to him, that instead of a vindicatory pamphlet, lee produced a Complete System of Fluaions, with their appleation to the most considerable probleme in (Feometrs ansl Naural Pholosophy. This work was pnblished at iddinburgh in 1742, 2 vols. 4to; and ns it cost him intinite pains, so it is the most considerable of all his works, and will do him immortal honour, being indeed the most consplete tratise on that science that has yet appeared.

In the mean time, he was continually presenting the public with some observation or performance of his own, several of which were published in the 5 th und 6 th volumes of the Nedical Essays at lidinburgh. Many uf them were likewise published in the Philosophical Transactions; as the following: 1. On the Construction and Measure of Curves, vol. So.-2. A Nrw Methort of describing all kinds of Curves, vol. 30,-3. On Equatiotis with Impossible Roots, vol. 34.-4. On the Roots of Equations, de, vol. 34.-5. On the Description of Curve Lines, sol. 39. -6. Continuation of the same, vol. 39.-7. Obserrations on a Solar Eeclipse, vol. + $0,-8$. A Rule for finding the Meridional Parts of a Spheroid with the same Exactness as in a Spbere, vol. 41.-9. An Account of the Treatise of Fluxiony, vol. 42.-10. On the Bases of the Cells where the Bees dequosit their Honry, vol. 42.

In the midst of these stulies, he was always ready to Iend his assistance in coutriving and promoting any scheme which might contribute to the public service. When the earl of Morton went, in 1739, to visit his estates in Orkney
and Shetland, he requested Mr. Maciaurin to assist him in settling the geography of those countries, which was very erroneous in all the maps; to examine their natural history, to survey the coasts, and to take the measure of a degree of the meridian. Maclaurin's family affairs would not permit him to comply with this request; be however drew up a memorial of what he thought necessary to be observed, and furaished proper instraments for the work, recommending Mr. Short, the celebrated optician, as a proper operator for the managenent of them.

Mr. Machaurin had still anotiser scherne for the improvement of Eeography and navigation, of a more extensive natnre; which was the opening a passage from Greenland to the South Sea by the north pole. That such a passage might be found, he was so fully persuaded, that he used to shy, if his situation could adinit of such ad. ventures, he would undertake the voyage, even at his own charge. But when scheeses for finding it were luid before the parlament in 1741, and be was consulted ty several persone of bish rank contceming tbem, and before he could fansh the neemorials he proposed to send, the premium was limited to the discovery of a north-west passage: he regretted much that the word west was inserted, because the thought that passage, if at all to be found, must lie not far Irom the pole.

In 1745, having, been very active in fortifying the city of Edinburgh agninst the rebel army, he was obliged to fly from thence into England, where he was invited by Dr. Herring, arcbhishop of Y'urh, to reside with him during his stay in this country. In this expedition however, being exposed to cold and hardships, and naurally of a weak and tender constitition, which hat beyn much more enleebled by clove application to study, be laid the foundation of an illness which put an end to his life, in June 1746, at 4i years of age, leaving lis widow with two sons and three daughters.

Mr. Maclaurin was a very good, as well as a very great man, and worthy of love as well as admiration. His peculiar merit as a philosopher was, that all his studies were accommodated to general utility; und we find, in many places of his worke, an application even of the most abstruse theories, to the perfecting of mechanical arts. For the same purpose, he had reuslved to compose a course of Practical Mathematics, and to rescue several useful branches of the science from the ill ireatment they often met with in less skilful hands. These intentions however were provented by his death; unless we may reckon, as a part of his intunded work, the trandation of Dr. David Gregory's Practical Geometry, which he revised, and pubbished with additions, in 1745.

In bis hiftime, however, he had frequent opportunities of serving his friends and his country by his great talents. Whatever difticulty occurred concerning the constructing or perfesting of machines, the warking of mines, the intproving of manufactures, the conveying of water, or the execution of any public work, he was always ready to resolve it. He was employed to terminate some disputes of consequence that had arien an Glaigow, concerning the gauging of vessels; and for that purpose presenied to the commissioners of the excise two elaborate nemorials, with their denonvtrations, connaining rules by which the offierrs now act. Ile made also calculations relating to the provision, now established by law, for the children and widows of the Scotch clergy, and of the professors in the miversities, entitling the to certain annuitics and sums,
on the volantary annual payment of a certain sum by the incumbent. In contriving and adjusting this wise and useful scherne, he bestowed a great deal of labour, and contributed not a little towards bringing it to perfection.

Of his works, we have mentioned his Geometria Organica, in which he treats of the description of curve lines by continued motion; as also of his piece which gained the prize of the Royal Acidemy of Sciences in 1724 . In 1740, he likewise shared the prize of the same academy, with the celebrated D. Bernoulli and Euler, for resolving, the problem relating to the motion of the tides from the: theory of gravity : aquestion which had beengiven out the: former year, without receiving any solution. He had only 10 days to draw this paper up, and could not find leisure to transcribe a fair copy; so that the Peris edition of it is incorrect. He afterwards revisel the whole, and inserted it in his Treatise of Fluxions; as he did also the substance of the former piece. : These, with the T'reatise of Fluxions, and the pieces printed in the Medical kosiys and the Philosophical I'ransactions, a list of which is given above, are all the writings which our nuthor lived to publish. Since liss death, however, two more volunies have appitared; his Algebra, and his Account of Sir Isaac Newton's Philisophical Descoveries. The Algebra, though not finished by himself, is yet allowed to be excellent in its kund; containing, in a moderate volume, a complete clementary treatise on that science, us far ns it had then been carried; besides some neat analytical papers on curve lines. His Account of Newton's Philosophy was occasioned in the following manner:-Sir Isaac dying in the begiming of 1728, his nephew, Mr. Conduitt, proposed to publish an account of his life, and desired Mr. Maclaurin's assistance. The latter, out of gratitude to his great benefactor, cheerfully undertook, and soon finished the History of the Progress which Philosophy had made before Newton's time; and this was the first draught of the work in band; which not going forward, on account of Mr. Conduitt's death, was returned to Mr. Maclaurin. To this he afterwerds male great additions, and left it in the state in which it now appears. His main design seems to have been, to explain ooly those parts of Newton's Philosophy, which have been controverted; and this is supposed to be the reason why his grand discoveries concerning light and colours are but transiently and generally touched upon; for it is known, that whenever the experiments, on which his ductrine of light and colours is founded, had been repeated with due care, this doctrine had not been contested; while his accounting for the celestial motions, and the other great appearances of nature, from gravity, had been misunderstood, and even attempted to be n diculed.

MACULE, in Astronomy, are dark spots appearing on the luminnus surfaces of the sum and moon, and even some of the planets. The solar macula are dark spots of an irregular and changeable figure, observed in the face of the sun. These are said to have been first obscrved in November and December of the year 1610, by Galilea in Italy, and Harriot in England, unk nown to, and independent of each other, soon after the invention of telescopes. But Montucla, in his History of the Mathematics, says that the honour of this discovery is due to J . Fabricius, as appears from his work published at Wittenberg, in June 1611, entitled, De Maculis in Sole visis, et earum cum sole revolutione narratio. They were afterwards also observed by Scheiner, Hevelius, Flamsteed, B 2

Cassini, kuch, aud uthers. See Maculen, Neablous, Spots, ise.

MADRIFR, in Artillery, is a thick plank, armed with plates of iron, and having a cavity sufficient (o) receive the mouth of a petard, with which it is applied against a gate, or any thing else intended to be broken down.-This term is also applied to certain flat beams, fixed to the bottom of a moat, to support a wall.-There are also madriers lined with tin, and covered whth earth; serving as defences against artificial fires, in lenigments, \&c, where there is rued of being covered overhead.

MifSTLIN (Michael), in Latin Mrestlinus, a noted astronomer of Germany, was born in the duchy of Witternberg; but spent hus youth in Italy, where he made a speech in favonr of Copernicus's system, which brought Galileo over from Aristotle and Ptolemy, to whom he was before wholly devoted. He afterwards returued to Germany, and became professor of mathematics at Tubingen; where, among his other scholars, he taught the celebrated Kepler, who has commended several of his ingenious inventions, in his Astronomis Optica. Marstlin published many mathematical and astronomical works, and died in 1590.-Though Tycho Brahé did not assent to Masthin's opinion, yet he allowed bim to be an extraordinary person, and deeply skilled in the science of astronomy.

MAGAZINE, a place in which stores aro kept, of arms, ammunition, provisions, \&c.

Artillery Manazine, or the magazine to a field battery, is made about 25 or 30 yards behind the battery, towards the parallels, and at least 3 feet under ground, to receive the powder, loaded shells, port-fires, \&c-Its roof and sides should be well secured with boards, to prevent the earth from lalling in: it has a door, and a double trench or passage sunk from the magazine to the battery, the one to enter, and the other to go out al, to prevent confusion. Sometimes traverses are made in the passages, to prevent ricochet shot from entering the magazine.

Powder-Magazine, is the place where powder is kept in large quantities. Authors differ very much with regard to the situation and construction of these nagazines; but all agree, that they ought to be arched and lomb proof. In fortitications, they were formerly placed in the rampart ; but of late they have been built in different parts af the town. The first powder-inugazines were made with Guthic arches: but M. Vauban thinking these too weak, construcled them of a semicircular form, the dimensions being 60 fect long within, and 25 feet broad; the foundations are 8 or 9 feet thick, and 8 feet high from the foundation to the spring of the arch; also the floor 2 feet from the ground, to preserve it from the dainp.

It is a constant observation, that after the centering of semicircular arches is struck, they settle at the crown, and rise upat the hances, even with a straight horizontal extrados; and still more so in powder-magazines, where the outside at top is formed, like the roof of a house, by inclined planes joining in an angle over the top of the arch, to give a proper deseent to the rain; which effects are exactly what wight to expected from the true theory of arches. Now, this shrinking of the arches, as it must be attended with very bad consequences, by breaking the texture of the cement, after it has in some degree been dried, and also by opening the joints of the vousorrs at one end, I have provided a remedy for this inconvenience, with regard to bridges, by the arcb of equilibration, in my Tracts, vol. 1 : but as the ill consequences of it are much
greater in powder-magazines, in question 06 of my Mathematical Miscellany, I proposed to find an arch of equilibration for them also; which question was there resolved by Mr. Wildbore and myself, both upon general principles. and which I illustrated by an application to a particular case, there constructed, and accompanied with a table of numbers for that purpose. From that solution it appears that the general value of the ardinate PC or y, is $y=$ $b \times \frac{\log \cdot \frac{w+\sqrt{ }\left(m^{2}-a^{2}\right)}{a}}{\log \cdot \frac{c+\sqrt{\left(c^{3}-a^{2}\right)}}{a}}$; where (in the following figurv) $y=\mathrm{rc}, a=\kappa \mathrm{D}, b=\mathrm{AQ}=\frac{1}{2} \mathrm{AB}, \mathrm{c}=\mathrm{AL}$, and $w=\mathrm{c}$; from which equation PC may be found, whon ic is given. But if. on the other hand, PC be given, to find tc, which will be the more convenient way, then from the former equation will be found,
$w=\frac{a^{n}+n^{t}}{u n}=\mathrm{c}_{1}$; where $n=2.718281828$ the number whose byp. \log. is $c y+A$, and $A=$ lug. of a, alsu $c=\frac{1}{b} \times \log$. of $\frac{c+\sqrt{ }\left(c^{2}-a^{k}\right)}{a}$. Thus for example, in the following figure, representing a transverse vertical section of the arch, if the span $A B=20$, the pitch or height $D Q=10$, the thichness at top $D K=7$, thl the angle at top $L K M=112^{\circ} 37^{\prime}$; then for every different value of PC, the last equation will give the following currespondent values of Cl . That is, if ALKMB Teprimit a vertical transverse section of the arch, the roof forming an angle LkM of $112^{\circ} 37^{\prime}$, also PC an urdinute parallel to the hoilzon taken in any part, and ic perpendicular to the same, and the other duuensions as above; then for perperly con strucling the curve se as to be the strungest, or an arch of equilibration in all its parts, the corresponding values of FC and Cl will be as in the tollowing table, where those numbers may denote any leugths whatever, cither incles, or feet, or half-yards.

$\begin{array}{\|c\|} \hline \text { Value of } \\ \text { PP. } \end{array}$	Value of ct.
1	7.0310
2	$7 \cdot 1243$
3	$7 \cdot 2806$
4	$7 \cdot 3015$
5	$7 \cdot 7838$
6	8.1452
7	8.3737
8	9.0781
9	9-6628
10	10.3333

See my Tracts, vol. 1, pa. $57 \& \mathrm{c}$.
Magazing, or Powder-Room, on ship-board, is a close room or store-house, built in the fore or after part of the hold, in order to preserve the gunpowier for the use of the ship. This apartment is strongly secured against fire, and no person is allowed to enter it with a lamp or candle; it is therefore lighted, as occasion requires, by means of the candles or lamps in the light-room contiguous to it.

MAGELLANIC Clouns, whilish appearances like clouds, scen in the heavens towards the south pole, and having the same apparent motion as the stars. They are three in number, two of them near each other.-The largent lies far from the south pole; but the wher two are not many degrees more remote from it than the nearest con-

MAG

spicunas star, that is, about 11 degrees. Mr. Boyle conjegtuns that if these clouds were seen through a good telescope, they would appear to be multitudes of small stars, like the milky way. Dr. Herschel thanks rather that nebulaw are oftern owing to a sell-luminous fludd. See Philos. Trans. an. 1791, pa. 71, and an. 1811, pa. 2009.

MAGIC Lantern, an ophical machine, by menns of which smull painted images are represented on the wall of a dark room, magnified to any size at pleasure. This machine was contrived by Kircher (we his Ars Magna Lucis et Umbra, pa.768) ; and it was so called, because the images were made to represent strange phantasms, and terrible appatitions, which have been tahen tor the efiect of magic, by such as were ignorant of the secret.

This machine is composed of a concave speculum, from 4 to 12 inches diameter, reflecting the light of a candle through the small hole of a tube, ut the end of whicb is fixed a double convex lens of about 3 mehes focus. Betwsen the two are successively placed, many snall plain glasses, painted with various figures, usually such as are the bost formidable and terrifying to the spectators, when represented at large on the opposite wall.

Thus (pl. 17, hig. 1t) ABCD is a common tin lantern, to which ts added a tube ra to draw out. In it is fixed the metallic concave speculum, Irom 4 to 12 inches diameter; or else, instend of it, near the extremity of the tube, there mast be placed a convex leas, consisting of a segment of a small spticre, of but a few inches in diameter. The use of this lens is to throw a strong light upon the image; and sometimes a concave speculum is used with the lens, to render the image still more vivid. In the focus of the concave speculum or lens, is placed the lamp 1 ; and within the tube, where it is soldered to the side of the lantera, is placed a sinall lens, convex on hoth sides, being a portion of a small sphere, having its focus about the distance of 3 inches. The extreme part of the tube IN is square, and has an aperture quite through, so as to recelve an oblong trame no passing into it; in which frame there are round holes, wf an inch or two in diameter. Answering to the magnitude of these holes there are circles drawn on a plain thin glass; and in these circles are painted nuy figures, or unages, at pleasure, with transparent watercolours. These images fitted into the frame, in an inverted prestion, at a small distance from the fucus of the lens , will be projected on an opposite white wall of a dark room, in all their colours, areatly magnificd, and ith an erect position. By having the instrument so contrived, that the leus : may move on a slide, the focus may be made, and comequently the inange appear distinct, at almost any, distance.

Or thus: Every thing being managed as in the former case, into the sliding tube FG, insert another convex lens $\mathbf{\kappa}$, the segment of a sphere rather larger than 1. Now, if the picture be brought nearer to 2 than the distance of the focus, diverging rays will be propagated as if they proceeded froin the object; therefore, if the leiss x be so placed, as that the object be very near its focus, the inage will be extibited on the wall, greatly magnified.

Macse Square, is a square figure, formed of a series of numbers in urithmetical progression, so disposed in parallel and equal ranks, as that the sums of euch row, raken either perpendicularly, horizontally, or diagonally, are equal to one another. As the following square, formed of these nine numbers, $1,2,3,4,5,6,7,8,9$, where the sum of the three figures in every row, in all the directions,
is always the same number, viz 15. But if the same numbers be placed in their natural order, in form of a square, the first being 1 , and the last of them a square number, the) will form what is called a natural square, whose two diagonals, as ulso its middle column, and middee horizontal line, will have the same sum as all the rows of the magic square, viz, 5 .

Or in the two following squares of the first 25 numbers,

Natural Square.					Magie Square.				
1	2	3	4	3	16	14	8	2	95
6	7	8	9	10	3	22	20	11	9
11	12	13	14	15	15	6	4	23	17
16	17	18	19	20	24	18	12	10	1
21	22	23	24	25	7	5	21	19	13

where every row and diagonal in the magic square makes just the sum 65, being the same as the two diagonals of the natural square, as well as of the middle row and middle columb.

It is probable that these magic squares were so catted both because of this property in them, viz, that the ranks in every direction making the same sum, appeared extremely surprising, especially in the more ignorant ages, when mathematics passed for magic ; und becanse also of the superstitious operations they were enployed in, as the construction of talismans, \&c; tor, according to the childish phulosophy of those days, which ascribed virtues to numbers, what inight wot be expected from numbers so seemingly wonderful!

The magic square was held in great veneration among the Eyjptians, and the Pythagoreans their disciples, who, toadd more efficacy and virtue to this square, dediessted it to the then known 7 planets divers wayy, and engraved it on a plate of the metal that was esteemed in sympathy with the planet. The square thus dericuted, was inclosed by a regular polygon, inscribed in a circle, which was divided into as many equal parts as there were units in the side of the square; with the names of the angles of the planet, and the signs of the zodiac written upon the void spaces between the polygon and the circumference of the circumscribed circle. Such a talisman or metal they vainly imagined would, upon occasion, befriend the person who carried it about hita.

To Saturn they attributed the square of 9 places or cells, the side being 3 , and the sunt of the numbers in every row 15: to Jupiter the square of 16 places, the side being 4, and the amount of each row 34: to Mars the square of 25 places, the side being 5 , and the amount of each row 65 : to the sun the square with 36 plnces, the side being 6, and the sum of cach row 111: to Venus the square of 49 places, the side being 7 , and the amount of each row 175: to Mercury the square with 64 places,

MAG
36 successive numbers, which would fill all the cells of a natural square whose side is 6 , he only takes as many successive numbers as there are uniss in the side of the square, which in this case are 6 ; and these six numbers alone he disposes in such munner, it the 36 cells, hat mone of them occur twice in the satne rank, whether it be horizontal, vertical, or diagonal; whonce it follows, that all the ranks, taken all the ways possible, must always make the same sum; and this method $\$ 1$. Poignurd calls repeated progressions. 2d, Instead of being confined to take these numLers accotding to the series and succession of the natural numbers, that is in arthmetical progression, he takes them likewise in a geometrical progression; and even in an harmonical one, the numbers of all the ranks always following the same kind of progression: he maken squares of each of these thrre prognessions reprated.

M1. Poignard's book gave occasion to M. Lahire to turn his thoughts to the sane subject, which he did with such success, that he greatly extended the theory of magic syuares, as well for even numbers as those that are uneven; as may be seen at large in the Memoirs of the Royal Academy of Sciences, for the years 1705, and in 1710 by M. Sauveur. See also Saunderson's Algebra, vol.1, pa. 354, \&e; as also my Mathematical Recreations, translated from Oxanam and Montucla, giving the following easy method of filling up a magic square.

To form a Magic Square of an Odd Number of Terms in the Arithmetic Progression 1, 2, 3, t, \&c. Place the least term I in the cell immediately under the middla, or cemtral one, and the rest of the terms, in their natural order, in a descending diagonal direction, till they run off either at the bottom, or on the side: whon the number runs off at the bottom, carry it to the uppermost cell that is not occupied, of the same columnt that it would have fallen in below, and then proceed descending diagonalwise again as far as you can, or till the numbers either run off at bottom or side, or are interrupted by coming at a cell already filled: now when any number runs off at the right-hand side, then bring it to the farthest cell on the left hand of the same row or line it would have fallen in towards the right hand : and when the progress diagonalwise is interrupted by meeting with a cell already occupied by some other number, then descend diagonally to the lefi from this cell till an empty one is met with, where enter it; and thence proceed as beforc.

Thus, to make a magic square of the 49 numbers $1,2,3,4, \& c$. lirst place the 1 next below the centre cell, and thence descend to the right till the 4 runs off at the botton, which therefore carry to the top corner on the same koIumnas it would

22	47	16	41	10	35	4
5	33	48	17	42	11	29
30	6	24	49	18	36	12
13	31	7	25	43	19	37
38	14	32	1	26	44	40
21	39	8	33	2	27	45
46	15	40	9	34	3	28

fore to the tep of its colomn, and so proceed till 13 russ off at the side, which therefore bring to the beginaing of the same line, and thence proceed till 15 arrives at the cell occuped by 8 ; from this therefore descend diagonally to the left: but as 16 run off at the bottom, carry it to the top of its proper column, and thence descend till 21 run off at the sude, which is therefure brought to the beginning of its proper line; but as 22 arrives at the cell occupied by 15 , descend diugonally to the left, which brings it into the ist columu, but off at the bottom, and therefore it is carried to the top of that columin; thence descending till 29 runs off both at the button and side, which therefore carry to the highest unoccupied cell in the last column; and here, as 30 runs off at the side, bring it to the begiming of its proper column, and thence descend till 35 runs off at the bottom, which therefore carry to the beginning or top of its own column; and here, as 36 meets with the cell occupied by 29, it is brought from thence diagonally to the left; thence descending, 38 runs off at the side, and therefore it is brought to the beginming of its proper line; thence descending, 41 runs off at the bottom, which therefore is carried to the beginning or top of its column; whence descending, 43 arrives at the cell uccupied by 36 , and therefore it is brought down from thence to the left; thence descending, 46 runs off at the side, which thenefore is brought to the begonsing of its line; but here, as 47 runs off at the bottom, it is carried to the beginning or top of its column, whence descending with 48 and 49 , the square is completed, the sum of erery row and colunts and drusonal making juat 175 .--There are many other ways of filling up such squares, but nome that are casier tian shat above described; unless perhaps the following mechanical way, communicated by an ingenious friend, Mr. J. B. Wisc, of Boyn Hill, near Maidenhead, Berks, which is as follows for an ould nunber, suppose 3 , in the progression 1, 2, 3, 4, 5, \&c.

1	2	9	4	5
6	7	8	9	10
11	12	13	14	15
16	17	15	19	20
21	22	23	28	25

First set duwn the 25 numbers in the form of a square, as in the first diagram here above, Next draw lines cutting off the three figures at each corner, viz, the 1, 2, 6, at the upper left-hand coraer; the $+5,10$, at the upper right-hand corner; and in like manner $16,21,22$, and 20, 24, 25 at the bollom gorners; which four lines will form a square; then draw inner lines parallel to these, and they will divide the figure int, 25 cclls, as in the 2 d diagram above, in which
 13 of the cells will be occupied by as many of the 25 numbers, the other 12 cells being empty, and the filled and empty cells mutually alternating with each other, in every one of the 10 bands.Lustly, the 12 comer numbers at first cut off, are to be
carried into the aforesaid 12 empty cells, in this manner: viz, each of these 12 external numbers is to be carried to the farthest distant empty cell in the band opposite to which it stands; thus, the 2 is carried alung its opposite band to the emply cell below the No. 1t; in like mauner, the 1 is carried to the cell next below 13, the 6 to the cell next below 18 , the 4 along its band to the cell next below 12, the 5 to the cell below 13, the 10 to the cell below 18, the 16 to the cell above 8, the 21 to the cell ubove 13 , the 22 to the cell above 14, the 20 to the cell above 8, the 24 to the cell above 12, and the 25 to the cell above 13; thus completing the magic square, as in the 3 d diagram, which is a perfect square, the sum of the numbers in every band, and in both the diagonals, making up the same quantity, 65.

For the purpose of perspicuity, in the above process, three diagrams have been employed, in order to eshibit distinctly the several stages of the process; llough in fact one diagram only is quite sufficient in practice. And the method is the same for squares of any other odd number of cells.

The same learned friend communicated a great many more of very ingenious constructions of of iares, that are much larger and more curious than any that have yot been published, but are too extensive for this place; but it is to be wished that he will himself give them entire to the public in a connected state.

It was observed before, that the sum of the numbers in the rows, columns and diagonals, was 15 in the square of 9 numbers, 34 in a square of 16 , (is in a squase of 25 , *e; bence then is derived a method of findang the sums of the numbers in any other square, viz, by taking the successive differences till they become equal, and then adding them successively to produce or find out the amount of the following sums. Thus, having ranged the sides and cells in two columns, and a few of the first sums in a third column, take the first differences of these, which will be $1,4,10,19, \& k$, as in the 4 th column; and of these tahe the differencess $0,3,6,9,12, \& \mathrm{cc}$, as in the 51h column; and again of these, the differences 3, 3, 3 \& c, as in the Gth or last columu. Then, returning back again, add alwuys 3. the constant last or 3 d difference, to the last found of the 2 d difierences, which will complete the remaituder of the column of these, viz, 15, 18, 21, 24, \&c : then atid these ad differences to the last found of the 1st differences, which will complete the column of these, viz , giving 31, 46, fi4, KC: lastly, add always these corresponding lst differences to the last found number or amount of the sums, and the column of sums will thus be completed.

Side.	Cetls,	Sutnes	Diff.	
0	0	0	0	3
1	1	1	13	3
2	4	5	106	3
3	9	15	109	3
4	16	34	312	3
5	25	65	$4_{4} 15$	3
6	36	111	6418	3
7	49	175	8521	3
8	64	260	10924	3
9	81	369	1097	3
$10{ }^{\prime}$	100	. 05	150	

Again, like as the terms of an arithmetical progression
arranged magically, give the same sum ill every row \&sc, so the terms of a geometrical serics arranged magically give the same product in every row \&c, by multiplying the numbers continually together; so this progression $1,2,4,8,16, \& \mathrm{c}$, arranged as in the maryin, gives, for each continual product, 4096 in every row \&c, which is just the cube of the midalle term, 16.
Also, the terins of an harmonical progression betng ranged magically, as in the margin, have the terms in each row \&ac in harmonical progression.

The ingenious Dr. Franklin, it seems, carried this curious speculation further than any of his pretecessurn in the same way. He constructed both a large Magic Square of Squares, and a Magic Circle of Circles, the description of which may be seen in the collection of bis works, with many curious properties; but the square is omitted here, as an inpertiction has been detected in the dingonals.

The Mugic Circle of Circles, fig. 2, pl. 19, by this author,' is composed of a series of nuobers, Irom 12 10 75 inclusive, divided into 8 conceutric circular spaces, and ranged in 8 radit of numbers, with the number 12 in the centre; which number, like the centre, is common to all these circular spaces, and to all the radir.

The numbers ate so placed, that 1st, the sum of all those in either of the concentric circular spaces above mentioned, together with the central number 12, amount to 360 , the same as the number of degrecs in a circle.
2. The numbers in each radius also, together with the central number 12, make just 560 .
3. The numbers in half of any of the above circular spaces, taken either above or below the duuble horizontal Inae, with half the contral number 12, wake just 180, or hall the degrees in a circle.
4. If any four adjoining numbers le taken, as if in a square, in the radial divisions of these circular spaces; the sum of these, with half the ceutral number, inake also the same 180.
5. There are also included four sets of other circular spaces bounded by circles that are excentric with regard to the common contre; each of which sets contan five spaces; and their centres being ut A. $\mathrm{h}, \mathrm{C}, \mathrm{D}$. For distunction, these circles are drawn with ditierent marks, some dotted, others by short unconnected lines, \&ec or still better with inks of divers colours, as blue, ied, green, yellow.

These sets of excentric circhiar spaces intersect those of the concentric, and each other; and yet, the ntimbers contained in each of the excentnic npaces, taken all around through any of the 20 , which are excentric, make the same sum as those in the concentric, namely 300 , when the central number 12 is abled. Their halves also, taken above or below the double honizontul line, with hali the central number, make up 180 . It is otservable, that there is mit one of the numbers but what belongs at least ta two of the circular spaces; some to three, some to four, some to five : and yet they are all so placed, as never to break the required number 360 , in ang of the 28 circular spaces within the primitive circle. They have alos other properties. Sue Franklin's Exp. and Obs. pa. 350, edit.

4to, 1769; or Ferguson's Tables and Tracts, 1771, pa 318 ; or my Recreations, vol. 1, pa. 183.

In Dr. Franklin's magic square, above-mentioned, three accidentally crroneous numbers have been detectes by Isaac Dalby, Fisq. first-professor at the Royal Military Colloge, which he has communicated, as well as the ditecovery of a radical imperfection in the square, owing to all inequality in the two dagonals: for though the halt diagonals have the proper sums, yet the whole diagonals have not. Mr. Dalby has therefore constructed another perlect magic square of magic squares, engraven ou pl .19 , fig. 1. the properties of which are as below.

This magic square, made with the series $1,2,3,4, \& c$, to 256 , is composed of 16 magic squares of 16 cells each; the 4 numbers in each column, or diagonal of each of these squares, make 514, and consequently each colurnh or diagonal of the great square is 514×4 or 2056 .

The principal properties are

1. The sum of the 4 numbers in any 4 contiguons cells forming a square (the square of 2) is 514 ; thus, $226+32$ $+255+1=514$; and $1+242+240+31=314$, \&c. Cunsequently
2. The sum of the 16 numbers in any 16 cells making a syuare (the square of 4) is $51+\times 4=2056:-$ in any square of 30 cells (the square of 6) the sum is 514×9 : -and 514×16 in a square of 64 cells: -514×25 in that of 110 cells:-514 $\times 56$ in a square of 144 cells :and 514×49 inany square having 14 for its side. Thus if a square hole just the size of 16 cells be cut in a paper, and the paper laid any where upun the great square, the sum of the 16 numbers appearing through the hole will always be 514×4. If the bole takes in 36 cells, the sunt is $514 \times 9:$ \&c.
3. The sum of the 4 corner numbers of either of these aquares will always be 514 .
4. The sum of the 16 numbers in any bent row whose halves are parallel to the diagonals is 20j6: thus, from 26 to 36 , and from 173 to 151, is a beme row; also, from 74 to 22, and from 227 to 191 another bent row, Ac c.
5. If the square be divided horizontally, or vertically, through the niddle, the balves may change places, and the properties of the square will remain as before.
6. If the square be cut into the 16 i squares, it is manifest that any four of them will make a magic square of 64 cells; and any tine another magic square of $1+4$ cells; consequently as muny different magic squares of 64 cells, and also of 14 - cells, may be made with the 16 squares, as there are combinations of 4 in 16 , and of 9 in 16 .

The construction of the great square evituntly depends upon that of a magic square of 16 cells having the sum of the 4 numbers in any square comporsed of 4 cells always the same. To construct such a square with the serwes $1,2,3,+, \& c$. to 16 . First, $\frac{(16+1) \times s}{4}=34$ the sum in cach culunn or diagonal, or in the + ctlls. Now arrange the 16 numbers as in fig. 1., then liy the nature of the progression, each diagonal will contain 34 : and the execss abose 34 in the 4 th perpersdicular colurnn sin the right is equal to the diefect in the lst column on the left; and the excess and delect in the lower and upper horizuntal columins are also

Fig. 1.

1	5	9	13
2	6	10	14
3	7	11	15
4	8	12	16

M $\boldsymbol{A} \boldsymbol{G}$

the same ; hence (the corner numbers remaining) if 2 and 15 , 3 and 14,5 and 12,9 and 8 respectively change places, we bave the magic squate fig. 2. In this square, however, unly the middle square of 4 cells, and the 4 conner ones contain 34 each: but in magic squares we readily obtaill varieties by shifting the columns: thus in fig. 2 , the 2 d vertical cotumn from the left may be made the last on the right, or the 3 d from the left made the 1 st , and the two upper, or the two lower horizontal culumns tahe place of one another; either of these arrangenents will unswer: thus, let the 3 d vertical column be brought on the left, and change the two upper horizonal columus one for the other, and we get the inagic square fig. 3 , having 34 in any square of 4 cells.
It will now be perceived that the numbers in fig. 3 , consist of pairs situated alternately, the sums being 18 and 16 respectively; thus $10+8,15+1,6+12$, \& c a are pairs. Hence, to make the great square with the series 1,2,3,4, \&ec. to 256, let the numbers be arranged thus

$$
\begin{array}{rrrrrr}
256 & 255 & 254 & 253 & 252 & 251 \\
2 & 1 & 4 & 3 & 6 & 5 c .
\end{array}
$$

the pairs making 258, 256, 258, \&cc, and call the upper or greater numbers the complements of the lower or lesser numbers: then arrange the first 32 numbers of the lower series (ennsisting of the numbers from 1 to 128) as in the margin: next, place the 8 upper numbers with their complements in a square of 16 cells in the same order, from the least to the greatest, as they stand in fig. 3, and we shall have the first or corner square of the great

1	16	17	32
2	13	18	31
3	14	19	30
4	13	20	29
3	12	21	28
6	11	22	27
7	10	23	26
8	9	24	25

$\begin{array}{llllllllllllll}\text { In fig.a. } & 1 & 2 & 3 & 4 & 3 & 6 & 7 & 8 & 9 & 10 & 11 & 13 & 13\end{array}$

 In fig. 3. $\}$| 14 |
| :--- |
| 15 | Correspord numblo $\} 242253256$

The next 8 numbers, or $3,4,13,14,19,20,29,30$, with their complements, muke the 2d square downwards, and so on for the four firsi squares on the left. And for the neat 4 squares, the numbels from 32 to 64 are arrangied as abose: and two more arnangeruente, viz, from $641196 i$, and from 96 to 128 , in the same manuer, will complete the 16 equares.

It is ulready semarked that the pairs fall alternately in fig. 3 ; and the same orier necessarily results in the great square ; the pairs making 258 and 236 throughout : and $258-256=514$; therefore when two numbers with their complements occupy a square of $4 \mathrm{c} \cdot \mathrm{lls}, ~ i n$ is obvious their sum is 31.4 ; hut the suin will ulso be equal to $25 \mathrm{~N}+256$, when the 4 numbers belong to 4 pair. the execss on one side being equal to the defect en the other; thus, taking the numbers in the 2 d and 3 d horizuntal columns by fours, $32+239=271,1+242=243$, now $271-256=15$, and $258-243=15$, therefore $271+$

Vol. 11 .

M A G
$245=258+256$; and the like of any other 4 adjacent numbers in the two ranks.

Bur Dr. Franklin, instead of taking 256 and 258 alternately, begins with two pair of 258 in succession : thus, $200+58=258$, the first pairat top; then $198+60=258$, the next under; and these are followed by four pair of 256 each; thus, $201+55=256$, the first pair; then $203+$ $5 S=256$ the next under, \&c ; and the two pair at the bottom of the column are 258 each , or $196+62$, and $194+64$. His ad vertical column beginsat top with two pair of 250 each, and these are followed by four pair of 258. In this manner he has a reguler alternation of 2 pair and 4 pair, throughout his square; but this construction will not answer diagonally, and therefore his square is radically wrong, and cannot be mended but by a new one.

The doctor's smaller square too, of 64 cells (in plate 5 in his Works), is constructed in a manner similar to his large one, namely, by pairs of numbers, whose sums are 66 and 64 ; but, instead of these sums or pairs being alternate, we find 66 tirst, then two of 64 each; next 66 (taking the first vertical columt on the left, and proceeding downwards) : this order runs through the whole square, and in cunsequence it fails diagoually, one diagonal being 292, the other 228.

Last year Mr. Youle, schoolmaster at Sheffield, published an Arithmetic, to which is added a tract on magic squares: in this we are informed, that the Rev. Mr. Watsun of Whitby, in a small treatise lately published, has noticed the deficiencies in Doctur Franklin's square, and has given a magic square of 256 cells, with the following additional property, viz-" the 4 corner numbers of every interior square whose root is an even number, whether concentic or not to the great square, always make 514 ."

Watson has also analysed the ductor's magic circle of circles, which is made with the numbers of a nagie square of 64 eells (the numbers from 121075).

The square in Youle's book is constructed with pairs of 256 and 258 , as in Dr. F's and mine: hut 'oule's theory und mine are totally differen:.
MAGICAL Picture, in Electricity, was first contrived by Mr. Kiunersley, and is thus constructed: Having a large mezzotinto with a frame and glass, as of the king for instance, take out the print, and cut a palnel out of it, near two inches distant from the frame all around; then with thin paste or gum-water, fix the border that is cut off on the inside of the glass, pressing it smooth and cluse: then fill up the vacancy by gilding the glass well with leafgold of brass. Gild likewise the amer edge of the back of the frame all around, except the top part, and form a communcation between that gilding and the gilding behind the glass; then put in the board, and that side is finished. Next turn upthe glass, and gifd the foreside exactly over the back gidding, and when it is dy, cover it by pasting on the pannel if the picture that has been cut vul, observing to bring the corrosponding parts of the border and picture together, by which means the picture will appear entire, as ut first, villy part behind the glass, and part befure.
Hold the picture horizontally by the top, and place a small moveable gilt crown on the king's head. If now the picture be moderately electrified, and another person take hold of the frame with ove band, so that his fingers touch its inside gilding, and with the other hand endeavour to

C
take off the crown, he will receive a violent blow, and fail in the attempt. If the picture were highly charged, the consequence might be as fatal as that of high treason. The operator, who holds the picture by the upper end, where the inside of the frame is not gilt, to prevent its falling, feels nothing of the shock, and may touch the face of the picture without danger. And if a ring of persons take the shock among them, the experiment is called the conspirators See Franklin's Exper, and Observ, pa. 30.

Magini (Johi-Anthony), or Maginus, professor of mathematics in the university of Bologna, twas born at Padua in the year 1596. Magini was remarkable for his great assiduity in acquiring and improving the knowledge of the mathematical sciences, with several new inventions for these purposes, and for the extraordinary favour be abtained from most princes of his time. This doobtless arose partly from the celebrity he had in matters of astrology, to which be wnsgreatly addicted, inaking horoscopes, and toretelling events, both relating to persons and things. He was invited by the Emperor Rodolphus to come to Vienna, where he promised him a professor's chair, about the year 1597; but not being able to prevail on him to settle there, be neverilieless gave him a handsome pension.

It is said, he was so much addicted to astrolegical predictions, thas lie not only foretold many good and evil events relatuve to others with success; but even foretold his own deatl, which came to pass the same year: all which be represented as under the influence of the stars. Tomasini say, that Magini, being advanced to his 61 st year, was struck with an apoplexy, which ended his days; and that a long while before, he had told him and others, that he was afraid of that year. And Roffeni, his pupil, says, that Magini died under an aspect of the planets, which, according to his own prediction, would prove fatal to him ; and he mentions Riccioli as affirming that be said, the figure of his nativity, and his climacteric year, doomed him to die about that time; which happened in 1618 , in the 62 d year of his age.

His writings however do honour to his memory, as they were very considerable, and on learned subjects. The principal were the following: 1. His Ephemeris, in 3 volumes, from the year 1580 to 1630.-2. Tables of Secondary Motions.-3. Astronomical, Gnomonical, and Geographical Problems.-4. Throry of the Planets, according to Copernicus.-5. A Confutation of Scaliger's Distertation concerning the Precession of the Equinox. -6. A Primum Mobile, in 12 books.-7. A Treatise of Plane and Spherical Trigonometry.-8. A Commentary on Ptolemy's Geography.-9. A Chorographical Description of the Regions and Cities of Italy, illustrated with 00 maps; with some papers on assrological subjects.

Magnet, Magnes, the Loadstone: a kind of ferruginous stone, resembling iron ore in weight and colvur, though rather trarder and lieavier; and is endued with divers extraordinary properties, attractive, directive, inclinatory, \&c. See Magnetism.

The magnet is also called lapis Heraclaeus, from Heraclea, a city of Magnesia, a port of the abcient Lydia, where it was said to have been first found, and from which it is usually supposed that it took its name. Though some derive the word from a shepherd named Magnes, who first discovered it on mount Ida with the iron of his crook. It is also called lapis nauticus, from its use in navigation: also siderites, from its virtue in attracting iron, which the Greeks call oidrgas.

The magnet is usually found in iron-mines, and some times in very large pieces, half magnet, half iron. Its co lour is different, as found in different countrics. Norman observes, that the best are those brought from China ank Bengal, which are of a rusty or sanguine colour ; thos of Arabia are reddish ; those of Macedonia, blackish ; anc those of Hungary, Germany, England, \&c, the colour o unwrought iron. Neither its figure nor bulk are constan or determined; being found of all shapes and sizes.

The ancients reckoned five kinds of magnets, different is colour and virtue: the Ethiopic, Magnesian, Barotic Alexandrian, and Natolien. They also tancied it to b male and female: but the chief use they made of it wa in medicine; especially for the cure of burns and de fluxions of the eyes.-The moderns, more huppy, take i to conduct them in their voyages.

The most distinguishing properties of the magnet are That it attracts iron, and that it points towards the pole of the world ; and in other circumstances also dips or in clines to a point beneath the horizon, directly under th pole ; it also communicates these properties, by contact to iron. By means of which, are obtained the mariner" needles, both borizontal and inclinatory or dippin: needles.

The Attractive Power of the Masxet, was known to th ancients, and is mentioned even by Plaio and Euripides who call it the Herculean stone, because it command iron, which subdues every thing else: but the knowledg. of its directive power, by which it disposes its poles alon j_{j} the meridian of every place, or nearly so, and cause needles, pieces of iron, \& c , touched with it, to poin nearly north and south also, is of a much later date though the discoverer himself, and the exact time of thdiscovery, be not now known. The first mention of it i about 1260, when it has been said that Maico Polo, 1 Venetian, introduced the mariner's compass; though no as an invention of his own, but as derived from the Chi nese, who it seems had the use of it long before; thougl some imagine that the Chinese rather borrowed it from th. Europeans.

But Flavio de Gira, a Neapolitan, who lived in the 13tl century, is the person usually supposed to have the bes title to the discovery; and yet Sir G. Wheeler mentions that he had seen a book of astronomy much older, whicl supposed the use of the needle; though not as applied : the purposes of navigation, but of astronomy. And it Guiot de Provins, an old French poet, who wrote abon the year 1180 , there is an express mention made of th loadstone and the compass; and their use in navigation obliquely hinted at.

The Variation of the Magnet, or needle, or its deviatiol from the pole, was first discovered by Sebastian Cabot, 1 Venetian, in 1500; and the variation of that variation, o change in itsdirection, by Mr. Henry Gellibrand, professo of astronomy in Gresham-college, about the year 1625 Lastly, the dip or inclination of the needle, wheu at libert: to play vertically, to a point beneash the horizon, was firs discovered by another of our countrymen, Mr. Rober Norman, about the year 1576.

The Phenomena of the Magnet, are as follow: 1, It every magnet there are two poles, of which the one point nortiswards, the other southwards, when it is freely sus pended; and if the magnet be divided into ever so man: pieces, the two poles will be found in each piece. Thi poles of a magnet may be found by holding a very fin
short needle over it; for where the poles are, the needle will stand upright, but no where else, 2 2, These poles, in different parts of the globe, are differently inclined towards a point under the horizon.-s, And, though contrary to each other, do help mutually towurds the magnet's attraction and suspension of iron.-4, If two magnets be spherical, one will turn or conform itself to the other, so as cither of them would do to the eartit; and after they have so conformed or turned themselves, they endeavour to approach or join each other ; but if placed in a contrary position, they avoid each other.-3, If a magnet be cut through the axis, the segments or parts of the stone, which before were joined, will now avoid and fly each other.6, If the magnet be cut perpendicular to its axis, the two points, which before were conjoined, will become contrary poles; one in each segment.-7, Iron receives virtuc from the magnet by application to it, or barely from an approach near it, though it do not touch it; and the iron receives this virtue variously, according to the parts of the stone it is made to touch, or even approach to.-8, If an oblong piece of iron be in any manner applied to the stone, it reccives virtue from it only lengthways. -9 , The magnet loses none of its own virtue by communicating any to the iron; and this virtue it can communicate to the iron very speedily: though the longer the iron jnins or touches the stone, the longer will it maintain its communicated virtue; and a better magnet will communicate more of it, and sooner, than one not so good. -10 , Steel receives virtue from the magnet better than iron.-11, A needle touched by a magnet will turn its ends the same way towards the poles of the world, as the magnet itself does.12, Neither loadstone nor needles touched by it conform their poles exactly to those of the world, but have usually some variation from them: and this variation is different in different places, and at divers times in the same places. -13, A loadstone will take up much more iron when armed, or capped, than it can alone. (A loadstone is said to be armed, when its poles are surrounded with plates of steel : and to determine the quantity of steel to be applied, try the magnet with several steel bars; and the greatest weight it takes up, with a bar onn, is to be the weight of its armour.) And though an iron ring or key be suspended by the loadstone, yet this does not hinder the ring or key from turning round any way, either to the right or left-14, The force of a loadstone may be variously increased or lessened, by variously applying to it, either iron, or another loadstone.-15, A strong magnet at the least distance from a smaller or weaker one, cannot draw to it a piece of iron adhering actually to auch smaller or weaker stone; but if it touch it, it can draw it from the other: but a weaker magnet, or even a small piece of iron, can draw away or separate a piece of iron contiguous to a larger or stronger magnet, -16 , In these northern parts of the world, the soutb pole of magnet will raise up more iron than its north pole. -17 , A plate of iron only, but no other body interposed, can impede the operation of the loadstone, either as to its attractive or directive quality. -18 , The power or virtue of a loadstone may be impaired by lying long in a wrong position, as also by rust, wet, \&ec; and may be quite destroyed by fire, lighening, \&cc-19, A piece of iron wire well touched, on being bent round in a ring, or coiled round on a stick, $\& c$, will always have its directive virtue diminisbed, and often quite destroyed. And yet if the whole length of
the wire were not entirely bent, so that the ends of it, though but for the length of one-teath of an inch, were left straight, the virtue will not be destroyed in those parts ; though it will in all the rest.-20, The sphere of activity of magnets is greater and less at different tumes. Also, the variation of the needle from the meridian, is various at different times of the day.-21, By twisting a piece of wire touched with a magnet, its virtue is greatly diminished; and sometimes so disordered and confused, that in some parts it will attract, and in others repel; and even, in some places, one side of the wire seems to be attracted, and the other side repelled, by one and the same pole of the stonc--22, A piece of wire that has been touched, on being aplit, or cleft in two, the poles are sometimes changed, as in a cleft magnet; the north pole becoming the south, and the south the north: and yet sometimes one half of the wire will retain its former poles, and the other half will have them changed.-23, A wire being touched from end to end with one pole of a maguet, the end at which you begin will always turn contrary to the pole that touched it: and if it be again touched the same way with the other pole of the magnet, it will then be turned the contrary way.-24, If a piece of wire be touched in the middle with only une pole of the magnet, without moving it backwards or forwards; in that place will be the pole of the wire, and the two ends will be the other pole.-25, If a magnet be heated red-hot, and again cooled either with its south pole towards the north in a horizontal position, or with its south pole downwards in a perpendicular position, its poles will be changed,-26, Mr. Boyle (to whom we are indebted for the following magnetical phenomens) found he could presently change the poles of a small fragment of a loadstone, by applying them to the opposite vigorous poles of a large onc.-27, Hard iron tools well tempered, when heated by a brisk attrition, as filing, turning, \& c, will attract thin filings or chips of iron, steel, \&c ; and hence we observe that files, punches, augres, \&c, have a small degree of magnetic virtue. -28 . The iron bars of windows, \&c, which have stood a lang time in an erect position, grow permanently magnetical; the lower ends of such bars being the north pole, and the upper end the south pole.-29, A bar of iron that has not stood long in an erect posture, if it be only held perpendicularly, will become magnetical, and its lower end the north pole, as appears from its attracting the south pole of a needie: but then this virtue is transient, and by inverting the bar, the poles change their places. In order therefore to render the quality permanent in an iron bar, it must continue a long time in a proper position. But fire will produce the effect in a short tine: for as it will immediately deprive a loadstone of its attractive virtue; so it soon gives a verticity to a bar of iron, if, being heated red hot, it be cooled in an erect posture, or directly north and south. Even tongs and fire-forks, by being often heated, and set to cool again in a posture nearly erect, have gained this magnetic property. Sometimes iron bars, by long standing in a perpendicular position, have acquired the magnetic virtue in a surprising degree. A bar about 10 feet long, and three inches thick, supporting the summer beam of a room, was able to turn the needle at 8 or 10 feet distance, and exceeded a loadstone of $3 \frac{1}{2}$ pounds weight: from the middle point upwards it was a north pole, and downwards a south pole. And Mr. Martin mentions a bar, which had been the beam of a large steel-

C 2
yard that had several poles in it.- $30, \mathrm{Mr}$. Boyle found, that by heating a piece of English oker red-hot, and placing it to cool in a proper posture, it manifestly acquired a magnetic virtue. And an excellent magnet, belonging to the same ingenious gentloman, having lam near a yeur in an inconvenient posture, had its virtur greatly impaired, as if it had beell by fire--S1, A needle well touched, it is known, will point nurth and south: if it have one contrary touch of the same stone, it will be deprived of its faculty; and by another such touch, it will have its poles interchanged. -32 , If an iron bar have gained a verticity by being heated red-hot and cooled again, north and south, and then hammered at the two ends; its virtue will be destroyed by two or three stoart bluws on the middle.-33, By drawing the back of a hnife, or a long pince of steel-wire, \&c, leisurely over the pole of a loadstone, carrying the motion from the middle of the stone to the pole; the knife or wire will attract one end of a needle; but if the knffe or wire be pessedifom the srid pole to the middle of the stone, it will repel the same end of the needle.-34, Either a magnet or a piece of iron being laid on a piece of cork, so as to float frcely on water; it will be found, that, whichever of the two is held in the hand, the other will be drawn to it: so that iron attracts the magnet as much as it is attracted by it; action and re-action being always equal. In this experiment, if the magnet be set afloat, it will direct its two poles to the poles of the world rearly.-35, A knife \&ec touched with a magnet, acquires a greater or less degree of virtue, according to the part it is touched on. It receives the strongest virtue, when it is drawn leisurely from the handle towards the point over one of the poles. And if the same knife thus touched, and thus possessed of a strong attractive power, be retouched in a contrary direction, viz, by drawing it from the point towards the handle over the same pole, it immediately loses all its virtue.- 36 , A magnet acts with equal force in vacuo as in the open air.37 , The smallest magnets have usually the greatest power in proportion to their bulk. A large magnet will seldom take up above 3 or 4 times its own weight, while a small one will nften take up more than ten times its weight. \boldsymbol{A} magnet worn by Sir Isaac Newton in a ring, and which weighed only 3 grains, would take up 746 grains, or almost 250 times its own weight. A magnetic bar made by Mr. Canton, weighing 10 uz . 12 dwts, took up more than 79 ounces; and a flst semicircular steel magnet, weighing 1 oz. is dwts, took up an iron wedge of 90 ounces.

Armed Maonet, denotes one that is capped, cased, or set in iron or stecl, to make it take up a greater weight, and also more readily to distinguish its pules. For the methods of doing this, see Mr. Michell's book on this subject.

Artificial Magaet, is a bar of iron or steel, impregnated with the magnotic virtue, so as to possess all the properties of the natural loadstone, and be used instead of it. How to make magnets of this kind, by means of a natural magnet, and even without the assistance of any magnet, was suggested many years since by Mr. Savary, and particularly described in the Pbilas. Trans. No. 414. See also my Abridgment, vol. 7, pa. 400. But as his method was tedious and operose, though capable of communicating a very considerable virtue, it was little practised. Dr. Gowin Kinight first brought this kind of magnets to their present state of perfection, so as to be even of much greater efficacy than the natural ones. But
as he foolishly refused to discover his methods on a terms whatever, these curious and valuable secrets a great measure died with him. The result of his mutt however was first published in the Philos. Trans, for 17 art. 8, and for 1745 , art. 3. See abo the vol. for 17. art. 2. Aud in the 69th vol. Mr. Benjamin Wilson given a process, which at least discovers one of the lend principles of Dr, Kuight's art. The method, uccording Mr. Wilson, was as folluws. Having provided a gr quantity of clcan iren filings, he put them into a large t thet was more than one-third filled with clean water; then, with great labour, shook the tub to and fro for mis hours together, that the friction between the grains iren, by this treatment, might break or rub off such sm parts as would remain suspended in the water for so time. The water being thus rendered very muddy, poured it into a clean iron sessel, feaving the filings bebir and when the water had stood Inng enough to becon clear, he poured it out carefully, withont disturbing su of the sediment as still remained, which now appeas reduced almost to impalpable powder. This powder ${ }^{1}$ afterwards removed into another vessel, to dry it: a having, by several repetitions of the process, procurec sufficient quantity of this very fine powder; the next thi was to make a paste of it, and that with some vehicle co taining a good quantity of the plilogistic principle ; 1 this purpose, he had ricourse to linseed oil, in preferen to all other fluids: and with these two ingreatients only, made a stiff paste, and took great care to knead it w, before he moulded it into convenient shapes. Sometime while the paste continued in its soft state, he would p the impression of a seal; one of which is in the Britt Museuin. This paste so moulded was then set ups wood, or a title, to dry or bake it before a moderate fil being placed at about one foot distance. He found th a moderute fire was most proper, because a greater degr of hrat would make the composition crack in nar places. The time requisite for the baking or drying of th paste, was usually about 5 or 6 hours, before it attained sufficient drgree of hardness. When that was done, nt: the several baked pieces were become colt, he gave thel their magnetic virtue in ally direction be pleased, t placing them tetween the extreme ends of his large im gazine of artificial maguets, for a few seconds. The viriu they acquired by this method was such, that, when mu of those pieces were held between two of his best teti-gu: nea bars, with its poles purposely inverted, it inmmediatel of itself turned about to recover its natural direction which the force of those very powerful bars was not suff cient to counteract. Philos. 'Jrans. vol. 65, for 1779.

Methods for artificial magnets were also discovered an published by the Rev. Mr. John Michell, in a Treatise o Artificial Magnets, printed in $\mathbf{1 7 5 0}$, and by Mr. Joh Canton, in the Philos. Trans, for 1751 . The process fo the same purpose was also found out by other persons particularly by Du Hamel, Hist. Acad. Roy. 1743 ath 1750, and by Marul Vitgelecze Natuurkund. Verhand tom. 2, p. 261.

Mr. Canton's methorl is as follows: Procure a dozer of bars; 6 of soft steel, and 6 of hard; the former to be each 3 inches long, a quarter of an inch broad, and $1-204 \mathrm{~h}$ of an inch thick; with two pieces of iron, each half the length of one of the bars, but of the same breadth and thickness ; and the 6 hard bars to be each $5 \frac{1}{4}$ ioches long, half an inch broad, and 3-20ths of an tinch thick, with
two pieces of tron of half the length, but the whole breadth and thickness of ote of the hard bars; and let all the bars be marked with a line quite around them at one end. Then take an iron poher and tongs (fig. 1, plate 20), or two bars of iron, the larger they are, and the longer they have been used, the better; and fixing the poker upright between the bnees, hold to it, near the top, one of the soft bars, laving its marked end downwards by a piece of sewing-silk, which must be pulled tight by the left band, that the bar may not slide: then grisping the tongs with the right hautd, a hittle below the micldle, and holding them nearly in a vertical position, let the bar be strokid by the lower end, from the botton the thep, about ten times on each sde, which will give it a maguetic power sufficient to lift a small key at the marked end: which end, if the bar were suspended on a point, would twin towards the north, and is the retore called the north pole; and the uninarked end is, for the same reason; called the south poke. Four of the soft bass being impregrated in this manner, lay the two (hg. 2) parallel to each other, at a quarter of an inch distance, between the two pieces of iron belonging to them, u north and a south pole against each piece of iroll : then take two of the four bars already made magnetical, and place them together, so as to make a double bar in tuickn:ss, the morth pule of one even with she south pole of the other; and the remaining two being put to these, one on cach side, so as to have two north and two south poles together, separate the north from the south poles at one end by a large pin, and place them perpendicularly with that end downward on the middle of one of the parallel bars, the two norith poles towards its south end, and the two south poles towards its north end: slide them three or four times backward and forwurd the whole length of the bar; then removing then from the middle of this bar, place them on the middle of the other bar as before directed, and go over that in the same twanner; then turn buth the bars the other side upwards, and repeat the former operation: which being done, take the two from between the pieces of iron; and, placing the two outermost of the touching bass in their steat, let the other two be the outernost of the four to touch these with; and this process being repeated till each pair of bars have been .ouched three or four times over, which will give them a considerable magnetic power. Put the half-dozen together after the manner of the four (fig. 3), and touch them with two pair of the hard bars placed between their irons, at the distance of about half an inch from each other; then lay the soft bars aside, and with the four hatd anes let the other two be impregnated (fig. 4), holding the touching bars apart at the lower end near ith of an tneh; to which distance let them be scparated after they ure set col the parallel bar, and brought tegether again before they are taken off: this being observed, proceed according to the inethod described above, till each pair have been touched two or three tines over. But as this vertical way of touching a bar, will nut give it quite so nuch of the magnetic virtue as it will receive, let each pair be now touched once or twice over in their parallel ponition between the irons (fig. 5), with two of the bars held horizmially, or nearly so, by drawing at the sane time the north end of one from the middle over the south ent, and the south of the other from the middle over the north end of a parallel bar; then bringing them to the middle again, without touching the parallel bar, give thrce or four of these horizontal strukes to each side. The horizontal touch, after
the vertical, will make the bars as strong as they possibly can be tnade, as appears by their not receiving any additional streugth, when the vertical touch is given by a great number of bass, and the horizontal by those of a supenior magnetic power.

This whele process may be gone through in about balf an hour ; and each of the large bars, if well hardenell, may be made to lift 28 troy ounces, and sometines more. And when these bars are thus impregnuted, they will give to a hard bar of the same size its fult virtue inl less than two minutes; and theretore will answer all the purpunes of nugnetism in tavigation and expernuental plifosophy, much better that the loadstone, which, has not a poner sufficient to impreguate hard bars. The half dozen being put intu a case (fig. 6), in such a manner as that no two poles of the same nanue may be tugether, and their irous with them us one bar, they will retain the vistucs they have reccived; but if their puwer slould, by naking experiments, be ever so far impaired, it may be Jestored without any foreign assistauce in a few minutes. And if perchance a much larger set uf bars should be required, tbese will communicate to them a sufficient power to proceed with; and they may, in a short time, by the same method, be brought to their full stiength.

MAGNETISM, the quality or constitution of a body, by which it is rendered magnetical, or a magnet, sensibly attracting iron, and giving it a merndioual direction.-Thes is a transicnt power, capable of being produced, destroyed, or restored.

The Laws of Magnetism.- These laws are laid down by Mr. Whiston in the following propositions.-1. The loadstone has both an attractive and a directive power united together, whale iron touched by it has only the former ; i, e. the maguet not only attracts necules, or steel filings, but also directs them to certain different angles, with respect to its own surface and uxis; whereas iron, touched with it, does little or nothing more than attract thens; still suffring them to lie along or stand perpendicular to its surface and edges in all places, without any such apecial direction.
2. Neither the strongest nor the largest magnets give a better directive touch to nededes, than those of a less size or virtue: to which may be added, that whereas there are two qualities in all magnets, an attractive and a directive one, beither of them depend on, or are any pruof of, the strength of the other.
3. The attractive power of magnets, and of iron, will greatly iacrease or diuninish the weight of needles on the balance; nay, it will overcoine that weight, and even sustain sume other additional also: while the directive power has a much smaller effect. Gassendus indeed, as well as Mersemus and Gilbert, assert that it has none at all: but this is a mistake; for Whiston found, from repeated trials on large needles, that after the touch they weighed less than before. One of $4584 \frac{1}{6}$ grains, lost $2 \frac{1}{4}$ grains by the louch; and another of 63720° grains weight, no less than 14 grains.
4. It is probable that iron consists almost wholly of the attractive particles; and the magnet, of the attractive and directive together; mixed, probably, with other heterogeneous matter; as having never been purged by the fire, which iron has; and hence may arise the reasun why iron, after it has been tonched, will lift up a much greater weight than the loadstone that touched it.
5. The quantity and direction of magnctic powers,

MAG
communicated to needles, are not properly, after such communication, owing to the magnet which gave the touch; but to the goodness of the steel that receives it, and to the strength and position of the terrestrial loadstone, whose influence alone those needles are afterwards subject to, and directed by: so that all such needles, if good, move with the same strength, and point to the same angle, whatever loadstone they may hase been excited by, provided it be but a good one Nor does it scem that the touch does much more in magoretical cases, than attrition does in electrical ones; i. e. serving to rub off some obstructing particles, that adhere to the surface of the steel, and opening the pores of the body touched, thus making way for the entrance and exit of such effluvia as occasion or ansist the powers we are speaking of. Hence Mir. Whiston takes occasion to observe, that the directive power of the loadstone seems to be mechanical, and to be derived from magnetic efflusia, circulating continually about it.
6. The absolute attractive power of different armed loadstones, is, cateris paribus, not according to either the diameters or solidities of the loadstones, but according to the quantity of their surfaces, or in the duplicate proportion of theirodiumeters.
7. The power of good unarmed magnets, sensibly equal in strength, similar in figure and position, but unequal in magnitude, is sometimes a little greater, sometimes a little less, than in the proportion of their similar diameters.
8. The loadstone attracts needles thathave been touched, and others that have not been touched, with equal force at unequal distances, viz. when the distance of the former is to the distance of the latter, as 5 to 2 .
9. Both poles of a magnet equally attract needles, till they are touched; then it is, and then only, that one pole begins to attract one end, and repel the other: though the repelling pole will still attract upon contact, and even at very small distances.
10. The attractive power of loadstones, in their similar position to, but different distances from, magnetic needles, is in the sesquiduplicate proportion of the distances of their surfaces from their needles reciprocally; or as the mean proportionals between the squares and the cubes of those distances reciprocally; or inversely as the square roots of the 5 th powers of those distances. Thus, the magnetic force of attraction, at twice the distance from the surface of the loadstone, is between a 5th and 6th part of the force at the first distance; at thrice the distance, the force is between the 15 hh und 16 h h part; at four times the distance, the power is the 32d part of the first; and at six times the distance, it is the 88 th part. Where $1 t$ is to be noted, that the distances are not counted from the centre, as in the laws of gravity, but from the surface: as experience teaches us, that the magnetic power resides chicfly, if net wholly, in the surfaces of the loadstone and iron; without any particular relation to athy centre whatever. The proportion here laid down was determined by Mr. Whiston from a great number of experiments by Mr. Hawksbec, Dr. Brook Taylor, and by Mr. Whiston himself; measuring the force by the chords of those arcs by which the magnet at several distances draws the needle out of its natural direction; to which chords, as he demonstrates, it is always proportional. The numbers in some of their most accurate trials, he gives in the following table, setting down the half chords, or the sines of half those arcs of declination, as the true measures of the force of magnetic attraction.

Distances io isches.	Degrees of iaclinetion.	Siset of it arcs.	Senquidupli- cate ratio.
20	2	175	466
$14 \frac{5}{5}$	4	349	216
13	6	523	170
$12 \frac{1}{4}$	8	697	138
$11 \frac{1}{5}$	10	871	105
$10 \frac{1}{4}$	12	1045	87
$9 \frac{1}{4}$	14	1219	70

Other persons however have found some variatio the proportions of the magnetic force with respect tc tance: Thus, Newton supposes it to decrease nearly \mathbf{i} triplicste ratio of the distance: Mr. Martin observes, the power of his loadstone decreases in the sesquidupl ratio of the distances inversely: but Dr. Helsham and Michell found it to be as the square of the distanc versely: while others, as Dr. Brook Taylor and M. 1 chenbroek, are of opinion, that this power follows no tain ratio at all, and that the variation is different ir ferent stones.
11. An inclinatory, or dipping-needle of 6 inches ra and of a prismatic or cylindric figure, when it oscil along the magnetic meridian, performs there every ${ }^{\text {r }}$ vibration in about $6^{\prime \prime}$ or $360^{m \prime \prime}$, and every small oscills in about $3^{\text {II }} \frac{1}{3}$, or $330^{\text {MII }}$: and the same kind of needl feet long, makes every mean oscillation in about $24^{\prime \prime}$, every small one in about $22^{\prime \prime}$.
12. The whole power of magnetism in this country it affects needles a foot long, is to that of gravity, ne as 1 to 300 ; and as it affects needles 4 fect long, as 600.
13. The quantity of magnetic power accelerating same dipping-needle, as it oscillates in different ver planes, is always as the cosines of the angles mad. those planes with the magnetic meridian, taken on horizon.

Thus, in estimating the quantity of force in the rizontal and in the vertical situations of needles at Lont it is found that the latter, in needles of a foot long, i the wholeforce along the magnetic meridian, as 96 to 1 and in needles 4 feet long, as 9667 to 10000 : wher in the former, the whole force in needles of a foot lon; as 28 to 100; and in those of 4 feet long, as 256 to ic Whence it follows, that the power by which horizo needles are governed in these parts of the world, is the quarter of the power by which the dipping-needl moved.

Hence also, as the horizontal needle is moved only a part of the power that moves the dipping-needle; as it only points to a curtain place in the horizon, beca that place is the nearest to its original tendency of । that its situation will allow it to tend to $;$ whenever dipping-ncedle stands exactly perpendicular to the rizon, the horizontal needle will not respect one poin the compass more than another, but will wheel about ; way uncertuinly.
14. The tume of oscillation and vibration, both in d ping and horizontal needles, that are equally good, is their length directly; and the actual velocities of th points along their ares are always unequal. And henmagnetical needles are, cxteris paribus, still better, 1 longer they are; and that in the proportion of th lengths.

Of the Causes of Magnetism. Though many auth have proposed bypotheses concerning the cause of ma
netism, as Plutarch, Descartes, Boyle, Newton, Gilbert, Hartsoeker, Halley, Whiston, Knight, Beccaria, \&c; nothing however has yet appeared that can be called a satisfactory solution of its phenomena. It is certain indeed, that both natural and artificial electricity will give polarity to needics, and even reverse their poles; but though from this it may appear probable that the electric fluid is also the cause of magnetism, yet in what manner the fluid acts while producing the magnetical phenomena, seems to be quite unknown.

Dr. Kinight, indeed, from several experiments deduces the following propositions, which he offers, not so much to explain the nature of the cause of magnetism, as the manner in which it acts: the magnetic matter of a loadstone, he says, moves in a stream from one pole to the other internally, and is then carried back in a curve line externally, till it arrive aguin at the pole where it firat entered, to be ngain admitted: the immediate cause why two or more magnetical bodies attract each other, is the flux of one and the same stream of magnetical matter through them; and the immediate cause of magnetic repulsion, is the conflux and accumulation of the magnetic matter. Philos. Trans, vol. 44, pa. 665. Mr. Michell rejects the motion of a subtile fluid; but though he proposed to publish a, theory of magnetism established by experiments, no such theory ever appeared.

Signor Beccaria, from observing that a sudden stroke of lightning gives polarity to magnets, conjectures, that a regular and constant circulation of the whole mase of the electric fluid, from north to south, may be the original cause of magnetism in general. But this aurrent he does not suppose to arise from one source, but from several, in the northern hemisphere of the earth : the abertation of the common centre of all the currents from the north point, may be the cause of the variation of the needle; the period of this declination of the centre of the currents, may be the period of the variation; and the obliquity with which the cursents strike into the earth, may be the cause of the dipping of the needle, and also why bars of iron more easily receive the magnetic virtue in one particular direction. Lettre dell' Elettricismo, pa. 269 ; or Priestley's Hist. Elec. vol. 1, pa. 409. Sre also Cavallo's Treatise on Magnetism, and the article Vabiation in this volume.

MAGNIFYING, is the making of pbjects appear larger than they usually and naturally-appear to the cye ; whence convex lenses, which have the power of doing this, are called Magnifying Glasses.

The magnifying power of dense mediums of certain figures, was known to the ancients; though they were far from understanding the cause of this effect. Seneca says, that small and obscure letters appear larger and brighter through a glass globe filled with water; and he absurdly accounts for it by saying, that the eye slides in the water, and cannot lay hold of its object. And Alexander Aphrodisensis, about two centuries after Seneca, says, that the reason why apples appear large when immersed in water, is, that the water which is contiguous to any body is affected with the same quality and colour ; so that the eye is deceived in imagining the body itself larger. But the first distinet accounn we have of the magnifying power of glasses, is in the 12 th century, in the writings of Roger Bacon, and Alhazen ; and it is not improbable that from their observations the construction of spectacles was derived. In the Opus Majus of Bacon, it is demonstrated,
that if a transpafent body, interspersed between the eye and an object, be convex towards the eye, the object will appear magnified.

Magnifying Glass, in Optics, is a small spherical convex lens; which, in transmittug the rays of light, inflects them more towards the axis, and so exhibits objects viewed through them larger than when viewed by the naked eye. See Microscore.

MAGNITUDE, any thing made up of parts lucally extended, or continued; or that has several dimensions; as a line, surface, solid, \&c. Quantity is often used as synonymous with magnitude. See Quantitr.

Grometrical Magnitudes, are usually, and most properly, considered as generated or produced by motion; as lines by the motion of points, surfaces by the motion of lines, and solids by the motion of surfaces.

Apparent Magnitude, is that which is measured by the optic or visual angle, intercepted between rays drawn from its extremes to the centre of the pupil of the eye. It is a fundamental maxim in optics, that whatever thiugs are seen under the same or equal ungles, appear equal : and vice versa.-The apparent magnitudes of an object, at different distances, are in a ratio less than that of their distances reciprocally.

The apparent magnitudes of the two great luminaries, the sun and moon, at rising and setting, are a phenomenon that has greatly embarrassed the modern philosophers. According to the ordinary laws of vision, they should appear the least when nearest the horizon, being then farthest from the eye; and yet it is found that the contrary is true in fact. Thus, it is well known that the mean apparent diameter of the moon, at her greatest height in the meridian, is nearly 31^{\prime} in round numbers, subtending then an angle of that quantity as measured by any instrument. But, being viewed when she rises or sels, she seems to the eye as two or three times as large as before; and yet when measured by the instrument, her diameter is not found increased at all, but diminished.

Ptolemy, in his Almagest, lib. 1, cap.3, taking for granted, that the angle subtended by the moon was really increased, ascribed the increase to a refraction of the rays by vapours, which actually enlarge the angle under which the moon appears, just as the angle is enlarged by which an object is seen from under water: and his commentator Theon explains distinctly bow the dilatation of the angle in the object immersed in water is caused. But it being afterwards discovered, that there is no alteration in the angle, ancther solution was started by the Arab Athazen, which was followed and improved by Bacon, Vitello, Kepler, Peckham, and others. According to Alhazen, by sight we apprehend the surface of the heavens to be flat, and judge of the stars as of ordinary visible objects extended on a wide plain; the eye sees them under equal angles indeed, but withal perceives a difference in their distances, and (on account of the semidiameter of the earth, which is interposed in one case, and not in the other) it is hence induced to judge those that appear more remote to be greater. Further improvement was made in this explanatiun by Mr. Hobbes, though he fell into some mistakes in his application of geometry to this subject : for he observes, that this deception operates gradually from the zenith to the borizon; and that if the apparent arch of the sky be divided into any number of equal parts, those parts, in descending towards the horizon, will subtend an angle that is gradually less and less. And hẹ was the first who
expressly considered the vaulted appearance of the sky as a real portion of a circle.

Descartes, and from him Dr. Wallis, and most other authors, account for the appearance of a different distunce under the same angle, from the fong series of objects interposed between the ege and the extremity of the sensible horizon; which makes us imagiae it more remote than when in the meridian, whre the ege sees nothing in the way between the object and itselt. This idea of a grout distance makes us imagine the luminary the larger ; for an object being secu under any certain angle, and believed at the same unce very remote, we naturatly judge it must be very large, to uppear under such an angle at such a distance. And thus a pure judgnent of the mind makes us sec the sun, or the moon, lagger in the horizon than in the meridian; notwhthstanding their diameters measured by any instrument are really less in the former situatuon than the latter.

James Gregory, in his Gevim. I'ars Universalis, pa.141, subscribes to this opimion: Finther Mallebrnishe abso, in the first book of his Recheiche de la Verité, has "xplained this phenomenon ulmost in the expression of Descartes: and Huygens, in his Treatise on the Parhelia, translated by Dr. Smith, Optics, art. 536, has approved, and very ciearly illustrated, the received opinion. The cause of this fallacy, says he, in short, is this; that we think the sun, or any thing else in the heavens, farther from us when it is near the horizon, than when it approaches towards the vertex, because we imagine every thing in the air that nppears ucar the vertex to be farther from us than the clouds that fly over our lieads; whereas, on the other hand, we are used to observe a large extent of land lying between us and the objects near the horizon, at the farther end of which the consexity of the sky begins to appear ; which thercfure, with the objects that appear in it, are usually imagined to be much fartherfrom us. Now when two objects of equal magnitude appear under the saine angle, we always judge that object to be larger which we think is remoter. And this, according to them, is the true cause of the deceptionin question.

Gassendus was of opintun, that this effect arises from hence; that the pupil of the eyr, being always mure open as the place is more dark, as in the morning and evening, when the light is less, and besides the earth being then covered with gross vapours, through a longer column of which the rays must pass to reach the horizon ; the image of the huninary enters the eye at a greater angle, and is really painted there larger than when the lummary is bigher. See Appauent Diameter and Magnitude.
F. Gouge adiances another hypothesis, which is, that when the lunimaries are in the horizon, the proximity of the earth, and the gross vapours with which they then appear enveloped, have the same effect with regard to us, as a wall, or other dense body, placed behind a column; which in that case appears larger than when insulated, and encompassed on all sides with anilluminated air.

The conmonly received opinion has been disputed, not only by F. Gouge, who observes, Acad. Sci. 1700, pa.11, that the horizontal moon appears equally large across the sea, where there are to objects to produce the efliect ascrolied to them; but also by Mr. Mulyneux, who says, Pbilos. Trans. Alur, vol. 3, pa. 365, that if this hyputheos be true, we may at any time increase the apparent magnitude of the moon, even in the meridian; for, in order to divide the space between it and the eye, we need only to
look at it behind a cluster of chimneys, the ridge of t or the top of a house, \&c. He makes also the sar servation with F, Gouge, above mentioned, and fit observes, that when the height of all the intermedia jects is cut off; by looking through a tube, the ims tion is not belped, and yet the moon seems stilt as la. befure.

M, Biot, however, in his treatise of Physical Astrol seems to be of a contrary opimon, for he says, that a as the moon is viewed thruugh a tubs, or even thro small hole pierced in a card, so as to take off the vi intervening objects, the deception ceases ; and the d ter appears no larger than when it is olserved in it. nith.

Bishop Berkeley supposed, that the moon appears I near the horizon, because she then appears lumter her beanis affect the cye less. And Mr. Robins has f fully recited some other opinions un this subject, I Tracts, vol. 2, pa. 2+2, \&c.

Dr. Desaguliers lias, illuatrated the ductrine of thi rizuntal moon, Plifus. Trans, Abr, vol y, pa. 105, o supposition of our imagining the visible beaweus to be a stuall portion of a spherical rueface, and consequ supposing the moon to be fatther from us in the he than near the zenith; and by several ingetious ca vances he demonstrated how liable we are to such d tions. The same idea is pursued still further by Smith, in bis Optics, where fie determines, that the c of the apparent spherical scgonent of the sky lying t below the eye, or the horizon, the apparent distan, its parts near the borizon was about 3 or 4 times gr than the apparent distance of its parts over head; which reason it is, he infers, that the moon alwaysapl the larger as she is luwer, and also that we ulways : the height of a ectestinl object to be more than it r is. Thus, he determined, by measuring the actual h of some of the heavenly budies, when to his eye seemed to be half way between the borizon and the zea that their real altitude was then only 23° : when the was about 30^{2} high, the upper portion aluays appe less than the under; and be thought that it wav consts greater when the sun was 18° or 20° high. Dir. Ito in his Tracts, vel. 2, pa. 24j, alows l.ow to determine appareut concavity of the shy in a more accurate geonuetrical manner; by whech it appars, that if the tude of any of the havenly bedies be 20°, at the when it seems to be half way between the hetrizen anc zenith, the horizontal distance will be hardly less tha times the perpendicular distance; but if that alutude 28°, it will be litule more than 2 and a half.

Dr. Smith, having determined the apparent figut the sky, thus applas it to explain the phenomesor the horizontal moon, und other similar appearabers in beavens. Suppose the arc ABC torepreacht the appa concavity of the beavens: then the diameter of the and inoen would seem to be greater in the horizon t at any altitude, measured by the ungle Aus, in the r of its apparent distances, AO, Bo. The numbers 1 express these proportions he reduced into the anne table, answering to the coriesponding altitudes of the or monn, which are alse exactly represented to the ey the figure, in which the inoon, placed in the quadra) are yg described about the centre 0 , are all equal to e other, and represent the body of the moon in the beif there noted, and the unequal moons in the concavity t
are terminated by the visual rays coming from the circum. ference of the real moon, at those heights to the eye, at 0 .

Dr. Smith alsoolserves, that theapparent concave of the sky, being less than a he- The alcof the sua or Apparent diameters misphere, is the cause mon in degrees. or dinances, that the breadths of the colours in the inward and outward rainbows, and the interval between the bows, appear least at the top, und greaser at the bot-
or divances. 00 100 $15 \quad 68$ $30 \quad .30$ 4540 60 34 $\begin{array}{ll}75 & 31 \\ 90 & 30\end{array}$ 90 tom. This sheory of the horizontal moon is also confirmed by the appearances of the tails of comets, which, whatever be their real figure, maguitude, and situation, in absolute space, do always appear to be an arc of the concave of the heavens. Dr. Smith however justly achnowledges that, at different times, the moon appears of very different maguitudes, evell in the same horizon, and occasionally of an extraordinary large size; which he is not able to give a satusfactory explanation of, Smith's Optics, vol. 1, pa. 63, \&sc, Remarks, pal 53.

MAIGNAN (Emanura), a religious minim, and one of the greatest philosophers of his age, was born at Thoulouse in 1601 . Like the fanous Pascal, he became a complete mathematician without the assistance of a acacher; and filled the professor's chair at Rome in 1636, where, at the expense of Cardinal Spada, he pullished his book De P'erspectiva Horaria, in 1648. Maignan returned to Thoulouse in 1650 , and was created Provincial. His knowledge in mathematics, and physical experiments, was very carly known; especially from a dispute which arose beineen bina and father Kircher, about a catoptrical iuvention.

The king, who in 1660 annused himself with the machines and curnosities in the father's cell, made him offers by Cardinal Mazarin, to draw him to Paris; but he humbly desired to spend the remainder of his days in a cloi-ver.-He published a Course of Philosophy, in 4 volumes svo, at Thoulouse, in 1652 ; to the second edition of which, in folio, 1673, he added two treatises; the one Voz. II.
against the vortices of Descartes, the other on the speak-ing-trumpet invented by Sir Samuel Moriand.-He also formed a machine, which showed, by its movements, that Descartes's supposition concerning the manner in which the universe was formed, or might have been formed, and concerning the centrifugal force, was entirely without foundation.

Thus this great philosopher and divine passed a life of tranquillity, in writiag books, making experiments, and reading lectures. He was frequently consulted by the most eminent philonophers on different subjects, which he answered either by writing or otherwise; and no person was certainly more industrious: it is said that he even studied in his sleep; for his very dreams employed bim in problems, which he pursued sometimes till be came to a solution or demonstration; and he has frequently been awaked out of his sleep of a sudden, by the exquisite pleasure which he felt on discovery of it. The excellence of his manners, and his unspotted virtues, readered him no less worthy of esteem, than his genius and learn-ing.-It is said that be composed with great ease, and without making any alterations. He died at Thoulouse in 1676 , at 75 years of age.

MALLEEABLE, the property of a solid ductile body, from which it may be beaten, forged, and extended under the bammer, without breaking, which is a property of all metals.

MANFREDI (EUstachio), a celebrated atsronomer and mathematician, born at Bologna in 1674. His geuius was always above his age: for he was a tolerable poet and wrote ingenious verses while he was but a child: and while very young he formed in his father's house an academy of youth of his own age, who became there the Academy of Sciences, or the Institute. He was professor of mathematics at Bologna in 1698 , and superintendant of the waters there in 1704. The same year lie was placed at the head of the College of Montalte, founded at Bologna for young men intended for the church: and in 1711 he obtained the office of astronomer to the Institute of Bologna. He became member of the Academy of Sciences of Paris in 1726, and of the Royal Society of London in 1729; and died the 15th of February 1739, at 65 years of age.- His works are:

1. Ephemerides Motuum Cœelestium ab anno 1715 ad annum $1750 ; 4$ volumes in 4to. The first volume is an excellent introduction to astronomy; and the other three contain numerous calculations. His two sisters greatly assisted him in composing this work.
2. De Transitu Mercurii per Solem, anno 1723. Bologna 1724, in 4 to.
3. De Annuis Inerrantium Stellarum Aberrationibus, Bulogna 1729, in 4to.-Besides a number of papers in the Memoirs of the Academy of Science3, and in other places.

MANHLICS (MArcés), a Latin astronomical poet, who lived in the reign of Augustus Casar. He wrote an ingenious porm relating to the stars and the sphere, cal led Astronomicon; which, not being mentioned by any of the ancient poets, was unknown, all about awo centurics since, when it was found buried in some German library, and published by Poggius. There is no account to be found of this author, butwhat can le drawn from his poem; which contains a system of the ancient astronomy and astrology, together with the philosophy of ahe Stoics. It consists of five books ; though there was a sixth, which has not been recovered. In this work, Manilius hints D
at some opinions, which later ages have been ready to glory in as their own discoveries. Thus he definds the fluidity of the heavens, against the hypothesis of Aristote; and asserts that the fixed stars are not all in the same concave superficies of the heavens, and equally distant from the centre of the world: be maintains that they are all of the same nature and substance with the sun, and that each of them has a particular vortex of its own; and lastly, he says that the tnilky way is only the united lustre of a great many small imperceptiblestars ; which indeed the moderns now see to be such through their telescopes. The best editions of Manilius are that of Joseph Scaliger, in tho, 1600; that of Bentley, in $4 t 0,1738$, and that of Edmund Burton, esy in 8vo, 1783.

MANOMETEH, or Manoncope, all instrument to show or measure the alterations in the rarity or density of the air. - The manometer differs from the barometer in this, that the latter only serves to measure the Weight of the atmosphere, or of the column of air over it; but the former, the Density of the air in which it is found; which density alepends not only on the weight of the atmosphere, but also on the action of beat and cold, \&sc. Authors however often confound the two togethes; and Mr. Boyle himself has given a very good manometer of his contrivance, under the name of a stasical Barometer, consisting of a bubble of thin glass, about the size of an orange, which being counterpoised when the air was in a mean state of density; by means of a nice pair of scales, sunk when the atmosphere became lighter, and rose as it grew heavier.
The inanometer used by Captain Phipps, in his voyage towards the north pole, consisted of a tube of a small bore, with a ball at the end. The barometer being at 29.7 , a small quantity of quicksilver was put into the tube, to take off the communcation berween the external air, and that confined in the ball and the part of the tube below this quicksilver. A scale is placed on the side of the tube, which marks the degrees of dilatation arising from the increase of heat in this state of the weight of the air, and has the same graduation as that of Fahrenheit's thermometer, the point of freezing being marked 32 . In this state tberefore it will show the degrees of heat in the same manner as a thermometer. But when the air becomes lighter, the bubble inclosed in the ball, being less compressed, dilates itself, and accupies a space as much larger as the compressing force is less; thercfore the changes arising from the increase of licat, are proportionably larger; and the instrument shows the diffienences in the density of the air, arising from the changes in its weight and lieat. Mr. Ramsden found, that a heat equal to that of boiling water, increased the magnitude of the air, from what it was at the freezing point, by Thots of the whole. Hence it follows, that the ball and the part of the tube below the beginning of the scale, is of a magnitude rqual to almost $\$ 14$ degrees of the scale. If the lieight of both the manometer and thermometer be given, the height of the barometer may be thence deduced, by this sule: as the height of the manometer increased by 414 , to the height of the thermometer increased by 414, so is 29.7 , to the beight of the barometer; or if m denote the beight of the manonteter, and t the height of the therinumeter; then
$m+\$ 14: t+414:: 597: \frac{1+114}{4+11 t} \times 997$, which is the beight of the batumeter.

Another kind of manometer was made use of by C Roy, in his attempts to correct the errors of the meter; which is described in the Philos. Trans. v pa. 689.

MANTELET, a kind of moveable parapet, or of about 6 feet high, set upon trucks or litile wheel guided by a long pole; so that in a siegeit may be before the pioneers, and serye as blinds, or scree sbelter them from the enemy's small shot. Mantelt made of different materials, so as to render them n proof; some consisting of strong boards nailed tog and covered with tin; or of thick leather, or of lay rope, \&ce, firmly bound together.

There are also other hinds of mantelets, cover the top, used by the miners in approaching the wa works of an enemy. The double manselets form an : und stand squart, making two fronts. It appears Vegetius, that mantelets were in use among the anc under the name of Viner.

MAP, a plane figure representing the surface e rarth, or some part of it on a plane; being a projecon the globular suface of the rarth, exhbiting cour seas, rivers, mountains, cites, \&c, in their due posil or nearly so.

Maps are either universal or partial.
Unitersal Mars are such as exhibit the whole su of the rarth, or the two hemisplicres.

Particular, or Purtal Mars, are those that exhibit particular region, or part of the varth.

Both kinds are usually called geographical, or 1 maps, as distonguished from hydrogruphical, or sea-n which represent only the seas aud sea coasts, and are perly called Charts.

Anaximander, the scholar of Thales, it is said, a 400 years before Christ, first invented geographical tal or maps 'The Pentingetian Tables, publisbed by Co hus Pentinger of Augsburg, contain an itinerary of whole Roman empire; all places, except seas, woods, deserts, bring laid down according to their measured stances, but without any mention of latitude, longitude bearing.

The maps published by l'tolemy of Alexindria, at the 1441 y year of Christ, have meridians and parallels, better to define and determine the situation of places, are grvat improvements on the construction of the m ancient maps. Though Ptolemy himelf owns that mups were copied from some that were made by Maris Tirus, \&c, with the addition of some improvements of own. But from his time thll about the 14 h cente during which geography and most cciences were noglect no new maps were puilished. Mercator was the firs any note monong the moderns, and next to him Orteli who underiook to make a new set of mapis, with the n dern divisions of countries and nances of places; form of which, those of l'tolenty were beconir shacst usit After Mercator, inany others published maps; but fir 1 most part they were mere cupies of his. Teuards ? midalle of the 17 th, century, I3leau in Ileiland, and Sans in F'rance, published new sets of maps, with maty is provements from the travillirs of thase times, shath me alterwards copied, with hate variation, by the Englis French, and Inuteh: but the best of thece nere thase Vischer and Bewitt. And luter obervations bave $\$$ nished us with still more accurate and coprow sers maps, by Delisle, Rubert, Wells, \&c, Ac. Coneranit
$\mathrm{M}_{1} \boldsymbol{\wedge} \mathbf{P}$
[
19
maps, see Varenius's Geog, lib. 3, cap. 3, prop. 4; Fournier's Hydrog. Jib. 4, cap. 24 ; Wolfius's Elem. Hydrog. cap. 9; John Newton's Idea of Navigation; Mead's Construction of Globes and Maps; Wright's Construction of Mlaps, \&c, \&c.

Construction of Maps.-Maps are constructed by making a projection of the globe, either on the plane of some particular circle, or by the eye placed in some particular point, according to the rules of perspective, \&c ; of which there are several methods.
First, to construct a Map of the World, or a general Map.
1st Method.-A map of the world must represent two hemispheres; and they must both be drawn upon the plane of that circle which divides the two hemispheres. The first way is to project each hemisphere upon the plane of some particular circle, by the rules of orthographic projection, forming two hemispheres on one common base or circle. When the plane of projection is that of a meridian, the maps will be the east and west hemispheres, the other meriduans will be ellipses, and the parallel circles will be right lines. On the plane of the equinoctial, the meridians will be right lines crossing in the centre, which will represent the pole, and the parallels of latitude will be circles laving that common centre, and the maps will be the northern and southern hemispheres. The fault of this way of drawing maps is, that near the outside the circles are too near one another; and therefore equal spaces on the earth are represented by very unequal spaces on the map.

2d Methed.-Another way is to project the same hemispheres by the rules of stereographic projection; in which way, all the parallels are represented by circles, and the meridians by circles or right lines. And here the contrary fault happens, viz, the circles towards the outsides are too far asunder, and about the middle they are too near together.

3d Method.-To remedy the faults of the zwo former methods, proceed as follows. First, for the east and west bemispheres, describe the circle PENQ for the meridian (pl. 21, fig. 1) or plane of projection; through the centre of which draw the equinoctial EQ, and axis PN perpendicular to it, making P and N the north and south pole. Divide the quadrants PR, EN, NQ, and QP into 9 equal parts, each representing 10 degrees, beginning at the equinectial EQ: divide also CP and cN into 9 equal parts ; beginning at EQ; and through the corresponding points draw the parallels of latitude. Again, divide ce and cQ into 9 equal parts; and through the points of division, and the two poles P and s, draw circles, or rather ellipses, for the meridians. So shall the map be prepared to receive the several places and countries of the earth.

Secondly, For the north or south hemisphere, draw $A Q B E$, for the equinoctial (fig. 2), dividing it into the four quadrants EA, AQ, QB, and aE; and each quadrant into 9 equal parts, representing each 10 degrees of longitude; and then, from the points of division, draw lines to the centre c , for the circles of lougitude. Divide any circle of longitude, as the first meridian Ec , into 9 equal parts, and through these points describe circles from the centre c , for the parallels of latitude, numbering them as in the tigure.

In this 3d method, equal spaces on the earth are represented by equal spaces on the map, as near as any projection will bear; for a spherical surface can no way be represented exactly on a plane. Then the several countries
of the world, seas, islands, sea-coasts, towns, \&e, are to be entered in the map, according to their latitudes and longitudes.

In filling up the map, all places representing land are filled with such things as the countries contain; but the seas are left blank; the shores adjoining to the sea bemg shaded. Rivers are marked by atrong lines, or by double lines, drawn winding in form of the rivers they represent; and small rivers are expressed by small lines. Different countrics are best distinguished by different colours, or at least the borders of them. Forests are represented by trees; and mountains shaded to make them appear as such. Sands are denoted by small points or specks; and rocks under water by a small cross. In any void space, draw the mariner's compass, with the 32 points or winds.

1I. To draw a Map of any particular Cownry.
1st Method.-For this purpose its extent must be known, as to latitude and longitude; as suppose Spain, Jying between the north latitudes 36 and 44 , and extending from 10 to 23 degrees of longitude; so that its extent from north to south is $\mathbf{8}$ degrees, and from east to west 13 degres.

Draw the line ab for a meridian passing through the middle of the country (fig. 3), on which set off 8 degrees from s to A, taken from any convenient scale; a being the north, and B the south point. Through a and a draw the perpendiculars $\mathbf{C D}, \mathbf{E Y}$, for the extreme perallels of latitude. Divide AB into 8 parts, or degrees, through which draw the other parallels of latitude, parallel to the former.

For the meridians; divide any degree in AB into 60 equal parts, or geographical miles. Then, because the length of a degree in each parallel decreases towards the pole, from the table showing this decresese, under the article Deange, take the number of miles answering to the latitude of B , which is $48 \frac{1}{2}$ nearly, and set it from $\mathrm{B}, 7$ times to E , and 6 times to \boldsymbol{r}; so is Er divided into degrecs. Again, from the same table take the number of miles of a degree in the latitude A, viz $43 \frac{7}{6}$ nearly; which set off, from $A, 7$ times to c, and 6 times to D. Then from the points of division in the line $\mathbf{C D}$, to the corresponding points in the line Er , draw so many right lines, for the meridians. Number the degrees of latitude up both sides of the map, and the degrees of longitude on the top and bottom. Also, in some vacant place make a scale of miles; or of degrees, if the map represent a large part of the earth; to serve for finding the distances of places from each other.
Then make the proper divisions and subdivisions of the country : and knowing the latitudes and longifudes of the principal places, it will be easy to set them down in the map; for, any town, \&c, must be placed where the circles of its latituice and longitude intersect. For instance, Gibralar, whose latitude is $36^{\circ} .11^{\prime}$, and longitude $12^{\circ} 27^{\prime}$, will be at $0:$ and Madrid, whose lat. is $40^{\circ} 10^{\prime}$, and long. $14^{\circ} 44^{\prime}$, will be at 3 . In like manner the mouth of a river must be set down; but to describe the whole river, the latitude and longitude of every turning must be marked down, and the towns and bridges by which it passes. And so for woods, forests, mountains, Inkes, castles, \&c. The boundaries will be described, by setting down the remarkable places on the sea-coast, and drawing a continued line through them all: which method is very proper for small countries.

2d Mcthod,-Maps of particular places are but portions D 2
of the globe, and therefore may be drawn after the same manmer as the whole is drawn: that is, sucb a map may be drawn either by the orthographic or stereographic projection of the sptiere, as in the las prob. But in partial maps, an edsicr way is av follows. Having drawn the merialian AB (tig. 3), and divited it into equal parts as in the last methosl, through all she points of division draw lines perpendicular to AB , for the parallels of latutude; CD, eF beind the extreme parallels. Then to divide these, set off the degrees in each parallet, diminisled after the manner directed for the iwo extreme paratlels CD, EP, in the last method: and throughi all the cornesponding points draw the meridians, which will be curve lines; which were right liwes in the last method; because only the extrone parallels were divided by the table. This method is proper for a large tract, as Europe, \&e: in which case the paralkels and meridians need only be drawn to every 5 or 10 degrees: and it is also much used in drawing maps; as all the parts are nearly of their dut magnitude, but a linte distorted towards the outside, from the oblique intersections of the meridians and parallels.

Sd Method- Draw re of a convenient leugth, for a meridian; dıvide it into 9 equal parts, and through the points of division, describe as many circles for the parallels of latitude, from the centre F , which represents the pole. Suppose AB (ig. 4) the height of the niap; then CD will be the parallel passing through the greatest latitude, and EF will represent the equatord Divide the equator Ef into equal parts, of the same dimension as those in An, both ways, beginniug at b. Divide also ull the parallels into the same number of equal parts, Lut lesser, in proportion to the numbers for she several latitudes, as directed in the last method for the rectilineal parallels. Then through all the corresponding divisions, draw curve lines, to represent the meridians, the extreme ones being EC and FD . Lastly, number the degrees of latitude and longitude, and place a scale of equal parts, either of miles or degrees, for measuring dislances.-This is a very good way of drawing large maps, and is called the globular projection; all the parts of the carth being represented nearly of their due magnitude, excepting that they are a little distorted toward, the outsides.

When the place which the map is to represent, is but small, as if a county was to be exhibited; the meridians, as to sense, will be parallel to one another, and the whole will differ very little from a plane. Such a map will be made more easily than by the preceding rules. It wilt here be sufficient to measure the distances of places in miles, and so lay thein down in a plane rectangular map. But itis belongs more properly 10 surveying.

The Use of MAPS is obvious from their construction. The degrees of the meridians and parallels show the latitudes and longirudes of places, and the scale of miles annexell, their distances; the situation of places, with regard to each other, an well as to the cardinal points, appears by inspection; the tcp of the map being always the north, the bottorn the south, the right hand the east, and the left hand the west; unless the compass, usually annexed, show the contrary.

Maraldi (James Philip), a leaned asironomer and mathematician, was born in 1665 , at Perinaldo in the county of Nice, a place already honoured by the birth of his maternal uncle the colebrated Cassini. Having made a considerable progress in mathematics, at the age of 22 , his uucle who had been a long time senled in

France, invited him there, that he might himself cultivate the promising genius of his nephew. Maraldi no sooner applied himself to the contemplation of the beavens, than he conceised the disign of furming a catalogue of the fixed stars, the foundaton of ail the astronomical odifice. In consequence of this design, he appleil himself to observe them with the most cunslant altention; and be became by this tnemus so intimule with them, that on being shown any one of them, however small, he could immediatcly tell what constellation it belonged to, and its place in that constellation. He has been known to discover those small comets, which astronomers often take fir the stars of the coustellation in which they are seen, for want of knowing precisely what slars the constellation consisis of, when others, on the spos, and with eycs directed equally to the same part of the beavens, could not for a long tune see any thing of them.

In 1700 he was employed under Cassini in prolonging the French meridian to the northern extremity of France, and had no small share in completing it. He then set out for Italy, whese Clement the $11 / h_{\text {insitel }}$ hun to assist at the assemblies of the Congregation then sitting in Rome to reform the calendar. Banchni also availed hienself of his assistance to construct the great meridian oi the Carthusian church in that city. And in 1718 Ma rathli, with three other acade nicians, prolonged the French meridian to the southern extremity of that couniry. He was ndmitted a member of the Acadenay oi sciences of Paris in 1699, in the department of astronomy, and commuticated to it a great mulitude of papers, which are printed in their Memoirs, in almost every year from $\mathbf{1 6 9 9}$ to 1729, and usualty several papers in each of the yrars; for he was indefatigable in his observations of every thing that was curious and useful in the motions and phenomena of the heavenly bodies. As to the catalogue of the fixed stars, it was not quire completed by him: for just as he had placed a mural quadrant on the terrace of the observatory, lo observe some stars tuwards the north and the zenish, he fell sick, and died the 1st of December 1729.

MARCH, Martius, the Sd month of the year, according to the common way of computing, and consists of 31 days. The sun enters the sign Aries about the \$0th or 21st day of this month.-Among the Remnns, March was the first month; and in some ecelesiastical computations, that order is still preserved. In Fingland, before the alteration of the stile, March was the 1st month in order, the year always commencing with the 25th day of the month. It has been said shat it was Romulus who firss divided the year into months; to the first of which he gave the name of his supposed father Mars. It is observed by Ovid, howeter, that the people of Italy had the monsh of March before the time of llomulus; but that they placed it differenly; some making it the third, some the 41 h , some the 5 th, and others the 10 th month of the year.
Marine Barometer, Sec Barometer.
MARINERS-Compass. Sce Compass.
MARINUS. See Procles.
MARIOTTE (VDme), an eminent French phalosopher and mathematician, was burn at Dijon, and admitted a member of the Acudemy of Sciences of Paris in 1666i. His works however are betur known than his life. He was a good mathematician, and the first French philosopher who applicd much to experimental physics. The law of the shock or collision of bodies, the theory of the
pressure and motion of fluids, the nature of vision, and of the uir, particularly engaged his attention. He carried into his philosophical resear his, that spirit of serutiny and investigation so necessary to those who would inake any considerable progress in impruvement. He thed in 1684.-He commumcated a number of cusius and saluable papers to the Academy of Science, which wort printed in the collection of their Memoirs dated 1 tof 66 , viz, from volume 1 to volume 10. And all his works were collected imo 2 volumes in 410, and printed at Leyden in 1717.

MARS, one of the ancient seven primary planets, and the first of the superior ones, being placed immediately next above the earth. It is usually denoted by this characier δ, being a mark rudely furmed from a man holding a spear proiruded, representing the god of war of the same name.

The uean distance of Mars from the sun, is 1524 of those parts, of which the distance of the earth from the sun is 1000 ; his excentricity 142 ; and his real distance 145 milhons of miles. The inclination of has orbit to she plane of the ecliptic, is $1^{\circ} 5:^{\prime}$; the length of his year, or the period of one revolution ubout the sum, is $685 \frac{1}{2} \frac{1}{2}$ of our days, or $667 \frac{1}{3}$ of his own days, which are 40 misutes longer thun ours, the revolution on his axis being performed in 24 hours 40 minutes. His incan diameter is $44+4$ miles; and the same seen from the sun is $11^{\prime \prime}$: the inclination of the axis to his nrbit $0^{\circ} 0^{\prime}$; pluce of the aphelion 良 $2^{\circ} 24^{\prime}$; place of his ascending note $817^{\circ} 3^{\prime}$; and his parallax, according to Dr. Howhe and Mr. Fiaine steed, is scarce 30 secomls.

Dr. Honke, in 1665, olserved several spots in Mars; which hasugg a motion, he cencluded the planet turnest round its cellers. In 16iti6, M. Cassmen obsersed sevelal spots in the two faess or bemaspheres of Mura, which he found made ane revolution in 96 hours to minutes. These observations were repented in 1670, and confirmad by Maralat in 170t and 1719: whence beth the nution nnd period, or nutural day, of that planet, were determined

In ithe Ptilens. Irans, for 17 st , I'r. Herscliel gave a series of observations on the rotation of this planct abrut its axis, from woth bre concluled that one mean sidereal rotation was between 24 h .39 mm .5 scc . and 24 h .39 m . 22 sec.; and in the Philos. Trans. for 178 t, is given a paper by the samse gentlenan, ith the remarkuble appearances to the polar regions of the planet Mars, the inclination of its avis, the position of ths prics, and its spheroidical figure; with a few hints relaning to ins real diameter and atmowidere, deduced from his ofservations taken from the year 1777 to 1783 inclusively. He also observed several remarkable bright spots near both poles, which had a small motion; and the resuits of his observations are as follow; viz,
"Inclination of axis to the celiptic, $59^{\circ} 22^{\prime \prime}$.
The nede uf the axis is in $\times 17^{\circ}+7^{\prime}$.
Obliquity of ohe planet's ecloptic $28^{\circ}+2^{\prime}$.
The pint Aries onl Murs's celiptic anewers to our t 19° 28'- The figure of Mars is that of an oblate spheo roid, whise equaturial diancter is to the polar muc, as 1355 to 1272 , or as 16 to 15 nearly. - 'I he rquatorial diameter of Mars, reduced to the nwan distance of the parth from the sun, is $9^{\prime \prime} 8^{\prime \prime \prime}$ - And the planet haw a considerable, but moderate almosphere, so that its inhabitants probably enjoy a situation in many respects similar to vurs."-Mars always appears with a ruddy troubled light;
owing, it is supposed, to the nuture of his atmosphere, through which the light passes.-In the acronical rising of this planet, or when in opposition to she sun, it is 5 tiness nearer to us than whea in conjunction wish him; and sherefore sppears much larger and brighter than at other times. - Mars, having bis light from the sun, and revolving round it, has an increase and decrease like the moon: it may also be observed almost bisected, when in the quadratures, or in perigaoon; but is never seen cornicular, as the inferior planets.

MARTIN (Bexjamis), was born in 1704, and became one of the most cel-brated mathematiciuns and opticians of his time. He first taught a school in the country; but afterwards came up to london, where he read lectures on expermmental philisophy for many years, and carried on a very extensive trade as an uprician and globemaker in Fleet-street, till the growing infirmities of old age compelled him to withetraw from the active part of business. 'Irosing two fatally to what be thought the integrity of others, he unfortunatcly, though with a capital more than suflicient to pay all his'debts, luecane a bankrupt. The unlouppy olt man, in a monem of desperation from this unexpectr-4 sarohe, attempted to destroy himself; and the wound, though not immediately mortal, bastened his death, which happened the 9th of February 1782, at 78 years of age.

Mr M. hatl a valuable collection of fossils and curiositics of alinost every species; which after his death were alinost given away by pultic anctuon. He was indelatigable as an artist, and as a writer he had a very happy method of explaining bis suljicet, and wrote with clearhess, and cuell considerable elegance. He wis chiefly eminemt in the sciunce of "ptics; but he was well skilled in the whule circle of the mathemotical and philosophical sciences, und wrote uveful bouks on every one of them ; though lee was not distinguibhed by any remarkable inventions or discoveries of his own. His publications were very numerous, and generally useful: some of the principal of them wire as follow :

The Philosophical Granmar; being a View of the present state of Experinental Physiology, or Natural Philosophy, 1735, 8ivo.-A new, complete, and universal System or Bedy of Decimal Arithmetic, 173.5, svo.-The Young Student's Momorial Benk, or Pucket Library, 1735 , 8vo.-Description and Use of both the Glubes, the Armillary Sphere and Orrery, Trigonumetry, 1736, 2 vols. 8vo-Systum of the Newtonian Pholosophy, 1759, 3 vois. - New Elements of Uprics, 1759 -Mathenatical Institutions, 1764, 2 vols.-l'hilolegic and Plilusophical Geography, 1759 -Lives of I'hilosophers, their Inventions, dec. 176 t. -Yourg Girnteman and Lady's Philosorphy', 1764, 3 vols.-Miscellaneous Correspomience, 1764, 4 vols.- Institutions of Astronomical Culculictrons, 3 parts, 176 .-Introuluction to the Newtoman Philusophy, 1765.-Treatise of Lagarithms.-Treatise on Navigation. Descripuien and Use of the Air-pump.-Descripion of the Torricellian Baromiter.-Appendix to the Use of the Globes.-Philosophia Britannica, 3 vols.-Principles of I'umpeworh.- Thenry of the IIJdrumerer--Description and Use of a Case on Mathematical Instruments.- Ditto of a U'niversal sliding Rule.-Mierngraplua, on the Mi-eroncope-l'rinciples of Perspective.-Cause of lec-tures.-Optical Essays.- Fssay on Electricity.-Essay on Visual Glasses or Spectacles.-Horologia Nova, or New Art of Dialling.-Theory of Comets.-Nature and Con-

M A S

struction of Solar Eclipses,-Venus in the Sun.-The Mariner's Mirror.-Thermometrum Magnum -Survey of the Solar System.-Eissay on Island Chrystal.-Logarithmologia Nova, \&c. sc.

NASKELINE (Nevil), d. D. F. \&. s. Astronomer Roynl, \&c, was born in London, on the 6th of Oetober 1732, of an ancient family, which had been long established in the west of England. At 9 years of age he was placed at Westminster school, where his diligence speedily dietingursbed bim. Ile acquired an early taste for astronomy and optics; but it was the solar eclipse of 1748 which decided his vocation. Perceiving bow necessary the mathematics were, in the course be proposed to take, he determined on the study of them, and acquired in a few month the elements of geometry and ulgebra. This first success was the carnest of what he could not avoid obtaining, by reading the clicef works on astronomy and the bigher analysis, which be halitually studied. About this time he went toCambridge, and entered in Catharinehall, but afterwards in Trinity-college, where he received, with applanse, the degree of bachelor of arts.

In 1755, be accepted of a curacy in the vicinity of London, where he resided some yeary, employing his leisure time in his favourite study. This situation also facilitated his acquaintance with the then astronomer-royal Bradley, for whom it appears that he made some calculations of importance. In 1758 , be became fellow of Tri-nity-college, Caunbridge, and the next year a fellow of the Royal Society.

But it was in the year 1761 that his real astronomical career began, when he was chosen to go to the island of St. Helena, to observe the transit of Venus over the sun's disk, and the parallax of the star Sirius, which had often been observed by Lacaille at the Cape of Good Hope. From calculating these observations, Dr. M. thought be saw proofs for the existence of a parallax of $4^{\prime \prime} \frac{1}{2}$.

Clouds prevented the observation of the transit of Venus, the first oliject of the voyage. But being turnished with an excellent pendulum clock of Shelton's, which had been regulated at Greenwich by Dr. Bradley, he determined the number of oscillations which it made less at St. Helena than at london, in order thence to deduce the diminution of gravity.

The sccondary object of the voyage, the parallax of Sirius also failed, through the fault of the suspension of the plumb line, by a loop from the neck of a central pin; which had likewise been the fault of Lacaille's instrurfent. This disappointment gave occasion to an improvement in the construction of these astronomical instruments. Several other obar-rvations however in part indemnified Dr. M. for those disappointments; such as the observation of the tides at St. Helenr, the variation of the compass, and the moon's horary paralaxes, itc. Also, in going out and returning home, be practised the method of finding the longitude by the lunar distances taken with a Harlcy's quadrant, making out rules for the use of the scamen, and taught the method to the officers on board the ship. The saine he afterwards explnined in a letter to Dr. Binch, the secretary to the Royal Society, which was inserted in the Philos. Trans, vol. 32, for the yrat 1762; and still more fully in the British Mariner's Guide, which he published soon after his return from St. Helena, and which contained, among various new and practical articles in nautical astronouny, rules and examples for working the lunar observations.

In 1763, Dr. Maskelyne went to the island of Barbadoes, to settle the longitude of the place, and compare Mr. Harrison's watch with the timo there, when he should arrive at the island with it. In this voyage ulso, Dr. M. tried obervations on board of ship with Irwin's marine chair, which was found not to answer the purpose. Dr. M. made also several other astronomical observations, and among the rest, many relating to the moon's horary parallaxis. See Astronomical Observations at St. Helena and Barbadoes, in the Philos. Trans. vol. 54. Dr. M. returned from Barbadoes in the autumn of 1764 , and made the report on Mr. H's watch, which, though favourable ing gencral to the celebrated artist, was far from satisfying Mr. H. who attached him in a pamphlet, to which Dr. M. wrute a reply.

In 1763 , Dr. M. succeeded Mr. Bliss, as astronomerroyal at Greenwich Observatory, where for 47 yeers hc diligently watched the heavens, and rendered innumerable benefits to the nation, as well as to individuals, in all the arts and sciences connceted with astronomy and navigation. Immediately on his appointment to that office, he recommended the lunar method of finding the longitude to the Board of Longitude, and proposed to them to cause a nautical almanac to be calculated, and published, to facilitate the raethod; which they agreed to; the first of which was published for 1767, and which was continued under his direction, with the greatest credtt, through 48 successive years. He also published a useful collection of tables requisite to be used with the nautical almanacs; as well as edited or encouraged the publication of other works, of like accessory uefulness; as, 'Taylor's Logarithms, the improved lunar tables of Mayer, and Mason, \&cc, \&cc. He procured also, at the expense of the Royal Society, the regular publication of all his own astronomical observations, made at the Observatury, forming a vast body of valuable matter, in 4 large folio volumes.

Dr. M. thus continued indefatigable in making observations for 47 years, hardly ever quitting the Observatory, except once a-week, in attending the meetings of the Ruyal Society one part of the year. In 1769, he remained in it to observe the transit of Venus, and he drew up instructions for the astronomers sent out by Great Britain to different countries. He collected their observations, and deduced from them the sun's parallax, and bis distance from the earth. At his observatory, he made many of the most interesting and most difficult observations hinnself, as those of the moon; but necessarily confided to his assistant, those which were less essential and more easy. He followed closcly the methods established by bis celebrated predecessor Bradley, whom he even surpassed in the exactness of his daily olservations. He brought to perfection Flamsteed's method of determining, at once, the right ascensions of stars and of the sun. He gave a catalogue of stars, not numerous indeed, but determined with particular care, which has served almost solely, during these thirly years, for the foundation of all astronomical researches.

Dr. M. add not publish much himself, being otherwise more usefully emploged on his observations: but he was the cause and promoter of many publications by others. lle corresponded with almost all the astronomers and philusophers in the world; and he was the medium of many of their communications to the Royal Society. The writings be produced, are remarkable for just ideas and an enlightened criticism. Such is a Dissertation on the

Equation of Time, where he has delicately noticed a mistake of Lacaille, and another less important mistake of Lalande. Some doubts having been raised, respecting the difference in latitude and longitude between the observatories of Greenwich and Paris, Dr. M., to whom the observations were sent, showed, with his usual moderation, that the donbts were improper; but he did not oppose the methods proposed to obviate them.

It was owing to the exertions of Dr. M., that a very satisfactory experiment was thade to ascertain the geteral attraction of matter, and the medium density of all the matter in the earth. By a memoir presented to the Royal Society, he recommended it to that bady, to try the experiment on the attraction of some hill in the British dominions. A convenient one having been found, vik, the Mountain Schihallien in Scutland, at the request of the Society, Dr. M. himself repaired to the place, and superintended the neceswary measurements and observations, with his usual attention and correctness. His survey furnished the just plan and numerous sections of the hill, and his zenith sector showed $5^{\prime \prime} \cdot 8$ for the mean deviation of the plumb-line by the attraction. From these materials it was, that the laborious calculations of Dr. Hutton showed, for the first time, that the mean density of the whole carth was ubout 5 times the density of water, a determination most likely very uear the truth.

Dr. M. was particularly attentive to the care of his instruments, and made many improvements in them, and the modes of employing then. He greatly improved the suspension of the plumb-line of the zenith sectors. He contrived a micrometer composed of a prism, which moves according to the axis of the telescope. He made the eye-piece moveable, in order to avoid all parallax in bringing the eye opposite to each of the five wires, which the star passes in succession. He discovered also the illconvenience of narrow opentings, used in all observatories : he enlarged the size of thuse at Greenwich, after having shown the necessity of placing the telescopes as much as possible in the open air: besides many more optical and mechanical improvements.

Dr. M. hasl goonl church preferment from his college ; and his paternal estates, of which be was the last male heir, were also considerable. Having expericnced a gradual decline of his health for some months, he at length expired on the 9th of Februay 1811, in the 79th year of his age; leaving a widow and laughter, as also his sister, the reliet of Robert, hate Iord Clive.

The principal works which Dr. M. Ifft, besides his 4 vols in folio of observations, the memoirs before nuriced, and the first 48 volumes of the Nautical Almanac, calculated under his direction, and revised by him, are, his British Mariner's Guide; the Tables requisite for the Usage of the Nautical Almanac; Disortations on Nautical Astronomy and the Use of the Octant; with at least 30 learned memairs presented to the lloyal bocirty, and printed in the Philos. Transuctiors, between the years 1762 and 1794 ; and finally, his posthumous worhs, of the couterits of which we ure as yet ignorant, but which estronomers will be very anxious to receive from the hands of Professur Vince, to whose care it seems they hase been keft. Indeed it wordd be well becoming the respect of bis relict, tu canse a collgeted and uniform edition of all his works to be made, for the honour of his memory and the greater consenience of the scientific publuc.

Thus we have described the philosopher: but the man, the father, the friend, was not less valuable. Every astronomer, every philosopher, found in lim a brother. Of a character friendly and amiable, he gained the affections of all those who lind the good fortune to hnow him, and his death was honoured with their regret.

MASS.-The quantity of matter in any body. This is rightly estimated by its weight; whatever be its figure, or whether its bulk or magnitutie be large or small.

MatelliAL, relating to Matter.

MATHEMATICAL, relating to Mathematics.

Matuematical Sect, is one of the two leading philosophical sects, which arose about the beginning of the 17 th century; the other being the mereplysical sect. The former directed its rescarches by the principles of Gassendi, and sought after truth by ohservation and experience. The disoples of this sect denied the pussibility of erecting on the basis of metaphysical and abstract trutlis, a regular and sulid system of philosophy, without the aid of assidoous observation and repuated experiments, which are the nost natural and eflictunl menas of plulosophical progress and improvement. The atvancement and reputation of this sect, und af natural huouledge is general, were much awing to the plan of philosuphizing proposed by Lord Bacon, to the establishment of the Royal Society in lonelon, to the genius and industry of Mr. Bayle, and to the unparalleled researches and dincoverics of Sir Isaac Newtone Barrow, Wallis, Lacke, wad many other great luminaries in karriing also adortucd this stet.

MATILEMATICS, the science of quantity; of a science that considers magnitudes cither as computable or measurable. The word in its original, μ a fogers, mathesiv, signifies Disciplize or Science in general; and, it seems, has been applied to the doctrine of quantity, einher by way of eminnice, or because, this being the first of alt other sciencts, the revt took their common name from it. As to the origin of the mathematics, Josephus dates it before the flood, nod makes the soms of Seth observers of the course and order of the heavenly bodies: he adrls, that to perpetuate their discoveries, and secure them from the injuries either of a deluge or 14 conflagration, they had them edgraven on two pillars, the one of stone, the other of brick; the former of which, he says, was yet standing in Syria in his time.

Indeed it is pretty generally agreed that the first cultivators of mathematics, after the flood, were the Assyrians and Chaldeans; from whom, Jusephus adds, the science was curried by Abraliam to the Egyptians; who became so celebrated for their knowledge, that Aristotle even fines the first rise of nathematics anong them. From Eeypt, 584 years before Christ, mathematics passed into Greece, being carried thither by Thales; who having learned geonetry of the Egyptian priests, taught it in hy own country. After Thates, came Pythagoras; who, among other mathomatical arts, pad a particular regard to anthmetic; drawing the greetest part of hisphilasophy fronn numbers. Ile was the first, necording to Lactiny, who abstracted geometry from mattor; and to him we owe the doctrine of incommensurable magnitude, and the five regular bodies, besides the first principles of music amil astronomy. To Psthagoras succeeded Atuxaguras, Ocnopides, Briso, Antipho, and llipporrates of Scin; all of whom particularly applied themselves to the quadrature of the circle, the duplication of the cube, \&c; but the efforts of the latter were the most successful: be is also
mentioned by Proclus, as the tirst who compiled efements of manematics.

Democritus excelled in muthematics as well as physics; though none of his works in cither kind are eatunt; the destruction of which is lyy stme nuthors ascribed to Aristotle. 'Jhe next in order is Plate, who not only improved geometry, but introtuced it into phystes, and so laid the foundation of a solid philusophy. From his schnol arose a number of mathematicians. Procius mentions 13 of note; anoug whom was Leothamur, whos improved the analysis first invented by Plato; Theotetus, who wrote Elements; and Archytas, who has the credit of being the first that applied mathomatics to the useful purposes of life. These were succeeded by Neocles and Theon, the last of whom contributed to the elements. Eudoaus excelled in arithmetic and geometry, and was the first founder of a system of astronamy. Menechmus invented the conic sections, and Theudius and Hermotimus improved the elements.

For Aristotle, his works are so stored with mathematics, that Blancanus compiled out of them an entire book on mathematics. Eudemus and Theophrastus were of this school; the first of whoth wrote upon numbers, geometry, and insisible lints; fold the latter composed a mathematical history. To Aristeus, Isidorus, and Hypsicles, we owe the booky of Solids; which, with the ather books of Elements, were inproved, collected, and methodised by Euclid, who dred 284 years before the birth of Christ.

A bundred years after Euclid, Eratosthenes and Archimedes became celebrated for their extensive knowledge, particilarly the latter, who was contemporary with Conon, a grometrician and assronomer. Soon after which fluturished Apollonius I'ergarus, whose excellent treatise on conics is still extant. To him are also ascribed the 14 th and 15 th books of Euclid, and which, it is said, were contracted by IIypicles. Hipparchus and Menelaus urote on the subtenses of the arcs in a circle; and the latter also on spherical triangles. Theodosius's 3 books of Spherics are still extant. All these authors, Menclaus excepted, lived before Christ.

Ptolemy of Alexandria, a celebrated geonetrician, and the prince of astronomers, was born about 70 years after Cbrist. To him succeeded the philosopher Plutarch, some of whose mathematical prollems are still extant. After him, in the order of time, was Eutucius, who commeuted on Aichinedes, and occasionally mentions the inventions of Philo, Diocles, Nicomedes, Sporus, and Heron, on the duplication of the cube. To Ctesebers of Alexandria we are indebted for pumpss ; and Geminus, who lived soon after, is priferred by Proclus to Euclid himself.

Diophantus of Alexandrit was a great master of numbers, and the fist Greek writer on algebra that we know of. Among others of the ancients, Nicomachus is celebrated for his arithmetical, geometrical, and musical works: Surenus, for his books on the suction of the cylinder: Proclus, for his commentarics on Euclid; and Theon, who has been said to be the author of the books of Elements ascribed to Viuclid. The last to be named annsing the ancients, is Puppus of Alexandria, who flourished about the year of Christ 400 , and is justly celebrated for his loohs of Mathematical Collections, still extant.

Mathematics are commonly distinguished into speculative and practical, pure and mixed.

Speculative Mathematics, is that which barely contemplates the properties of things: and

Practical Majuematics, that which applies the knowledge of those propertics to some useful purposes.

Pure Mathenatics is that branch which cousiders quantity abstractedly, and without any relation to matter or badies.

Mised Maturmatics considers quantity as subsisting in material beings; for instance, leogth in a pole, depth in a river, height in a tower, \&c.

Pure Mathematics, agan, either considers quantity as discrete, and so computable, as anthnetic ; or as concrete, and so measurable, as geometry.

Mised Mathematics are very extensive, and are distinguished by various names, according to the different subjects it considers, and the different views in which it to tahen; such as astronomy, gengraphy, optics, liydrostatics, uavigation, \& c, \&c.

Pure mathernatics has one peculiar advantage, that it occasions no contests among wrunghing disputants, as is the case in other branches of knowledge : and the reason is, because the definitions of the terms are premised, and every person that reads a proposition luas the same idea of every part of it. Jence it is ensy to put an evd to all mathenatical controversies, by showing, either that our adversary is not constant with bis defintions, or has not eatablished the true premises, or that he has drawn false conclusions from true principles; and in case we are not able to do either of these, we must achnonfedge the truth of what he has proved. It is true, that in muxed mathematics, where we reason mathematically upon physical subjects, such just detinitions cannot be given as in geometry: we must the refore be content with deseriptions; which will be of the same use as definitions, provided we be consistent with ourselves, and always mean the same thing by those terms we have once explained.

Dr. Barrow gives a very elegant description of the excellence and usefulness of mathenatical knowledge, in hit inaugural oration, on being appointed professor of mathematics at Cambridge. The mathematics, be observes effectually exercise, not vainty delude, nor vexatiously torment studious minds with obscure subtleties, but plainly demonstate every thing within their reach, draw certail conclusions, instruct by profitable rules, and unfold plea sant questions. These disciplines likewise enure and corroborate the mind to a constant diligence in study; they whully deliver us from a credulous simplicity, mos strongly fortify us against the vanity of scrpticism, efficetually restrain us from a rash presumption, most easity in cline us to a due assent, and perfecily subject us to the government of right reason. White the mind is abs tracted und clevased from sensible matter, distinctly view pure forms, conceives the beauty of idens, and investi gates the harmony of proportions; the manners themselve are sensibly corrected and improved, the affections com posed and rectified, the fancy calmed and settled, and th understanding raised and excited to more divine contem plations.

For the history of mathematics, consult Wallis, Montu cla, Kxstner, Bessut, Bailey, ike, and the names of its se veralbranclies in this Dictionary.

MATTER, an extended substance. Other propertic of matter are, that it resists, is solid, divisible, muveable passive, \&c: and it forms the principles of which all bo
dies are composed. Matter and form, the two simple and original principles of all things, according to the ancients, composing some simple natures, which they called Elements; from the various comhinations of which all natural things were afterwards composed.

Dr. Woodward was of opinion, that matter is originally and really various, being at its first creation divided into several ranks, sets, or kinds of corpuscles, differing in substance, gravity, hardness, flexibility, figure, size, \&c; and from the various compositions and combinations of which, he thinks, arise all the varieties in bodies as to colour, hardness, gravity, tastes, \&cc. But it is Sir Isaac Newton's opinion, that all those differences result from the various arrangements of the same matter; which he accounts homogencous and uniform in all bodies.

The quantity of matter in any body, is its measure arising from the joint consideration of the magnitude and density of the body; as, if one body be twice as dense as another, and also occupy twice the space, then will it contain 4 times the matter of the other. This quantity of matter is best discovered hy the weight or gravity of the body, to which it is always proportional.

Newton observes, that " it seems probable, God, in the beginning, formed matter in solid, massy, hard, impenetrable, moveable particles, of such sizes, figures, and with such other properties, and in such proportion to space, as most conduced to the end for which he formed them; and that these primitive particles, being solid, are incomparably harder than any porous bodies compounded of them; even so very hard, as never to wear, and break in pieces: no ordinary power being able to divide what God himself made one in the first creation. While the particles continue entire, they may compose bodies of one and the same nature and texture in all ages; hut should they wear away, or break in pieces, the nature of things depending on them would be changed. Water and earth, composed of old worn particles, would not be of the same nature and texture now with water and earth composed of entire particles in the beginning. And therefore, that nature may be lasting, the changes of corporeal things are to be placed only in the various separations and new associations and motions of these permanent particles; compound bodies being apt to break, not in the midst of solid particles, but where those particles are laid together, and touch in a few points. It seems farther," he continues, "that these particles have not only a vis inertix, acconfanied with such passive laws of motion as naturally result from that force, but also that they are moved hy certain active principles, such as is that of gravity, and ihat which causeth fermentation, and the cohesion of bodies. These principles are to be considered not as occult qualities, supposed to result from the specific forms of things, but as general laws of nature, by which the things themselves are formed; their truth appearing to us by phenomena, though their causes are not yet discovered."

Hobbes, Spinoza, \&c, maintain that all the beings in the universe are material, and that their differences arise from their different modifications, motions, \&c. Thus they conceive that motter extremely subtile, and in a brisk motion, may think, \&c. Dr. Berkeley, on the contrury, argues against the existence of matter itself; and endeavours to prove that it is a mere ens rationis, and has no existence out of the mind.

Some late philosophers have advanced a new hypothesis concerning the nature and essential propertics of matter. Vol. 11 .

The first of these who suggested, or at least published an account of this hypothesis, was M. Busedvich, in his Theoria Philosophix Naturalis, He supposes that matter is not impenetrable, but that It consists of physical points only, endved with powers of attraction and repulsion, taking place at different distances, fbat is, surrounded with various spheres of attraction aud repulsion; in the same manner as solid matter is generally supposed to be Provided therefore that any body moye with a sufficient degree of velocity, or have sufficient Hiomentum to overcome any power of repulsion that it hay meet with, it will find no difficulty in making its way through any body whatever. If the velocity of such a body in motion be sufficiently great, Boscovich contends, thet the particles of any body through which it passes, will not even be moved out of their place by it. With a degree of velocity something less than this, they will be considerably agitated, and ignition might perhaps be the consequence, though the progress of the body in motion would not be sensibly interrupted; and with a still less momentum it might not pass at all.

Mr. Michell, Dr. Priestley, and some others of our own country, are of the same opinion. See Priestley's History of Discoveries relating to Light, pa. 390.-In conformity to the above hypothesis, our author maintains, that matter is not that inert substance that it has been supposed to be ; that powers of attraction or repulsion are necessary to its very being, and that no part of it appears to be impenetrable to other parts. Accordingly, he defines matter to be a substance, possessed of the property of extension, and of powers of attraction or repulsion, which are not distinct from matter, and foreign to it, as it has been generally imagined, but absolutely essential to its very nature and bcing; so that when bodies are divested of these powers, they become nothing at all. In another place, Dr. Priestley has given a somewhat different account of matter; according to which it is only a number of centres of attraction and repulsion; or more properly of centres, not divisible, to which divine agency is directed; and as sensation and thought are not incompatible with these powers, solidity, or impenetrability, and consequently a vis inertiee only having been thought repugnant to them, he maintains, that we have no reason to suppose that there are in man two substances absolutely distinct from each other. See Disquisitions on Matter and Spirit.

But Dr. Price, in a correspondence with Dr. Priestley, published under the title of A Free Discussion of the Doctrines of Materialism and Philosophical Necessity, 1778, has suggested a variety of strong objections against this hypothesis of the penetrability of matter, and against the conclusions that are drawn from it. The vis inertia of matter, he says, is the foundation of all that is demonstrated by natural philosopbers concerning the laws of the collision of bodies. This, in particular, is the foundation of Newton's philosophy, and especially of his three laws of motion. Solid matter has the power of acting on other masser by impulse ; bnt unsolid matier cannot act at all by impulse; and this is the only way in which it is capable of acting, by any action that is properly its own. If it be said, that one particle of matter can act upon another without contact and impulse, or that matter can, by its own proper agency, attract or repel other matter which is at a distance from it, then a maxim bitherto universally received must be false, that " nothing can act where it is not." Newton, in his letters to Bentley, calls the notion, E
that matter possesses an innate power of attraction, or that it can act upon matter at a distance, and attract and repel by its own agency, an absurdity into which lie thought no one could possibly fall. And in another place he expressly disclaims the notion of innate gravity, and has taken pains to show that he did not take it to be an essential property of bodies: and by pursuing the same kind of reasoning, it must appear, that matter has not the power of attracting and repelling ; that this puwer is the power of some foreign cause, acting upon matter according to stated laws; and consequeutly that attraction and repulsion, not being actions, much less inberent qualities of matter, as such, it ought not to be defined by them. And if matter has no other propurty, as Dr. Priestley asserts, than the power of attracting and repelling, it must be a non-entity; because this is a property that cannot belong to it. Besides, alt power is the power of something ; and yet if matter is nothing but this power, it must be the power of nothing ; and the very idea of it is a contradiction. If matter be not solid extension, what canit be more than mere extension ?

Further, matter that is not solid, is the same with pore; and therefore it cannot possess what philosophers mean by the momentun or force of bodies, which is always in proporition to the quantity of matter in bedies, void of pore.

MaUNi)Y Tuursday, is the Thursday in Passion week; which was called Maunday or Mandate Thursday, from the command which Christ gave his apostles to commemorate him in the Lord's Supper, which he instituted on this day; or from the new commandment which he gave thenr to love une another, after he had washed their feet as a token of his love to them.
maupertuls (Peten Louis Monceau de), a celebrated French mathematician and philosopher, was born at St. Malo in 1698, and was there privately educated till be attained bis 16th year, when he was placed under the celebrated professor of philosophy, M. le Blond, in the college of la Marche, at Paris; lie had also M. Guisnée, of the Academy of Sciences, for his instructor in mathematics. For this sceence he soon discovered a strong inclination, and particularly for geometry. He also practised instrumental music in his early years with great success; but fixed on no profession till he was 20, when he entered into the army; in which be remained about 3 years, during which time he pursued his mathematical studies with great vigour; and it was soon remarked by M. Freret and other academicians, that nothing but mathematics could satisly his active soul and unbounded thirst for knowledge.

In the year 1723, he was received into the Royal Academy of Scieluces, and read his first performance, which was a memoir on the construction und form of musical instruments. During the first years of his admission, he did not wholly confire lis attention to mathematics; he dipped into natural philowophy, and discovered great knowledge and dexterity in obscrvations and expermments on animals.

If the custom of travelling into renate countries, like the sages of antiquity, in orter to be initinted into. the learned mysteries of those times, had still subsisted, no one would have conformed to it with mure cagerness than Maupertuis. Ilis first gratification of this passion was to visit the country which had given lirth to Newton; and during his residence in London he became as zealousanadmirer and follower of that philosopher as any one of his own countrymen. His next excursion was to Bastl in Switzerland, where be formed a friendship with the celcbrated John

Bernoulli and his family, which continued till his death. At his return to l'aris, he applied himself to his favourite studies with greater zeal than ever. And how well be fulfilled the duties of an academician, may be seen by running over the Memoirs of the academy from the year 1724 to 1744; where it appears that be was neither idle, nor occupied on objects of small importance. The most sublime questions in the mathematical sciences, received from his hand that elegance, clearness, and precision, so ro markable in all his writings.

In the year 1736, he was sent to the polar rircle, to measure a degree of the meridian, in order to asceriain the figure of the earth; in which expedition he was nccompanied by Mess. Clairaut, Camus, Monnier, Outhier, and Celsus, the celebrated professor of astronomy at \mathbf{L}_{ρ}. sal. This business rendered him so eminent, that on his return he was admitted a member of almost every acadin: in Kurone; though it has bernsince found that their deductions have been considerably erroneous.

It the year 1740, Maupertuis had an invitation from the king ot Prussia to go to Berlin; which was too flattering to be refused. His rank among men of letters liad not wholly effaced his love for his firt peofission, that of arms He followed the king to the fitld, but at the battle of Molwita was deprived of the pleasure of being present, when victory declared in favour of his royal patron, hy a singulat kind of adventure. His horse, during the heat of the action, running away with him, he fell into the hands of the enemy; and was at first but roughly treated by the Aus. trian hussars, to whom he could not make himself knowi for want of language ; but being carried primoncr to Vienna, he received such honours from the emperor as neve: were effaced from his inemory. Maupertuis lamented very much the luss of a watch of Mr. (iraham's, the celebratei English artist, which they had taken from him ; but the emperor, who happened to have another by the sameartist enriched with diamonds, presented it to lim, saying, "th" hussars meant only to jest with you, they have sent m your watch, and 1 return it to you."

He went sown after to Berlin; but as the reform of th academy which the hing of Prussia then meditated was no yet matured, be repaired to Paris, where his atlairs calle him, and he was there choasn, in 1742 , directer of th Academy of Sciences. In 1743 he was receised into th French Ácadeiny; which was the firstinstance of the sain person being a meinber of both the academies at Paris a the same time. Maupertuis again assumed the soldier a the siege of Fribourg, and was pitclied upon by Marshs Coigny and the count d'Argensun to carry the news to tl. French king of the surrender of that citadel.

Maupertuir returned to Berlin in the jear 1744, whe a marrage was negotiated and brought about, by the gor, offices of the queen-mother, between our author ar Mademoiselle de Borck, a lady of great beanty and meri and nearly related to M. de Burch, at that time minist of state. This determined him to settle at Buplin, as I was extremely attached to bis new spouse, and regarde this allance as the inost fortunate circumstance of his lit

In the year 1746, Maupertuis was declared, by the his of Prusia, president of the Royal Academy ol Sciences Berlin, and soon after by the same prince was bonouri with the Order of Merit. However, all these accumulath honours and advantages, so far from lessening his ardo for the sciences, sevmed to furnish new allurements to I bour and applications. Not a day passed but he protiuct
some new project or essay for the advancement of knowledge. Nor did he coufine himself to matheinatical studies only : metaphysics, chemistry, botany, polite literature, all shared his attention, and contributed to his fame. At the same time he bed, it seems, a strange inquietude of spirit, and dark melancholy humour, which rendered him miserable amid honours and pleasures. Such a temperament did not promise a pacific life, and be was in fact engaged in several quarrels. One of these was with Koenig, the professor of philosophy at Franeker, and another more terrible with Voltaire. Maupertuis had inserted in the volume of Memoirs of the Academy of Berlin for 1746, a discourse on the laws of motion; which Koenig was not content with attacking, but attributed to Leibnitz. Maupertuis, stung with the imputation of plagiarism, engaged the academy of Berlin to call upon him for his proof, which Koenig failing to produce, his name was struck out of the academy, of which he was a member. Several pamphlets were the consequence of this measure; and Voltaire, for soine reason or other, engaged in the quarrel against Manpertuis. We say, for some reason or other ; because Maupertuis and Voltaire were apparently on the most amicable terms; and the latter respected the former as his master in the mathematics. Voltaire on this occasion, however, exerted all his wit and satire against hin; and on the whole was so much transported beyond what was thought right, that he found it expedient in 1753 to quit the court of Prussia.

Our philosopher's constitution had long been considerably impaired by the great fatigues of various kinds in which his active mind had involved him; though to the amazing hardships be had undergone, in his northern expedition, most of his bodily sutferings may be traced. The intense sharpness of the air could only be supported by means of strong liquors, which helped but to lacerate his lungs, and bring on a spitting of blood, which began at least 12 years before his death. Yet still his mind seemed to enjoy the greatest vigour; for the best of his writings were produced, and most sublime ideas developed, during the time of his confinement by sickness, when he was unable to occupy his presidential chair at the academy. He took several journeys to St. Malo, during the last years of his life, for the recovery of his health : and though healways received benefit by breathing hts native air, yet still, on his return to Berlin, his disorder likewise returned with greater violence. His last journey into France was undertaken in the year 1757 ; when he was obliged, soon after his arrizal there, to quit his favourite retreat at St. Malo, on account of the danger and confusion which that town was thrown into by the arrival of the English in its neighbourhood. From thence he went to Bourdeaux, hoping there to meet with a neutral ship to carry him to Hamburgh, in bis way back to Berion; but being disappointed in that hope, he went to 'Toulouse, where be remained seven months. He bad then thoughts of going to Italy, in hopes a milder climate would restore bin to health; but finding himself grow worse, he rather inclined towards Germuny, and went to Neufchatel, where for three months he enjoged the conversation of lord Marischal, with whom he had formerly been much connected. At length be arrived at Basil, October 16,1758 , where he was received by his friend Bernoulli and his family with the utmost tenderness and affection. He at first found bimself much better bere than he had been at Neufclatel: but this amendment was of short duration; for as the winter approeched, his disur-
der returned, accompanied by new and more alarming symptoms. He languished here many months, during which he was attended by M. de la Condarnine; and died in 1759, at 61 years of age.

The works which he published were collected into 4 volumes 8 vo , published at Lyons in 1736, where also a new and elegant edition was printed in 1768. These contain the following works :-1. Essay on Cosmology,-2. Discourse on the different Figures of the Stars.-3. Essay on Moral Philosophy.-4. Philosophical Reflections on the Origin of Languages, and the Signification of Words.5. Animal Physics, concerning Generation \&c.-6. System of Nature, or the Formation of Bodies.-7. Letters on various Subjects.-8. On the Progress of the Sciences. -9. Elementsof Gcography.-10. Account of the Expedition to the Polar Circle, for determining the Figure of the Earth ; or the Measure of the Earth at the Polar Circle.-t1. Account of a Journcy into the Heart of Lapland, to search for an Ancient Mosument.-12. On the Comet of 1742.-13. Various Academical Discourses pronounced in the French and Prusian Academies.-14. Dissertation on Languages.-15. Agreement of the Different Laws of Nature, which have hitherto appeared in-compatible.-16. On the Laws of Motion.-17. On the Laws of Rest.-18. Nautical Astronomy.-19. On the Parallax of the Moon,-20. Operations for determining the Figure of the Farth, and the Variations of Gravity. -21. Measure of a Degree of the Meridian at the Polar Circle.

Besides these works, Maupertuis was author of a great number of intercsting papers, particularly those printed in the Memoirs of the Paris and Berlin Academies, far too numerous here to mention; viz, in the Memoirs of the Academy at Paris, from the year 1724, to 1749; and in those of the Academy of Berlin, from the year 1746, to 1756.

MAUROLICO (Francis), was born at Messina in 1494, and became abbot of St. Maria del Porto in Sicily, and taught mathematics with reputation in his native country, having possessed the happy art of rendering the most abstract questions plain, by his clearness of expression; and he applied particularly to the summation of several series, such as those of the natural numbers, triangular numbers, \&c. He died in 1575.-His works chiefly are, 1. An edition of the Spherics of Theodosius,2. Emendatio et Restitutio Conicorum Apollonii Pergexi3. Archimedis Monumenta omnia.-4. Euclidis Phenomena, \&c. And he introduced the use of the secants into trigonometry.
MAXIMUM, denotes the greatest state or quantity attainable in any given case, or the greatest value of a variable quantity, By which it stands opposed to Minimurn, which is the least possible quantity in any case. As in the algebraical expression $a^{2}-b x$, where a and b are constant or invariable quantities, and x a variable one. Now it is evident that the value of this remainder or difference, $a^{2}-b r$, will increase as the term $b r$, or x, decreases; and therefore that remainder will be the greatest when x is the smallest; that is, $a^{2}-b_{x}$ is a maximum, when x is the least, or nothing at all. Again, the expression or differrence $a^{2}-\frac{b}{x}$, cvidently increascs as the fraction $\frac{b}{x}$ diminishes; and this diminishes as \pm increases; therefore the given expression will be the greatest, or a maximuna, when x is the greatest, or infinite.

Also, if along the diameter KI (the $3 d$ fg. below) of a circle, a perpendicular ordinate $2 x$ be conceived to move, from k towards α; it is evident that, from x it increases continually till it arrive at the centre, in the position no, where it is at the greatest state ; and from thence it continually decreases again, as it moves along from x to x , and quite vanishes at the point z. So that the maximum state of the ordinate is no, equal to the radius of the circle.

Methodua de Maximis et Miximis, a method of finding the greatest or least state or value of a variable quantity.

- Sume quantities continually increase, and therefore have no maximum but what is infinite; as the ordinates sc, dE of the parabola ACE: Some continually decrease, and have therefore their least or minimum state in nothing; as the ordinates $5 G, \mathrm{HI}$, to the asymptotes of the hyperbola. Others increase to a certain magnitude, which is their maximum, and then decrease again; as the ordinates Lx \& C of the circle. And others again decrease to a certain magnitude $T V$, which is their minimum, and then increase again; as the ordinate of the curve svy. While others admit of several maxima and minima; as the ordinates of the curve abcde, where at b and d they are maxima, and at a, c, e, minima. And thus the maxima and minima of all other variable quantitics may be conceived; expressing those qualtities by the ordinates of some curves.

The first ideas of maxima and minima are found in the Elements of Euclid, or flow immediately from them : thus, it appears, by the 5 th prop. of book 2, that the greatest rectangle that can be made of the two parts of a given line, any how divided, is when the line is divided equally in the middle; prop. 7 , book 3 , shows that the greatest line that can be drawn from a given point within a circle, to its circumference, is that which passes through the centre ; and that the least line that can be so drawn, is the continuation of the same to the other side of the circle: prop. 8 , ib. shows the same for lines drawn from a point without the circle: and thus many instances of a similar nature might be pointed out in the Elements.-Other writers on the maxima and minima, are, Apollonius, in the whole 5 th book of his Conic Sections; and in the preface or dedication of that book, be says that others had then also treated the subject, though in a slighter manner.-Arclimedes; as in prop. 9 of his treatise on the Sphere and Cylinder, where he demonstrates that, of all spherical segments under equal superficies, the bemisphere is the greatest.-Screuus, in his 2 d bouk, or that on the

Conic Sections-Pappus, in many parts of his Mathematical Collections ; as in lib. 3, prop. 28 \&cc, lib. 6, prop. 31 dc , where he treats of some curious cases of vanable geometrical quantities, showing how some increase and decrease both ways to iufinity; while others proceed only one way, by increase or decrease, to infinity, and the other way to a certain naggnitude; and others again both ways to a certan magnitude, giving a maximum and minimum; also lit. 7, prop. 13, 14, 165, 166, \&c. And all these are the geometrical maxima and minima of the ancients; to which may be added some others of the same kind, viz Viviani De Maximis et Minimis Geometrica Divinatio in quintum Conicorum Apollonii Pergai, in fol. at Flor. 1659; also an ingenious little tract in Simpson's Geometry, on the maxima and minima of Geonetrical Quantitics. See also vol. 3 of my Course of Mathematics.

But the subject of maxima and minima is treated in a more general way by the modern analysis; the first anong which perhaps may be placed that of fermat. This, and other inethods, are beat referred in, and explained by the ordinates of curves: for when the ordinate of a curve increases to a certain muguitude, where it is greatest, and afterwards decreases again, it is evident that two ordinates on the comrary sides of the greatest ordinate may be cyual to each other; and when the ordinates decrease to a certain point, where they are at she least, and afierwards increase again; there may also be two equal ordinates, one on each side of the least ordinate. Hence then an equal ordinate corresponds to two different abscisses, of for every value of an ordinate there are two values of abscissec. Now as the difference between the two abscisses is conceived to become less and less, it is evident that the two equal ordinates, corresponding to thein, approach nearer and nearer together; and when the differences of the abscisses are infinitely small, or nothing, then the equal ordinates unite in one, which is either the maximum or minimum. The method bence derived then, is this: Find two values of an ordinate, expressed in terms of the abscisses : put those two values equal to each other, canceling the parts that are common to both, and dividing all the remaining terms by the ditierence betwewn the ubscisses, which will be a commonfactor in them: next, supposing the abscisses to become equal, that the equal ordinates may concur ia the maximum or minimum, that difference will vanish, as well as all the terms of the equation that include it; and thercfore, striking those terms out of the equation, the remaining terms will give the value of the absciss corresponding to the maximum or minimum.

For example, Suppose it were required to find the greatest ordinate in a circle кмм. Put the diameter кz $=a$, the absciss $\mathrm{KL}=x$, the ordinate $\mathrm{LM}=y$; bence the uther part of the diameter is $z z=a-r$, and consequently, by the nature of the circle $k L \times L z$ being equal $L s^{2}, x$ $x(a-x)$ or $a x-x^{4}=y^{2}$. Again, pul another alsciss $\mathbf{K P}_{P}=x+d$, where d is the difference L.p, the ordinate PQ , being equal to LM or y; bere then again $\mathrm{KP} \times \mathrm{PZ}=$ PQ^{\prime}, or $(x+d) \times(a-x-d)=a x-x^{2}-2 d x+a d-$ $d^{2}=y^{3}$: put now these two values of y^{2} equal to each other, so shall $a x-x^{2}=a x-x^{2}-2 d x+a d-d^{2}$; capcel the common terms $a x$ and x^{2}, then $0=-2 d x+a d-$ d^{1}, or $2 d x+d^{2}=a d$; divideall by d, so shall $2 x+d=a$, a gencral equation derived from the equality of the two ondmates. Now, bringing the two equal ordinates together, or mating the two abucisses equal, their ditfez-
ence d vanishes, and the last equation becomes barely $\mathbf{2 x}=a$, or $x=\frac{1}{2} a,=\mathrm{KN}$, the value of the absciss KN when the ordinate no is a maximum, viz, the greatest ordinate bisects the diameter. And the operation and conclusion it is evident will be the same, to divide a given line into two parts, so that their rectangle shall be the greatest possible.
For a second example, let it be required to divide the given line AB
 into two such parts, that the one part drawn into the square of the other may be the greatest possible. Putting the gives line $A B=a$, and one part $A C=x$; then the otherpart $C B$ will be $a-x$, and therefore $x^{2} \times(a-x)=$ $a x^{2}-x^{2}$ is the product of one part by the square of the other. Again, let one part be $A D=x+d$, then the other part is $a-x-d$, and $(x+a)^{2} \times(a-x-d)=a x^{2}-x^{3}$ $-3 d x^{2}+\left(2 a d-3 d^{2}\right) \cdot x+a d^{2}-d^{3}$. Then, putting these two products equal to each other, cancelling the common terms $a x^{2}-x^{3}$, and dividing the remainder by d, there resolts $0=-3 x^{2}+(2 a-3 d) . x+a d-d^{2}$; bence, canceling all the terms that contain d, there remains $0=-3 x^{2}+2 a x$, or $3 x=2 a$, and $x=3 a$; that is, the given line must be divided into two parts in the ra: tio of 5 to-2. See Fermat's Opera Varia, pa. 63, and his Letters to Mersenne. .

The next method was that of John Hudde, given by Schooten among the additions to Descartes's Geometry, near the end of the lst vol. of his edition. This method is also drawn from the property of an equation having two equal roots. He there demonstrates that, baving ranged the terms of an equation, that bas iwo roots equal, according to the order of the exponents of the unknown quantity, taking all the terms over to one side, and so making them equal to nothing on the other side; if then the terms in that order be multiplied by the terms of any arithmetical progression, the resulting equation will still bave one of its roots equal to one of the two equal roots of the former equation. Now since, by what has been said of the foregoing method, when the ordinate of a curve, admitting of a maximum orminimum, isexpressed in terms of the abscissa, that abscissa, or the value of x, will be two-fold, because there are two ordinates of the same value; that is, the equation hat at least two unequal roots or values of \boldsymbol{x} : but when the ordinate becomes a maximum or minimum, the two abscisses unite in one, and'the two roots, or values of x, are equal; therefore, from the abovi-said property, the terms of this equation for the maximum or minimum being multiplied by the terms of any arithmetical progression, the root of the resulting equation will be one of the said equal ronts, or the value of the absciss x when the ordinate is a maximum.

Though the terms of any arithmetic progression may be used for this purpose, sume are more convenient than others; and Mr. Hudde directs to make use of that progression which is formed by the exponents of s, viz, to multiply each term by the exponent of its power, and putting all the resulting products equal to nothing; which, it is evident, is exacily the same process as taking the fluxions of all the terms, and putting them equal to nothing; being the common process now used for the same purpose.

Thus, in the former of the two foregoing examples, where $a x-x^{2}$, or y^{3}, is to be a maximum;
mult. by 12
gives $a x-2 x^{*}=0$; hence $2 x=a$, and $x=\frac{1}{2} a$, as befure.

And in the 2d example, where $a x^{1}-x^{3}$, is to be a maximuin ; mult. by $\quad-2$ 3 gives - . $2 a x^{3}-3 x^{3}=0$; hence $2 a-3 x=0$, or $3 x=2 a$, and $x=\frac{2}{3} a$, as before.

The next general thethod, and which is now usually practised, is that of Newton, or the method of Fluxiums, which is founded on a principle different from that of the two former methods of Fermat and Hudde. These are derived from the idea of the two equal ordintes of a curve uniting into one, at the place of the maximum and minimum ; but Newton's from the principle, that the fluxion or increment of an ordinate is nothing, at the point of the maximum or minimum ; s circumstance which inmediately follows from the nature of that doctrine : for, since a quantity ceases to increase at the maximum, and to decrease at the minimuin, at those points it neither increases nor decreases; and since the fluxion of a quantity is proportional to its increase or decrease, therefore the fluxion is nothing at the maximum or minimum. Hence this rule: Take the fluaion of the algebraical expression denoting the masimum or minimum, and put it equal to nothing; and that equation will determine the value of the unknown letter or quantity in question.- S_{o}, in the first of the two foregoing examples, where it is required to determine x when $a x-x^{3}$ is a maxinum: the fluxlon of this is $a_{\dot{x}}-2 x \dot{x}=0$; which divided by \dot{x}, gives $a-2 x=0$, or $a=2 x$, and $x=\frac{1}{2} a$. Also, in the 2 d example, where $a x^{2}-x^{3}$ is to be a maximum: the fluxion is $2 a x \dot{x}-3 x^{2} x=0$; betice $2 a-3 x=0$, or $2 a=3 x$, and $x=\frac{3}{3} a$.

When a quantity becomes a maximum or minimum, and is expressed by two or more affirmative and negative terms, in wbich only one variable letter is contained ; it is evident that the fluxion of the uffirmative terms will be equal to the fluxion of the negative ones; since their difference is equal to nothing.
And when, in tbe expression for the fluxion of a maximum or minimum, there are two or more fluxionary letters, each contained in both affirmative and negative terms; the sum of the terms containing the fluxion of each letter, will be equal to nothing: For, in order that any expression be a maximum or minimum, which contains two or more variable quantitics, it must produce a maximum or minimum, if but one of those quautities be supposed variable. So if $a x-2 x y+b y$ denote a minimum ; its fluxion is $a \dot{x}-2 y \dot{x}-2 x \dot{y}+b ;$; hence $a \dot{x}-2 y \dot{x}=0$, and $b j-2 x^{j}=0$; from the furiner of these $y=\frac{1}{2} a$, and from the latter $x=\frac{1}{5} b$. Or, in such a case, take the fluxion of the whole expression, supposing only one quantity variable; then take the fuxion again, supposing another quantity only variable : and so on, for all the several variable quantities; which will give the same number of equations for determining those quantitics. So, in tho above example, $a x-2 x y+b y$, the fluxion is $\alpha \dot{x}-2 y \dot{x}=0$, supposing ouly x variable; which gives $y=\frac{1}{8} a$: and the fluxion is $-2 x y+b j=0$, when y ouly is variable; which gives $x=\frac{1}{y} b$; the same as before.

Farther, when any quantity is a maximum or mini mum, all the powers or roots of it will be so too; as will also be the result, uben it is increased or decreased, or multiplied, or divided by a given or constant quantity ; and the logaritbm of the same will be also a maximum or minimus.

To find whether a proposed nlgebraic quanity admits of a maximum or minimum,-Every algebraic exprcssion does.
not admit of a maximun or minimun, properiy so called; for it may either increase continually to infinity, or deerease continually to nothing; in both which cuses there is acither a proper maximum nor mamimin: for the true masimum is that value to which an expression increases, and after which it decreases again; and the minimum is that value to which the expression decreases, and atter that it increases again. Therefore when the expression admits of a maximum, its fluxion is positive before that point, and negative after it ; but when it adnits of a minimum, its fluxion is negative before, and pusitive after it. Hence, take the fluxion of the expression immediately before the fluxion is equal to nothing, and a little after it; if the first fluxion be positive, and the last negative, the middle state is a maximum; but if the first fluxion be negative, and the last poritive, the middle state is a minimum. This, for example, see Maclaurin's Fluxions, book 1, chap. 9, and book 2, chap. 5, art. 859 .
We shall add here a few problems, as a farther illustration of this method.

Prob. 1. To divide a given number a into two parts, x, and y, so that $x^{m} y^{n}$ may be a maximum.

Since $x+y=a$, and $x^{a} y^{n}=$ max. the fluxion of each $=0$, the former because it is constant, and the latter because it is a maximum ; therefore $\dot{x}+y=0$ and $m y^{n} x^{m-1} \dot{x}+n x^{n} y^{n-1} \dot{y}=0$; hence $\dot{x}=-\dot{y}$, and $\dot{x}=-\frac{n x^{=} y^{2}-1 \dot{y}}{m y^{d} s^{m-1}}=-\frac{n \dot{y}}{m y}$; therefore $-j=-\frac{n y \dot{y}}{m y}$, or my $=n r$, that is $m: n:: x: y$. And since $y=\frac{n \mathrm{r}}{m}$; therefore $x+\frac{n x}{m}=a$, and consequently $x "=\frac{m / 2}{m_{4}+n}$, and $y=\frac{m}{m+n}$.

If $m=n$, the two parts are equal.
Prob. 2. To inscrite the greatest parallelogram in a given triangle.

Let abc, Fig. 1, be the given triangle, and prgi the required paraliclogram; draw an perpendicular to AC; and put Ac $=a$, $\mathrm{Bin}=b, \mathrm{BE}=x$; then $\mathrm{xH}=b-x$; and by similar triangles $b: a:$: $x: \frac{a x}{b}=\mathrm{Dr}$; hence the area nygi $=\frac{a x}{6} \times$ $(b-x)=$ max. or
 $b x-x^{3}=$ max. Therefore, taking the fluxion, we have, $b \dot{x}-2_{x} \dot{x}=0$, or $x=\frac{1}{8} b$; and hence $\mathrm{E}\left\|=\frac{1}{1} \mathrm{~b}\right\|$.

Prob,3. Toinscribe the greatest cylinder in a given cone.
Let anc, Fig. 2, represent the given cone, and degi lie cylinder required. Put $p=78559 \mathrm{sc}$; thell the same notation remaining, as in the foregoing problem, we lave by similar triangles, $b: a:: x: \frac{a r}{b}=\mathrm{DF}$; therefore the area of the end of the cylinder $=\frac{\operatorname{pe}^{2} x^{2}}{\varphi^{2}}$; and hence, by the question, $\frac{p^{7} z^{7}}{b^{2}} \times(b-x)$ $=a \max$, or $x^{2} \times(b-x)=$

$b x^{3}-x^{3}=$ a max. And this being thrown into fluxiont, we have $2 b x \dot{x}-3 x^{1} \dot{x}=0$, or $x=\frac{3}{j} b_{\text {; therefore }} \mathrm{gH}=\frac{1}{\frac{1}{2} \mathrm{BH}}$, when the cylinder is the greatest possible.

Prob.4. To inscribe the greatest possible parallelogram in a giren parabola.

Let abc, Fig. 3, represent the given parabola, and droi
the required paralIelogram. Also put Bu $=a$, parameter $=p$, and $\mathrm{BE}=x$; then by the property of the parabola, $D \varepsilon^{2}=p x ;$ therefure $D E=\sqrt{ } p r$, and $D F=2 \sqrt{ } P z ;$ hence

Fig. 3.
 the area of the parallelogram pros $=2 \sqrt{ } p r \times(a-x)$ a max. or $a x^{\frac{1}{2}}-x^{\frac{3}{2}}=$ a max.; and this in fluxions givet $\frac{4}{4} a x^{-\frac{1}{1}} \dot{x}-\frac{1}{x^{\frac{1}{2}} \dot{x}}=0$, or $\frac{a}{a^{\frac{1}{2}}}=3 x^{\frac{1}{2}}$ or $a=\mathrm{Sr}$, conse quently $x=\frac{1}{5} a$; that is $E n=\frac{2}{3} \mathbf{B n}$, when the inscribed parallelogran is a maximum.

Prob. 5. To determine the dimensions of a cylindic vessel open at top, that shall contain a given quantity o liquor, under the least possible superficies.

Let the altitude be represented by x, and the diamete by y, also put $\cdot 78539 \& c=p$, conscquently $3 \cdot 1416=4_{f}$ and the content $=a$; then $4 p x y$ will be the cylindric sur face, and $p y^{2}$ the area of the bottom. Hence these tw equations $p y^{2} r=a$, and $4 p x y+p y^{2}=a$ minimum from the first $x=\frac{e}{p y^{\prime}}$, which being substituted for x; the second, gives $\frac{4 a}{y}+p y^{2}=a$ minimum; and this i fluxions, gives $\frac{-4 a j}{y^{\prime}}+2 p y \dot{y}=0$, or $2 p y=\frac{4 a}{y^{\prime}} ;$ henc $y^{3}=\frac{2 a}{p}$, and $y=\sqrt[3]{\frac{2 a}{p}}$ the diameter; also since $x=\frac{a}{p y^{\prime}}$ or $x^{3}=\frac{a^{2}}{p^{2} y^{a}}=\frac{a^{0}}{p^{3}} \times \frac{p^{3}}{\Delta u^{0}}=\frac{a}{4 p}=\frac{2 a}{s p}$; therefore $x=1 \sqrt{ } \frac{2 a}{p}$: that is, the diameter is double the altitud when the surface is a minimum.

Prob. 6. Of all right-angled triangles having the sar hypothenuse, to determine the dimensious of that who area is a maximum.

Let the bypothenuse be represented by a, and the lo by x and y. Then we have these two equations,

$$
x^{2}+y^{2}=a^{4} \text {, and } \frac{1}{x} x y=\text { max. }
$$

The fluxion of each of these is equal to 0 , the first t, cause it is constant, and the second because it is a mas mum; we have therefore
$2 x \dot{x}+2 y \dot{y}=0$, and $\frac{1}{2} x \dot{y}+\frac{1}{2} y \dot{x}=0$; from the fil $\dot{x}=\frac{-y \dot{y}}{g}$ and frem the second $\dot{x}=\frac{-x \dot{y}}{y}$, therefore $\frac{y \dot{v}}{x}=\frac{e \dot{v}}{y}$; hence $x=y$, that is, the area is a maximu when the legs are equal.

For varinus examples of this kind, see Simpson's, Ma laurin's, Emersun's, and Vince's Fluxions.

Maximum Effect of Machines. See Mechaxics.
MAY, Maius, the fifth month in the year, reckoni from our first, or January; but the third, counting t year to begin with March, as the Romans did ancientl It was called Maius by Romulus, in respect to the ser

MEA

[3
MEA
tors and nobles of his city, who were named Majorcs; as the following month was called Junius, ill honour of the youth of Rome, in honorem juniorum, who served him in the war. Though some say it has been thus called from Maia, the mother of Mercury, to whom they otfered sacrifice on the first day of this month: and I'apias derives the name from Madius, eo quad tunc terra madeat - In this month the sun enters the sign Gemini, and the plants of our hemisphere begin mustly to flower.

MAYER (TOBIAs), one of the greatest astronomers and meehanists of the 18 th cintury, was born at Maspach, in the duchy of Wirtemberg, 1723. He tuught himself mathematics, and at 14 years of age designed machines and instruments with the greatest dexterity and exactness. These pursuits, however, did nut hinder him from cultivating the belles lettres; for be acquired the Latin tongue, and wrote it with elegance. In 1750 , the university of Gottingen chuse him for their inathenatical professor; and every year of bis short life was thenceforward marked with some considerable discoveries in geometry anil astronomy. Hepublished several works on these subjects, which are all accounted excellent of their kitd ; and some papers are inserted in the second volunte of the Memors of the University of Gottingen. He was very accurate and indefatigable in bis astronomical observations; indeed his labours seem to have very early exhausted him; for he died worn out in 176%, at no more than 39 years of age.

His Table ot Refractions, deduced from his own astronomical observations, accurately agrees with that of Doctor Bradley ; and his Theory of the Moon, and Astronomical Tables and Precrpts, were so well isteemed, that they were rewarded by the Euglish Board of Longitude, with the premium of 3000 pound, which simm was paid to his widuw after bis death. These tables and precepts were published by the Board of Lanqitude in 1770.

MEAN, a miadle state between two extremes : as a mean motion, mean distance, arithmetical mean, geometrical mean, \&c.

Arithmetical Meas, is half the sum of the extremes, So, 4 is an arnthrnetical mean between 2 and 6 , or between 3 and 5 , or between 1 and $7 ; 4$ also an arithmetical mean between a and b is $\frac{a+b}{2}$ or $\frac{1}{2} a+\frac{1}{2} b$.

Geometrical Mean, commonly called a mean proportional, is the square ront of the product of the two extreines; so that, to find a mean proportional between two given extremes, multiply these together, and extract the square root of the product. Thus, a mean proportional between 1 and 9 , is $\sqrt{ }(1 \times 9)=\downarrow^{\prime} 9=3$; a mean between 2 and 44 is $\sqrt{ }(2 \times 4!)=\sqrt{ } 9=3$; ulso the mean between 4 and 0° is $\sqrt{ }(4 \times 6)=\sqrt{ } 24$; and the mean betweell a and b is $\sqrt{\prime} a b$.

The geomerricul mean is slways less than the arithmetical mean, betwen the same two extremes. So the arithinetical mean between 2 and $4 \frac{1}{2}$ is $3 \frac{1}{8}$, but the geometrical mean is only 3. To prove this generally; let a and b be any two turms, a the greater, and b the less; then, universally, the arithmetical mean $\frac{1}{2} a+\frac{1}{2} b$ shall be greater than the peometrical ruean $\sqrt{a b}$, or $a+b$ greater than $2 \sqrt{ }$ ab. For, by
squaring both, they are $a^{2}+2 a b+b^{2}>4 \cdot b$;
subtr. tab from each, then $a^{2}-2 a b+b^{2}-0$,
that is - $-(a-b)^{2}>0$.
To And a Mean Proportional Geonetrically, between two
given lines m and x. Join the two given lines together at \mathbf{c} in one continued line AB; on the diameter AB describe a semicircle, and crect the perpendicular CD; which will be the mean proportional between AC and cb , or m and s . This, it is evident, is always less than the arithmetical mean,
 $A \mathrm{E}$ or EB or Ey ; except when the two
lines are equal ; for then the two means are equal also.
To find two Mcan Proportionals between twog vell extremes. Multiply 'each extreme by the square of the other, viz, the greater extrene by the square of the less, and the less extreme by the square of the greater; then extract the cube root out of each product, and the two roots will be the two mean propurtionals sought. That is, $\sqrt[3]{ } a^{3} b$ and $\sqrt[V]{ } a b^{1}$ are the $t w o$ means between a and b. So, between 2 and 16, the two mean proportionals are 4 and 8 ; for $\sqrt[3]{ }\left(2^{4} \times 16\right)=\sqrt[2]{6} 4=4$, and $\sqrt[3]{ }\left(2 \times 16^{5}\right)=$ $\sqrt[3]{512}=8$

In a similar manner we proceed for three means, or four means, or five means, \&c. From all which it appears that the series of the several numbers of mean proportionals, between a und b, will be as follows: viz, one mesan, $\sqrt{ } \quad$ b $;$
two means, $\sqrt[3]{ } a^{2} b, \sqrt[3]{ } a b^{2}$;
three nteanv, $\sqrt[V]{ } a^{9} b, \sqrt[y]{ } a^{2} b^{4}, \sqrt[4]{ } a b^{3}$;
four meaus, $\sqrt[y]{ } / a^{4} b, \sqrt{2} a^{2} b^{2}, \sqrt[y]{ } a^{2} b^{3}, \sqrt[V]{ } a b^{4}$;
 $\& c$, \&c.
Harmonical Mean, is double a fuurth proportional to the sum of the extrimes, and the two extremes themselves a and $b:$ thus, as $a+b: a:: 2 b: \frac{2 a k}{a+t}=m$ the harmonical mean between a and b. Or it is the reciprocal of the arithmetical mean between the reciprocals of the given extremes; that is, take the reciprocals of the extremes a and b, which will be $\frac{1}{a}$ and $\frac{1}{b}$; then take the arithmetical mean between these reciprocals, or half their sum, which will be $\frac{1}{2 a}+\frac{1}{2 b}$ or $\frac{a+\hbar}{4 a b}$; lastly, the reciprocal of this is $\frac{7 a b}{a+b}=m$ the harmonical neean : for, arithmeticals and harmonicals are mutually reciprocals of each other; so that if a, m, b, \&e be erithmeticals, then shall $\frac{1}{a}, \frac{1}{m}, \frac{1}{b}$, \&e be harmonicals;
or if the former be harmonicals, the letter will be arithmeticals.

For example, to find a harmonical mean between 2 and 6 ; here $a=2$, and $b=6$; therefore
$\frac{\partial a \mathrm{~A}}{a+b}=\frac{2 \times 2 \times 6}{2+6}=\frac{24}{b}=3=n$ the harmonical mean sought between 2 and 6 .

It is remarkable that the three means, viz, the arithmetical, the geometrical, and the harmonical, between any two quantities, a and b, are in continued geometric progression; for it is cvident that $\frac{a+b}{2}: \sqrt{ } a b:: \sqrt{ } a b: \frac{2 a b}{a+b}$.

To place the said three Means in a Circle,-On the sum (AC) of the two means (AB, BC), as a dismeter, describe a circle; in which erect $B D$ the given mean, and apply $b z=\frac{1}{4} A C$ the arithm. mean, then produce ε e to \bar{F}, so shall ar be the harmonical mean. For, produce de to

MEA
0 , then $B G=B D$; also join dE and yo, making the triangles BDE, BFG similar: for the opposite angles at B are cqual, also the angles E and c are equal, standing on the same are DF; hence BE: BD: : $\mathrm{BG}=\mathrm{BD}: \mathrm{Br}$, which is therefore the harmonical usean.

Otherwise; Having drawn BE and BD, the arithm, and geom. means; take $\mathrm{BG}^{\prime}=\mathrm{BD}$, and draw $\mathrm{o}^{\prime} \mathrm{F}$ ' parallel to ED; thell is $\mathrm{Br}^{\prime}=\mathrm{By}$ the harm. mean also. For, by sim. triangles, $\mathrm{AE}: \mathrm{BD}:: \mathrm{BG}^{\prime}=\mathrm{BD}: \mathrm{Br}{ }^{\prime}$.

In the 3d book of I'uppus's Muthematical Collections, we have a very good tract on all the three kinds of mean proportionals, begiuning at the 5th propusition. He observes, that the ancients could not resolve, in a grometrical way, the problem of finding two mean proportionals; and because it is not easy to describe the conic sections in plano, for that purpose, they contrived easy and convenient instruments, by which they obtained good inechanical constructions of that problem; as appears by their writings; as in the Mesolabe of Eratosthenes, of Philo, with the Mechanics and Catapultics of Hero. For these, rightly deeming the problem a solid one, effected the construction only by instruments, and Apollonius Pergeus by means of the conic sections; which others again performed by the loci solidi of A ristacus; alsu Nicomedes solved it by the conchoid, by means of which likewise he trisected an angle: and Pappus himself gave another solution of the sanie problem.

Pappus adds definitions of the three furegoing different linds of means, with many problems and properties concerning them; and, among otbers, this curious similarity of them, viz, a, m, b, being three continued terms, either arithmeticals, geometricals, or harmonicals; then in the

Arithmeticals, $a: a:: a-m: m-b ;$
Geometricals, $a: m:: a-m: m-b$;
Harmonicals, $a: b:: a-m: m-b$.
Mean-and-Exiteme Proportion, or Extreme-and-Mean Proportion, is when a line, or any quantity, is so divided, that the less part is to the greater, as the greater is to the whole.-This is casily performed geometrically, as is done in Euclid.

But it cannot be done arithmetically in rational numbers: for if a denote a given number, to be divided in extreme-and-mean ratio; then the two parts are $\frac{\sqrt{ } 5-1}{2} a$ and $\frac{3-\sqrt{3}}{2} a$, which cannot be given in rational numbers, on account of the radical $\sqrt{ } 5$.

Meax Anomaly, of a planet, is an augle, which is always proportional to the time of the planet's motion from the aphelion or perihelion, or proportional to the area deseribed by the radius sector; that is, as the whole periodic time in one revolution of the planet, is to the time pastothe aphelion or peribelion, so is 360° to the mean anomaly. Sec Axomaly.

Mean Aris, in Optics. Ser Axis.
Mean Comjunction or Oppasition, is when the mean place of the sun is in conjunction, or opposition, with the mean place of the moon in the ecliptic.

Msax Diameter, in Cauging, is a mean between the diameters at the head and bung of a cask.

Mrax Disance, of a planet from the sun, is an arithmetical mean between the planel's greateat and least di-

MEA
stances ; and this is equal to the semitransverse axis of the elliptic orbit in which it moves, or to the right line drawh from the sun or focus to the extremity of the conjugate axis of the same.

Mran Motion, is that by which a planet is supposed to move equably in its orbit; and it is always proportional to the time.

Meax Time, or Equal Time, is that which is measured by an equable motion, as a clock; as distinguished from appareat time, arsing from the unequal motion of the earti, or sun.

MEASURE, denotes any quantity, assumed as unity, or one, to which the ratio of other homogeneous or like quantities may be expressed.

Quantities are not always necessarily measured by quantities of the same kind. See vol. 3 of my Course of Mathematics, pa. 87, the nute.

Messure of an Angle, is an are of a circle described from the augular point as a centre, and intercepted between the legs or sides of the angle: and it is usual to estimate and express the meavure of the angle by the number of degrees and parts contained in that arc, of which 360 make up the whole circumference. So, the measure of the angle Bac, is the are sc to the radius $A B$, or the are $b c$ to the radius $4 b$.

Hence, a rigbt angle is measured by a
 quadrant, or 90 degrees; and any angle, as bac, is to a right angle, as the are ac is to a quadrant, or as the degrees in BC are to 90 degrecs.

Common Measure. See Common Meamure.
Measule of a Figure, or Plane Surface, is a square inch, or square foot, or square yard, \&ke, that is, a square whose side is an inch, or a foot, or a yard, or some other determinate length ; and this square is called the mensaring unit.

Measure of a Line, is any right line taken at pleasure, and considered as unity; as an inch, or a foot, or a yard, \&c.

Line of Mzasvags. See Line of Measures.
Mensere of a Mass, or @uantity of Matter, is its weigbt.

Measure of a Number, is any number that divides it, without leaving a remainder. So, 2 is a measure of 4 , of 8 , or of any even number; und 3 is a measure of 6 , or of 9 , or of 12, \&c.

Meascre of a Racio, is its logarithm, in any system of logarithms; or it is the exponent of the power to which the ratio is equal, the expolient of some given ratio being assumed as unity. So, if the logarithm or measure of the ratio of 10 to 1 , be assumed equal to 1 ; then the measure of the ratio of 100 to 1 , will be 2, because 100 is $=10^{4}$, or because 100 to 1 is in the duplicate ratio of 10 to 1 ; and the measure of the ratio of 1000 to 1 , will be 3 , because 1000 is $=10^{3}$, or because 1000 to 1 is triplicate of the ratio of 10 to 1 .

Measere of a Solid, is the number of cubic inches, or cubic feet, or cubic yards, \&cc, that are contained in it.

Measvae of a Superficies, is the number of square inches, or square feet, or square yards, \&e, contained in it.

Measure of Velociry, is the space uniformly passed over by a moving body in a given time.

Universal or Perpetual Mrastere, is a kind of measure unalterable by time or place, to wbich the measures of different ages and nations might be reduced, and by which they may be compared and estimated. Such a measure would be very useful, if it could be attained; since, being used at all times, and in all places, a greal deal of confusion and error would be avoided.

Measures of length appear to be the originals for all others, both for surfaces and solids or capacities, as well as for weights. The long measures of all nations seem, from their names, to have been originally taken from some part of the human body; as the foot, the hand, the cubit or elbow, the span, the fathom, \&ec. But as these measures must difier according to the diflerent sizes of men, standards of some durable substance have been adopted in all civilised countries; which are found bowever to differ universully from each other, to the great incouvenience of all commerce. In order to remedy this inconvenience, dufferent methods have been proposed for establishing a universal and perpetual standard, unalterable by time or place, to which the measures of all nations might be reduced, and by which they might be occasionally adjusted. But as all material substances are liable to decay end alleration, an invariable standard can be obtained only from some stable principle in nature, such as the action of gravitation, the motions of the heavenly bodies, or the magnitude of the earth, \&ec; and accordingly several of such methods have been proposed, of which the two following only have beell attended with any degree of success; viz, 1. The length of a pendulum that vibrates seconds of mean time ; 9. The length of a certain division or arc of the meridian.

The first of these methods is liable to this inconvenience, that the length of a seconds penduluin varics in different latitudes, increasing from the equator to the poles, owing to the spheroidical figure of the earth. The second method is liable to a similar inconvenience; as, from the same cause, the degrees of the meridian must also increase from the equator to the poles. Sir I. Newton calculated that the equatorial diameter of the earth is to the polar diameter, as 230 to 229 ; and thercfore that on different parts of the earth's surfacc the weight of the same body is different, according as it is more or less distant from the eentre of the carth; so that the length of a pendulum, vibrating any equal portions of time, must increase from the equator to the poles; and the degrees of the meridian must also increase on account of the curvature of the oblate sphervid.

Several mcasurements have been made in different latitudes, both of the lengths of the pendulum vibrating seconds, and of the degrees of the meridian; and they have been found nearly to agree with the above theory. Hence it apprars, that a universal standard cannot be obtained from any of these methods, unless all nations were to agree that the trial or measurement should be made in some particular latitude; -an agreement that is never likcly to take place. Such methods howcver may be uscifully applied, to prewrve the standards already established sufficlently correct for all practical purposes.

Huygens, in his Hurol. Oscil- proposes, for this purpose, the length of a pendulum that should vibrate seconds, measured from the point of, suspension to the point of oscillation: the 3d part of such a pendulum to be called horary fout, and to serve as a standard to which the seensure of all other feet might be referred. But this Voz. II.
measure, in order to its being universal, supposes that the action of gravity is the same on every part of the earth's surface, which is contrary to fact: for which reason it would really serve only for places under the same parallel of latitude s so that, if all latitudes were to have its foot equal to the Sd part of the pendulum vibrating seconds there, every different latitude would still have a different length of foot. And besides, the difficulty of measuring exactly the distance between the centres of motion and oscillation are such, that hardly any two measures would make it the same quantity.

Since that time, various other expedients have been proposed for eatablishing a universal measure. In 1779, a method was proposed to the Society of Arts, \&ce, by a Mr. Hatton, in conseyuence of a premium, which had been 4 years advertised by that institution, of a gold medal, or 100 guineas, for obtaining invariable standards for wcights and measures, communicable at all times and to all nations.' Mr. Hatton's plan consisted in the application of a moveable point of suspension to one and the same pendulum, in order to produce the full and absolute effect of two pendulums, the difference of whose lengths was the intended measure. Mr. Whitehurst much improved on this idea, by very curious and accurate machinery, in his tract published 1787, cntitled Ab Attempt towards obtaining invariable Mcasures of Length, Capacity, and Weight, from the Mensuration of Time, \&ec. Mr. Whitehurst's plan is, to obtain a measure of the greatcst length that conveniency will permit, from two pendulums whose vibrations are in the ratio of 2 to 1 , and whose lengths coincide with the English standard in whole numbers. The numbers be has chosen show great ingenuity. On a supposition that the length of a seconds pendulum, in the latitude of London, is $39^{\circ} 2$ inches, the length of one vibrating 42 times in a minute, must be 80 inches; and of another vibrating 84 times in a minute, must be 20 inches ; their differcnce, 60 inches or 5 feet, is his standard measure. By his cxperiments, however, the difference in the lengths of the two pendulums was found to be 59.892 inches, instcad of 60 , owing to the error in the assumed length of the seconds pendulum, 39-2 inches being greater than the truth. Mr. Whitehurst has however so far accomplished his design, as to show how an invariable standard may, at all times, be found for the same latitudc. He has also ascertained a fact, as accu rately as buman powers seem capable of ascertaining it, of great consequence in natural philosophy: which is, that the difference between the lengths of the rods of two pendulums whose vibrations are known, is a datum from which may be derived the true length of pendulums, the spaces through which heavy bodies fall in a given time, with many other particulars sclative to the doctrine of gravitation, the figure of the carth, \&c, \&c. The result deduced from this experiment is, that the length of a seconds pendulum, vibrating in a circular arc of $3^{\circ} 20^{\circ}$, is $39: 119$ inches very uearly; but vibrating in the arc of a cycloid it would be $39 \cdot 156$ inclies; and hence, heavy bodias will fall, in the first second of their descent, $16^{\circ} 094$ feet, or 16 feet $1 \frac{1}{4}$ inch, very nearly.

The other method, of deriving a standard from an are of the meridian, has been lately cxecuted in France; and it is said to possess the adsautage over the pendulum method, of being on a larger scale; as any error in this operation must be dimininislacd by subdivision; whereas, an error in the small standard must be inercased by mul-
fra
tiplication. But this method is objected to, on account of the inequality in the earth's surface; for it has been found that the degrees of the meridian vary in different longitudes, even in the same latitude.

The mathematicians who adopted this plan, objected to the pendulum method, as depending on two different elements, viz, gravitation and time. But gravitation is uniform in the same latitude; and time is universally so, as depending on the regularity of the earth's diurnal rotation on its axis, which has never been found to vary, notwithstanding the inequality in its periodical revolution.-Thus it appears that superior accuracy cannot be ascribed to the meridian method; and as the chief use of an original standard from nature, is to restore lost measures; if two methods are equally correct, that which can be performed with the greater convenience, ought to be preferred; and in this view the pendulum must bave a decided preference, as affording the readier mcans of recurring to the original.

Be that however as it may, the fundamental standard adopted in France, for the new system of weights and measures, is a quadrant of the meridian. This quadrant is divided into ten millions of equal parts; and one of these parts or divisions is called a Metie, which is adopted as the unit of length; and from which, by decimal multiplication and division, all other measures are derived. The length of the quadrant has been computed, by measuring an are of the meridian, between the parallels of Dunkirk and Barcelona; and its length has been thus found equal to 5130740 French toises. This quantity, divided by ten millions, gives 443.296 lines $=56.9413$ French inches $=39 \cdot 3702$ English inches, for the length of the metre.

In order to express certain decimal proportions, the following vocabulary has been adopted. The word Deca prefixed, means 10 times; Hecto, 100 times; Kilo, 1000 times; and Myria 10,000 times. On the other hand, the word Deci expresses the $10 t h$ part; Centi, the $100 t h$ part; and Milli, the 1000th part: thus a decametre, means 10 metres; a decimetre, the 101 h part of a metre; a liectometre, 100 metres; a centimetre, the 100 th part of a metre; and so of the rest.

The metre then being the cloment of long measures; the Are, which is a square decametre, is the element of superficial measures; the Stere, which is a cubic metre, is the element of solid measures; the Litre, which is a cubic decimetre, is the element of liquid measures, and of all other measures of capacity; and lastly, the Gramme, which is the weight of a cubic centimetre of distilled water, is the clement for all weights.

A third standard has been proposed, viz, the space that a heavy body would freely fall through in a second of time, which in the latitude of London has been found to be nearly $16_{r^{\prime}, \frac{1}{0}}$ feet. But this, like the above standards, must vary in different latitudes; and the operation is besides extremely difficult to be performed with accuracy.

The ancients mostly adjusted their standards by the dimensions of some durable buildings. In Egypt, he base of one of the pyramids was used ; and it is stated by Paucton, that a degree of the moridian was also neeasured there at a very carly period, by which the Grecks and Romans adjusted their standards.

Mensune, in a legal, commercial, and propular spuse, drnetes a certain quantity or proportion of any thing, bought, sold, valued, or the like. The regulation of
weights and measures ought to be universally the same throughnut the nation, and indeed all nations; and they should therefore be reduced to some fixed rule or standard, Measures are various, according to the various kinds of dimensions of the things measured. Hence arise

Lineal or Longitudinal Measures, for lines or lengths:
Square Measures, for areas or superficies: and
Solid or Cubic Measures, for the solid contents and capacities of bodics.

The standards of English weights and measutes, lihe those of all other countries, are uncertain in their origin That of long measure is said to have been fixed in the year 1101, by Henry the 1st, who ordanned that the ancient ultia or urm, which answers to the moderu yard (the Saxon gyrd or girth), should be adjusted to the length o his arm. This standard is subdivided iut/, feet, inelaes and barley-coms; and multiplied into poles, furlongs miles, \&c. The standards of English weights appear tu have beed originally from grains of wheat; 32 of whicl were directed, by the Compusitio Mensurarum, to make 1 pennyweight, and 20 pennyweights an ounce.

The standards, both of English weights and measures are chiefly kept in the Exchequer at Westininster, fron which copies are taken, and committed to the care of mn gistrates and other officers, in different parts of the king dom, who are empowered to examine the weights an measures of their respective distriets, and to condem such as are found erroneous. From the Excherpue standards are obtained for public offices, and also for ir dividuals, with indentures or licences for sizing, adjustill and vending weights and measures. The principal offic of this hind is at Guildhall, London, where several as cient standerds arc kept, and occasionally compared wit those of the Exchequer. Here the avoirdupeis weight which are cast by the l'ounders' Company, for the use, the city and for other purchasers, are sized and sealec and measures of eapacity are likewise adjusted. Standari are also kept at the Tower, particalarly for troy weigh By these regulations a uniformity of weights and the. sures is established throughout the kingdom; but the sures of capacity, particularly those for corn, vary cons deratly in different places.

In the year 1755, a committee of the House of Cor mons was appointed, to inquire into the standards of Ein lish weights and incasures. It was composed chictly men of science; who were assisted in their researches. several eminent mathematicians and mechanists. T report of this committee, which is printed in the minuof the house, contains the most full and authentic sta ment of the English weights and measures perhaps eq published; and as no alteration in them has since tak place, the substance of the report is here given, "ith su: account of the proceedings of the committee.

From the report it appears, that the subdivicions of 1 original standards, it the Exchequer and at Guildiall. nut perfectly agree in their various combinations. 'Ih difierences however are very small, and are of the kesh i portance, as the principal standards of long mensures a of weights are sufficiently corract.

With respect to the measures of capacity, considera differences were fuund to exist in the subdivisions: as " as a great diversity in the corn butshel in wifl rent parts the kinglorn, motwithtanding the numerous acts of ρ liament which had been pased to enfurce uniformity. all these acts, the Winchester tushel is stated to tee
only legal one. This is the boshel now used at the port of London, at Marh-lane, and at Guildhall; and yet it docs not exactly agree, either in shape or contents, with the standard bushel at the Exchequer.

As to tbe different kinds of weights, the committee recommended that the troy pound should be made the unit or standard, by which the avoirdupois and other weights should be regulated; because it is the weight best known to our laws, and that which has been longest in use; that by which our coins are weighed, and which is best known to the rest of the world; that to which our learned countrymen have referred, in comparing ancient and modern weights; and tbat which has been divided into the smallest proportions or parts.

Indeed this pound (called by the Romans the pondus or weight, and also the libra or balance,) is the most general standard or unit for weights, as the foot is for measures; and it is remarkable that both have been divided into the same number of equal parts, and that their divisions were-anciently called by the same name, uncia, which signifies the 12th part of a whole. Hence, the onnce and inch have one common derivation, the former being called uncia libro, and the latter uncia pedis.

The committee, baving found some variations in the divisions and multiples of the standard troy pound at the Tower, caused it to be divided into halves, quarters, eighths, \&c, down to the 1000th part of a grain. These divisions were made with so much accuracy, as to answer their due proportions in every possible combination; and for the purpose of ascertaining them witb the greatest correcticess, a very curious weighing apparatus was constructed by Mr. Bird, which is still carefully preserved in the Mint. It is adapted to five different beams, which ascertain the weights from 12 ounces down to 1 grain, and with so much exactness as to discern an error to the 2000th part of a grain. By this apparatus it has been found that the brass standard avoirdupois pound, kept in the Mint, weighed exactly 7000 grains; and it was further ascertained that this pound perfectly agreed with the bell standard pound (of 1588) at the Exchequer, and also with the bell standard pound at Guildhall.

The Royal Society of London bave paid very laudable attention to the subject of weights and measures, at different periods, particularly in 1768 , under the management of Dr. Maskelyne the astronomer-royal, and in 1798, under that of Sir George Sbuckburgh ; as may be seen in the Philos. Trans, of those years. And the same has been done by the Society of Arts in London, as before noticed. In 1802, M. Pictet, professor of philosophy at Geneva, made the following trials of the different English standards of length, by a scale constructed witb great accuracy by Mr. Troughton, of London; and by means of a comparer mude by the same ingenious artist, capable of showing differences to the 10,000 th part of an inch. The following results were irom trials made on several standard yards, in the temperature of 02° of Fahrenbeit's thermometer.
Parliamentary standard of 1758 , by Bird 36.00023 Inches.
Royal Society's ditto, also made by Bird $\mathbf{3 5 . 9 9 9 5 5}$
Ditto, by Mr. Grabam - . . 36.00130
Exehequer standard - - - 35.99380
Tower standard . . - . 36.00400
General Roy's do. (for the trigon. survey) 36.00036
The above statemept was presented by M. Pictet to the

National Institute of France; when, by several tri alswith the same apparatus, the new French metre was found to be 39.371 English inches, which in 1800 had been found by the Royal Society of London to be $39 \cdot 3702$, from a comparison with two toises sent by M. Lalande to Dr. Maskelyne. See the article Weights, also Kelly's Universal Cambist.

In the spring of the year 1814, the English parliament again took into consideration the forming general standards of uniform measures and weights, which might be conveniently used in all the British dominions. For this purpose, a committee of their members was appointed, who, after consulting and examining some learned scientific men, delivered in their report, tbe results of which are the following :

1. The committee recommended that the brass standard yard kept in the Court of Exchequer should be adopted and considered as the original standard measure; as divided into S feet, and each foot into 12 inches, or the yard 36 inches.- 2 . The committee then assert that the simple pendulum vibrating seconds in the latitude of London, in the temperature of $56 \frac{1}{2}$ degrees of Fahrenheit's thermometer, has been found to measure 39.13 such inches.-3. That a cubical foot of pure or distilled water weighs just 1000 ounces avoirdupois; and that therofore the avoirdupois weight will be the most convenient to adopt for the general weight of the country, the pound being divided into 16 ounces, and the ounce into 16 drachms. That, as a cubical foot of water weighs 1000 ounces, therefore, by proportion, the pound or 16 ounces of water will contain 27.648 cubic inches; from which all other weigbts, above and below the pound, are to be estimated proportionally.-4. That, as the standard weights are thus derived from the lineal measures, so the measures of capacity are recommended to be derived from the standard weights, in this manner; viz, that the gallon measure shall contain 10 pounds weight of water; consequently that the table of measures of capacity will be as follows:
The gallon of $10 \mathrm{lb} .=276.48$ cubic inches.
The bushel $=8$ gallons $=80 \mathrm{lb} .=2211.84$ cuh. inch. The quart $=\frac{1}{}$ gallon $=40 \mathrm{oz} .=69.12$ cub. inch. The pint $=\frac{1}{8}$ gallon $=20 \mathrm{oz} .=34.56$ cub. inch. The half pint $\quad=10 \mathrm{oz} . \doteq 17.28 \mathrm{cub} . \mathrm{in}$. or Tro of a cub. ft.
For the committee's report at large, sec the Philosophical Magazine, vol. 44, pa. 171.

The several measures used in England, are as in the following tables :

1. English Long Measure.

Barley Corns

MEA
2. Cloth Measure.

Inches
$2 \frac{1}{2}=1$ Nail
$9=4=1$ Quarter
$36=16=4=1$ Yard
$27=12=3=1$ Ell Flemish
$45=20=5=1$ Ell English
$54=24=6=1$ Ell French.

3. Square Measure.

$\begin{aligned} 39204 & =272 \frac{1}{4}=30 \frac{4}{4}=1 \text { Pole } \\ 1568160 & =10890=1210^{\circ}=40=1 \text { Rood }\end{aligned}$
4. Solid, or Cubical Measure,
$1728=1$ Foot
$46656=27=1$ Yard
8. Proportion of the Long Measurcs of several Nations to the English Foot.

		Tbousandth Parts.	lnches.			$\left\|\begin{array}{c} \text { Thoonandda } \\ \text { Puls. } \end{array}\right\|$	Inches.
English	- foot	1000	12.000	Amsterdam	- ell	2269	$27 \cdot 228$
Paris	- foot	1003^{3}	12.792	Antwerp	ell	2273	27.276
Rynlasd, or Leyden	- foot	1039	$12 \cdot 396$	Rynlaud, or Leyden	- ell	2240	$27 \cdot 120$
Amsterdam	- foot	942	11.304	Frankfort	- ell	1820	21.912
Brill	foot	1103	13-236	Hamburg	- ell	190.5	22.860
Antwerp	foot	946	11.332	Leipsic	ell	2260	$27 \cdot 120$
Dort	foot	1184	14.208	Lubeck	ell	1908	22-898
Lorrain	foot	958	11.4.6	Noremburg	- ell	22.7	26.724
Mechlin	foot	919	11.028	Bavaria	ell	954	$11 \cdot 448$
Middleburg	foot	991	11.892	Vieuna	ell	1053	12-636
Strasburg	foot	920	11.040	Rononía	ell	2147	25:764
Bremen	- foot	964	11.568	Dantzic	- ell	1903	222.836
Cologn	foot	954	11.448	Florence	Brace or ell	1913	22-956
Frankfort ad Maenum	- foot	948	$11 \cdot 376$	Spanish, or Castile	- palm	731	$0 \cdot 012$
Spanish	- fool	1001	$12 \cdot 012$	Spanish -	- vare	3004	36.040
Toledo	f00:	899	10.788	lisbon	vare	2750	$33 \cdot 000$
Roman -	foot	967	11.604	Gibraltar	- vare	2700	$33 \cdot 120$
$\left.\begin{array}{l} \text { On the monument of } \\ \text { Cestius Statilius } \end{array}\right\}$	- foot	972	11.664	Toledo	[${ }_{\text {chare }}^{\text {valm }}$	2635 861	$32 \cdot 220$ $10-332$
Bononia - -	- foot	1204	14.448	Naples	\{ brace	2160	25:200
Mantua	- foot	1369	18.838		Lcanna	6880	82.560
Venice	- fool	1102	$13 \cdot 044$	Genoa	- palm	830	$0 \cdot 960$
Dantzic	- foot	944	11.328	Milan	calamus	6344	78.528
Copenhagen	- foot	965	11.580	Parma	- cubit	1806	$22 \cdot 392$
Prague	- foor	1026	12.312	China	- cubit	1016	12.192
Riga	- foot	1831	21.972	Cairo	- cubit	1824	21.888
Turin -	- foot	1062	$12 \cdot 7+4$	Old Babylonian	- cubit	1520	18.240
The Greek	- foot	1007	12.084	Old Greek	- cubit	1511	18.132
Old Roman	- foot	970	11.6\%	Old Roman	- cubit	$1+58$	17-496
L.yons	ell	3967	$47 \cdot 604$	Turkish	- pike	2200	26.400
Bologna	cll	2076	21.912	Persian	arash	3197	38-364

MEC

MEASURING, the same as Mensuration.
MECHAIN (Pierre-Frangois-Axbrè), a member of the National Institute, and of the Board of Longitude, F. R. S. Lond. \&c, was born at Laon, in the department of Aisne, April 16, 1744, and died in the province of Valenciu in Spain, of all epidemic disorder, as he was prosecuting the measurement of an arc of the meridian, Sept. 20, 1805. - Having shownat an early age a good taste for mathematics. Mechain was sent to Paris, where he was patronized by M. Lalande, was entered it the depot of the marine, and afterwards made two voyages with M. Bretonniere, to survey the coasts of France from Neuport to St. Malons. The first memoirs which made him known as an astronomer, were on the occultation of Aldebaran, which had been observed in 1744, on the great eclipve of the sun in 1778, and on the opposition of Jupiter in 1779. After this period, he rapidly advanced to celebrity, became in 1782 a member of the French Acadeniy, and in 1785 was intrusted with the direction of the Connoissance des Temps, the vulumes of which, from 1788 to 1794, were greatly enriched by his menotrs - He was also united with MM. Cassini and Legeudre in measuring a series of triangles, to correspond with those of the I:nglash mathematicians, for the purpase of rectifying the relative positions of the observatories of Greenwich and Paris ; of which Mechain gave details in the Memoin of the Academy. When the Academy also was consulted by the Constituent Assembly, on the chujec of a new system of ineasures, and proposed for the base of this measure, a quarter of the earth's meridian, the ieneth of which arc was to be ascertained with the greatest possible exactness, M. Mechain was one of thise whou were appointod to this impurtant undertaking. Ihe are proposid to be meavared extended from Dunkirk to Barcelona, which he continued to laiour upon till 1798, when he returned to Paris. Bat, th complete thint work, he wished to continue it as lar as the Balcaric Namls, for which purpose tor set out again in 1803. If had already, with vast difficulty, revisted all the stathith, and completid the cubservations at three of them, when he wav cut off by a fever which prevails every year on the coust of Valencia, by rearun of the morasses produced from the werflowing of the risers.

In his churacter, M. Mrchain is represented as remarkably modes and silent, sildum speakitg at the meetings of the society. Belore his last expedition it seens he intrusted to M. Delambre all his rigisters and mantecripts, extracts from which, it is said; will contribute more to Mechain's praise than the most eloquent uration.

MECtIANICS, n mixed mathematical science, that treats of furces, motion, and moving powers, with their effects in machines, \&cc. The science of mechanics is distinguished, by bir lanac Newton, into practical and rational; the former treats of the mechanical powers, and of their various contbinations; the latter, of rational mechanics, compretiend, the whole theory and doctrine of forces, with the mutuons and efficts produced by them.

That part of mechanics which treats of the weight, gravity, und equibbrium of bodics and powers, is called statics; as isstinguished from that part which considers the mechanical powers, and their upplication, which is properly called meshanics.

Sone of the principles of statics were established by Archimedes, in his Treatise on the Centre of Gravity of Plane Figures: besides which, little more on mechanics is to be found in the writings of the ancients, except what is
contained in the 8 th book of Pappus's Muthematical Collections, concerning the five mechanical powers. Galilco laid the best foundation of mechanics, when he investigated the descent of heavy bodies; and sumce his time, by the assistance of the new methods of computation, a great progress has betn made, especially by Newton, in his Principia, wbich is a general treatise on rational and physical mechanics, in its largest extent. Other writers on this science, or some branch of it, are, Guido Ubaldus, in his Liber Mechanicorum ; Torricelli, Librı de Motu Gravium naturaliter Descendentium et Prujecturum; Balinnus. Tractatus de Motu naturali Gravium ; Huygens, Horologium Oscillatorium, and Tractutus de Motu Corporum ex Percussione; Leibnitz, Resistentia Solidorum, in Acta E.ruditor. an. 1684; Guldinus, De Ce-lito Gravitatis; Walliv, Iractatus de Mechanica; Varghon, Projet d'upe Nouvelle Mechanique, and his papers in thr Memoir. Acad. an. 1702; Borcili, Iractatus De Vi Percussionis, De Motiombus Naturalibus a Gravitate pendeutibus, and De Motu Animalium; De Chales, Treatise on Motion; Pardies, Discourse of Local Mntion; Parelt, Elements of Mechanics and Physics ; Casatus, Mechanca; Oughtred, Mechanical Institutuons; Rohnuli, Tractatus de Aleclaunica; Lamy, Mechamque; Keill, Introduction to true Pholovophy; Lahire, Mechauque; Murıutte, 'Iraité du Chuc des Curps; Dittoth, Laws of Motion; Herman, Phoronomia ; Gravesande, Plassics; Euler, I ractatus de Matu; Musscbenbrock, lhysics; Liossut, Mechanique; De-aguliens, Mechanics; Rownang, Natural Pmiosophy ; Emerson, Mechanics; Parkimsun, Mechanucs; Lagrange, Mechanique Analytique; Nirbolson, Introlucturn to Natural Plationophy; Finficld, Instilutes of Nalural Plilosophy, de, \&e As to the Description of Muchanes, see Strads, Zeisingius, Br-son, Auguathe de Rameilis, Buetier, Leoppolil, sturniy, Perranlt, Jimberg, Eakersun, Ruyal Academy of Sciences, Gregury's Mechalics, Acc.
In treating of machites, we should consider the weight that is to be raised, the power by which it is to be raised, and the iustrunsent or engine by which this cflect is to be produced. And, in treating of these, there are two principal problems that present themselses: the first is, to determine the proportints which the power and weight ought to have to each other, that they was just be it equilibrio; the second is, to deternine what ought to be the proportion betwern the power and weight, that a machme may produce the grenteot effect in a given tune. All writers on mechunico treat on the first of these preblems; but few have considered the second, though notless usf ful than theother.
is to the first problent, this general rule helds in all powers, namely, that when the power and wright are reciprocally proportional to the distances of the directions in which they act, from the centre of tnotion; or when the product of the power ly the distance of us direction, is equal to the product of the weight by the distance of its direction; this is the case in which the pewer and weight sustain each other, und are in equilitrns; so that the one would not prevail over the other, if the engme were at rest; and if it ware itt monton, it would contable to praseed unifurmly, if it were not tor the trictuon ot as parts, and other resistances. And, in gencral, the efiect of any power, or furce, is as lic product of that force multiplied by the distance of its direction from the centre of inotion, or the product of the power and its valucity when in motion, since this velucity is proportional to the distance from that centre.

Maxinum effects of Machines,-This second general problem in mechanics, is, to determine the proportion between the power and weight, so that when the power presails, and the machinc is in notoon, the greatest effect pussible may be produced by it in a given time. It is manitest, that this is an inquiry of the greatest importance, though few have treated of it. When the power is only a little greater than what is sufficient to sustain the weight, the motion usually is too slow; and though a greater weight the raised in this case, it is not sufficient to compensate for the loss of time. On the other hand, when the power is much greater than what is sufficient to sustain the weight, this is raised in less time; but it may happen that this is not sufficient to compensate for the loss arising from the smallness of the load. It ought therefore to be determined when the product of the weight multiplied by its velocity, is the greatest possible; for this product measures the effect of the engine in a given time, which is always the greater in proportion both as the weight is greater, and as its velocity is greater. For some calculations on this problem, see Maclaurin's Account of Newton's Discoveries, pa. 171, \&cc; also his Fluxions, art. 908 \&cc; Gregory's Mechanics; also vol, 3 of my Course of Mathematics, chap. xi. And, for the various properties in mechanics, see the several terms Motion, Force, Mechamical Powers, Lever, \&c.
mechanic, or Mechavical, something relating to mechanics, or regulated by the nature and laws of motion.

Mechavical is also used in mathematics, to signify a construction or proof of some problem, aot done in an accurate and geometrical manner, but coarsely and unartfully, or by the assissance of instruments; as are most problems relating to the duplicature of the cube, and the quadrature of the circle.

Mechavical Affections, such properties in matter, as sesult from their figure, bulk, and motion.

Machanical Causes, are such as are founded on Mechanical Alictions.

Mecmanical Cute, called also Transcendental, is one whose nature cannot be expressed by a finite algebraical equation.

Mechantcal Philosophy, also called the Corpuscular Philosophy, is that which explains the phenomena of nature, and the operations of corporeal things, on the principles of mechanics ; viz, the motion, gravity, figure, arrangement, disposition, greatness, or smallness of the parts which compose natural bodies.

Mecuanical Solution, ofa problem, is either when the thing is done by repeated trials, or when the lines used in the solution are not truly geometrical, or by organical construction.

Mechanical Poters, are certain simple machines which are used for raising greater weights, or overcoming greater resistances than could be effected by the natural strength without them.

These simple machines are usually accounted six in number, viz, the lever, the wheel-and-axle, or axis in peritrochio, the pulley, the inclined plane, the wedge. and the screw. Of the various combinations of these simple powers do all engines, or compound machines consist: and in treating of them, so as to settle their theory and properties, they are considered as mathematically exact, or void of weight and thickness, and moving without friction. See the properties and demonstrations of each of these under the several words Lever, \&c. To
which may be added the following general observations 0a them all, in a connective way.

1. A Lever, the most simple of all the mechanic powers, is an engine chiefly used to raise large weights to small heiglits ; such as a handspike, when of wood; and a crow, when of iron. In theory, a lever is considered us an infiexible liue, like the beam of a balance, and subject to the same proportions; only that the power applied to u, is commonly an animal power; and from the ditierent wass of using it, or applying it, it is called a lever of the first, second, or third kind: viz, of the lst kind, when the weight is on one side of the prop, and the power on the other; of the 2d kind, when the weight is between the. prop and the power; and of the Sd kind, when the power is between the prop and the weight.

Many of the instruments in common use, are levers of one of the three kinds; thus, pincers, sheers, forcepy, snuffers, and such like, are compounded of two levers o: the first kind; for the juint about which they move, is the fulcrum, or centre of motion; the power is applied to the handles, to press them together; and the weight is the body which they pinch or cut. The cutting-knives usec by druggists, patten-makers, bluck-iuakers, and sume othe: trades, are levers of the 2d kind: for the knife is fixed by a ring at one end, which makes the fulcrum, or fixed point while the other end is moved by the hand, or power; ans the body to be cut, or the resistance to be overcome, is th weight. Doors are levers of the 2 d kind; the hinges bein; the centre of motion; the hand applied to the lock is th power; while the door or weight lies between them. t pair of bellows consists of two levers of the 2 d kind; th centre of notion is where the ends of the boards are fixe near the pipe; the power is applied at the handles; an the air pressed out from between the boards, by its re sistance, acts against the middle of the boards like a weigh The oars of a boat are levers of the 2 d kind: the fixe point is the blade of the oar in the water; the power $;$ the hand acting at the other end; and the weight to b moved is the boat. And the same of the rudder of vessel. Spring sheers and tongs are levers of the 3 d kin where the centre of motion is at the bow-spring at on end; the weight or resistance is acted on by the othe end; and the hand or power is applied between the end A ledder raised by a man against a wall, is a lever of th 3d kind : and so are also almost all the bones and muscli of animals.

In all levers, the effect of any power or weight, is but proportional to that power or weight, and also to i distance from the centre of motion. And hence it is tha in raising great weights by a lever, we choose the longe levers; and also rest it upon a point as far from the has 'or power, and as near to the weight, as possible. Henc also there will be an equilibrium between the power at weight, when those two products are equal, viz, the pow multiplied by its distance, equal to the weight multiplis by its distance; that is, when the weight and power a to each other reciprocally as their distances from the fu crum or fixed parts.
2. The Axis in Peritrochio, or Wheel and Axle, is a sir ple engine consisting of a wheel fixed upon the ead of : axle, so that they both turn round together in the san time. This engine may be referred to the lever: for al centre of the axis, or wheel, is the fixed point; the radi of the wheel is the distance of the power, acting at it circumference of the wheel from that point;-and il
radius of the axle is the distance of the weight from the same point. Hence the effect of the power, independent of its own natural intensity, is as the radius of the.wheel; and the effect of the weight is as the radius of the axle: so that the two will be in equilibrio, when the two products are equal, which are made by multuplying each of these, the weight and power, by the radius, or distance at which it acts ; and then also, the weight and power are reciprocally proportional to those radii.

In practice, the thickness of the rope, that winds upon the axle, and to which the weight is fastened, is to be considered: which is done, by adding half its thickness to the radius of the axis, for its distance from the fixed point, when there is only one fold of rope upon the axle; or as many times the thickness as there are folds, wanting only one half when there are several folds of the rope, one over another: which is the reason that more power must be applied when the axis is thus thickened; es often happens in drawing water from a deep and narrow well, over which a long axle cannot be placed.

If the rope to which the power is aftixed, be successively applied to different wheels, whose diameters are larger aud larger; the axis will be turned with still more and more ease, unless the intensity of the power be diminished in the same proportion; and if so, the axis will always be drawn with the same strength by a power continually diminishing: as is the case in spring clucks and watches; where the spiral spring, which is strongest in its action when first wound up, draws the fuzee, or continued axis in peritr chin, first by the smaller wheels, and as it unbends and beconnes weak, acts upon the larger wheels, in such a mauner that the machinery is always carried round with the same force.

As a small axis would be tom weak for very great weights, and a large whecl would be not only expelisive, but also inconvenient in its application, requiring nore room than perhaps could be spared fot it; therefore, in order that the action of the power muy be increasact, without incurring cither of these inconvemencers, n compuind axis in peritrochio is used, which is effected by combining wheels and axles by means of pinions, or small whrels, upon the axles, the teeth of which take hold of teeth made in the large wheels; as is seen inclocks, jacks, and owher compound machines. And in such a combination of wheels and ax les. the effect of the power is increased in the ratio of the continual product of all the axles, or small wheels, to that of all the large ones. Thus, if there be two small whecls and an axle, turning three large wheels; the axle being 2 inches diameter, and each of the small wheels 4 inches, while the large ones are 2 feet or 24 inches diameter; then $2 \times 4 \times 4=32$ is the continual product of the swall diameters, and $24 \times 24 \times 24$ $=19824$ is that of the large ones; therefore 13824 to 32 , or 432 to 1 , is the ratio in which the power is inereased: and if the power be a math, whose natural strength is equal, suppose, to 150 pounds weight, then 432×150 $=64800 \mathrm{lb}$, or $38 t+18 \mathrm{cwt} 64 \mathrm{lb}$, is the weight he would be able to bulance, suspernded about the axle.
3. A Single Pullry, is a small wherl, moveable round an axic, called its centre pin; which of itself is not properly one of the mechancal powers, becanse it produces no mechanical adrantage, except convenience; for as the weight hange by one end of the cord that passes over the pulley, and the power acts at the other cud of the same, these act at equad distances from the eentre or axis of mo-
tion, and consequently the power is equal to the weight when in equilibrio. So that the chief use of the single pulley is to shange the direction of the power from upwards to downwards, \&c, and to convey bodies to a great height or distance, without a person moving from his place--But by combining several single pulleys together a considerable gain of power is made, and that in proportion to the additional number of ropes made to pass over them; while it possesses at the same time the properties of a single pulley, by changing the direction of the action in any manier.
4. The Inclined Plane, is made by planks, bars, or beams, laid aslope; by which large and heavy bodies may be more easily raised or lowered, by sliding them up or down the plane; and the gain in power is in proportion as the length of the plane to its height, or as radius to the sine of the angle of inclination of the plane with the ho rizon.- Indrawing a weight up an inclined plane, the power ${ }^{r}$ acts to the greatest advantage, when its direction is parallel to the plane.
5. The Wedge, which resembles a double inclined plane, is very useful to drive in below very heavy weights, to raise them but a smalt height, also in clcaving and splitting blocks of wood, and stone, \&ce; and the power gained, is in proportion of the slant side to half the thickuess of the back. So that, if the back of a wedge be 2 juches thick, and the side 20 inches long, any weight pressing on the bach will balance 20 times as much neting on the side. But the great advantage of a wedge lies in its being urged, not by pressure, but usually by percussion, as the blow of a hammer or mallet; by which mouns a wedge may be drisen in below, and so be made to lift, almost any the greatest weight, as the largest ship, by a man striking the back of a wedge with a mallet.-To the wedge may be referred the ase or batchet, the tecth of saws, the chasel, the auger, the spade and shovel, knives and swords of all kinds, ws ulso the bodkin and needle, and in short all sorts of instruments which, beginning from edges or points, becume gradually thicker as they lengthen; the manner in which the power is applied to such instruments, bring different according to their different shapes, and the vurious uses for which they have been contrived.
6. The Screw, is a hinet of perpetual ot endless inclined plane; the power of which is still farther assisted by the addition of a handle or lever, where the power acts; so that the gait in power, is in the proportion of the circumference described or passed through by the power, to the distance between thread and thread in the screw. - The uses to which the screw is applied, are various; as, the pressing of bodies close together; such as the press for napkins, for bookbinders, for packers, hotpressers, \&c.In the screw, and the wedge, the power has to evercome both the weight, and also a very great friction in those machines; such indeed as amounts sometimes to as much as the weight to be raised, or more. But then this friction is of use in retaining the weight and machine in its places, even after the power is taken off.

If machines or engines could be made without friction, the least degree of power added to that which balances the weight, would be sufficient to raise it. In the lever. the friction is litele or nothing; in the wheeland-axle, it is but small; in puileys, it is very considerable; and in the inclined plane, wedge, and screw, it is very great.

It is a general property in all the mechanical puwers, that when the weight and power are regulated so as tu
halance each other, and if they be then put in motion, the power and weight will be to each other reciprocally as the velucities of their motion, of the power is to the weight as the velocity of the weight is to the velocity of the power; so that their two monenta are equal, viz, the product of the power multiplied by its velocity, equal to the product of the weight multiplied by its velocity. And hence too, universally, what is gained in power, is lost in time; for the wught moves as much slower us the power is larger.

Hence also it is plain, that the force of the power is not at all increased by engines; only the velocity of the weigh, either in lifting or drawing, is so diminished by the application of the instrument, as that the momentum of the weight is not greater than the force of the power Thus, for instance, if a force can raise a pound weight with a given velocity, it is impossible by the application of that furce to any engine to raise 2 pounds weight with the same velocity: but it may be made to raise 2 pounds weight with balf the velocity, or even 1000 times the weight with the 1000th part of the velocity.

Sec Muclaurin's Account of Newton's Philos. Discov. book 2, chap. 3 ; Humiten's Philos. Fss. 1 ; Philos, Trans. 53. pa. 116: or Landen's Memoirs, vol. 1, pa. 1; or Giregory's Mechanics, vol. 1.

MIECIIANISM, cither the construction or the machinery employed in any thing; as the mechanism of the barometer, of the microscope, $\$$

MEDIETATES, a Ierm greatly used by Pappus, and some other authors, for sels of proportionals, both arithmetical, geometrical, and harmonical. See Pappus, lib.s, prop. 1 to prop. 27 ; also Viviani de Solidis Locis, lib. 3, pa. 81 to 190 ; and Bloudel IResulution des + princip. Problemes d'Architecture, pa. 37.

MEDIUM, the same as Mean, cither arithmetical, grometrical, or harmonical.

Menium denotes also that space, or region, or fluid, \&c, through which a body passes in its motion towards any point. Thus, the air, or atmosphere, is the medium in which birds and beasts live and move, and in which a projectile moves; water is the medium in which fishes move; and ether is a supposed subtile medium in which the plancis move. Glass is also called a medium, being that through which the rays of light move nod pass. Mediums resist the inotion of bodies moving through them, in proportion to their density or specific gravity.

Subile or Aethercal Mensux, is au universal one, whose existence is by Newton rendered probable. He makes it universal; and vastly more rare, subtile, elastic, and active than air; and by that means freely permeating the pores und interstices of all other médiums, and diffusing itself through the whole creation. By the intervention of this subtile medium he thinks it is that most of the great plicuomena of nature are pfecied. See Etrier.

This medium it would seem he has recourse to, as the first and most remote physical spring, and the ultimate of nll natural causes: by the vibrations of this medium, lie supposes that heat is propagated from lucid bodies; as also the intenseness of heat increased and preserved in hot bodies, and from them communicated to cold ones. By means of this medium, he supposes that light is refiected, inflected, refracted, ind put ahernately into fits of eusy reflection and transmission; which eflects he also elsowhere ascribes to the power of uttraction; so that it would seem, the ethereal medium is the source and cause even of attraction itself,

Again, this medium being much rarer within the heaven* ly bodies, than in the heavenly spaces, and growing denser as it recedes farther from them, he supproses this is the cause of the gravitation of these bodies towards cach other, and of the parts towards the bodies.

Again, from the vibrations of the same miedium, excited in the bottom of the eye by the rays of light, and thence propagated through the capilinments of the optic nerver into the sensurium, lie supposes that vision is performed. and so likewise hearing, from the vibrations of this or some other medium, excited in the auditory nerves by the tremors of the air, and propagated through the capaliamentof those nerves into the sensurium: and so of the othes senses.

Aud aganu, be conceives that muscular motion is per formed by the vibrations of the same medium, excited ir the brain at the command of the will, and thence propa gated through the capillaments of the nerves into the museles; and thus contracting and dalating them.

The elastic force of this medium, be shows, must br prodigisusly great. Light moves an the rate of consodera bly more than $\mathbf{1 0}$ miltions of miles in a minute; yet th vibranons and pulsations of this medium, to culse the fit of easy reflection and transmission, must be suifter tha light, which is yet 7 hundred thousand times swifter tha sound. Its cinstic force therefore, in proportion to it density, must be above $\mathbf{4 0 , 0 0 0}$ million of times greate than the clastic force of the air, in proportion to its det sity; the velocitios and pulses of the elastic mediun being in a subduplicate ratio of the clasticitics, and tt rarities of the mediums, taken togetber. And thus it ina be conceived that the vibration of this mediun is the cau: also of the clasticity of bodies.

Farther, the particles of which it is composed being su posed indefinitely small, even smaller than those of ligh if they be likewise supposed, like our air, enducd with repelling power, by which they recede from each othe the smallness of the particles may exccedingly contribu to the increase of the repelling power, and consequently that of the elasticity and rarity of the medium; by th means fitting it for the free transmission of light, and ti free motions of the beavenly bodies, in which the planc and comets inay revolve without any considerable resit ance. If it be 700,000 times more clastic, and as ma times rarer, than air, its resistance will be above 600 m lion times less than that ol water; a resistance that wou cause no sensible alteration in the motion of the plam in ten thoussand years.

MEIBOMIUS (Marcus), a very learned person, o: family in Germany which had long been fanous for learn men, was born at Helmstadt in 1590. He devot himself to literature and criticism, but particularly tot learning of the alucients; such as their music, the structu of their galléss, \&c. In 1652 he published a collecti of seren Greek authors, who had written upon uncis music, to which he added a Latin version by himsa This work he dedicated to Queen Christina of Swede in consequence of which he received an invitation to tl princess's court, like several other learned men, whith accepterd. The queen engaged him one day to sing an of ancient music, whik a perison danced the Greck dan to the sound of his voice; but the imnoderate mi which this occasioned in the spectators, so covered It with ridicule, and disgusted him so vehemently, that abrupily left the court of Sweden inusediately, at

MER

heartily battering with his fists the face of Bourdelot, the favourite physician and bufoon to the queen, who had persuaded her to exhibit that spectacle.

Meibomius pretended that the Hebrew copy of the Bible was full of crrors, and undertook to correct them by means of a metre, which he fancied he had discovered in those ancient writings; but this it seems drew upon him no small raillery from the learned. Nevertheless, besides the work above mentioned, be produced several others, which showed him to be a good scholar; witness his Notes upon Diogenes Laertius in Menage's edition ; his Liber de Fabrica Triremium, 1671, in which he thinks be discovered the method in which the ancients disposed their banks of oars; his edition of the Ancient Greck Mythologists; and his Dialogues on Proportions, a curious work, in which the interlocutors, or persons represented as speaking, are Euclid, Arcbimedes, Apollonius, Pappus, Eutocius, Theo, and Hermotimus. This last work wes opposed by Langius, and by Dr. Wallis, in a consideralle tract, printed in the first volume of his works. Mcibomius died in 1668.

MELODY, is the agreeable effect of different musical sounds, ranged or disposed in a proper succession, being the effect only of one single part, voice, or instrument; by which it is distinguished from harmony, which properly results from the union of two or more musical sounds heard together.

MENISCUS, a lans or glass, convex on one side, and concave on the other. Sometimes also called a lune or lunula. See its figure under the article Lens.

To find the Focus of a Meniscus, the rule is, as the difference between the diameters of the convexity and concavity, is to either of them, so is the other diameter, to the focal length, or distance of the focus from the meniscus. So that, having given the diameter of the convexity, it is casy to find that of the concavity, so as to remove the focus to any proposed distance from the meliscus. For, if p and d be the diameters of the two sides, and f the focal distance ; then since,

$$
\begin{aligned}
& \text { by the rule } \mathrm{p}-d: \mathrm{D}:: d: f \text {, } \\
& \text { therefore } d: \mathrm{p}: f-d: f \text {, } \\
& \text { or } f-d: f: d: \mathrm{D} \text {. }
\end{aligned}
$$

Hence, if \mathbf{p} the diameter of the concavity be double to d that of the convexity, f will be equal to D , or the focal distance equal to the diameter; and therefore the meniscus will be equivalent to a plano-convex lens.-Again, if $\mathrm{D}=3 d$, or the diameter of the concavity triple to that of the convexity, then will $f=\frac{1}{\mathrm{D}}$, or the focal distance equal to the radius of concavity; and therefore the meniscus will be equivalent to a lens equally convex on either side. - But if $\mathrm{D}=5 d$, then will $f=40$; and therefore the meniscus will be equivalent to a sphere.-Lastly, if $\boldsymbol{D}=d$, then will f be intinite ; and therefore a ray falling paralle! to the axis, will still continue parallel to it after refraction.

MENSTRUUM, Solvext, or Dissolvent, any fluid that will dissolve hard bodies, or separate their parts. Sir Jsaac Newton accounts for the action of menstruums from the ncids with which they are inpregnated; the particles of acids being endued with n strong attractive force, in which their activity consists, and by virtue of which they dissolve bodies. By this attraction they gather together about the particles of bodies, whether metallic, stony, or the like, and adhere very closely to them, so as scarce to be separated from them by distillation, or sublimation. Von. 11 .

Thus strongly attracting, and gathering together or all sides, they raise, disjoin, and shake asunder the particies of budics, i. e. thay dissolse them; and by the attractive power with which they rush against the particles of the Lodies, they move the fluid, and so excite heat, shahing some of the particles to that degree, as to convert thera into air, and so generating bubbles.

Dr. Keill has given the theory or foundation of the action of menstruums, in several propositions. Sce ATtraction. From those propositions are perceived the reasons of the different eflects of different menstruums; why some bodics, as metals, dissolve in a saline menstruum; others again, as resins, in a sulphureous one ; \& c: particularly why silver dissolves in aqua fortis, and gold only in aqua regis; all the varietics of which are accounted for, from the different degrees of cohesion, or at* traction in the parts of the body to be dissolved, the different diameters and figures of its porca, the diffrent degrees of attraction in the menstuuum, and the different diameters and tizures of its parts.

MENSURABILITY, the fitness of a body for being applied, or conformable to a certain miasure.

MENSURATION, the act, or art, of measuring figured extension and bodies; or of finding the dimensions and contents of bodies, both superficial and solid.

Every different species of mensuration is estimated and measured by others of the same hind: so, the solid contents of bodies are nicasured by cubes, as cubic inches, or cubic feet, \&c ; surfaces by squares, as square inches, feet, \&c ; and lengths or distances by other lines, as inches, feet, \&c.

The contents of rectilinear bigures, whetber plane or solid, can be accurately determined, or expressed; but of many curved ones, this is not possible. So the quadrature of the circle, and cubature of the sphere, are problems that have never yet been accurately solved. See the various kinds of mensuration, as well as that of the different figures, under their respective terms.

The first writers on geometry were chiclly writers on mensuration ; as Euclid, Archimedes, \&ec. Sec QuadraTUnE; also the Preface to my Mensuration, for more ample information on this subject.

MERCATOR (Geramd), an eminent gengrapher and mathematician, was born in 1512, at Ruremonde in the Low-Countries. He applied bimself with such industry to the sciences of geography and mathematics, that it has been said he often forgot to eat and sleep. The emperor Charles the 5th encouraged him much in his labours; and the duke of Juliers made him his cosmographer. He composed and published a Chronology; a large and small Atlas ; and some Geographical 'Tables; besides some books in philosophy and divinity. He was also so curious, as well us ingenious, that he engraved and coloured his maps himself. He made various inaps, globes, and other mathematical instruments for the use of the emperor; and gave the most ample proofs of his uncominonskill in what he professed. His method of laying down charts is still used, which bear the name of Mercator's Charts ; also a part of navigation is from him called Mcreator's Sailing.He died at Duisbourg in 1594, at 82 years of age.-Sce Mercator's Chart, below.

Mercator (Nicholas), an eminent mathematician and astronomer, whuse name in High-Dutch was Haufiman, was born, about the year 1640, at Hubstein in Denmark. From his works we learn, that be had an early and liberal education, suitable to his distinguisbed genius, by which

G
be was cuabled to extend his researches into the mathematical sciences, and to make very considerable improvements : for it appears from bis writings, as well as from the character given of him by other mathematicians, that his talent rather lay in improving, and adapting any discoveries and improvements to usc, than invention. However, his genius for the mathematical sciences was very conspicuous, and introduced him to public regard and esteem in his own country, and facilitated a correspondence with such as were eminent in those sciences, in Denmark, Italy, and England. Some of his correspondents gave him an invitation to this country, which beaccepted, and he afterwards continued in England till bis death. He had not been long bere before he was admitted F. u. s. and gave frequent proofs of bis close application to study, as well as of bis eminent abilities in improving sume branch or other of the sciences. But he is charged sametimes with borrowing the inventions of others, and adopting theth as his own. And it appeared on some occasions, that he was not of an over liberal mind in scientific communications. Thus, it had some time before bim been observed, that there was an analogy between a scale of logarithmic taugents and Wright's protraction of the nautical meridian line, which consisted of the sums of the secants; though it does not appear by whom this analogy was first discovered. It appears however to have been first published, and introduced into the practice of navigation, by Henry Bond, who mentions this property in an edinen of Norwood's Epitome of Navigation, printed about 1645 ; and he again treats of it more fully in an edition of Gunter's Works, printed in 163s, where he teaches, from this property, to resolve all the cases of Mercator's Sailing by the logurithmic taugents, independent of the table of meridional parts. This analogy had only been found to be nearly true by trials, but not demonstrated to be a mathematical property. Such demonstration seems to heve been first discovered by Mercator, who, desirous of making the most advantage of this and another concealed invention of bis in navigation, by a paper in the Philosophical Transactions for June 4,1666 , invites the public to euter into a wager with him, on lis ability to prove the truth ar falsehood of the supposed analogy. 'I'his mereenary proposal it scems was not taken up by any one, and Mercator riseried bis demonstration. Uur author however distinguished himself by many valuable pieces on philosophical and mathetnatical subjects. His first attempt wav, to reduce'astrology to rational principles, which proved a vain attempt. But his writings of more particular nute, are as folluw:
t. Cosmographaa, sive Descriptio Coeli et Terraz in Circulos, qua fundumentum stermitur sequentibus ordine 'Trigononnetria sphericuruur Lognrithmica, $\& \mathrm{c}, \mathrm{a} \mathrm{Ni}$ colao Haufinan Holsulo; printed at Dantxic, 1651, 12mo.
2. Raticnes Mathematice subducte anno 1653; Copenhagen, it to.
3. De. Enculatione annua Diatribae duar, quibus exponuntur et denoustrantur Cycli Solis ut Lunar, \& © (11) 4to.
t. Ilypethesis Antronomica nova, et Consensus rjus cum Otservatoonibus; Lond. 1Git, in fulio,
5. Logarithnotechnia, sive Methodus Construendi Lo. getulimos nova, necurata, et facilis; scripto antehac cominunicata anno sc. 1667 monis Augusti; cui nunc accedit, Vera Quadratura HJ perbolix, eit Inventio summa Loga-

M ER

rithmorum. Auctore Nicolao Mercatore Holsato è Societate Regia. Huic etiam jungitur Michaelis Angeli Riccij Exercitatio Geometrica de Maximis et Minimis, hic ob argumenti prestantiam et exemplarium raritatem recusa; Lond. 1668, in 4to.
6. Institutionum Astronomicarum Libri duo, de Motu Astrorum communi et proprio, secundum hypotheses veterum et recentiorum pracipuas ; deque Hypotheseon ex ubservatis constructione, cum tabulis Tychonianis, Solaribus, Lunaribus, Lune-solaribus, et Rudolphinis Solig, Fixarum et quinque Errantium, earumque usu preeoptis et exemplis commonstrato. Quibus accedit Appendix de ins, qua novissimis temporibus ccelitus innotuerunt; Lond. 1676, 8vo.
7. Euclidis Elementa Geometrica, novo ordine ac methodo fere, demonstrata. Una cum Nic. Mereatoris in Geometriam Introductione brevi, qua Magnitudinum Ortus ex genuiuis Pruncipiis, et Ortarum Affectiones ex ipsa Genesi derivantur. Lond. $1678,12 \mathrm{mo}$.

His papers in the Philosophical Transactions, are,

1. A Problem on some Points in Navigation: vol. 1.
2. Illustrations of the Logarithmo-technia: vol. S.
3. Considerations concerning his Geometrical and Direct Method for finding the Apogees, Excentricities, and Anomalies of the Planets: vol. 5 , pa. 1168.

Mercator died in 1694, about 54 years of age.
MERCATOR's Churt, or Projection, is a projection of the surface of the earth in plano, so called from Gerrard Mercator, a Flemish geographer, who first published maps of this sort in the year 1556; though it was Edward Wright who first gave the true principles of such charts, with their application to navigation, in 1699.

In this chart or projection, the meridians, parallels, and rhumbs, are all straight lines, the degrees of longitude being every-where increased so as to be equal to one another, and baving the degrecs of latitude also increased in the same proportion ; namely, at every latitude or point on the globe, the degrees of latitude, and of longitude, or the parallels, are increased in the proportion of radius to the sine of the polar distance, or cosine of the latitude; or, which is the same thing, in the proportion of the secant of latitude to radius; a proportion which has the effect of representing the parallel circles by parallel and equal right lines, and all the meridians by parallel lines also, but incressing infinitely towards the pules.

From this proportion of the increase of the degrees of the meridian, viz, that they increase as the secant of the Iatitude, it is very evident that the length of an arch of thi meridian, begimning at the equator, is proportional to the sum of all the secants of the latitude, i.e. that the increased meridian, is to the true arch of it, as the sum or all those secants, to as many times the redius. But it it not so evident that the same increased meridian is alsc analogous to a scale of the logarithmic tangents, whict however it is. "It dors hot apparar by whem, nor by what accident, the analogy was discovered between a scale of 1 lo . garithmic tangents and Wright's protraction of the bautical meridian line, which consisted of the sums of the secants. It appears bowever to have been first published and introduced into the practice of navigation, by Mr. Henry Bond, who mentions this property in an edition of Norwood's Epitome of Navigation, printed about 1645 ; and he again treats of it more fully in an edition of Guster's Wurks, printed in 1653, where be teaches, from thit property, to resolve all the cases of Mercator's Sailing by
the logarithmic tangents, independent of the table of meridional parts. This analogy had only been found however to be nearly true by trials, but not demonstrated to be a mathematical property. Such demonstration, it seems, was tirst discovered by Mr. Nicholas Mercator, which be offered a wager to disclose; but this not being accepted, Mercator reserved his demonstration; as melltioned in the account of bis life in the foregoing page. The proposal however excited the attention of mathematicians to the subject, and demonstrations were not long wanting. The first was published about 2 years after, by James Gregory, in his Exercitationes Geometrice; from hence, and other similar properties there deunonstrated, he shows how the tables of logarithmic tangents and secants may easily be computed from the natural tangents and secants.
"The same analogy between the logarithmic tangents and the meridian line, as also other similar properties, were afterwards more elegantly demonstrated by Dr. Halley, in the Philos. Trans, for Feb. 1696, and various methods given for computing the same, by examining the nature of the spirals into which the rhumbs are transformed in the stereographic projection of the sphere on the plane of the equator: the doctrine of which was rendered still noore easy and elegant by the ingenious Mr. Cotes, in his Logometria, first printed in the Philos. Trans. for 1714, and afterwards in the cullection of his works published 1732, by his cousin Dr. Robert Smith, who succeeded him as Plumian professor of philosephy in the university of Cambridge."
The learned Dr. Isaac Barrow also, in his Lectiones Geometricx, Lect. xi, Append. first published in 1672, delivers a similar property, namely, "that the sum of all the secunts of any are, is analogous to the logarithm of the ratio of $r+s$ to $r-s$, viz, radius plus sine to radius minus sine; or, which is the same thing, that the meridional parts answering to any degrec of latitude, are as the logarithms of the ratios of the versed sines of the distances from the two poles." Preface to my Logarithms, pa. 100.

The meridian line in Mercator's Chart, is a scale of logarithmic tangents of the half colatitudes. The ditferences of longitude on any rhumb, are the logarithms of the same tangents, but of a different species; thone species being to each other, as the tangents of the angles made with the meridian. Hence any scale of logarithonic tangents is a table of the differences of lungitude, to several latitudes, on some one deterninate rhumb; and therefore, as the tangent of the angle of such a rhumb, is to the tangent of any other rhumb, so is the difference of the logarithms of any two tangents, to the difference of longitude on the proposed rhuinb, intercepted between the two latitudes, of whose half complements the logarithmic tangents were taken.

It was the great study of our predecessors to contrive such a chart in plano, with straight lines, on which all, or any parts of the worid, might be truly set down, according to their longitudes and latitudes, bearings and distances. A method for this purpose was hinted by Ptolemy, near 2000 years since; and a general map, on such an idea, was made by Mercator; but the principles were not demonstrated, and a ready way shown of describing the chart, till Wright explained how to enlarge the meridien line by the continual addition of secants; so that all degrees of longitude might be proportional to those of
latitude, ns on the flobe: which renders this chart, in several respects, far more convedient for the navigator's use, than the glole itself; and which will truly show the course and distance fron place to place, in all cases ot sailing.

Mencator's Sailing, or more properly W'right's Suiling, is the method of computing the cases of sailing on the principles of Mercator's chart, which principles were laid down by lidward Wright in the beginning of the 17th century; or the art of finding on a plane the motion of a ship upon any assigned course, that shall be true as well in longitude and latitude, as distance; the meridiuns being all parallel, and the parallels of latitude straight lines,
In the right-angled triangle $A b c$, let $a b$ be the true difference of latitude betwern two places, the angle bac the angle of the course sailed, and $A c$ the true distance sailed; then will be be what is called the departure, as in plane sailing: produce $A b$ till $A B$ be equal to the meridional difference of latitude, and draw BC parallel to $b c$; so shall BC be the difference of longitude.

Now from the similarity of the
 two triangles $\Delta b c, \Delta B c$, when three of the parts are given, the rest may be found; as in the following analogies: As Radius : sin. course : : distance : departure;
Radius : cos. course : : distance : dif. latitude ;
Radius : ten. course ; : merid, dif, lat : dif. longitude.
And by means of these analogies, all the cases of Mercator's Sailing may be resolved.

MERCURY, in Astronomy, the smallest of the juferior planets, and the nearest to the sun, about which it is carried with a very rapid motion. Hence it was, that the Grecks culled this planet after the name of the nimble nessenger of the gods, and represented it by the figure of a youth with wings at his head and feet; whence is derived 8 , the character in present use for denoting this planet.-The mean distance of Mercury from the sun, is to that of the earth from the sun, as 387 to 1000 , and therefore his distance is about 37 millions of miles, or little innre than onethird of the carth's distance from the sun. Hence the sun's diameter will appear at Mercury, near 3 times as large as at the earth; and hence also the sun's light and heat received there are about 7 times those at the earth; a degree of heat more than sufficient to make water boil. Such a degree of heat therefore must render Mercury not babitable to creatures of our constitution : and if bodies on its surface be not inflamed, and set on fire, it must be because their degree of density is proportionably greater than that of bodies on our globe.

The diameter of Mercury is also more than $\frac{f}{f}$ of the diameter of the earth, or about 3222 miles. Heace the surface of Mercury is nearly 1-9th, and his magnitude or bulk 1-27 th of that of the earth.

The inclination of his orbit to the plane of the ecliptic, is $7^{\circ} 0^{\prime}$; his period of revolution round the sun, 87 days 23 hours; his greatest elongation from the sun $28^{\circ} 20^{\circ}$; the excentricity of his orbit $\frac{4}{4}$ of bis mean distance, which is far greater than that of any of the other planets; and he moves in his orbit about the sun at the amasing rate of 95,000 miles an hour.

The place of his aphelion is $14^{\circ} 32^{\prime}$; place of ascending node $814^{\circ}+4^{\prime}$, and consequently that of the descending node $m 14^{\circ}+4^{\prime}$. His length of day, or rotation on his axis, and inclination of axis to his urbit, are unknown.

Mercury changes bis phasey, like the moon, according to his various positions with regard to the earthand sun ; except only, that he never appears quite full, because his enlightened side is never turned directly towards us, unless when lie is soncar the sun as to be lost to our sight in his beams. And ws hus culightened side is always towards the sun, it is plain that he shines not by any light of his own; for if he did, he would constantly appear round.

The beat observations of this planet are those made when it is seen on the sun's disc, called its transit; for in its lower conjunction, it sometimes passes before the sun. like a little spot, eclipsing a small part of the sun's body, only observable with a telescope. That node from which Mercury ascends norihward above the ecliptic, is in the 13th degiec of Taurus, and the opposite in the 13 th degree of Scorpio. The earth is in those parts on the 6 th of November, and 4th of May, new style; and when Mercury comes to either of his nodes at his inferior conjunction about these times, be will appear in this manner to pass over the sun's disc. But in all other parts of his orbit, his conjunctions are invisible, because he goes either above or below the sun. The first observation of this kind was made by Gassendi, in Novernber 1631. Several following observations of the like transits are collected in Du Hamel's لlist, of the Royal Acad. of sciences, pa, 470, ed, 2. And Mr, Whiston has given a list of several periods at which Mercury inay be seen on the sun's disc, viz, in 1782, Nov. 12 , at $3^{\text {h }} 44^{\mathrm{n}}$ afteruoon ; in 1786 , May 4 th, at $6^{\mathrm{h}} 57^{\infty}$ in , the forentoon; in 1789 , Dec. 6th, at $3^{2} 55^{\mathrm{m}}$ afternoon; and in 1799, May 7 th, at $2^{\circ} 34^{\mathrm{a}}$ afiernoon. There are inlso several intermediate transits, but nonc of them visible at Lundon. See [?r. Halley's account of the Transits of Mercury and Venus, in the Philos. Trans. No. 193.

Merceny, a inctal of a silvery white colour, and is wherwise called quicksilver. This metal is always fluid at the usual temperature of the atmosphere, but freezes and becomes fined at the temperature of -399° of Fabrenleit's thernometer, that is 39° below 0 , or 71° below the freczing point of water; and it contracts about $\frac{1}{2} 0$ of its bulk in the noment of frrezing. ' Its boiling point is 660°; it may therefore be tutally evaporated, or distilled from whe vesel into another, by which menns it is purified from varous other metallic matters. The vapour of mercury is inviathe, and elastic, like common air; lihe air too,
 . breaks the sttongest vessel, with an explosion as loud as a cuntion.

MERIDIAN, in Astronomy, is a great circle of the celestial sphere, passing through the poles of the world, and both the zenith and nadir, crossing the equinoctial at right anyles, and dividing the sphere into two equal parts, or hemuspheres, the one ensiern, and the uther western. Or, the meridian is a vertical circle passing through the poles of the world.-It is called meridian, from the Latin Meridies, mid-day or noon, because when the sun comes to the south purt of this circle, it is noun to all those places situated under it.

- Merimian, in Geography, is a great circle passing through the north and south poles, and any given place: thus, the merndian of London, is that circic which passes
over London and through the poles of the earth; and it lies exactly under, or in the plane of, the celestial meri-dian.- These ineridians are various, and change according to the longitude of places; so that their number may be said to be infinite, since all places from east to west have their several meridians. Farther, as the meridian invests the whole earth, there are toany places situated under the same meridian. Also, us it is now whenever the ceutre of the sun is in the celestial meridian; and as the meridian of the carth is in the plane of the former; it follows, that it is noon at the same time, in all places situated under the same meridian.
First Meridian, is that from which the rest are counted, reckoning both east and west, and is the beginning of longitude. The fixing of the first meridian, is a matter merely arbitrary; and hence different persons, nations, and ages, have fixed it differently: from which circumstance gome confusion has arisen in geography. The rulc among the ancients was, to make it pass through the place farthest to the west that was known. But the moderns knowing that there is no such place on the earth as can be estecmed the most westerly, the way of computing the longitudes of places from one fixed point is much laid aside.

Ptolemy assumed the meridian that passes through the farthest of the Canary Islands, as his first meridian; that being the most western place of the world then known. After bim, as more countries were discovered in that quarter, the firt meridian was removed farther off. The Arabian geographers chose to place the first meridian on the utmost shore of the western occan. Some fixed it to the island of St. Nicholas near the Cape Verd; Hondius to the isle of St. Jumes ; others to the island of Del Corvo, one of the Azores ; because on that island the magnetic needle at that time pointed directly north, without any variation; and it was not then known that the variation of the needle is itself subject to variation. The latest geographers, particularly the Dutch, have pitched on the Peak of Teneriffe; others on the Isle of Palm, another of the Canarics; and lastly, the French, by order of the hing, on the island of Fero, another of the Canaries.

But, withont nuch rugard to any of these rules, geograplers and constructors of maps often assume the meridiun of the place where they live, or the capital of their country, or its chiefobservatory, for a first meridian; and from it rechon the longitudes of places, east and west.

Astronomers, in their calculations, usually choose the meridian of the place where their observations are made, for their first meridian : as Ptolemy at Alexandria; Tyelo Irahé at Uranibourg; Riccioli at Bologna; Flamsteed at the Royal Observatory at Greenwich; and the French at the observatory at Paris.

There is a suggestion in the Philos. Traus. that the meridians vary in tine. And it has been said that this is reulered grobable, from the old meridian line in the church of St. Petronio at Bologna, which is said to vary no less than 8 degrees from the true meridian of the place at this time: and from the meridian of Tycho at Uramibourg, which M. Picart observes, varies 18 minntes from the mudern meridian. If there be any thing of truth in this hint, Dr. Wallis says, the alteration must arise from a clange of the teriestrial poles (here on earth, of the earth's diurnal motion), not of their pointing to this or that of the fixed stars: for if the poles of the diurnal motion remain fixed to the same place on the earth, the meridians, which pass through these poles, must remain the same.

But the notion of the changes of the meridian seems to be much weakened by an observation of M. Chazelles, of the French Academy of Sciences, who, when in Egypt, found that the four sides of a pyramid, built 3000 years ago, still pointed very exactly to the four cardinal points : a position which cannot be considered as merely fortuitous. But bere again it may be asked, If the merndiaus vary, may it not be by an oscillatory motion, similar to that of the variation of the magnetic needle, so that nt a distance of 3000 years, the observations made in any particular'place may agree, though during that period a constant and successive variation may have taken place, vibrating as it were between certain limits, as is now generally known to be the case in other planetary variations, such as the acceleration of the inoon, the variation in obliquity of the ecliptic to the equator, \&ec. And under this point of view the ubservation of Chazelles would not aficct the truth of the ohlier assertions. For measuring an are of the meriuian, see the article Dronef.

Mzaidias of a Globe, or Sphere, is the brazen circle, in which the glove hangs and turns. It is divided into four 900^{\prime} s, or 360 degrees, beginning at the equinactial: on it, each way, from the equinoctial, on the celestial globes, is counted the norib and south declination of the sun, moon, or stars; and on the terrestrial globe, the latitude of places, north and south. There are two points on this circle called the poles; and a dinmeter, continued from thence tbrough the centre of either globe, is called the axis of the earth, or heavens, on which it is supposed they revolve.

On the terrestrial globes there arc usually drawn 36 meridians, one through every tenth degree of the equator, or through every loth degree of longitude. The uses of this circle are, to set the globes, in any particular latitude, to show the sun's or a star's declination, right ascension, greatest altitude, \&ec.

Meridian Line, an arch, or part, of the meridian of the place, terminated each way by the horizon. Or, a meridian line is the intersection of the plane of the Ineridian of the place with the plane of the horizon, ofien called a north-and-south line, because its direction is from north to sourh.

The meridian line is of most essential use in astronomy, geography, dialling. \& c; and the greatest pains are taken by astronomers to fix it at their observatories to the utmost precision. M. Cassini has distinguished bimself by a meridian line drawn on the pavement of the church of St . Petronio, at Bologna; being extended to 120 fect in length. In the roof of this church, 1000 inches above the pavement, is a small hole, through which the sun's image, when in the meridian, falling upon the line, marks his progress all the year. When filished, M. Cassini, by a public writing, quaintly informed the mathematicians of Europe, of a new oracle of Apollo, or the sun, established in a temple, which might be consulted, with entire confidence, as to all difficulties in astronomy. Sec Gnomon.

To draw a Meridian Line.- There are many ways of doing this ; but some of the easiest and simplest are as follow: 1. On an horizontal plane describe several concentric circles A B, $a b, \& c$; and on the common centre cerect a stile, or gnomon, perpendicular to the horizontal plane of about a foot in length. About the 21st of

June, between the hours of 9 and 11 in the morning, and between 1 and 3 in the afternown, observe the points A, a, $\mathrm{B}, \mathrm{b}, \& \mathrm{c}$, in the circles, where the shatow of the stile terminates. Bisect the arches $\mathrm{AB}, a b, \& \mathrm{c}$, in D, d, \&c. If then the same right line de bisect all these arches, it will be the meridian line saught.-As it is ant casy to determine precisely the exiremity of the shatow, it will be best to make the stile flat at top, and to drill a small hole through it, noting the lucid puint propected by it on the arches AB and $a b$, instead of maikng the extremity of the shndow itself.
2. Another method is thus: Knowing the south quarter pretty wearly, observe the altitude fe of some star on the east side of i, ind not far from the meridian nzon: then keeping the quadrant firm on its axis, so as the plummet may still cut the same degree, direet it to the western side of the meridian, and wait till you find the star las the same
 altitude as lefore, as fe. Lastly, bisect the angle zec, formed by the intersection of the two planes in which the quadrant has been placed at the time of the two observations, by the right line na, which will be the meridian sought.

Many other methods are given by authors, of describing a meridian line; as by the pole star, or by equal altitudes of the sun, \&e; by Schooten in bis Exercitationes Geometrice; Grey, Derham, \&c, in the Philus. 'Trans. and by Ferguson in his Lectures on Select Subjects.

From what has been said it is evident that whenever the shadow of the stile covers the meridian line, the centre of the sun is in the meridian, and therefore it is then noon. Aud hence the use of a meridian line in adjusting the motion of clucks to the sun. If another stile be erected perpendicularly on any other horizontal plane, and a signal be given when the shadow of the former stile covers the meridian line drawn on another plane, noting the apex or extremily of the shadow projected by the second stile, a line drawn through that point and the foot of the stile will be a norridian line at the $2 d$ place. Or, instead of the 2d stile, a plumb-line may be hung up, and iisshadow noted on a plane, upon a signal given that the shadow of another plummet, or of a stile, falls exactly in another meridian line, at a little distance; which shadow will give the other meridian line parallel to the former.

Meridian Line, on a dial, is a right line arising from the intersection of the meridian of the place with the plane of the dial. This is the line of noon, or 12 o'clock, and from hence the division of the hour-line begins.

Meridian Line, on Gunter's Scale, is divided unequally towards 87 degrees, the same as the meridian in Mercator's chart is divided and numbered. This line is very useful in navigation. For, 1st, It serves to graduate a sea-chart according to the true projection. 2d, Being joined with a line of chords, it senves for the protraction and resolution of such rectilineal triangles as sre concernad in latitude, longitude, course, and distance, in the practice of sailing; as also in pricking the chart truly at sca.

Magnetical Meridian, is a great circle passing through or by the magnetical poles ; to which meridians the magnetical needle conforms itself.

Meuldian Altitude, of the sun or stars, is their alti- .
tude when in the meridian of the place where they are observed.

Meridional Distance, in Navigation, is the same with the departure, or easting and westing, or distance between two meridians.

Mertdional Parts, Miles, or Minutes, in Navigation, are the parts of the increased or enlarged meridian, in the Mercator's chart. Tables of these parts are found in most books of navigation ; and they serve both for constructing that sort of charts, and for working that kind of navigation.

Uuder the article Mercator's Chart, it is shown that the parts of the enlarged meridian increase in proportion as the cosine of the latitude to radius, or, which is the same thing, as radius to the secant of the latitude; and therefore it follows, that the whole length of the enlarged nautical meridian, from the equator to any point, or latitude, will be proportional to the sum of all the secants of the soveral latitudes up to that point of the meridian. And on this principle was the first table of meridional parts constructed, by the inventor of it, Mr. Edward Wright, and published in 1599; viz, he took the meridional parts
of $1^{\prime}=$ the sec. of 1^{\prime};
of $2^{\prime}=$ sec. of $1^{\prime}+$ sec. of $\underline{2}^{\prime}$;
of $S^{\prime}=$ secants of 1,2 , and 3 min .
of $4^{\prime}=$ secants of $t, 2,3$, and 4 min .
and so on by a constant addition of the secants,
The tables of meridional parts, so constructed, are perhaps exact enough for ordinary practice in navigation; but they would be more accurate if the metidian were divided into more or smaller parts than single minutes; and the smaller the parts, so much greater the accuracy. But, as a continual subdivision would greatly augment the labour of calculation, other ways of computing such a table have been devised, and treated of, by Bond, Gregory, Oughtred, Sir Jomns Moor, Dr. Wallis, Dr. Halley, and others. Sce Meneator's Chart, and Robertson's Navigation, vol. 2, book 8. The best of these methods whs derived from this propersy, viz. that the meridian line, in a Mereator's chart, is analogous to a scale of logarithmic tangents of hadf the coniplements of the latitudes; from which property alona method of computing the cases of Mercator's Sailing has been detluced, by Dr. Halley. Vide ut supra, nlso the Philos. Trans. vol. 46, pa. 559. Tofind the Meridional Parts to any Spheroid, with the sume cractness as in a Sphere.
Let the semidiameter of the equator be to the distance of the centre from the focus of the 䵟nerating ellipse, as m to 1. Let a reprisent the latitude for which the meridional paris are required, and s the sine of the latitude, to the radius 1: Find the are n , whose sine is $\frac{1}{\mathrm{~m}}$; take the logurithmic tangent of half the complement of B , from the common tables ; subtract the log. tangent from 10.0000000 , or the log. tangent of 45°; multiply the remainder by the number 7915.7044679, and diside the product by m; then the quotient subtracted from the meridional parts in the spliere, computed in the usual manner for the latitude A, will give the meridinnal parts, exprensed in minutes, for the same latitude in the splecroid, when it is the ublate one.

Example. If min: 1::1000:22, then the greatest difference of the meridional parts in the sphere and spheroid is 76.0929 minutes. In other cases it is found by mul-
tiplying the remainder above mentioned by the nu 1174078.

When the spheroid is oblong, the differencei in th ridional parts between the sphere and spheroid, fo same latitude, is then determined by a circular arc. Philos. Trans. No.461, sect. 14. Also Maclaurin's ions, art 895, 899. And Murdoch's Mercator's Sailin

MERLON, in Fortification, that part of the pa which lies between two embrasures.

MERSENNE (Martin), a learned French au was born at Bourg of Oyse, in the province of M 1588. He studied at La Fleche at the same time Descartes; with whom he contracted a strict friend which continued till death. He afterwards went to 1 and studied at the Sorbonne; and in 1611 entered hil among the Minims. He became well skilled in Hek philosophy, and mathematics. From 1615 to 1619 taught philosophy and theology in the convent of Ne and became the superior of that convent. But being sirous of applying himself more freely and closely to st he resigned all the posts he enjoyed in his order, and tired to Paris, where he spent the remainder of his excepting some short excursions which be occasion made into Italy, Germany, and the Netherlands.

Study and literary conversation were afterwards whole employment. He held a correspondence with : of the learned men of his time; being as it were the , centre of communication between literary men of countries, by the mutual correspondence which he naged between them; being in France what Mr. Col was in England. He omitted no opportunity to eng them to publish their works; and the world is obligen him for several excellent discoveries, which would pro bly have been lost, but for his encouragement; and all accounts he had the reputation of being one of lest men, as well as philosophers, of his time. No I san was more curious in penctrating into the secrets nature, nor more anxious to bring all the arts and scien to perfection. He was the chief friend and literary ag of Descartes at Paris; giving him advice and assistance all occasions, and informing him of all that passed Paris and elsewhere. For, being a person of usiver learhing, but particularly excelling in physical and n thenatical knowledge, Descartes scarcely ever did a thing, or at least was not perfectly satistied with a thing lee had done, without first knowing what Mersen thonght of it. It is even said, that when Mersenue ga out in Paris, that Descartes was erecting a new aystem physics on the foundation of a racuum, and found t public very indifferent to it on that very account, he ir mediately sent notice to Descartes, that a vacuum w not then the fashion at Paris; upon which, that philos pher changed his system, and adopted the old doctrine a plenum.

Mersenne was a man of good invention also himsel! and be had a peculiar talent in forming curious question though he did not always succeed in resolving them; how ever, be at least gave occasion to others to do it. It 1 said he invented the cycloid, otherwise called the roulette Presently the chief geometricians of the age engaged in th contemplation of this new curve, among whom Mersenn bimself held a distinguished rank. After a very studiou and useful life, he died at Parisin 1648, at 60 years of age

Mersenne was author of many useful works, particularlf the following:

MICROCOUSTICS, the same with Micropnones.
MICROMETER, is an instrument usually fitted to a telescope, in the focus of the object-glass, for measuring small angles or distances; as the apparent diameters of the planets, \&c. There are several kinds of these instruments, upon different principles; the origin of which has beell disputed. The general principle is, that the instrument moves a fire wire parallel to itself, in the plane of the picture of an object, formed in the focus of a telescope, and so with great exactness to measure its perpendicular distance from a fixed wire in the same plane: and thus are measured small angles, subtended by remote objrets at the naked eye.

For example. Let a planet be viewed through the telescope; and when the parallel wires are opened to such a distance as to appear exactly to touch two opposite points in the circumference of the planet, it is evident that the perpendicular distance between the wires is then equal to the diameter of the picture of the planet, formed in the focus of the object-glass. Let this distance, whose mea sure is given by the mechanism of the micrometer, be re-

presented by the line $p q$; then, since the measure of the focal distance $q \mathbf{q}$ muy also be known, the ratio of $q \mathrm{~L}$ to $q p$, that is, of radius to the tangent of the angle gLp, will give the angle itself, by a table of tangents; and this angle is equal to the opposite angle Pat, which the real diameter of the planet subtends at L , or at the naked eye.

With respect to the invention of the micrometer; Mens, Azout and Picard have the credit of it in common fame, as being the first who published it, in the year 1666; but Mr. Townley, in the Pbilos. 'Trans. reclaims it for one of our own countrymen, Mr. Gascoigne. He relates that, from some scattered papers and letters of this gentleman, be had learnt that before our civil wars he had invented a micrometer, of is much effect as that since made by M. Azout, and had made use of it for some years, not only in taking the diameters of the planets, and distances on land, but in determining other matters of nice importance in the heavens; as the moon's distance, \&cc. Mr. Gascuigue's instrument also fell into the hands of Mr. Townley, who says further, that by the help of it he could mahe above $\mathbf{4 0 , 0 0 0}$ divisions in a foot. This instrument being shown to Dr. Hooke, he gave a drawing and description of it, and priposed several improvements in it; which may be seen in the Philos. Traus. vol. 1, pa. 63. Mr. Gascoigne divided the image of an object, in the focus of the object-ghass, by the approach of two pieces of netal, ground to us very fine edge; instead of which, Dr. Hooke would substitute two fine hairs, stretched parallel to each other: and two other methods of Dr. llooke, different from this, are described in his posthumous works, pa. 497, \&c. An account of several curious observations which Mr. Gascoigne made ly the help of his micrometer, particularly in measuring the dimmeter of the moon and other planets, may be seen in the Philos. Trans, vol. 48, pa. 190; where Dr. Bevis refers to an original letter of Mr. Gascoigue, to Mr. Oughtred, written in 1641, for an account given by the author of his own invention, \&c.

Mons. Lahire, in a discourse on the sera of the inventions of the micrometer, pendulum clock, and telescope, read before the Royal Academy of Sciences in 1717, makes M. Huygens the inventor of the micrometer. That author, he observes, in bis Observations on Saturn's Ring, $\& \mathrm{c}$, published in 165!, gives a method of finding the diameters of the planets by means of a telescope, viz, by putting an object, which he calls a virgula, of a size proper to take in the distance to be measured, in the focus of the convex object-glass: in this case, says he, the smallest object will be seen very distinctly in that place of the glass. By such means, be adds, he measured the diameter of the planets, as he there delivers them. See Huygens's System of Saturn.

This micrometer, M. Iahire observes, is so very little dillierent from that published by the Marquin De Malvasia, in his Ephemerides, 3 years after, that they ought to be esteemed the sarme: and the micrometer of the marquis differed yet less from that published 4 years after his, by Azout and Picard. Hence, Lahire concludes, that it is to Huygens the world is indebted for the invention of the micrometer; without taking any notice of the claim of our countryman Gascoigne, which however is many years prior to any of them.

Lahire says, that there is no method more simple or commodious for observing the digits of at eclipse, than a net int the focus of the telescope. These, he says, were usually made of silken thereals; and for this particular purpose 6 concentric circles had ulso been used, drawn uponit onled paper: but he advises to draw the circles on very thin pieces of glass, with the puint of a diamond. He also gives some particular directions to assist persons in using them. In another memoir, he shows a method of making use of the same net for all eclipses, by using a telencope with two object-glasses, and placing them at different distances from each other. Mem. 1701 and 1717.
M. Cassini invented a very ingenious method of ascertaining the right ascensions and declinations of stars, by fixing 4 cross hairs in the fucus of the telescope, and turning it about its axis, so as to make them move in a line parallel to ono of them. But the later improved micrometers will answer this purpose with greater exactness. Dr. Mashelyne has published directions for the use of it, extracted from Dr. Bradley's papers, in the Philos. Truns. vol. 62. See also Smith's Optics, vol 2, pa. 343.

Woltius describes a mierometer of a very easy and simple structure, first contrived hy Kirchius.

Dr. Derham tells us, that his micrometer is not put into a tube, as is usual, but is contrived to measure the spectres of the sun on paper, of any radius, or to measure any part of them. By this means he can easily, and very exactly, with the help of a fine thread, take the declination of a sular spot at any time of the day; and, by bis lalif-seconds wateh, measure the distance of the spot from either limb of the sun.
J. And. Segner proposed to enlarge the field of view in these microtneters, by making them of a considerable extent, nod haviog a moveable eye-glass, or several eye-glasses, placed opposite to different parts of it. He thought however, that two would be quite sufficient, and the gives particular directions how to make use of such inicrometers in astrouumical observations. See Comm. Gotting. vol. 1, ps 27 .

A considerable improvement in the micromete: communicated to the Royal Society, in 1743, by A Savary; an account of which, extracted from the mi by Mr. Short, was published in the Philos. Tran: 1753. The first hint of such a micrometer was sugg by M, Roemer, in 1675 : and M. Bouguer proposed si struction similar to that of M. Savary, in 1748 ; for see Helioneter. The late Mr. Dollond made a fe improvement in this kind of micrometer, an accou which was given to the Royal Society by Mr. Short published in the Philos. Traus, vol. 48. Instead o object-glasses, he used only one, which he neatly cul two semicircles, and fitted each semicircle in a frame, so that their diameters sliding in one anothe means of a screw, may have their centres brought tog in such a manner as to appear like one glass, and so one image; or by their centres receding, may form images of the saine object: it being a property of glasses, for any segment to exhibit a perfect imuge a object, though not so bright as the whole glass would it. If proper scales are fitted to this instrument, sho how far the centres recede, relative to the focal leng the glass, they will also show how far the two parts c same object are asunder, relative to its distance fron object-glass; and consequently give the angle under и the distance of the parts of that object are seen. divided object-glass inicrometer, which was applie the late Mr. Dollond to the object end of a reflectin lescope, and has been with equal advantage ndapter his son to the end of an achromatic telescope, is a easy use, and affords so large a scale, that it is gene considered by astronomers as the most convenient exact instrument for measuring small angles in the vens. However, the common nicrometer is pecul adapted for measuring differences of right ascension, declination, of celestial objects, but less convenient exact for measuring their absolute distances; wherea object-glass micrometer is peculiarly fitted for meast distances, though generally supposed improper for former purpose. But Dr, Maskelyne has found that may be applied with very little trouble to that pur also; and he has furnished the directions necessary t followed, when it is used in this manner. The add requisite for this purpose, is a cell, containing two w intersecting each other at right angles, placed in the f of the cyeglass of the telescope, and moveable about the turning of a button. For the description of this paratus, with the method of applying and using it, see Maskelyne's paper on the subject, in the Philos. Ti vol. 61, pa. 396, \&cc.

After all, the use of the object-glass miemoneter is tended with many difficulties, arising from the alterat in the focus of the cye, which are apt to cruse it to different measures of the same angle at different times. obviate these difficulties, Dr. Maskelyne, in 1776, trived a prismatic micrometer, consisting of two ac matic pristus, or wedges, npplied between the obj glass and eyc-glass of an achromatic telescope, by mo of which wedges nearer to or farther from the obj glass, the two images of an object produced by them peared to approach to, or recede from, each other, sol the focal length of the olject-glass becomes a scale mesesuring the angular distance of the two images. rationale and use of this micrometer are explaized in Philos. Trans. vol. 67, pa. 799, \&c. And a similar int
tion by the Abbé Rochon, which was afterwards improved by the Abbe Boscovich, was also communicated to the Royal Society, and published in the same volume of the Transactions, pa. 789, \&c.

Mr. Ramsden invented two other micrometers, which he has contrived for remedying the defects of the objectglass micrometer. One of these is a catoptric micrometer, which, besides the advantage it derives fiom the principle of reflection, of not being disturbed by the heterugeneity of light, avoids every defeet of other instruments of this kind, and can have no aberration, nor any defect arising from the imperfection of materials, or of execution; as the great simplicity of its construction requires no additional mirrors or glasses, to thuse necessary for the telescope; and the separation of the image being effected by the iaclination of the two specula, and not depeading on the focus of a lens or mirror, any alteration in the eye of an observer cannot affect the angle measured. It has peculiar to itself the advautages of an adjustment, to make the images coincide in a direction perpendicular to that of their motion; and also of measuring the diameter of a planet on both sides of the zero; which will appear no inconsiderable advantage to observers who know how much easier it is to ascertain the contact of the external edges of two images, than their perfect coincidence.

The other micrometer invented and described by Mr. Ramsden, is adapted to the principle of refraction. It is applied to the erect eye-tube of a refracting telescope, and is placed in the conjugate focus of the first cye-glass, as the image is considerably magnified before it comes to the micrometer, any imperfection in its glass will be magnified only by the remaining eye-glasses, which in any telescope seldon exceeds 3 or 6 times; and besides, the size of the micrometer glass will not be the 100th part of the area which would be necessary, if it were placed at the objectglass; and yet the same extent of scale is preserved, and the images are uniformly bright in every, part of the field of the telescope. See the description and construction of these two micrometers in the Philos. Trans. vol. 69, part 2, art. 27.

In vol. 72 of the Philos. Trans. for the year 1782, Dr. Herschel, after explaining the defects and imperfections of the parallel-wire micrometer, especially for measuring the apparent diameter of stars, and the distances between double and multiple stars, describes one, for these purposes, which he calls a lamp micrometer; one that is free from such defects, and has the advantage of a very enlarged scale. In speaking of the application of this instrument, he says, " It is well known to opticians and others, who have been in the habit of using optical instruments, that we can with one eye look into a microscope or telescope, and see an ubject much magnitied, while the naked cye may see a scale upon which the magnified picture is thrown. In this manner I have generally determined the power of my telescopes; and any une who has acquired a facility of takiug such observations, will very seldom mistake so much as one in 50 in determining the power of an instrument, and that degree of exuctness is fully sulficient for the purpose.
"The Newtonian form is admirably adapted to the use of this inicrometer;'for the observer stands always erect, and looks in a horizontal direction, notwithstanding the telescope should be elevated to the renith.-The scale of the micrometer at the convenient distance of 10 feet from

Vol. II.
the eye, with the power of 460 , is above a quarter of an inch to a second; and by putting on my power of 982 , I obtain a scale of more than half an inch to a second, without increasing the distance of the micrometer; whereas the most perfect of my former micrometers, with the same instrument, had a scale of less than the 2000th part of an iuch to a second.
"The measures of this micrometer are not conifined to double stars only, but may be applied to any other objects that require the utmost accuracy, such as the diameters of the planets or their satellites, the mountains of the moon, the diameters of the fixed stars, \&c."

The micrometer has not only been applied to telescopes, and employed for astronomical purposes ; but there have been various contrivances for adapting it to microscopical observations. Mr. Leeuwenhoek's method of estimating the size of sroall objects, was by comparing them with grains of sand, of which 100 in a line took up an inch. These grains he laid upon the same plate with his oljects, and viewed them at the same time. Dr. Jurin's method was sinilar to this; for he found the diameter of a piece of fine silver wire, by wrapping it very close upon a pin, and observing how many rings made an inch: and he used this wire in the same manner as Leeuwenhoek used his sand. Dr. Hooke used to look upon the magnitied object with one eye, while at the same time be viewed other objects, placed at the same distance, with the other eye. In this manner he was able, by the belp of a ruler, divided ioto inches and small parts, and laid on the pedestal of the microscope, us it were to cast the magaified appearance of the object upon the ruler, and thus exactly to measure the diameter which it appeared to have through the glass ; and this being compared with the diameter as it appeared to the naked cye, easily determined the degree in which it was magnified. A little practice, says Mr. Baker, will render this method exceediugly easy and pleasant.

Mr. Martin, in his Optics, recommends such a micrometer for a microscope as had been applied to telescopes; for he advises to draw a number of parallel - lines on a piece of glass, with the fine point of a diamond, at the distance of one 40 th of an inch from one another, and to place it in the focus of the eye-glass. By this method, Dr. Smith contrived to take the exact draught of objects viewed by a double microscope; for this purpose he advises the observer to get a lattice, made with small silver wires or squares, drawn upon a plain glass by the strokes of a diamond, and to put it into the place of the image formed by the object-glass. Then, by transferring the parts of the object, seen in the squares of the glass or lattice, upon similar corresponding squares drawn on paper, the picture may be exactly taken. Mr. Martin also introduced into compound microscopes another micrometer, consisting of a screw. See both these methods described in his Optics, pa. 277.

A very accurate division of a scale is performed by Mr, Coventry, of Southwark. The micrometers of his construction are parallel lines drawn on glass, ivory, or mesal, from the loth to the 10,000 th part of an inch. These may be applied to microscopes, for measuring the size of minute objects, and the magnifying power of the glasses; and to telescopes, for measuring the siae and distance of objects, and the magnifying power of the instrument. To measure the size of an object in a single micruscope; lay It on a micrometer, whose lines are seet magnified in the H
same proportion with it, and they will give at one view the real size of the object. For measuring the inagnifying power of the compound microscope, the best and readicst method is the following: On the stage in the focus of the object-glass, lay a micrometer, consisting of an inch divided into 100 equal parts; count how many divisions of the micrometer are taken into the field of view; then lay a two-foot rule parallel to the micrometer: fix one eye on the edge of the field of light, and the other eye on the end of the rule, which move, till the edge of the field of light and the end of the rule correspond; then the distance from the end of the rule to the tniddle of the stage, will be half the diameter of the field : ex.gr. If the distance be 10 inches, the whole diameter will be 20 , and the nuinber of the divisions of the micrometer contained in the diameter of the field, is the magnifying power of the microscope. For measuring the beight and distance of objects by a micrometer in the telescope, see Telescope.

Mr. Adams has applied a micrometer, that shows immediately the magnifying power of any telescope.

In the Philos. Trans. for 1791 , a very simple scale micrometer for measuring small angles with the telescope is described by Mr. Cavallo. This micrometer consists of a thin and narrow slip of mother-of-pearl finely divided, and placed in the focus of the eyc-glass of a telescope, just where the image of the object is formed; whether the telescope is a reflector or a refractor, provided the eye-glass be a convex lens. This substance Mr. Cavallo, after many trials, found much more convenient than either glass, ivory, horn, or wood, as it is a very steady substance, the divisions very easy marked upon it, and when made as thin as common writing-paper it has a very useful degree of transparency.

On this subject, see M. Azout's Tract, contained in Divers Ouvrages de Mathematique et do Phisique; par Messieurs de l'Academie Royal des Sciences; M. de la Hire's Astronomice Tabulse; Mr. Townley, in the Philos. Trans. No. 21 ; Wolfius, in his Elem. Astron. $\$ 508$; Dr. Hooke, and many others, in the Philos. Trans. No. 29, \&c; Hevelius, in the Acte Eruditorum, ann. 1708; Mr. Balshaser, in his Micrometria; also several volumes of the Paris Memoirs, \&c.

MICROPHONES, instruments contrived to magnify small sonnds, as microscopes do small objects.

MICROSCOPE, an optical instrument, composed of lenses or mirrors, by means of which small objects are made to appear larger than they do to the naked eye.

Micnoscopes are distinguished into simple and compound, or single and double.

Simple, or Single Microscopes, are such as consist of a single lens, or a single spherule. And a

Compound Micaoscope consists of several lenses properly combined.-As optics have been improved, other varieties have been contrived in this instrument: Hence reflecting microscopes, water micruscopes, \&cc. It is not certainly known when, or by whom, mieroscopes were first invented; though it is probable they would soou follow on the use of telescopes, since a microscope is like a telescope inverted. We are informed by Huygens, that one Drebell, a Dutchman, had the first microscope, in the year 1621, and that he was reputed the inventor of it: though F. Fontana, a Neapolitan, in 1646 , claims the invention to bimself, and dates it from the ycar 1618. Be this as it may, it seems they were first used in Germany about 1021; and according to Peter Borelli, they were invented
by Zacharias Jansen and his son, who presented the microscopes they had constructed to prince Maurice to Albert arch-duke of Austria. William Borelli, gives this account in a letter to bis brother Peter, that when he was ambassador in Eingland, in 1619, nelius Drebell showed him a micruscupe, which he was the same that the archduke had given him, anc been made by Jansen himself. Borelli De vero scopii inventure, pa. 35, also on the Micruscope.
Less.

Theory and Foundation of Microscopes.
If an object be placed in the focus of the conves of a single microscope, and the eye be very nearo other side, the object will appear distinct in an situation, and be magnified in the ratio of the foca tance of the lens, to the ordinary distance of distint sion, viz, about 8 inches. So, if the object AB be placed in the focus r, of a small glass sphere, and the eye behind it, as in the fucus G, the object will appear distinct, and in an erect posture, its diameter being increased in the ratio of $\frac{1}{4}$ of the diameter E1 to 8 inches. If, ex. gr. the diameter El of the small sphere be ry of an inch; then $\mathbf{C E}=\frac{2}{2} \mathrm{O}$, and $\mathrm{FE}=\frac{1}{2} \mathrm{CE}=\frac{2}{4} 8$, so that $C P=\frac{l_{0}}{6}$; then as $f_{0}: 8$, or as $3: 320$,
 or as $I: 106 \frac{\mathrm{x}}{\mathrm{y}}:$: the natural size to the magnified ap; ance; in which case, the object is magnified about times.
Hence the smaller the spherule or the lens is, so n the more is the object magnified. But then, so mucl less part is comprchended at one view, and so mucl less distinct is the appearance of the object.-Equal pearances of the same object, formed by different co nations, become obscure in proportion as the numb rays constituting each pencil decreases, that is, in prc tion to the smallness of the object-glass. Therefore, i diameter of the object-glass exceeds the diameter of pupil, as many times as the diameter of the appear exceeds the diameter of the object; the appearance he as clear and distinct as the object itself.

But the diameter of the object-glass cannot be so n increased, without increasing at the same time the 1 distances of all the glasses, and consequently the leng: the instrument: otherwise the rays would fall too liquely on the cye-glass, and the appearance become fused and irregular.

There are several kinds of single microscoprs; of w the following is the most simple. AB (plate 22, fig is a small tube, to one end of which, $B C$, it fitted a p glass ; and to this any object, us a gnat, the wing of at sect, or the like, is applied; to the other end $A D$, proper distance from the object, is applied a lens, cor on both sides, of about an inch in diameter: the p glass is turned to the sun, or the light of a candle, and object is seen magnified. And if the tube be madi draw out, lenses or segments of different spheres masy used.

Again, a lens, convex on both sides, is inclosed in a ac (tig. 2), and held there by the screw m. Through stem or pedestal CD passes a long screw er, csrryin stile or needle ze. In e is a small tube; on which, on the point G, the various objects are to be dispos Thus, lenses of various spheres may be applied.

A good simple instrument of this kind is Mr. Wilson's pocket microscope, which has 9 different magnifying glasses, 8 of which may be used with two different instruinents, for the better applying them to various objects. One of these instruments is represented at AABB (6g.3), which is made either of brass or ivory. There are three thin brass plater at \mathbf{E}, and a spiral spring \boldsymbol{H} of steel wire within it : to one of the thin plates of brass is fixed a piece of leather F , with a small furrow a, both in the leather, and brass to which it is fixed: in one end of this instrument there is a long screw D , with a convex glass c , placed at the end it; at the other end of the instrument there is a hollow screw oo, in which any of the magnifying glasses, x, are screwed, when they are to be made use of. The 9 different nagnifying glasses are all set in ivory, 8 of which are set in the manner expressed at m. The greatest magnifier is marked upon the ivory, in which it is set, number 1 , the next number 2 , and so on to number 8 ; the 9th glass is not marked, but is set in the manner of a little barrel box of ivory, as at b. At ec is a flat piece of ivory, of which there are 8 belonging to this sort of microscopes (though any one who has a mind to keep a register of ubjects may have as many of them as he pleases); in each of them there are $\$$ holes $f f f$, in which 3 or more objects are placed between two thin glasses, or talcs, when they are to lee used with the groater magnifiers.

The use of this instrument aABA is as follows: A handle w, from fig. 4, being screwed upon the button s, take one of the flat pieces of ivory or sliders ee, and slide it between the two thin plates of brass at E , through the body of the inicroscope, so that the object to be viewed be just in the middle; observing to put that side of the plate ec, where the brass rings are, farthest from the end AA; then screw into the hollow screw, ∞, the $3 d$, 4 th, 5 th, 6 th, or 7th magnifying glass n; which being done, put the end a a close to your eye, and while looking at the object through the magnifying glass, screw in or out the long screw D, and this tnoving round upon the leather P, held tight to it by the spiral wire H, will bring the object to the true distance; which may be known by seeing it clearly and distinctly.

Thus may be viewed all transparent objects, dusts, liquids, crystals of salts, small insects, such as fleas, mites, \&c. If they be insects that will creep away, or such objects as are to be kept, they may be placed between the two register glasses $f f$. For, by taking out the ring that keeps in the glasses $f f$, where the object lies, they will fall out of themselves; so the object may be laid between the two hollow sides of them, and the ring put in again us before; hut if the objects be dusts or liquids, a small drop of the liquid, or a little of the dust laid on the outside of the glass $f f$, and applied as before, will be seet very casily.

As to the 1st, 2d, and 3 d magnifying glasses, being marked with a + upon the ivory in wbich they are set, they are only to be used with those plates or sliders that are also marked with a + , in which the objects are placed between two thin tales; because the thickness of the glasses in the other plates or sliders, hinders the object from approaching to the true distance from these greater magnifiers. But the manner of using them is the same with the former.

For viewing the circulation of the blood at the extremities of the arteries and veins, in the transparent parts of fisbes' tails, dec, there are two glass tubes, a larger and a smaller, as expressed at gg , into which the animat is put.

When these tubes are to be used, turn the end screw D in the body of the microscrope, until the tube $g g$ can be easily received into that little cavity \mathbf{G} of the brass plate fastelled to the leather \bar{y} under the other two thin plates of trass at E . When the tail of the fish lies flat on the glass tube, set it opposite to the magnifying glass, and bringing it to the proper distance by screwing in or out the end screw D, and you will then clearly perceive the circulation of the blowd.

To view the blood circulating in the foot of a frog; choose such a frog us will just go into the tube; then with a little stick expand its hinder foot, which apply close to the side of the tube, observing that so part of the frog linders the light from coming on its foot; and when it is brought to the proper distance, by means of the screw D, the rapid motion of the blood will be seen in its vessels, which are very numerous, in the transparent thin men.brane or wel between the toes. For this object, the 4th and 5th magnitiers will do very well; but the circulation may be seen in the tails of water-newts in the 6th and 7 th glasses, because the globules of the blood of those new is. are as large again as the globules of the blood of frogs or small fish, as has beet remarked in No. 280 of the Philos. Traiss. pa. 1184.

The circulation cannot so well be seen by the lst, 2 d , and 3d magnifiers, because tbe thickness of the glass tube, containing the fish, hinders the approach of the object to the focus of the magnifying glass. Fig. 4 is another instrument for this purpose.

In viewing objects, one ought to be careful not to hinder the light from falling upon them by the hat, hair, or any other thing, especially in looking at opaque objects; for nothing can be seen with the best of glasses, unless the object be at a due distance, with a sufficient light. The best lights for the plates or sliders, when the object lies between the two glasses, is a clear sky-light, or where the sun shines on something white, or the reflection of the light from a looking-glass. The light of a candle is also very proper for viewing small objects, though it be a little uneasy to those who are not practised in the use of microscopes.

To cast small Glass Spherules for Microsco Pes.-There are several methods for this purpose. Hartsoeker first improved single microscopes by using small globules of glass, melted in the flame of a candle; by which he discovered the animalculax in semine masculino, and thereby laid the foundation of a new system of generation. Wolfius doscribes the following method of making such globules: A small piece of very fine glass, sticking to the wet point of a steel needle, is to be applied to the extreme blucish part of the flame of a larap, or rather of spirits of wine, which will not black it; being there melted, and run into a small round drop, it is to be removed from the flame, on which it instantly ceases to be fluid. Then folding a thin plate of brass, and making very small smooth perforations, so as not to leave any roughness on the surfaces, and also smoothing them over to prevent any glaring, fit the spherule between the plates against the apertures, and put the whole in a frame, with objects convenient for observation.

Mr. Adams gives another method, thus: 'Take a piece of fine window-glass, and rase it, with a diamond, into as many lengths as you think needful, not more than $1-81 \mathrm{~h}$ of an incb in breadth; then holding one of those lengtis between the fure-finger and thuinb uf eacb land, over a very tine Hame, till the glass begins to sofien, draw it out till it be as fine as a hair, and break; thell applying each H 2
of the ends into the purest part of the flame, you presently have two spheres, which may be made greater or less at pleasure: it they remain long in the flame, they will have spots; so that they must be drawn out immediately after they are turned round. Break the stem off as near the globule as possible; and, lodging the remainder of the stem between the plates, by drilling the hole exactly round, all the protuberances are buried between the plates; and the microscope performs to admiration.

Mr. Butterfield gave another manner of making these glubules, in No. 141 of Pbilos. Tratss.

In any of these ways may the spherules be made much smaller than any leus; so that the beat single microscopes, or such as magnify the most, are made of them. Leeuwenhoeck and Musschenbroek bave succeeded very well in spherical microscopes, and their greatest magnifiers enlarged the diameter of an object about 160 times; Philos. Trans. vol. 7, pa. 129, and vol. 8, pa. 121. But the smallest globules, and consequently the highest magnifiers for microscopes, were made by F. de Torre of Naples, who, in 1763, sent four of them to the Royal Society. The largest of them was only two Paris points in diameter, and magnified a line $6 \not+0$ times; the second was the size of one Paris point, and magnified 1280 times; and the 3d no more than half a Paris point, or the 144th part of an inch in diameter, and magniffel 2560 times. But since the focus of a glass globule is at the distance of one-4th of its diameter, and therefore that of the Sd globule of de Torre, above mentioned, only the 576 th part of an inch distant from the object, it must be with the utmost difficulty that globules so minute as those can be employed to any purpose; and Mr. Baker, to whose examination they were referred, considers them as matters of curiosity rather than of real use. Philos, Trans. vol. 55, pa. 246, vol. 56, pa.67.

Water Microscope. Mr. S. Gray, and, after bim, Wolfius and others, have contrived water microscopes, consisting of spherules or lenses of water, instead of glass. But since the distance of the focus of a lens or sphere of water is gruater than that in one of glass, the spheres of which they are segments being the same, consequently water microscopes magnify less than those of glass, and therefore are less estuemed. Mr. Gray first observed, that a small drop or spherule of water, held to the cye by candlelight or moon-light, without any other apparutus, magnified the animalcules contained in it, vastly more than any other inicroscope. The reason is, that the rays coming from the interior surface of the first hemisphere, are reflected so as to fall under the same angle on the surface of the hinder bemisphere, to which the eye is applied, as if they came from the focus of the spherule; whence they are propagated to the eye in the same manuer as if the objects were placed without the spherule in its focus.

Hollow glass spheres of about half an inch diameter, filled with spirit of wine, are often used for inicroscopes; but they do not magnify near so much.

Theory of Compound or Double Microscopes.-Suppose an object-glass ED, the segment of a very small

sphere, and the object A a placed without the focus F . Suppose an eye-glass GH, conrex on both sides, and the segment of a sphere greater than that of DE , though not
too great ; and, the focus being at k , let it be so dis, behind the object, that CF : CL: : CL:CK. Lastly pose lK : L M : : LM : Lt. If then o be the place an object is seeth distinct with the naked eye; th. in this case, being placed in t, will see the objuc distinctly, in an inverted position, and inagnified 11 compound ratio of $\mathrm{ME} \times \mathrm{LC}$ to LK $\times \operatorname{CO}$; as is P by the laws of dioptrics; that is, the image is larges the object, and we are able to view it ditinctly at distance. For example-If the inage be 20 times 1 than the object, and by the help of the eye-glass w able to view it 5 times nearer than we could have with the naked eye, it will, on hoth these account magnified 5 times 20 , or 100 times.

Laws of Double Microscopes.

1. The more an object is magnified by the micros the less is its firld, i. e. the less of it is taken in at one
2. To the same eye-glass miy be successively ap object-glasses of variwus spheres, so as that both the e objects, but less magnified, and their several parts, r more magnified, may be viewed through the sume m scope. In which case, on account of the different disi of the inage, the tube in which the lenses are litted sh be made to draw out.
3. Since it is proved, that the distance of the image from the object-glass DE , will be greater, if another coucave on both sides, be placed before its focus; in lows, that the object will be magnified the more, if a lens be here placed between the object-glass DE, ant eye-glass 6 II. Such a microscope is much commende Conradi, who used an object-lens, convex on both s whose radius was 2 digits, its aperture equal to a must seed; a lens, concave un both sides, from 12 to $16 \mathrm{di}_{1}$ and an eye-glass, convex on both sides, of 6 digits.
4. Since the image is projected to the greater dista the nearer another lens, of a segment of a larger spher brought to the object-glass; a microscupe may be c posed of threc lenses, which will magnify to a prodig extent.
5. F'rom these considerations it follows, that the ob will be magnified the more, as the eye-glass is the tegu of a smaller sphere; but the field of vision will be greater, as the same is a seggent of a larger sph Therefore if two eyc-glasses, the one a segment of a la sphere, the other of a smaller one, be so combined, hs I the object appearing very near through them, i.e. farther distant than the focus of the sirst, be yet distir the ubject, at the same time, will be vastly magnified, the field of vision much greater than if only ane lens used; and the object will be still more magnified, and field enlarged, if buth the object-glass and eye glas double. But becuuse an object appears dim when vies through so many glasses, part of the rays being reffic in passing through each, it is not advisable greatly multiply glasses; so that, among compuund microsco the best are those which consist of one object-glass : two eye-glass's.

Dr. Hooke, in the preface to his Micrography, sa that in noost of his observations he used a inicrescope this kind, with a middle eye-glass of a considerable dian ter, when he wanted to see much of the object at one vis and took it out when be would examine the small pt of an object more accurately; for the fewer refractio there are, the more light and clear the object appears.

For a miscroscope of three lenses De Chales rece
meads an object-glass of $\frac{4}{4}$ or $\frac{1}{4}$ of a digit; and the firt eye-glass be makes 2 or $2 \frac{3}{2}$ digits; and the distance betwen the object-glass and eye-glass about 20 lines. Conradi had an excellent miscroscope, whose object-giass was half a digit, and the iwo eye-glasses (which were placed very near) + digits; but it answered best when, instead of the ubjeci-glass, he used two glasses, convex on both sides, their sphete about a digit and a half, and at most 2, and their connexities touching each other within the space of half a line. Eustachio Divini, instead of an object-glass convex on both sides, used two plano-convex lenses, whose convexities tuuched. Grindeli did the sume; only that the convexitits did not quite touch. Zahnius made a binocular microscope, with which both eyes were used. But the most comatuodious double microscope, it is said, is that of uur countryman Mr. Marshal ; though some innprovement was made in it by Mr. Culpepper and Mr. Scarlet. Tbese are exhibited in figures 5 and 6.

It is observed, that compound microscopes sometimes exhibit a fallacious appes rance, by representing convex objects concave, and vice versa. Philos. Trans. No.476, pa. 387.

To fit microscopes, as well as telescopes, to short-sighted eyes, the object-glass and the eye-glass must be placed a little nearer together, so that the rays of each pencil may not emerge parallel, but may fall diverging upon the eye.

Reflecting Micuoscope, is that which magnifies by reflection, as the foregoing ones do by refraction. The inventor of this microscope was Sir Isaac Newton. The structure of such a microscope may be conceived thus: wear the focus of a concave speculum $A B$, place a minute object c, that its image may be formed larger than itself in D ; to the speculum join a leus, convex on both sides, EF , so as the image D may be intits focus. The eye will here see the image inverted, but distinct, and enlarged; consequently the object will be larger than if viewed through the lens alone.

Any telescope is changed into a microscope, by removing the object-glass to a greater distance from the eyeglass. And since the distance of the image is various, according to the distance of the object from the focus; and it is magnuified the mure, as its distance from the objectglass is greater; the sume telescope may be successtvely changed into microscupes which magnify the object in different degrees. Sec some instruments of this sort described in Smith's Optics, Retnarks, pa. 94.

Solar Microscope, culled also the Camera Obscura Mieroscope, was invented by Mr. Lieberkuhn, in 1738 or 1739, and consists of a tubc, a loohing.glass, a convex lens, and a Wilson's microscope. The tube (fig. 7) is brass, near 2 inches in diameter, fixed in a circular collar of mahogany, with a groove on the outside of its periphery, denoted by 2,3 , and connected by a cat-gut to the pulley 4 on the upper part; which turning round at pleasure, by the pin 5 within, in a square frame, may be easily adjusted to a hole in the shutter of a window, by the screws 1, 1 , so closely, that no light can enter the room but through the tube of the instrument. The misror G is fastened to the frame by hinges, on the side that goes without the window : this glass, by means of a jointed brass wire, 6,7 , and the screw is 8 , coming through the frame, may be moved either vertically or horizontally, to throw the sun's
rayz through the brass tube into the darkewed room. The end of the brass tube withotst the shutter has a consex lons, 5 , to collect the rays throwu on it by the glass θ, and bring theru to a fucus in the other part, where D is a tube sliding in and out, to adjust the object to a due distance fron the focus. And to the end o of another tube r, is screwed one of Wilson's simple pocket micruscojes, containing the object to be magnitied in a sliter; and by tube F , shiding on the sinall end z , of the other tube D , it is brought to a true focal distance.

The solar microscope has been introduced into the small and portable camera obscura, as well as the large one: and if the image be received on a piece of halfground glass, shated from the light of she sun, it will be sufficiently visible. Mr. Lieberkuhn made considerable improvenuents in his solar micruscope, particularly in adapting it to the viewing of opaque objects; and M Aepinus, Nov. Com. Petrop. vol. 9, pa. 326, has contrued, by throwing the light uponthe fureside of any object, before it is transmitted through the object-lens, to represent all hinds of oljects by it with equal advantage. In ahis improtement, the body of the commen sular microscope is retained, atud only an addition made of two brass plates, $A B, A C$ (fig. 8), joined by a hiuge, and held at a proper distance by a screw. A section of these plates, and of all the accessary parts of the instrument, may be scen in fig. 9, where a c represent rays of the sun converging from the illuminating lens, and ialling upon the nirror $b d$, which is fixed to the nearer of the two brnss plates. From this they are thrown upon the object at ef, and are thence transmitted through the object-lens at k, and a perforation in the farther plate, upon a screen, as usual. The use of the screen n is to vary the distance of the two plates, and thereby to adjust the nirror to the object with the greatest exactuess. M. Euler also contrived a method of introducing vision by reflected light into this microscope.

The Microscope for Opaque Objects was also invented by M. Lieberkulin, about the same time with the former, and it remedies the inconvenience of having the dark side of an object next the cye; for by means of a concave speculum of silver, highly polished, having a magnifying lens placed in its centre, the object is so strongly illuminated, that in may be examined with ease. A cunvenient apparatus of this kind, with 4 different speculums and magnitiers of different powers, was brought to perfection by Mr. Cuff. Philos. Trans. No, 4j8, $\$ 9$.

Microscopic Objects. All things too minute to be viewed distinctly by the naked eye, are proper abjects for the micruscope. Dr. Hooke has distinguisked them into these three general kinds; viz, exceeding small bodies, exceeding small pores, or exceeding small motions. The small bodies may be seeds, insect?, anmalcules, sands, salts, \&e : the pores may be the interstices between the solid parts of bodies, as in stones, minerals, shells, \&c. or the mouths of minute vessels in vegetables, or the pures of the skin, bunes, and other parts of animals; the small motions, may be the movements of the several parts or members of minute animals, or the motion of ahe fluids, contained either in animal or vegetable bodies. Under one or other of these three general heads, almost every thing about usaffords matter of observation, and may conduce both to our amusement and instruction.

Great caution is to be used in forming a judgment on what is seen by the microscope, if the objects are ex-
tended or contracted by force or dryness. Nothing can be determined about them, without making the proper allowances; and different lights and positions will often show the same object as very ditferent from itself. There is no advantage in any greater magnifier than such as is capable of showing the object in view distinctly; and the less the glass magnifies, the more pleasantly the object is always seen.-The colours of objects are very little to be depended on, as seen by the microscope; for their several component particles, being thus removed to great distances from one another, may give reflections very different from what they would, if seen by the naked eye.The motions of living creatures too, or of the fluids cotttained in their bodies, are by no means to be bastily judged of from what we see by the microscope, without due consideration; for as the moving body, and the space in which it moves, are magnified, the motion must also be magnified; and therefore that rapidity with which the blood seems to pass through the vessels of small animals, must be judged of accordingly. Baker on the Microscope, pa. 52, 62, \&c. See also an clegant work on this subject, published by that ingenious optician, the late Mr. George Adams.

The following directions are given for using the New Universal Pocket Microscope, made and sold by W. \&S. Jones, opticians, Holborn, London. See fig. 4, pl. 33.
"This microscope is adapted to the viewing of all sorts of objects, whether transparent, or opake; and for insects, flowers, animalcules, and the infinite variety of the minutia of nature and art, will be found the most complete and portable, for the price, of any hitherto contrived.
"Place the square pillar of the microscope in the square socket at the foot D , and fasten it by the pin, as shown in the figure. Place also in the foot, the reflecting mirror c . There are three lenses at the top shown at a, which serve to magnify the objects. By using these lenses separately or combined, you make seven different powers, When transparent objects, such as are in the ivory sliders No. 4, are to be viewed, you place the sliders over the spring, at the underside of the stage a; then looking through the lens or magnifier, at A, et the same time reflect up the light, by moving the mirror c below, and move gently, upwards or downwards as may be necessary, the stage s on its square pillar, till you see the object illuminated and distinctly magnified; and in this manner for the other objects.
"For animalcules, you unscrew the brass box that is fitted at the stage 8 , containing two glasses, and leave the undermost glass upon the stage, to receive the fluids. If you wish to view thereon any moving insect, \&cc, it may be confined by screwing on the cover: of the two glasses, the concave is best for fluids. Should the objects be opake, such as seeds, \&c ; they are to be placed upon the black and white ivory round piece, No. 3 , which is fitted also to the stage n . If the objects are of a dark colonr, you place them contrastedly on the white side of the ivory. If they are of a white, or a light colour, upon the blackened side. Some objects will be more conveniently viewed, by sticking them on the point of No. 2 ; or between the nippers at the other end, which open by pressing the two little brass pins. This apparatus is also fitted to a small hole in the stage, made to receive the support of the wire.
"The brass forceps, No. 1, serve to take up any small
object by, in order to place them on the stage for The instrument may be readily converted into a microscope, to view objects against the common ligh which, for some transparent ones, is better so. It i by only taking out the pillar from its foot in \mathbf{D}, turt half round, and fixing it in again; the foot then be a useful handle, and the reflector c is laid aside. whole apparatus packs into a fish-skin case, $4 \frac{8}{4}$ long, $2 \frac{4}{4}$ inches broad, and $1 \frac{1}{2}$ inches deep.
"For persons more curious and nice in these instrus there is contrived a useful adjusting screw to the stat presented at c. It is first moved up and down lii other, to the focus nearly, and made fast by the serew. The utmost distinctness of the object is the tained, by gently turning the long fine-threuded scrthe same time you are lnoking through the maguifis In this case, there may be also added an extraord deep magnifier, and a concave silver speculum, w magnifier to screw on at A, which will serve for vi the very small and opake objects in the completest ner, and render the instrument as comprehensive uses and powers, as those formerly sold under the of Wilsin's Microscope."
MIDDLE Latitude, is half the sum of two given tudes; or the arithmetical mean, or the middle bet two parallels of lp:itude. Therefore, if the latitudc of the same name, either both north or both south, the one number to the other, and divide the sum the quotient is the middle latitude, which is of the name with the two given latitudes. But if the latis be of different names, the one north and the other so subtract the less from the greater, and divide the mainder by 2 , so shall the quotient be the middle titude, of the same name with the greater of the two.

Ex. 1.
 Mid. lat. 2820 N. Mid. lat. $7 \quad 7 \mathrm{~S}$.
Mendes Latitude Sailing, is a method of resolving cases of globular sailing, by ineans of the middle latit on the principles of plain and parallel sailing join This method is not quite accurate, yet often agrees p I nearly with Mercator's sailing, and is founded on the lowing principle, viz, that the departure is accounta meridional distance in the middle latitude between latitude sailed from and the latitude arrived at.-' artifice seems to have been invented, on account of easy manner in which the several cases may be reso by the traverse table, and to serve where a table of n dional parts are wanting. It is sufficiently near the ti either when the two parallels are near the equator, or far distant from each other, in any latitude. It is formed by these two rules:

1. As the cosine of the middle latitude: Is to radius
So is the departure
To the difference of longitude
2. As the cosine of the middle latitude:

Is to the tangent of the course
So is the difference of latitude
To the difference of longitude
Ex. A ship sails from latitude 37° north, stering c stantly N. $33^{\circ} 19^{\prime}$ east, for δ days, when sbe was for
$M \perp L$ [55 1 MIL
in latitude $31^{\circ} 18^{\prime}$ north; required her difference of longitude.

MID Hearen, Mediam Cali, is that point of the ecliptic which culminates, or is highest, or is in the meridian at any time.

MIDSUMMER-Day, is held on the 24th of June, the same day as the nativity of St. John the Baptist.

MILE, a long measure, by which the English, Italians, and some other nations, use to express the distance between places: the same as the French use the word leayue. The mile is of different lengths in different countries. The gengraphical, or Italian mile, coatainy 1000 geometrical paces, mille jassus, whence the ternm mile is derived. The English mite consists of 8 furlong*, each furlong of 40 poles, and cach pole of $16 \frac{1}{2}$ feet; so that the mile is $=8$ furlongs $=320$ poles $=1760$ yards $=5280$ feet.

The following table shows the length of the mile, or league, in the principal nations of Europe, expressed in geometrical paces, the pace being accounted equal to 4 rif feet.

, R Pus	Geomet. Paces.			Yarde.
Mile of Russis	-	750	-	1100
of Italy	-	1000		1467
of England	-	1200		1760
of Scotland and	Ireland	1500	-	- 2200
Old league of France	-	1500	-	2200
Small league, ibid.	-	2000	-	2933
Mean lexgue of France	-	2500	-	3667
Great league, ibid.	-	3000	-	4400
Mile of Poland	-	3000	-	4400
of Spain	-	3428	-	5028
of Germany	-	4000	-	5867
of Sweden	-	3000	-	7383
of Denmark	-	5000		7383
of Hungary	-	6000		8800

MILITARY Architecture. The same with Fortification.

M1LKY Way, Via Lactea, or Galary, a broad track or path, encompassing the whole beavens, distioguishable by its white appearance, whence it obtains the name. It extends itself in some parts by a double path, but for the most part it is single. Its course lies through the constellations Cassiopeia, Cygnus, Aquila, l'erseus, Andromeda, part of Ophiucus and Gemini, in the northern hemisphere; and in the southern, it takes in part of Scorpio, Sagittarius, Centaurus, the Argonavis, and the Ara. There are some traces of the same kind o. light about the south pole, but they are small in comparistn with this; these are called by some, luminous spaces and Magellanic clouds; but they seem to be of the sume kind with the milky way.

The milky way has been ascribed to various causes. The ancients fabled, that it proceeded from a stream of milk, spilt from the breast of Jupo, when she pushed awny the infant Hercules, whom Jupiter laid to her breast to render him immortal. Some again, as Aristotle, \&c,
inagioed that this path consisted only of a certain exhalation hanging in the air; while Metrodorus, and some Pythagoreans, thought the sun had once gone in this track, instead of the ecliptic; and consequentiy that its whiteness proceeds from the remains of bis light. But it is now found, by the help of telescopes, that ihis track in the heavens consists of an immense multitude of stars, seemingly very close together, whose mingled light gives this appearance of whiteness; by Milton beautifully described as a path "powdered whh stars." Dr. Herschel accounts it a stratum of nebulous matter.

MILL properly denotes a machiue for grinding corn, \&c; but in a more general signification, is applied to all machines whose action depends on a circular motion. Of these there are several kinds, according to the various methods of applying the moving power ; as water-mills, wind-mills, horse-mils, hand-mifts, dec, and even steammills, or such as are worked by the force of steam, as that noble structure that was erected near Blackitriars Bridge, called the Albion Mills, which was unfortunately destroyed by fire.
The water acts both by its impulse and weight in an overshot water-mill, but only by its impulse in an undershot one; but here the velocily is greater, because the water is suffered to descend to a greater depth before it strikes the wheel. Mr. Ferguson observes, that where there is but a small quantity of water, and a fallgreat enough for the wheel to lie under it, the bucket or overshot wheel is always used: but where there is a large body of water, with a litule fall, the breast or float-board wheel must take place: and where there is a large supply of water, as a river, or large stream or brook, with very little fall, then the undershot whecl is the easiest, cheapest, and most simple structure.

Dr. Desaguliers, having had occasion to examine many undershot and overshot mills, generally found that a well made overshot mill ground as much corn, in the same time, as an underahot mill does with ten times as much water; supposing the fall of water at the evershot to be 20 feet, and at the undershot about 6 or 7 feet : and be generally observed that the wheel of the overshot mill was of 15 or 16 feet diameter, with a head of water of 4 or 5 feet, to drive the water into the buckets with some momenturn.

In water-mills, some persons have given the preference to the undershot wheel, but most writers prefer the overshot one. M. Betidor greally preferred the undershot to any other construction. He had even concluded, that water applied in this way would do more than 6 times the work of an overshot wheel; while Dr. Desaguliers, in overthrowing Belidor's position, determined that an overshot wheel would do 10 times the work of an undershot wheel, with an equal quantity of water. So that between these two celc brated anthors, there is a difference of no less than 60 to 1 . In consequence of such striking disagreement, Mr. Sracaton began the course of experiments mentioned below.

In the Philos. Trans. vol. 51, for the year 1759, we have a largs paper with experiments on mills turned both by water and wind, by that ingenious and experienced engineer Mr. Smeaton. From those, experiments it appears, pa. 129, that the effects obtained by the overshot wheel are generally 4 or 5 times as great as those with the undershot wheel, in the same time, with the same expense of water, descending from the same

M IL

height above the bottom of the wheels; or that the former performs the same effect as the latter, in the same time, with an expense of ouly one-41h or une-5th of the water, from the same head or height. And this advantage seems to arise from the water lodging in the buckets, and so carrying the wheel about by their weight. But, in pa. 140, Mr. Smeaton reckons the effect of overshot only double to that of the undershot wheel. And hence he infers, in general, "that the higher the wheel is in proportion to the whole descent, the greater will be the effect; because it depends less upon the impulse of the head, and more upon the gravity of the water in the buckets. However, as every thing has its limits, so has this; for thus much is desirable, that the water should have somewhat greater velocity, than the circumference of the wheel, in coming upon it; otherwise the wheel will not only be retarded, by the buckets striking the water, but dashing a part of it over, so much of the power is lost." He is further of opinion, that the best velocity for an overshot wheel is when its circumference moves at the rate of about 3 fect in a second of time. See Wind-Mill.

Considerable differences have also arisen as to the mathematical theory of the force of water striking the floats of a wheel in motion. M. Parent, Maclaurin, Desaguliers, \&c, have determined, by calculation, that a wheel works to the greatest effect, when its velucity is equal to one-third of the velocity of the water which strikes it; or that the greatest velocity that the wheel acquires, is one-third of that of the water. And this determination, which has been followed by all mathematicians, till very lately, necessarily results from a position which they assume, viz, that the force of the water against the wheel, is proportional to the square of its relative velocity, or of the difference between the absolute velocity of the water and that of the wheel. And this position is itself an inference which they make from the force of water striking a body at rest, being as the square of the velocity, because the force of each particle is as the velocity it strikes with, and the number of particles or the whole quantity that strikes is also as the same velocity. But when the water strikes a body in motion, the quantity of it that strikes is still as the absolute velucity of the water, though the force of each particle be only as the relative velocity, or that with which it strikes. Hence it follows, that the whole force or effect is in the compound ratio of the absolute and relative velocities of the water; and therefore is greater than the above-mentioned effect or force, in the ratio of the absolute to the relative velocity. The effect of this correction is, that the maximum velocity of the wheel becomes one half the velocity of the water, iustead of one-third of it only: a determination which nearly agrees with the best expcriments, as those of Mr. Smeaton.

This correction has been lately made by Mr. W. Waring, in the 3 d volume of the Transactions of the American Phiiosophical Society, pa. 144. This ingenious writer say, - Being lately requested to make sorme calculations relative to mills, particularly Dr. Barker's construction as improved by James Rumsey, I found mose difficulty in the attempt than I at first expected. It appeared necessary to investigate new theorems for the purpose, as there are circumstances peculiar to this construction, which are not noticed, 1 believe, hy any author; and the theory of mills, as hitherto published, is very imperfect, which I concrive to be the reason it has been of so little use to practicat mectane....
'The first step, then, toward calculating the power of any water-mill (or wind-mill), or proportioning their parts and velocities to the greatest advantage, seems to be,

- The Correction of an Esential Mistake adopted by Writera

 on the Theory of Mills.'This is attempted with all the deference due to cm . nent authors, whose ingenious labours have justly ratser their reputation and advanced the sciences; but when an: wrong principles are successively published by a serics: soch pens, they are the more implicitly received, and mon particularly claim a public rectitication; which must br pleasing, even to these candid writers themselves.'

A very ingenious writer in England, 'in his masterl: treatisc on the rectilinear motion and rotation of bodies published so lately as 1784, continues this oversigh1, witl its pernicious consequences, through bis propositions ant corollaries (pa. 275 to 284), although be knew thi theory was suspected: for he observes (pa. 382) "Mr Smeaton in his paper on mechanic power (published n the Philosophical Transactions for the year 1776) allows that the theory usually given will not correspond witl matter of fact, whell compared with the motion of ma chines; and seems to attribute this disagreement, rathe to deficiency in the theory, than to the obstacles whicl have prowented the application of it to the complicater motion of engines, \& c. In order to satisfy himself con cerning the reason of this disagreement, he consiructed । set of experiments, which, from the known abilities anm ingenuity of the author, certainly deserve great constdera tion and attention from every one who is interested i: these inquiries." And notwithstanding the same learne author says, "The evidence upon which the theory rest is scarcely less than mathematical ;" I ama sorry to find in the present state of the sciences, one of his abilitic concluding (pa.380), "It is not probable that the theor: of motion, however incuntestable its principles may be, ca afford much assistance to the practical mechanic," al though indeed his theory, compared with the above-cite experiments, might suggest such an inference. But t come to the point, I would just premise these

${ }^{1}$ Definitions.

- If a stream of water impinge against a wheel in motion there are three different velocities to be considered, appel taining thereto, viz,
- First, the absolute velocity of the water ;
' Second, the absolute velocity of the wheel;
- Third, the relative velocity of the water to that of th wheel, i. e. the difference of the absolute velocities, or tt velocity with which the water overtakes or strikes th wheel.
${ }^{\text {E }}$ Now the mistake comsists in supposing the momentur or force of the water against the wheel, to be in the dt plicate ratio of the relative velocity: Whereas,
- Prop. I.
-The force of an Invariable Stream, impingeing again: a Mill-wheel in Motion, is in the Simple Direct Propo tion of the Relative Velocit):
- For, if the relative velocity of a fluid against a sing plane be veried, either by the motion of the plane, or the fuid frum a given aperture, or both, then the numb of particles acting on the plane in a given time, and lik wise the momentum of each particle, being respectively the relative velocity, the force on both these account must be in the duplicate ratio of the relative velocit agreeably to the common theory, with respect to th

M II.
single plane: bat, the number of these planes, or parts of the wheel acted on in a given time, will be as the velocity of the wheel, or inversely as the relative velocity; therefore, the moving force of the whed inust be in the simple direct ratio of the relative velocity. Q. E. D.

- Or the proposition is manifest frem this consideration; that, while the stream is invariable, whatever be the velocity of the wheel, the same nuanber of particles or quantity of the fluid, must strike it somewhere or other in a given time; consequently the variation of force is only on account of the varied inpingent velocity of the same body, occusiuned by a change of motion in the wheel; that is, the momentum is as the relative velocity: Now, this true principle substituted fur the erroneous one in use, will bring the theory to agree remarkably with the notable experiments of the ingenious Smeaton, before-mentioned, publistied in the Philosophical Transactions of the Royal Socicty of London for the year 1760 , vol. 51 , for which the honorary annual medal was adjudged by the society, and presented to the author by their president. An instance or two of the importance of this correction may be adduced as below.'

Prop. II.
'The velocity of a wheel, moved by the impact of a stream, must be half the velocity of the fluid, to produce the greatest possible effect.-For let
$v=$ the velocity, $m=$ the momentum of the fluid; ,
$v=$ the velocity, $p=$ the power of the wheel.
Then $v-v=$ the relative velocity, by def. 3d;
and as $v: v-v:: m: \frac{m}{v} \times(v-v)=p$ (prop. 1); this multiplied by v, gives $p v=\frac{m}{v} \times\left(v v-v^{2}\right)=$ a maximum; hence $v o-v^{2}=$ a maximum, and its fluxion (v being the variable quantity) is $v \dot{v}^{*}-2 \dot{v}=0$; therefore $v=\frac{f}{f} v$, that is, the velocity of the whed $=$ half that of the fluid, at the place of impact, when the effect is a maximum. Q. e. D . - The usual theory gives $0=\frac{j}{j} v$; where the error is not less than one third of the true velocity of the wheel.
${ }^{-}$This proposition is applicable to undershot-wheels, and correaponds with the accurate experiments before cited, as appears from the author's conclusion (Pbilos. Trans. for 1776, pa. 457), viz, "The velocity of the wheel, which according to M. Parent's determination, adopted by Desaguliers and Maclaurin, ought to be no more than one third of that of the water, varies at the maximum in the "xperiments of table 1, between one third and one half; but in all the cases there related, in which the most work is perforoned in proportion to the water expended, and which approach the nearest to the circuinstances of great works when properly executed, the maximum lies much nearer one half than one third, one lialf seeming to be the true mavimum, if nothing were lust by the resistance of the air, the scattering of the water carried up by the wheel, \&ec." Thus be fully shows the common thoory to have been very defective; but, I believe, none have since pointed out whercin the deficiency lay, nor how $t 0$ correct it; and now we see the agrecement of the true theory with the risult of his experiments.' For another problem.

Vos. II.

M IE

Prop. III.

- Given, the momentum (m) and velocity (r) of the fluid at x, the place of impact; the radius $(R=18)$ of the wheel $\triangle B C$; the radius ($r=\mathrm{Ds}$) of the small whel der on the same axie or shaft ; the weight (w) or resistance to be overcome at D_{5} and the friction (f) or force necessary to move the wheel without the weight; requirel the velocity (v) of the wheel, *c.*

' Here we have ve $v-v:: m: m \times \frac{v-v}{v}=$ the acting firce at t in the direction tK , as before (prop. 2). Now $\mathrm{R}: r:: \omega: \frac{\pi}{k}=$ the power at t necessary to counterpoise the weight w; hence $\frac{m_{n}}{n}+f=$ the whole resistance opposed to the action of the fluid at 1 ; which deducted from the moving force, leaves $m \times \frac{v-v}{v}-\frac{r u}{m}-f=$ the accelerating force of the machine; which, when the motion becomes uniform, will be evanescent or $=0$; therefore $m \times \frac{v-v}{v}=\frac{r w}{m}+f$, which gives $v=v \times\left(1-\frac{m n}{m R}-\frac{1}{m}\right)=$ the true velocity required; or, if we reject the friction, then $v=v \times\left(1-\frac{n c}{m R}\right)$ is the theorem for the velocity of the wheel. This, by the common theory, would be $v=\mathrm{v} \times\left(\mathrm{t}-\sqrt{\frac{\mathrm{w}}{\mathrm{m} \mathrm{n}}}\right)$, which is too little by $\mathrm{v} \sqrt{\frac{\pi v}{m R}}-\mathrm{v} \frac{r_{w}}{w n^{*}}$. No wonder whywe have bitherto derived so little advantage from the theory.'
${ }^{2}$ Conol. 1.-If the weight (w) or resistance be re. quired, such as just to admit of that velocity which would produce the greatest effect; then, by substituting $\frac{1}{1} v$ for its equivalent v (by prop. 2), we have
 if $f=0, w=\frac{m n}{2 r}$; but theorists make this $\frac{4 m n}{9 r}$, wherethe error is $\frac{\mathrm{mR}}{1 \mathrm{igr}}$.
'Corol. 2. We have also $r=\frac{\frac{1}{2} m-f}{w} \times$ 日 ; or, rejecting friction, $r=\frac{m a}{2 u r}$, when the greatest effect is produced, instead of $r=\frac{4 \mathrm{mn}}{9 \cdot \mathrm{r}}$, as has been supposed: this is an important theorem in the construction of millso'

In the same volume of the American Transactions, pa. 185, is another ingenious paper, by the same author, on the power and machinery of Dr. Barker's mill, as improved by Mr. James Rumsey, with a description of it. This is a mill turned by the resisting foree of a stream of water that issues fom an orifice, the rotatory part, in which that orifice is, being inpelled the contrary way by its reaction against the stream that issues from it.

Mr. Ferguson has given the following directions for anastructing water-mills in the best manner; with a tab le of the several corresponding dimensions proper to a great va-

MIN
! 3
riety of perpendicular falls of the water. When the floatboards of the water-wheel move with a 3d part (it should be i) of the velocity of the water that acts upon them, the water has the greatest power to turn the mill: and when the millstone makes about 60 turns in a minute, it is found to perform its work the best: for, when it makes but about 40 or 50 , it grinds too slowly; and when it makes more than 70, it heats the meal too much, and cuts the bran so small that a great part of it mixes with the meal, and cannot be suparated from it by sifting or boulting. Consequently the utmost perfection of mill-work lies in making the train so as that the millstone shall make about 60 turns in a minute when the water-wheel moves with a Sd part of the velocity of the water. To have it so, observe the following rules:

1. Measure the perpendicular height of the fall of water, in feet, above the middle of the aperture, where it is let out to act by impulse against the fluat-boards on the lowest side of the undershot wheel.
2. Multiply that height of the fall in feet by the constant number $64 \frac{\mathrm{t}}{\mathrm{t}}$, and extract the square root of the product, which will be the velocity of the water at the bottom of the fall, or the number of feet the water moves per second.
3. Divide the velocity of the water by 3 (or 8); and the

M I N
quotient will be the velocity of the floats of the wheel in feet per second.
4. Divide the circomference of the wheel in feet, by the velocity of its floats; and the quotient will be the number of seconds in one turn or revolution of the great waterwheel, on the axis of which is fixed the cog-wheel that turns the trandle.
5. Divide 60 by the number of seconds in one tura of the water-wheel or cog-wheel; and the quotient will be the number of turns of either of these wheels in a minute
6. Divide 60 (the number of turns the millstone ought to have in a minute) by the abovesaid number of ruriss: and the quotient will be the number of turns the mill. stone ought to have for one turn of the water or cog wheel. Then,
7. As the required number of turus of the millatone in $:$ minute, is to the number of turns of the cog-whel in : minute, so inust the number of cogs in the wheel, be th the number of staves or rounds in the trundle on tho axis of the millstone, in the nearest whole number tha can be found.

By these rules the following rable is calculated; i which, the diameter of the water-wheel is supposed 18 feet and consequently its circumference 564 feet, and the dia meter of the milistone is 5 feet.

The Mill-Wrigh's Table.

Perpendicular beight of the fall of water.	Velocity of the water in feet per second.	Velocity of che wheel in feet per second.	Number of turns of the wheel in a minute.	Required number of tarns of the millstone for each turn of the wheel.	Neare ber of and at that p Coga.	numcogs aves for urpose. Staves.	Number of turns of the miltatane for one turn of the wheel by thene eng and saves.	Number of turas of the millstone in a minule by these ouga and staves.
1	8.02	$2 \cdot 67$	2.83	21.20	127	6	21.17	59.91
2	11.40	3.78	4.00	15.00	105		15.00	60.00
3	13.89	4.63	4.91	12.22	98	8	12.25	60.14
4	16.04	$5 \cdot 35$	5.67	10.58	95	9	10.56	59.87
5	17.93	$5 \cdot 98$	$6 \cdot 34$	9.46	85	9	9.44	59.84
6	19.64	6.55	6.94	$8 \cdot 64$	78	9	$8 \cdot 66$	60.10
7	21.21	7.07	$7 \cdot 50$	8.00	72	9	8.00	60.00
8	22.68	$7 \cdot 56$	8.02	7.48	67	9	744	59.67
9	24.05	8.02	8.51	$7 \cdot 05$	70	10	7.00	59.57
10	25.35	8.85	8.97	6.69	67	10	6.70	60.09
11	26.59	8.86	$9 \cdot 40$	6.38	64	10	6.40	$60 \cdot 16$
12	27.77	$9 \cdot 26$	9.82	$6 \cdot 11$	61	10	6.10	59.90
19	28.91	9.64	$10 \cdot 22$	$5 \cdot 87$	59	10	$5 \cdot 80$	60.18
14	30.00	10.00	10.60	5.66	36	10	$3 \cdot 60$	$59 \cdot 36$
15	31.05	10.35	10.99	$5 \cdot 46$	35	10	5.40	60.48
16	32.07	10.69	11.34	$5 \cdot 29$	53	10	5.30	$60 \cdot 10$
17	33.06	11.02	11.70	5.13	51	10	5.10	59.67
18	34.02	11.34	12.02	4.99	50	10	5.00	60.10
19	34.95	11.05	12.37	$4 \cdot 85$	49	10	4.80	60.61
20	35.86	11.92	12.68	473	47	10	4.70	59.50

For the theory, \&c, of wind-mills, see Win d-Mill.
MILLION, the number of ten hundred thousand, or a thousund times, a thousand.

MINE, in Fortification, \&c, is a subterrancoús canal or passage, dug under any place or work intenied to be blown up by gunpowder. The passage of a mine leading to the powder is called the Gallery; and the extremily, or place where the powder is placed, is called the Chamber. The line drawn from the centre of the chamber per-
pendicular to the nearest surface, is called the Line of le: Resistance; and the pit or hole, made by the mine wh sprung, or blown up, is called the Excavation. 'I' mines made by the besiegers in the attack of a place, y called simply Mines; and those made by the besiege Counter-mines.

The fire is conveyed to the mine by a pipe or loo made of coarse cloth, of about an ingh and half in d meter, called Saucisson, extending from the powder in I
chamber to the beginning or entrance of the gallery, to the end of which is fixed a match, that the miner who wets live to th may have time to retire before it reaches the chamber.

It is found by experiments, that the figure of the excavation made by the explosion of the powder, is ucarly a paraboloid, baving its focus in the centre of the powder, and its axis the line of least resistance; its diameter being more or less uccording to the quantity of the powder, to the same axis, or line of least resistance. Thus, M. Belidor lodged 7 different quantities of powder in as many different mines, of the same depth, or line of least resistance, 10 feet; the charges and greatest diameters of the excavation, measured after the explosion, were as follow:

		Powder.		Diam.
$1 s t$	-	1201b	-	22\% feet
2d	-	160	-	26
3d	-	200	-	29
4th	-	240	-	314
5 th	-	280	-	$33 \frac{1}{4}$
6 th	-	320	-	36
7th	-	360	-	38

From which experiments it uppears, that the excavation, or quantity of earth blowp up, is in the same proportion with the quantity of powder; whence the charge of pow z der neceshary to produce any other proposed effect, will be had by the rule of proportion.

Mine-Dial, is a box and needle, with a brass ring divided into 360 degrees, with several dials graduated upon it, commonly made for the use of miners.

MINERALOGY, is that branch of philosophy which treats of the pliysical and chemical properties of unorganized bodies; commonly called crude inatter, or mineruls; by which we are enabled to determine their distinctive characters, and their particular rank in the general system: and is thus distinguished from goology, which treats, more particularly, of the reciprocal position of the different species of minerals, and of the masses composed of two or more of these species.

MINUTE, is the 60th part of a degree, or of an bour. The minuies of a degree are marked with the acute aceent, thus'; the seconds by two, " ; the thirds by three, "". The minutes, seconds, thirds, \&cc, in time, are sometimes marked the same way; but, to avoid confusion, the better way is, by the initials of the words; as minutes ${ }^{\mathrm{a}}$, seconds ", thirds ', \&c.
Minute, in Architecture, usually denotes the 60th part of a moilule, but sometimes only the 30 th part.

MIRROR, a speculum, looking-glass, or any other polished buly, the use of which is to forin the images of distinct objects by reflexion of the rays of light. Mirrors are either plane, convex, or concave. The first sort reflects the rays of light in a direction exactly similar to that in which they fall upon it, and therefore represents bodies in their natural magnitude. But the convex ones make the rays diverge inuch more than before reflexion, and therefore greatly diminish the images of those objects which they exhibit: while the concave ones, by collecting the rays into a focus, not only magnify the objects they show, but will also burn very fierecly when exposed to the rays of the sun ; and hence they ure commonly known by the name of Burning Mirrors.

In ancient times, the mirrors were made of some kind of metal ; and from a passage in the Mosaic writings we learn, that the mirrors used by the Jewish women, were
made of brass; a practice doubtless learned from the Egyptians. Any kind of metal, when well polished, will rellect very powerfully; but of all others, silver reflects the most, but it is too expensive a material for common use. Gold is also very powerful ; and all metals, or even wood, gilt and polished, will act with considerable effect as burning mirrors. Even polished ivory, or straw nicely plaited together, will form mirrors capable of burning, if on a large scalc.
Since the invention of glass, and the application of quicksilver to it, have become generally known, it has been unversally employed for those plane mirrors used as ornaments to houses; but in making reflecting telescopes they have been found much inferior to metallic ones. It does not appear however that the same superiority belongs to the mutallic burning mirrors, considered merely as burning speculums ; since the mirror with which Mr. Macquer melted platina, though only 22 inches diameter, and made of quicksilvered glass, produced much greater efficts than M. Villette's mital speculum, which was of a much larger size. It is very probable, however, that M. Villette's mirror was not so well polished as in ought to have been; as the art of p:eparing the metal for taking the finest polish, luss but lately been discovered, and published in the Pbilos. Transactions, by Dr. Mudge of Plymouth, and, afier him, by Mr. Edwards, Dr. Herschel, ©c.

Some of the more remarkable laws and phenomena of plane mirrors, are as follow :-1. A spectator will see bis image of the same sise, and crect, but reversed as to right and left, and as far bryond the speculum as he is before it. As be moves to or from the speculum, his image will, at the same time, move towards or from the speculum also on the other side. In like manner if, while the spectator is at rest, an object be in motion, its image behind the speculum will be seen to move at the same rate. Also when the spectator moves, the itmages of objects that are at rest will appear to approach or recede from him, after the same manner as when he moves towards real objects.
2. If several mirrors, or several fragments or pieces of mirrors, be all disposed in the same plane, they will only exhibit an object once.
3. If two plane mirrors, or speculums, meet in any angle, the eye, placed within that angle, will see the image of an object placed within the same, as often repeated as there may be perpendiculars drawn determining the places of the images, and terminated without the angle. Hence, as the more perpendiculars, terminated without the angle, may be drawn as the augle is more acute ; the acuter the angle, the more numcrous the images. Thus, Z. Traber found, at an angle of $i d$ of a circle, the image was represented twice, at ft h thrice, at $\frac{\mathrm{f}}{6}$ th five times, and at $\frac{f}{i x}$ th eleven times.

Further, if the mirrors be placed upright, and so contracted; or if you retire from thein, or approach to them, till the images reflected by them coalesce, or run into one, they will appear monstrously distorted. Thus, if they be at an angle somewbat greater than a right one, the image of one's face will appear with only one eye; if the angle be less than a right one, you will see 3 eyes, 2 noses, 2 mouths, \&c. At an angle still less, the body will have two heads. At an angle somewhat greater than a right onr, at the distance of 4 fert, the body will be headless, \&c. Again, if the mirrors be placed, the one parallel to the borizon, the other inclined to it , or declined from it, it i_{3} easy to perceive that the images will be still mure ro.
mantic. Thus, oue being declined from the horizon to an * angle of 144 degrees, and the other inclined to it, a man sees himself standing with his head to another's feet.

Hence it appears how mirtors may be managed in gardens, \&c, so as to convert the inages of those near them into monsters of various kinds: and since glass mirrors will reflect the image of a lucad object twice or thrice, if a candle, \&c, be placed in the angle between two mirrors, it will be multiplied a great number of tames.

Laws of Conver Mintors.

1. In a spherical convex mirror, the image is less than the object. And hence the use of such mirrors in the art of painting, where objects are to be represented liss than the life.
2. In a convex mirtor, the more remote the object, the less its image; also the smaller the mirror, the less the image.
3. In a convex mirror, the right band is turned to the left, and the left to the tight; and bodies perfendicular to the mirror appear inverted.
4. The image of a right line, perpendicular to the mirror, is a right line; but that of a right line oblique or parallel to the mirgor, is convex.
5. Rays reflected from a convex mirror, diverge more than if reflected from a plane mirror; and the smaller the sphere, the more the rays diverge.

Iaws of Concave Mirbors.
The effects of concave mirrors are, in general, the reverse of those of convex ones; rays being made to converge more, or doverge less than in plane mirrors; the image is magnified, and the more so as the spliere is smaller; Acc, \&c.

MITRE, in Architecture, is the workmen's term for an angle tbat is just 45 degrees, or laalf a right angle. And if the angle be the half of this, or a quarter of a right angle, they call it a half-mitre.

Mixt Angle, or Figurc, is one contained by both right and curver hines.

Mrxt Number, is one that is partly an integer, and partly a fraction; as $3 \frac{1}{2}$.

Mixt Ratio, or Itoportion, is when the sum of the antecedent and consequent is compared with the difference of the antecedent and consequent ;

As if $\left\{\begin{array}{l}4: 3:: 12: 9 \\ a: b:: c: d \\ 7: 1: 2: 21: 3 \\ a+b: a-b:: c+d: c-d .\end{array}\right.$
MOA'I', in Fortification, a deep trench dug round a town or fortress, to bedefended, on the outside of the wall, or rampart. The breadth and depth of a moat often depend on the nature of the soil; according as it is marslyy, rocky, or the lihe. The brink of the moat test the rampart, is called the scarp; and the opposite side, the coutterscarp.

Dry Moat, is one that is without water; on which account it ought to be deeper than one that has water, called a wet moat. A dry moat, or one that lias a lutle water, has often a small ditch running all along the middle of its bottom, called a cuvette.

Flat-bottomed Moat, is that which bus no sloping, its corners being romewhat rounded.

Lined MoAt, is that whose scarp and counterscarp are cased with a wall of mason's work lying aslope.

MOBILE, Primum, in the Ancient Aatronomy, was a 9 th heaven, or sphere, conceived above those of the planets and fixed stars. It was supposed that this was the first
mover, and carried all the lower spheres about with it; hy its rapidity communicating to them a motion carrying them round in 24 hours. But the diurnal apparent revolution of the heavens is sow better accounted for, t g the rotation of the earth on its axis, without the assistance of any such primuin mobile.

MOIBILIT1, an aptitude or facility to be moved.
The mobility of mercury is owing to the smallness and sphencity of its particles; und these alsorender its fixation so difficult. The hyputhests of the natility of the earth is the most plausible, and is unsersally moluitied by modern astronomers.- Pope|Paul V.apponted commissuoners to examine the opuition of Copernicus whth regard to the mobility of the earth. The result of their inquiry was, a prohibition tu assert, not that the nobility was possible, but that it was really true: that is, they allowed the nanbility of the carth to be held as an hyputhests, which gives an easy and sensible solution of the phenomena of the beavenly motions; but forbade this ductrine to be maittained as a thesis, or renl effectuve thing; because they conceived it contrary to Seripture.

MODILIIONS, small inverted consoles under the soffit or bottom of the drip, or of the corniche, sectning to support the projecture of the larmier, in the Ionic, Consposite, and Corimthian orders.

MODCLAR Ratio, a term invented by Mr. Cotes, to denote the ratio or number whose logarithon is what be calls the modulus. This ratio is the ratio
of $1+\frac{1}{1}+\frac{1}{3}+\frac{1}{2 d}+\frac{1}{2.3 .4}+\frac{1}{2.3 .4 .3}$ \&ec to 1 , or of 1 to $1-\frac{1}{1}+\frac{1}{2}-\frac{1}{2.3}+\frac{1}{2.1 .4}-\frac{1}{2.3 .4 .5}$ \& c; that is, the ratio of 2.71828162 s 459 \& c to 1 ,
or the ratio of 1 to $0 \cdot 36 ; 8794+1171$ \&c.
See Modulus, aud Cotes's Langmetria.
MODULE, or Little Messure, in Architecture, a certaiu measure, taken at pleasure, for regulating the proportions of columns, and the symmetry ur distribution of the abole building. A rehitectsusually chowse the diameter, or the semidiameter, of the botton of the column, for their module; which they subdivide into minutes; for estimaitug all the other parts of the building by.

MOIULLLS, of a system of logarithms, a torm used by Mr. Cotes, to denote the log, of the ruodular ratio. All the logs, in any system, are proportionml to this morlulus, which in the hyperbolic or Napier's logs. is 1 , and in the common or Briggs's logs. is 04342914819 Sc. See Mouvza a Ratio, and Cotes's Logometria.

MOINEAU, a flat bastion raiscd before a curtin when it is too long, and the bastions of the angles too remote to be able to dufend cach other. Sometimes the moinesu is joined to the curtin, and sometines it is divided from it by a moat. llere musquetry are placed to tire each way,

MOIVRF, Inr. See Demoiviz.
MOI.VNEUX (WtLbam) au excellent mathematician and astronomer, was born at Dublin in 16j6. After the usual grammar education, which he had at houme, be was entered of the college of that city. Here be distinguished himself by the probity of his manters, as well as by the strengtl of his genius; abd having made a romarkable progress in academical learning, and particularly in the new philosoploy, as it was then called, nfter four years spent in this university, he was sent over to Londun, wliere he was admitted into the Middle Temple in 1675 . Here he spent three years, in the study of the laws of his coun-
try. But the bent of his genius lay strongly toward mathematical and philusophical studies; and even at the university be conceived a dislike to scholastic learning, and fell into the methods of lord Bacon.

Returning to Ireland in 1678 , he shortly after married Lucy the daughter of sir William Donsville, the king's attorncy-general. Being master of an easy fortune, he continued to indulge bimself in pros-cuting such branches of natural and experinental plalosophy as were most agreeable to his fancy; in which astronomy having the greatest share, he began, ubout 168 t , a literary correspondence with Mr. Filumsteed, the astronomer royal, which was continued for several years. In 16 is3 he formed a design of erecting a Philosophical Society at IDublin, in imitation of the Rayal Socicty at London; and, by the countenance and encouragement of Sir William Petty, who accepted the office of president, began a weekly meeting that year, when our author was appointed their fist secretary.

Mr. Molyneux's reputation for learning recommended him, in 1684, to the notice and favour of the first great dake of Ormond, then lord-lieutenant of Ireland; by whose influence chiefly he was appointed that year, jointly with sir William Robiason, surveyor-general of the King's buildings and works, and chef engmeer.

In 1685, he was chosen fellow of the Royal Society at London; and the same year he was sent by the government to view the most considerable fortresses in Flanders. Accordingly he travelled through that country and Holland, as alsu of Germany and France; and carrying with him letters of recommendation from Flansteed to Cassini, he was introduced to him and others, the most emment astronomers in the several places through which he passed. Soon after his return trom abroad, lie published at Dublin, in 1686 , bis sciothericunn 'Selescopiunin, containing a Description of the Structure and Use of a Telescopic Dial, iuvented by bun: another edition of which was published at Londen in 1700.

In 1688 the Ptulusuppical Society of Dublin was broken up and dispersest by the confusion of the times. Mr. Molyneux had distinguished himself as a member of it from the begiming, and prosentid several discourser upon curious subjects, some of which were transmitted to the Royal Sicisty at London, and ufierwards printed in the Philosopinical l'ransactions. In 68 sg , among great numbers of otier Prolestants, be withsirew fiom the disturbances in Irclund, occasioned by the severities of Tyrconnel's government; and after a short stay at London, he fixed hinself with his lamily at Chester, In this retirement, he employed himeself in putting togetber the materials he had some tine before prepared for his Dioptrics, in which he: was muct assisted by Mr. Flansteed; athd in August 1690, he went to Iandun to put it to the press, where the sheets were revised by Dr. Halley, who, at our author's request, gave leave for printing, in the appendix, his celebrated Theorem for finding the fuci of Optic Glasses. Accorlinaly the trook came out, 1692, in 4 to, under the title of "Dioptica Nisva: a Treatise of Dioptrics, in two parts; whercin the vartoty effects and appearances of spherical glasses, both convex and concave, sungle and combined, in telescopes and micruscopes, together with their asefulness in many concetns of buman life, are explained." He gave it the title of Dioptrica Nova, both because it was almots wholly new, very little being borrowed from other writers, and because it was the first book that appeared in English upon the subject. The work contains several of
the most generally usciful propositions for practice, demonstrated in a clear and casy manuer, for which reason it was for many years used by the artificers: and the second part is very entertaining, expecially in the history which he gives of the several uptical instrunients, and of the discoveries made by them.

As sum as the public tranquillity was settled in his native coumry, be returned home; and, on the convening of a new parliament in 1692, was chosen one of the representatives for the city of Dublin. In the next parliament, in 1695 , he was chosen to represent the university there, and continued to do so to the cud of his life; that learned body having lately conferred on him the degree of doctor of laws. Ile was also nomimated by the lurd-lieutenant one of the commissioners for the torfetted estates, to which employment was aunexed a salary of 5001 . a year; but considering it as an invidious office, he declined it.

In 1695, he published "The Case of Ireland stated, in regard to tis being bound by Acts of Parliament made in kingland;" in which it is supposed be has delivered all, or most, that can be said upon this subject, with great clearness and strength of reasoning.

Among nany learned persons with whom he maintained correspondence and friendship, Mr. Locke was in a particular manner dear to him, as appears from their letters. In the above-mentioned yeur, which was the layt of our author's life, be made a journey to Eugland, on purpose to pay a visit to that great man; and not long after his return to Ircland, be was seized with a tit of the stone, which terminated his existence.

Brsides the three works already mentioned, viz, the Sciothericum Telescopium, the Dioptrica Nova, and the Case of Ireland stated; he published a great number of piects in the Phlosophical Transactions, which are contained in the volumes $14,15,16,18,19,20,21,22,23$, 26,29 , several papers commonly in each volume.

Molyseux (Samuel), son of the former, was borinat Chester in July 1689 ; and educated with great care by his father, according to the plan laid down by Locke on that subject. When his father died, he was left to the management of his uncle, Dr. Thomas Molyneux, all excellent scholar and physician at Dublin, and also an intimate friend of Mr. Locke, who executed his trust so well, that Mr. Molynux became afterwards a must polite and accomplished gentleman, and was made secretary to George the $3 d$ when prince of Walcs. Astronomy and optics being his favourite studies, as they had been his father's, be projected many schemes for the advancement of thein, and was particularly employed in the years 1723,1724 , and 1725 , in perfecting the method of making telescopes; one of which instruncents, of his own making, he bad presented to John the 5th, king of Portugal.

Being soon after appointed a commissioner of the atmiralty, he became so engnged in public affairs, that he had not leisure to pursue those inquries any further, as be intended. He therefore gave his papers to Dr. Hobert Smith, protessor of astronomy at Cambridge, whon he invited to make use of his house and apparatus of instruments, in order to finish what he had left imperfect. But Mr. Molyneux dying sown after, Mr. Smith lost the opportunity; be however supplied what was wanting from M. Huygens and others, and published the whole in his "Cumplete Treatise of Optics."

MOMENT, in Time, is sonctimes tahen for an extremely small part of duration; but, more puequerly, it is
only an instant or termination or limit in time, like a point in geometry. Macluurin's Fluxions, vol. 1, pa. 245.

Momexts, in the new Doctrine of Infinites, denote the indefinitely small parts of quantity; or they are the same with what are otherwise calicd infinitesimals, and differeaces, or intrements and decrements; being the momentary increments or decrements of quentity considered as in a continual flux. Moments are the generative principles of magnitude: they have no determined magnitude of their own; but are only inceptive of magnitude. Hence, as it is the same thing, if, instead of these moments, the velecities of their increases and decreases be made use of, or the finite quantities that are proportional to such velocities; the method of procceding which considers the motions, changes, or fuxions of quantities, is denominated, by Sir Isaac Newton, the method of fluxions.

Leibni1z, and most foreigners, considering these inf.nitely small parts, or infinitesimals, as the differences of two quantilies; and thence endeavouring to find the differences of quastities, i. e. some moments, or quantities indefinitely small, which raken an infinite number of times shall cqual given quantites; call these moments, differences; and the method of procedure, the differential calcults.

Mostint, or Momentum, in Mechanics, is the same thing with impetus, or the quantity of motion in a moving body. In comparing the motions of borlies, the ratio of their momenta is always compounded of the quantity of matter and the celcrity of the moving body: so that the momentum of any such body, may be consideted as the rectangle or protuct of the quantity of manter and the velocity of the motion. As, if b denote any body, or the quantity or mass of matter, and v the velocity of its motion; then bo will express, or be proportional to, its momentum m. Also if a be another body, and v its velocity; then its momentum m, is as BV. So that, in gene$\mathrm{ral}, \mathrm{M}: m:: \mathrm{sv}: b r$, i . e. the momenta are as the products of the mass and velocity. Hence, if the momenta 3 and m be equal, then shall the two products Bv and $b \mathrm{~b}$ be equal also; and convequintly $\quad: \quad b:: 5: v$, of the luodies will be to each other is the inverse or reciprocal rato of their velocities; that is, either body is so much the greater as its velocity is less. And this force of momentum is of a different kind from, and incomparably greater thun, any mere dead weight, or pressure whatever.

The momentuin also of any moving body, may be consitered as the agaregate or sum of all the momenta nt the parts of that bedy; and therefore when the magnitudes and number of particles are the same, and also mosed with the same celerity, then will the momenta of the wholes be the same also.

MONDAY, the second day in the week.
MONADES. DIGITA, indivisible things.
Monnil:R, (Peter Charlfa ief) the son of Peter Ic Monnier, professor of philosophy at Paris, was bern at Paris, November 20, 1715, and died at Lizieux in Normandy, April 2, 1799, in the S4th year of his age, and then the oldest ustrunomer in Europe. His observations and me:noirs, to a vast number, are chiefly contained in the memoirs of the Royal Academy of Sciences; besides which, he published the Histoire Celeste, 1741, in 4tn. In this work is twice found, but only as a fixed star, Dr. Herschel's new planct. From his carliest ycars he devoted himself to astronnmy; when a youth of 16 be made
his first observations, viz, of the opposition of Saturn. At 20, be was nominated a member of the Royal Acadeny of Sciences. In 1735, be accompanied Maupertuis in the expedition to Lapland, to measure a degrece of the meridian: and he was the first astronomer who had the satisfaction of incasuring the diameter of the nioon on the sun's cisk. In 1750, he drew a meridian at the Rogal Chatcau at Bellevue, where the king often made observations. Le Monnier was naturally of a very irritable temper; as ardently as he loved his lriends, as easily conld he be offended; anil his hitred was then implacable. Litlande, who had been his pupil, had the misfortune to incur his displeasure; and he never aftet could regain his favour. At the time of Le Monnier's death, he had atnassed a vast quantity of observations, which he could never be prevailed on to publish, but concealed them in a place, which it was feared he had forgotten; so that it has been sup. posed they are lost to the world, unless the place should happen to be baown to the celebrated mathematician La:grange, who marrisd one of his daughters in 1799.

MONOCEKOS, the Unicorn, one of the new constetlations of the bothern hemisphere, or oue of those which Hevelius has atded to the 48 old asterisms, and formell out of the stellwinformes, or those which were not comprised within the outlines of any of the others. In Herelius's catalogue, the Unicorn contains 19 stars, but in the Britannic catalogue 31.

MONOCIIORD, a musical instrument with only onc string, used by the ancients to try the variety and proportion of sounds. It was fromed of a rule, divided and sulsdivided into several parts, on which there is a moveable string stretched over two bridges at the extremes of it. In ilie interval between these is a sliding or moveable. bridge, by means of which, in applying it to the different divisions of the liue, the sounds are found to bear the same proportion to each other, as the division of the line cut by the bridge. This instrument is also called the Harmonical Canon, or the Canonical Rule, because it serves to measure the degrees of gravity or acutencss. Ptolemy examines his harmonical intervals by the monochord. When the chord was divided intot wo equal parts, so that the parts were as 1 to 1 , they called them Unisons; butif they were as 2 to 1, they called them Octaves or Diapasons; when they werc as 3 to 2, they called tbem Diapentes, or Fifihs; if they were as 4 to 3 , they called them Dintessarons, or Fourths; if the parts were as 5 to 4, they called them Diton, or Major-third; but if they were as 6 to 5, they were called a Demi-diton, or Minor-third; and lastly, if the parts were as 24 to 25, a Demitone, ór Dieze.

The monochord, being thus divided, was properly what they called a system, of which there were many kinds, according to the different divisions of the monochord.

Monochord is also used for any musical instrument consiating of only ene chord or string. Such is the trumpmarine.

MONOTRIGLYPH, a term in Architecture, denoting the space of one triglyph between two pilasters, or two columns.

MONSOON, a regular or periodical wind, that blows one way for 6 months together, and the contrary way the other 6 months of the year. These prevail inseveral parts of the eattern and southern oceans.

MON'11, the 12th part of the ycar, and is so called from the moon, ly whose motions it was formerly regulated; being properly the time in which the moon runs

MON

through the zodiac. The lunar month is either illuminative, periodical, or synodical.

Illuminative Month, is the interval between the first appearance of one new moon and that of the next following. As the moon appears sometimes sooner after one change than after another, the quantity of the illuminative month is not always the same. The Turks and Arabs reckon by this month.

Lunar Periodical Montin, is the time in which the moon runs through the, zodiac, or returns to the same point again; the quantity of which is 27 days 7 hrs 43 m . 8 sec .

Luas Symodical Month, called also a Lunation, is the time between two conjunctions of the moon with the sun, or between two new moons; the quantity of which is 29 days 12 hours 44 m .2 sec. 48 thirds. The ancient Romans used lunar months, and made them alternately of 29 and 30 days: they marked the days of each month by tbree terms, viz, Calends, Nones, and Ides.
Solar Mon \boldsymbol{H}, is the time in which the sun runs through one entire sign of the ecliptic, the mean quantity of which is 30 days $\mathbf{2 0}$ hours 29 min .5 sec . being the 12 th part of 365 ds .5 brs. 49 min . the mean solar year.

Aatronomical or Natural Month, is that measured by some exact interval corresponding to the motion of the suin or moon. Such are the lunar and solar months abovementioned.

Civil or Common Montit, is an interval of a certain number of whole days, approaching nearly to the quantity of some astronomical month. These may be either lunar or solar. The

Civil Lumar Month, consistsalternately of 29 and 30days. Thus will two civil months be equal to two astronomical ones, abating for the odd minutes; and so the new moon will be kept to the first day of such civil months for a long time together. This was the month in civil or common use among the Jews, Grecks, and Romans, till the time of Julius Cossar. The

Civil Solar Montu, consisted alternately of 30 and 31 days, excepting one month of the twelve, which consisted only of 29 days, but every 4 th year of 30 days. And this form of civil months was introduced by Julius Casar. Undet Augustus, the 6th month, till then from its place called sextilis, received the name Augustus, now August, in honour of that prince; and, to make the compliment still the greater, a day was added to it ; which made it consist of 31 days, though till then it had only contained 30 days; to compensate for which, a day was taken from February, making it consist of 28 days, and 29 every 4 th year. And such are the civil or calendar months now used through Europe.
MONTUCLA (Joum Stephen), member of the National Institute, and of the Academy of Berlin, censor royal of mathematical books, was born at Lyons, the 3 th of September 1725. His father was a banker, by whom he was intended for the same profession ; but the science of calculations, to which he was carly introduced, soon produced a discovery of the natural bent of his mind. In the Jesuits-college at Lyons he luid a grod foundation in the aucient languages, as well as in the mathematical sciences, which enabled him afterwards easily to acquire a competent acquaintance with the Italian, the German, the Dutch, and the English, which he not unly read, but also spoke very well.

At 16 years of age Montucla lost his father; and his
grandmother, who had been left guardian of his education, died 4 years after. Having finished his studies at Lyons, be went to Toulouse to study the law, a branch of study deemed necessary in the liberal education of every person not destined for the profession of arms.

From bence he repaired to Puris, to enjoy in that capital all the benefits it afforded to the studious, in the lessons of the best masters, in the rich collections of the productions of nature and art, in the best libraries of books, and in the united societies of the literati, among whom he found friends for the rest of his life, and which fixed and determined his choice and pursutt of the mathematical and philosophical sciences, in which he afterwards distinguished himself in so emiaent a degree. It was only in relaxing and unbending his mind, from such severe exercises, that he could sometimes occupy hiniself privately on subjects of less magnitude ; such as when he in a manner made an entire ucw book of Ozanam's Mathematical Recreations, by the multitude of articles added, abridged, or substituted: on which occasion be had so closely concealed from every person the secret of his concern in that neat and improved edition, that the work was actually sent to him to examine and authorize in his capacity of public censor for mathematical books, an honoraty office to whicls he had some time before been appointed. To the last edition of those Recreations hovever, he set the initials of his name,

Many other pieces were in the like anonymous manner composed by Montucla; among which may be here noticed an ingenious and learned History of Rescarches relating to the quadrature of the circle, published in 1754 ; a work very interesting, on account of the number of speculutors who have gone astray after that seducing plantom, and of the curious properties which the researches have given rise to.

On occaston of introducing into France, in 1756, the practice of inoculation, which had beco introduced into England in 1721, by ladly Muntague, on her return from Constantinople, Montucla made a translution from theEnglish of the primeipal writings on that subject, which. he added to the Memoire of la Condamine.

In the year 1758, came out Montucla's graud work, the History of Mathematics, in 2 large volumes in 4to: a work of profound reading and learning, and upon which, young as be was, he had spent a great many years of his life. This performance, of immense labour and erudition, published at 33 yrars of his age, juxtly procured to the author a most distinguisheal place in the learned world. This bistory, so truly admirable, whether we consider the extreme clearness and precision with which the subjects are treated, or the profound Irarning it exhibits, having been long out of print, the author's empioyment under the government, as first commissary of the king's buildings, for many years preventel him from fully yielding to the solicitations of his learned friends, to continue the work through the 18th century, in a new and enlarged edition. But the unfortunate loss of his fortune and employment, by the late revolution in France, left him but too much leisure for that purpuse. The consequence, happy in this instance for the sciences, has been a new edition in 4 large volumes; in which the history is continued down to the end of the 18 th century, and the former parts also very. much enlarged and corrected.

In 1755, Montucla was elected an associated member of the Acaderny at Berlin. And in 1761 he was placed,
' at Grenoble as secretary to the office of intendance, where he uniled in a happy marriage with Maria Françoisc Romand.

The duke de Choisenl having ordered, in 1764, a colony to be formed at Cayenne, Montucla went out there as first secretary to the commission, to which appointment was joined also that of astronomer royal. The atfairs of the colony not proving successiful, after 1.5 months Montucla returacel again to (imnolle, bringing with him many usefut observations and specimens in botany and natural histury, which proved beneficial both to the seiences and to the public ut large. This voyage also furnished him with thase cuncus observations on the shining of the sea in many places, and of various luminous insects, which are inserted near the end of the blit volume of his Itecreutions.

Soon after his return, Mentucla was appointed at Versailles to the honuurable and profitable oftice of first commissioner of the royal and public buildugs; an employment which he executed with great ability and usefulness during more than 25 years, till the overthrow of the monarchy put an end at ouce to this office, and the little fortune his regularity und aconomy had cnabled him to save, throwing him again on the world, in his old age, naked and stript of every thing except his integrity, and the love und respuct of has friends.

The inodesty and integrity of Montucla were not less remarkable than his eruduion. He was oflered a place in the Academy of Sciences of Paris; which through delieacy lie refused, as he felt he should not have leisure sufficient properly to attend to the duties of it. The portions of tiue which others would give to their pleasures, or amusements in their families, be always devoted to the details of the dutirs of his office, or to his studies. The trauslation from the English, of Carver's Travels in North America, was the sole monument of his pen, during thet long interval. And even this was prodnced properly in the faithful discharge of the public duties with which he was charged. Being particularly intrusted by the government with the correspondence relating to the voyages which it orderen, he made it lis dnty and cure to collect all the accomis he could fitul relating to such enterprises by other countrics. With this view, at finst only amusing his family with the reading of Carver's Travels, finding it enterianting und instructive, he completed and publeshed the whole translation.

Montucla was named a member of the National Iustitute from the time of its commencement. And the government of 1795 employed bim in examining and analysing the treatise deposited in the national archives. He was named professor of mathematics of the central school at
${ }^{1}$ Paris; but the bad state of his health would not permit bim to accept it; and the department honoured him with a place in the jury of central instruction. But a place in the offiee for the national lottery was the only resource for his family during two years; a pension of 2400 francs (1001.) given him by the mimister Neufchateau on the death of Saussure, and which he enjoyed only four months before his decease, which happencd the 18 th of December 1799. It was chietly occasioned, as it often happens to literary and sedentary men, by a retention of urine: keaving a widow, as also a daughter, married in 1783, and a son employed in the office of the minister for the interior.

Montucla was onc of, the many considerable mathematicians of the 18 th contury; being well acquainted with
all the branckes ardi improvements in those ahstrose re ences. His taste however, always chaste and ciear, letl him to prefer the pure and lumiunus methods of the aricient muthematicians, and to blame, in the French and the Germans, the great neglect of the same principles, which they showed on all occasions by their preterence of the tuore modern analysis.

In the qualities of his heart too Montucla was truly estimable: rernarkably modest in his manner and depori ment ; benevolent far beyond the tneans of his small for tune: of a very respectable personal appearance; he spol with ease and precision, but unassuming and with simpls city; related anecdotes and stories in a pleasant and play ful mauner ; and I, reathing, in all bis conduct and depori ment the sweetness of surtue, and the delicacy of a fib taste.

MOON, Luna, © , one of the heaveuly bodies, beir a satellite, or secondary planet to the eartb; considere as a primary planet, about which she revolves is ancilipe orbit, or rather the earth and moon revolve about a con mon centre of gravity, which is as much hearer to il earth's centre than to the moon's, as the mass of the i mer exceeds that of the latter.

The mean time of a revolution of the moon about t earth, from oue new moon to another, when she oventak the sun agath, is 29 d .12 h .44 m .2 s . 48 th.; but she mon once round her own orbit in 27 d .7 h .43 m .8 s. movi about $\$ 290$ miles every hour; and turns once round 1 axis exactly in the time that she gors round the ear which is the reason that she shows always the sames towards us; and that her day and night taken toget are just as long as our lunar month.

The mean distance of the moon from the earth is radii, or '30 diameters, of the earth; which is ab 237,500 miles. The mean excentricity of her orbi rósio fryth nearly of her mean distance, amounting about 13.000 miles. Her diameter is to that of the ea as 20 to 73 , or nearly as 3 to 11 , or 1 to $3 \frac{3}{3}$; and the fore it is equal to 2180 miles: her mean apparent , meter is $31^{\prime} 16^{\prime \prime} \frac{1}{3}$, that of the sun being $32^{\prime} 12^{\prime \prime}$. . surface of the moon is to the surface of the earth, z to 13 f , or as 3 to 40 ; so that the earth reflects 13 ti as much light upon the moon, as she does upon the eas and her solid content to that of the earth, as 3 to 146 as 1 to $48 \frac{3}{5}$. The density of the moon's body is to of the earth, as 5 to 4 ; and therefore her quatutit matter to that of the earth, as 1 to $\$ 9$ sery nearly; force of gravity on her surface, is to that on the ea as 100 to 293. The moon has little or no differen seasons; because her axis is almost perpendicular ic ecliptic.

I'henomena and Ihases of the Moon. The moon 1 a dark, opaque, spherical body, only shining with hight she receives from the sun, hence only that turned towards him, at any instant, can be illutuin the opposite side remaining in its native darknees: at the face of the moon vistsle on our earth, is thut p^{1} her body turned towards us; so, according to the va positions of the monn, with respect to the carth and we perceive different degrees of illumination; some a large and sometimes a less portion of the enligh surface being visible: And lence the moon appears : times increasing, then waning; sometimes horned, half-round; sometimes giblous, then full and r This may be casily illustrated by means of an ivors
which being before a candle in various positions, will present a greater or less portion of its illuminated hemisphere to the view of the observer, according to its situation in moving it round the candle.
The same phases may be otherwise exlibited thus: Let s represent the sun, τ the earth, and A bed \&e the moon's orbit. (Plate 19, fig. 3.) Now, when the moon is at A, in conjuuction with the sun s, ber dark side being entirely turned towards the earth, she will be invisible, as at a, and is then called the new moon. When she comes to her first octant at k , or has run through the 8th part of her orbit, a quarter of her enlightened hemisphere will be turned towards the earth, and she will then appear horned, as at h. When she has run through the quarter of her wrbit, and arrived at c, she shows us the half of her enlightened hemisphere, as at c, and she is then said to be ut the balf. At b she is in her-2d octant, and by showing us more of her eulightened hemisphere than at c , she appears gibbous, as at d. At lier opposition at e her whole ealightened side is turned towards the earth, when she appears round, as at c, and she is said to be full; having increased all the way round from a to z. On the other side she decreases again all the way from E to A : thus, in ber 3 d octant at p, part of her dark side being turned towards the earth, she again appears gibbous, as at f. At a slie appears still farther decreased, showing again just one half of her illumanated side, as at g. But when she comes to lier fourth octant, at n, sbe presents only a quarter of her enlightened hemisphere, and again appears horned, as at h. And at A, having now completed ber course, she again disappears, or becomes a new moon agait, as at first. The earth also presents exactly the suine phases to a spectator in the moen, as she does to us, but only in a contrary order, the one being full when the other changes. \&ce.

The Motions of the Moos are most of them very irregular. The only equable motion she has, is her revolution on her own axis, in the space of a month, or time in which she moves round the earth; which is the reason that she always turns the same face towards us. This exposure of the same face is not however so uniform, but that she turns sometimes a little more of the one side, and sometimes of the other, called the moon's libration; and also shows sometimes a litlle more towards one pole and sometinses towards the other, by a motion like a kind of wavering, or vacillation. The former of these motions bappens from this circumstance: the moun's rotation on her anss is equable or uniform; while ber motion in her orbit is unequal, being quickest when the moon is in her perigee, and slowest when in the apogee, like all other planetary motions; whence it liappens that sometimes more of one side is turned to the earth, and sometimes of the other. And the other irregularity arises from this: that the axis of the moon is not perpendicular, but a little iuclined to the plane of ber orbit: and as this axis maintains is parallchsm, in the moon's motion round the earth; it must necessarily change its siluation, in respect to an observer on the earih; whence it happens that sometimes the one, and sometines the other pole of the moon, becomes visible.
The very orbit of the moon is changeable, and does not always preserve the same figure : for though her orbit be elliptical, or newrly so, having the earth in one focus, the excentricity of the ellipse is varied, being sometimes increased, and sometimes diminished; viz, being greatest

Vol. II.
when the line of the apses coincides with that of the syzygies, and least when these lines are at right angles to each other. Nor is the apoge of the moun without an irregularity; being found to move furward, when it concides with the line of the syzygies; and bachward, when it cuts that line at right angles. Neinher is this progress or regress unifurm; for in the conjunction or upposition, it goes briskly forward; and in the quadatures, it either moves slewly forward, stands still, or goes backward. The motion of the notes is also variable; being quicker and slower in difficrent positions.

The Plysical Cause of the Moos's Motion, about the earth, is the same as that of all the primary plants abour the sun, and of the satellites about their primarics, viz, the mutual attraction butween the carth und monn, As for the particular irrogularities in the moon's notion, to which the earth and orther planets are not subject, they arise from the sun, which acts on, and disturbs her in her ordinary course through her orbit; and are all mecharically deducible from the same great law by which ber general motion is directed, viz, the law of gravitation and attraction. The other secondary planets which attend on Jupiter, Saturn, \&ce, are also subject to the like irregularities with the moon; as they are exposed to the sume perturbating or disturbing force of the sun; but their distance secures them from being so greatly ariectid as the moon is, and also from being so well observed by us.

For a familar idea of this matter, it must first be considered, that if the sun acted equally on the earth and moon, and ulways in parallel lines, this action would serve only to restrain them in their annual motions round the sun, and no way affect their actions on cach other, or their motions about their common centre of gravity. But because the moon is nearer the sun, in one half of her orbit, than the earth is, and farther off in the other half of her orbit; and because the power of gravity is always less at a greater distance: it follows, that in one half of her orbit the moon is more attracted than the carth towards the sun, and less attracted than the earth in the other half: and hence irregularities necessarily arise in the motious of the moon; the excess of attraction in the first case, and the defect in the second, becoming a force that disturbs her motion: und besides, the action of the sun, on the earth and moon, is not directed in parallel lines, but in lines that meet in the centre of the sun; which makes the effect of the disturbing force still the mote complex and enblasassing. And hence, as well us from the warious situations of the moon, arise the numerous irregularties in her motions, and the equations, of corrections, employed in calculating her places, \&c.

Newton, as well as others, has computed the quantities of these irregularities, from their causes. He finds that the force added to the gravity of the moon in her quadratures, is to the gravity with which she would revolve in a circle about the earth, at her present mean distence, if the sun had no effict on her, as 1 to $178 \frac{2}{8}$: $:$ be finds that the force subducted from her gravity in the conjunctions and oppositions, is double of this quantity; and that the area described in a given time in the quarters, is to the area described in the same time it the conjunctions and oppositions, as 10973 to 11073: and he finds that, in such an. orbit, her distance from the earth in her quarters, wonld ${ }^{\text {. }}$ be to her distance in the conjunctions and oppositions, as 70 to 69. On thesc irregularities, see Maclaurin's Account of Newton's Discoveries, book 4, chap, 4; as als?

J MO
most books of astronomy. Other particulars relating to the meon's motions, \&ee, have been stated as follow: The powir of the moon's influence, as to the tides, is to that of the sun, as 4.4815 to 1, according to Sir I. Newton; but different according to others.

As to the figure of the moon, supposing her at first to have bern a fluid, like the sea, Newton calculates, that the earth's attractoon would raise the water there near 90 tret high, as the attraction of the moon raises our sea 12 feet: whence the tigure of the mom nust be a spheroid, whuse grvatest diameter extended, wils pass through the ceatre of the earth; and will be longer than the other diameter, perpendicular to it, by 180 feet; and hence it comes to pass, that we always see the same face of the moon; for she cannot rest in any other position, but always endeavours to conform berself to this situation: Princip. lib. 3, prop. 38.

Newton cothuates the mean apparent diameter of the sun at $32^{t} 12^{\prime \prime}$; as the moon is $31^{\prime} 17^{\prime \prime}$. The density of the moon he concludes is to that of the earth, as 9 to 5 mearly; and that the mass, or quantity of matter, in the monh, is to that of the earth, as 1 to 26 nearly. The plane of the moon's orbit is inclined to that of the ecliptic, and makes with it an angle of about 5 degrees: but this inclination varies, being greatest when she is in the quarters, and least when in ber syzygies.

As to the inequality of the moon's motion, she moves swifter, and, by the radius drawn from her to the earth, describes a greater arca in proporition to the time, also has an orbit less curved, and by that means comes nearer to the carih, in ber syzygics or conjunctions, than in the quadratures, usiless the motion of her excentricity prevents it: which excentricity is the greatest when the moon's apogee falls in the conjunction, but least when this falls in the quadratures : her motion is also swifter in the earth's aphelion, than in its peribelion. The apogee also goes forward swifter in the conjunction, and slower at the quadratures: but her nodes are at rest in the conjunctions, and recede swiftest of all in the quadratures. The moon also peipetually changes the figure of her orbit, or the species of the ellipse she moves in.
There are also some other inequalities in the motion of this planct, which it is very difficult to reduce tu any certain rule; as the velocitics or horary motions of the apogee and nodes, and their equations, with the differ ence between the greatest eccentricity in the coujunctions, and the least in the quadratures; and that inequality which is called the variation of the mion. All these increase and decrease anmually, in a triplicate ratio of the apparent diameter of the sun: and this variation is increased and diminished in a duplicate ratio of the time between the quadratures; as is proved by Newton in many parts of his Principia. He also found that the apogees in the monn's syzygirs, go forward in respect of the fixed stars, at the rate of 23^{\prime} each day; and backwards in the quadratures 1 fi' $^{\prime}+$ per day: and therefore the mean annual motions be estimates at 40 degrees.

The gravity of the moon towards the earth, is increased by the action of the sun, when the moon is in the quadratures, and diminished in the syzygles: and, from the syzygies to the quadrature, the gravily of the moon towards the carth is continually meressed, and she is continually retarded in her motion: but from the quadrature to the syzygy, the moun's motion is perpetually diminished, and the motion in her orbit is accelerated.

The moon is less distant from the earih at the syzagie and more at the quadratures. As rudius is to $\frac{3}{2}$ of the sil of double the moon's distance from the syzygy, sal is th addition of gravity in the quadratures, to the borce whic accelerates or retards the muon in her orbit. And radius is to the sum or difference of $\frac{1}{x}$ the radius and $\frac{3}{}$ t cosine of double the datance,f the moon from t : syzygy, so is the addinion of gravity in the quadrature, the decrease or inciease of the gravity of the moun at th distance.

The apses of the moon go forward when she is in t syzygis, and back ward in the quadraturis. But, in a whe revolution of the moon, the progress exceedy the regre: In a whole revolution, the npses go forward the fastest whe the line of the apses is in the nodes; and in the same ca they go back the slowest of all in the same revolutio When the lue of the apses is in the quadralures, the aps are carried in cons quentia, the least of all in the syayg" but they return the swithest in the quadrature; and it, tl case the regress excceds the progress, in one enture revol tion of the moon.

The excentricity of the orbit undergoes various chang every revolution. It is the greatest of ull when the lue the apses is in the syzygies, and the least when that line in the quadratures.-Considering one entire revolution the moon, cateris paribus, the nodes move in anteceden! swiftest of all when she is in the syzygies; then slow and slower, till they are at rest, when she is in the quadr tures. -The line of nodes acquires successively ull pussil. situations in respect of the sim ; and every ycar it ge twice through the syzygies, and twice through the quads tures.-In one whole revolution of the moon, the nodes back very fast when they are in the quadratures ; th slower till they come to rest, when the line of nudes is the syzygies.

The inclination of the plane of the orbit is changed 1 the same force with which the nodes are moved; ben increased as the moon recedes from the node, and minished as she approaches $i t$. The incliantion of t orbit is the least of all when the nodes are cone to t syzygies. For in the motion of the nodes from the syz gies to the quadratures, and in one entire sevolution of t monn, the force which increases the inclination, exced that which diminishes it; therefore the inclimation is ; creased; and it is the greatest of all wheu the noges are the quadratures.

The moon's motion being considered in general: \mathbf{L}. gravity towards the earth is dimmished on her cotning no the sun, and the periodical time is the greatest; as al the distance of the moon, cateris paribus, the greatwhen the earth is in the peribelion. All the crrors the moon's motion are something greater in the cc junction than in the opposition. All the disturbi forces are inversely as the cube of the distance of the s from the earth; which when it remains the same, they a as the distance of the moon from the earth. Consideri all the disturbing forces together, the diminution of gravi prevails.

The figure of the Moos's pash, about the earth, is, as b been said, nearly an ellipse; but her pash, in moving, 1 gesber with the carth about the sun, is made up of a seti or repetition of epicycloids, and is in every point conca towards the carth. Sce Maclaurin's Account of Newten Discov. pa. 336, 4to. Ferguson's Astrun. pa. 129, \& and Rowe's Flux. pa. 225, edit. 2.

Astronomy of the Moos.

To determine the Periodical avd Synodical Months; or the period of the moon's revolution about the earth, and the period between one opposition or conjunction and another. In the middte of a lunar eclupse, the moon is in opposition to the sun: compute thereture the time between two such eclipses, at some cunsiderable distance of time from each other; and divide this by the number of lunations that have passed in the muan time; so shall the quotient be the quantity of the synodical month. Compute also the sun's mean motion during the time of this synodical month, which add to 360°. Then, as the sum is to 360°, so is the synodical to the periodical month.
For example, Copernicus observid two eclipses of the moon, the one at Rome on November 6, 1500, at 12 at night, and the other at Cracow on August 1, 1523, at 4 h. 25 min . the diticrence of meridians being 0 h .29 min .: hence the quantity of the synodical month is thus determined:

2d Observ.	$1523 y$	$237^{\text {d }}$	$4^{\text {b }}$	25^{m}
1st Observ.	1500	310	0	29
Difference	22	292	3	56
Add intercalary days				
Exact interval	22	297	3	56

which divided by 282 , the number of lunations in that time, gives the synodical month $29^{\mathrm{d}} 12^{\mathrm{h}}+11^{\circ}$.

From two other observations of eclipses, the one at Cracow, the other at Babylon, the same author determines more accurately the quantity of the synodical month to be $29^{4} 12^{\text {b }} 43^{-5} \& c$; and from other observations, probably more accurate still, the same is fixed at $29^{4} 12^{\mathrm{h}} 44^{\mathrm{E}}$.

The sun's mean motion in that time $29^{\circ} 6^{\prime} 24^{\prime \prime} 18^{\prime \prime \prime}$, added to 360°, gives the moon's motion 38962418 ; Therefore the periodical month is $27^{4} 7^{\mathrm{L}} 43^{\mathrm{m}} 5^{\circ}$.

According to the observations of Kepler,
the mean synodical month is $29^{4} 12^{\mathrm{h}} 44^{\circ} 3^{\circ} 2^{\text {th }}$, $\begin{array}{llllll}\text { and the mean periodical month } & 27 & 7 & 43 & 8\end{array}$

Hence, lst, the quantity of the periodical month being given, the moon's diurnal or horary motion, \&cc, may be found: and thus may tables of the mean motion of the moon be constructed.
2. If the mean diurnal motion of the sun be subtracted from that of the moon, the remainder will give the moon's diurnal motion from the sun: and thus may a table of this nution be constructed.
3. Since the moon is in the node at the time of a total eclipse, if the sun's place be found for that time, and 6 signs be added to the same, the sum will give the place of that node.
4. By comparing the ancient observations with the modern, it appears, that the nodes have a motion, and that they proceed in antecedentia, or backwards, from Taurus to Aries, from Aries to Pisces, \&c. Therefure, if the diurnal motion of the nodes be added to the moon's diurnal mution, the sum will be the motion of the moon from the node; and thence by simple proportion may be found in what time the moon goes 360° from the dragon's bead, or ascending node, or in what time she goes front, and returns to it; that is, the quantity of the dracontic month.
5. If the motion of the apogee be subtracted from the mean motion of the moon, the remainder will be the mowni: mean motion from the apogee; and hence, by the

MOO.
rule of threc, the quantity of the anomalistic month is determined.

Thus, according to Kepler's observations,
The mean synodical month is - $29^{\mathrm{d}} 12^{\mathrm{h}} 44^{\mathrm{s}} 3^{\prime} 2^{\text {th }}$ The periodical month - $\quad-\quad \begin{array}{llll}27 & 7 & 43 & 8\end{array}$
$\left.\begin{array}{c}\text { The place of the apogee for the } \\ \text { year } 1700 \text { Jan. } 1 \text {, old style, was }\end{array}\right\} 1^{\circ} \quad 8^{\circ} 57^{\prime} 1^{\prime \prime}$
The place of the ascending node $\quad-\quad 4 \begin{array}{lllll}4 & 27 & 39 & 17\end{array}$
Mean diurnal motion of the moon - $1310 \quad 35$
Diurnal motion of the apogee - $\quad 6 \quad 41$
Diurnal motion of the nudes - 311 Theref. diurnal mot. from the latter - $\quad 131346$
$\left.\begin{array}{c}\text { And the diurnal motion from the } \\ \text { apogee }\end{array}\right\}-1 \begin{array}{lll}13 & 3 & 54\end{array}$
Lastly, the excentricity is 4362 , of such parts as the scmidiameter of the excentric is $\mathbf{1 0 0 , 0 0 0}$.

To find nearly the Moos's Age or Change.

To the epact add the number and day of the month; their sum, abating 30 if it be above that number, is the moon's age; and her age taken from 30 , shows the day of the change.-The numbers of the months, or monthly epacts, are the moon's age at the beginning of each montb, when the solar and lunar years begin together; and are thus:
$\begin{array}{llllllllllll}0 & 2 & 1 & 2 & 3 & 4 & 5 & 6 & 8 & 8 & 10 & 10\end{array}$ Jan. Feb. Mar. Ap. Mo. Jua. Jul. Aug. Sep. Oct. Nov. Der.

Ex. To find the moon's age, Oct. 14, 1813.

Here, the epact is	9
Number of the month	8
Day of the month	$\frac{14}{31}$
The sum is	30
Substract or abate	30
Leaves moon's age	1
Taken from	$\frac{90}{29}$
Days till the clange	
Answering to Nov. 12	

To find nearly the Moon's Sowthing, or coming to the meridian. Take $\frac{4}{3}$ or $\frac{8}{\mathrm{~T}}$ of her age, for her southing nearly; after noon, if it be less than 12 hours; but if greater, the excess is the time after the foregoing midnight.

Er. Oct. 23, 1814.
The moon's age is 10 days
$\frac{1}{10}$ of which is $8^{\text {b }}$ the sou, afternoon.
Mr. Ferguson, in his Select Exercises, pa. 135, \&kc, has given very easy tables and rules for finding the new and full moons near enough the truth for any common almanac. But the Nautical Almanac, which is now always published for several years before-band, in a great measure supersedes the necessity of these and wher such contrivances.

Of the Spots and Mountains, \&cc, in the Moon.

The face of the moon is greatly diversified with inequalities, and parts of different culours, some brighter and some darker than the other parts of her disc. When viewed through a telescope, her face is evidently diversified with hills and valleys: and the same is also shown by the edge or border of the moon appearing jagged, when so viewed, especially about the confincs of the illutainated part when the moon is either horned or gibbous.

The astronomers, Florenti, Langreni, Hevelius, Grimaldi, Riccioli, Cassini, and Delahire, \&c, have drawa the face of the moon as viewed through telescopes; noting K 2
all the more shining parts, and, for the better distinction, narking them with some proper name; some of these authors calling them after the names of philosophers, astronomers, and other eninent men; while others denominate them from the known names of the different countries, islands, and seas on the earth. The names adopted by Riccioli however are mostly followed, as the names of Hipparchus, Tycho, Copernicus, \&xc. Fig.4, plate 19, is a rather exact representation of the full moon in her mean libration, with the numbers to the principal spots according to Riccioli, Cassini, Mayer, \&c, which denote the names as in the following list of them: also the asterisk refers to one of the volcanoes observed by Herschel.

* Herschel's Volcano
1 Grimaldi
2 Galileo
3 Aristarchus
4 Kepler
5 Gassendi
6 Schikard
7 Harpalus
8 Heraclides
9 Lansberg
10 Reinhold
11 Copernicus
12 Ifelicon
13 Capuanus
14 Rulliald
15 Eratosthenes
16 Timocharis
17 Plato
18 Archimedes
19 Insula Sinus Medii
20 Pitatus
2t Tycho
22
23

26 Hermes
27 Possidonius
28 Dionysius
29 Pliny
$30\left\{\begin{array}{l} \text { Catharina Cyrillus, } \\ \text { Theophilus } \end{array}\right.$
31 Fracastor
$32\left\{\begin{array}{l} \text { Promontorium auctum, } \\ \text { Censurinus } \end{array}\right.$
33 Messala
S4 Promontorium Somnii
35 Proclus
36 Cleomedes
37 Snell and Furner
38 Petavius
99 Langrenus
40 Taruntius
A Mare Humorum
1 Mare Nubium
c Mare Imbrium
D Mare Nectaris
c. Mare Tranquillitatis
\% Mare Serenitatis
- Mare Facmoditatis
a Mare Crisium

That the spots in the moon, which are taken for mountains and valleys, are really such, is evident from their shadows. For in all situations of the moon, the elevated parts are constantly found to cast a triangular shadow in a direction from the sun; and, on the contrury, the cavities are always dark on the side next the sun, and illuminated on the opposite one; which in exacily conformable to what we ubserve of hills and valleys on the carth. And as the tops of these mountains are considerably elevated above the other parts of the surface, they are often illuminated when they are at a considerable distance from the confines of the enlightened hemisphere, and by this means afford us a method of determining their heights.

Thus, let E.D be the moon's dismeter, ECD the boundary of light and darkness ; and a the top of a hill in the dark part beginning to be illuminated; with a telescope take the proportion of $a \mathrm{E}$ to the diameter en : then there are given the two sides AE, EC of a rightungled triangle sce, the quares of which being added together give
 the square of the third side AC, and the root extracted is that side itself; from which subtracting the radius ac,
leaves as the height of the mountain. In this way, Riccioli observed the top of the hill called St. Cutbarine, on the 4th day after the new moon, to be illuninated when it was distant from the confines of the enlightened hemisphere about one 16 th part of the moon's diameter; and thence found its height must be near 9 miles.

It is probnble however that this determination is 00 much. Indeed, Galileo makes aE to be only one 20ih of ED, and Hevelius mahes it ouly olu 26ih of ED; the former of these would give $5 \frac{1}{4}$ miles, and the latter only $3 \frac{1}{4}$ miles, for AB, the leight of the mounuain: and probably it should be still less than either of these.

Accordingly, they are greatly reduced by the observations of Herschel, whose method of measuring them was given in the Philos. Trans. an. 1780, pa. 507, or my Abridg. v. 14, pa. 717; and which is as follows. This method is for any time whatever of the moon's age; whereas the method used by Hevelius, as above explained, willserve for the time of the quadrature only; in all other positions the projection of the hills must appear much shorter than it really is. Let sixy or s / m, be a line drawn from the sun to the mountain, touching the moon at L or l, and the mountain at x orm. Then, toan observer at E or e, the lines Lm , $/ m$, will not appear of the same length, though the mountains should be of an equal height; for lm will be projected into $o n$, and $/ m$ into on. Bur these are the quantities that are taken by the micrometer, when we ob-
 serve a mountain to project from the line of illumination. From the observed quantity on, when the moon is not in her quadrature, to find LM , we have the following analogy: the triangles $100, \mathrm{LMr}$, are similar; therefore LO: LO:: Lr: LM \quad; but Lo is the radius of the moon, and $L r$, or ON, is the olserved distance of the mountain's projection; and to is the sine of the angle nol $=0.5$, which we may take to be the distanee of the sun from the moon, without any material error, and which therefore we may find at any given time from an ephemeris.

In this manner Dr_{F}. I1. measured the height of many of the lunar prominences, and draws at last the following conclusions:-" From these observations 1 believe it is eviden, that the height of the lunar mountains in general is greatly over-rated; and that, when we have excepted as few, the generality do not exceed half a mile in their perpendicular elevation." And this is confirmed by the measurement of several mountains, as may be seen in the place above quoted.

As the moon has on her surface mountains and valleys in common with the earth, some modern astronomers have discovered a still greater similarity, viz, that some of these are really volcanues, emitting tire, as those on the earth do. An appearance of this kind wis discovered some few years ago by Don Clloa in an eclipse of the sun. It was a small brighi spot like a star near the margin of the moon, and which he at that time supposed to be a hole or valley with the sun's light shining through it. Succeeding observations, however, have inducod astronomers to attribute appearancer of this kind to the eruption of volcanic fire ; and $1 \mathrm{Ir}_{\mathrm{r}}$. Therselbel has particularly ubserved several eruptions of the lunar voleribees, the last of which begives an account of in the Philos. Trans, tor 1787, April 19.

10 h .6 m . sidereal time, " 1 perceived," says be, "three volcanocs in different places of the dark part of the new moon. Two of then are either already nearly extinct, or otherwise in a state of going to break out; which perchaps may be decided next luation. The third shows un actual eruption of fire or luminous matter: its light is much brighter than the nucleus of the connet which M. Mechain discovered at Paris the 10th of this month." The following night he found it burnt with grater violence; and by measurement he found that the shining or burning matter must be more than 3 miles in diameter; being of an irregular round figure, and very sharply defined on the edges. The othertwo vulcanoes resembled large faint nebulx, that are gradually much brighter in the middle; but no welldefined luminous spot was discovered inthem. He adds, "the appearance of what I have called the aciual fire, or eruption of a volcano, exactly resembled a small piece of burning charcoal when it is covered by a very thin coat of white ashes, which frequently adhere to it when it has been some time ignited; and it had a degrec of brighturss about as strong as that with which a coal would be scen to glow in faint day-light.

In a letter by M. Lalande, it is said that, the 19 th inst. from 7 to 9 in the evetuing, Dum. Nouet, one of the astronomers of the Koyal Obvervatory, perceved, in the unenlightened part of the moon, whot Dr. Herschell has called a volcans, like a star of the sixth maguitude, or one of the cloudly ones, the brightmess of which inereased from time to time, as if by flasties. Other astronomers have perceivel it, and M. de Villeneuve had seen it before, on the 22d of May, 1787. We cannot therefore doubt of the existence of this volcano in the moon. Dr. Herschel saw it the 4th of May, 1783, and particularly the 19th of April, 1787. It the eclipse of the 24th of June, 1778, M. d'Ulloa, a well-known Spanish astronomer, had seen on the dark lise af the moon, a bright point; and in the total eclipse of 1715 , certain curious observers had perceived soine flashes of light. There is no sensible atmosphere in the moon, it is true, and chemists may dispute about the name of volcanoes bring given to such apparent cruption; but the name after all is of no consequence, and we must certainly subscribe to Dr. Herschit's opinion. This volcano is situated in the north-cast part of the mown, about three minutes from the moon's border, tuwards the spot called Helicon, marked No. 12 in the figure of the moon in Lalande's astronomy. ()n the next day, March the 14th, Jupiter had been celipsed by the moon. This rare and curious phemomena has been ubsersed by all astronomers.

It has bern disputed whether the mion has any atmosphere. The following arguments have been urged by those who deny it. 1. The moon, say they, constantly appears with the same brightness when our atmosphere is clear; which could not be the case if she were surrounded with an atmospliere like ours, so variable in its density, and so often obscured by clouds and vapours. 2. In an appulse of the moon to a star, when she comes so m-ar it that a part of ber attinosphere comes between our eye and the stur, refraction would cuuse the latter to stem to change its place, so that the moon would ajpear to touch it later than by her own motion she would do. S. Some philosophers are of upinion, that because there are no scas or lakes in the moon, there is therefore no atmospluere, as there is no water to be rained up in vapours.

But all these arguments bave been answered by other
astronomers in the following manuer. It is demied that the moon appears always with the same brightuess, even when our atmosphere appars equally clear. Hevelus relates, that he hay several times found in skies perfecily clear, when even stars of the fith and 7th magnitude were visible, that at the same altitude of the moon with the saine elongation from the sun, and with the same telescope, the moon and her macule do not appear equally lucid, clear, and conspicuous at all times; but are much brighter and more distinct at some times than at others. And lence it is inferred that the cause of this phenomenon is neither in our air, in the tube, in the moon, mor in the spectator's cye ; but must be looked for in something existing about the woon. Auadditional argument is drawn from the different appearances of the moon in total eclipses, which it is supposed are owing to the different constitutions of the lunar atmosphere.

To the 2d argument Dr. Long replies, that Newton has shown (Princip, prop. 37 , cor. 5), that the wcight of any body upun the moon is but a thiril part of what the weight of the same would be upon the earth : now the expansion of the air is reciprocally as the weight that compresses it; therefore the arr surrounding the moon, being plessed together by a weight of one-third, or being atiracted towards the centre of the moon by a lorce equal only to one-thirl of that which attracts our air towards the centre of the earth, it thence follows, that the funar atmosphere is only one-third as dense as that of the earth, whach is too little to produce any sensible peiraction of the star's light. Other astronomers have contended, that such refraction was sometimes very apparent. M. Cassni says, be often observel that Saturn, Jupiter, and the fixed stars, bad their circular figures changed into an elliptical one, when they approached either to the moon's dark or illuninatrd limb, though they own that, in otber occultations, no such change could be observed. And, with regard to the tised stars, it bas been urged that, granting the moon tu have an atmosphere of the same nature and quantity as ours, no such effect as a gradual diminution of light ouglit to take place; at least none that we could be capable of perceiving. At the leiglit of 44 miles, our atnosphere is su rare as to be incapable of refracting the rays of light: this height is the 180th part of the earth's diameter; but since clouds are never observel higher than 4 oniles, it appears that the vapourous or obscure part is only the lgsoth part. 'The mean apparent diameter of the menn is $31^{\prime} 29^{\prime \prime}$, or $1889^{\prime \prime}$: therefure the obscure parts of her almosphere, when viewed from the earth, must subtend all angle of less that one second; which space is passed over by the moon in less than two secends of time. It can therefore bardly be expected that observation should generally determine whether the supposed obscuration takes place or not.

As to the 3 d argument, it conclades nothing, hecause it is not known that there is no water in the monn; nor, though this could be proved, would it fillow that the lunar atınusphere answers no other purpose than the raiving of water into vapour. There is however a strong argument in favour of the existonce of a lunar atmosphere, tathen from the appoarance of a buminous circle round the mumin the tune of total solar eclipses; a circumstnuce that has been observed by many astronomers; eneqecially in the total eclipse of the sun which happened Alay 1, 1706 .

These are the aryuments that hase been advanced for and against the hyputhesis of the existernce of a lunar at-

M O							
Harcest Moons,							
L	m	2	M	2	M	\pm	M
1790	1798	1807	1816	1826	1835	1844	1853
$179 t$	1799	1808	1817	1827	1836	1845	1854
1792	1800	1809	1818	1828	1857	1846	1855
1793	1801	1810	1819	1829	1838	1847	1856
1794	1804	1811	1820	1830	1839	1848	1857
1795	1803	1812	1821	1831	1840	1849	1858
1796	1804	1813	1822	1832	1841	1850	1839
1797	1805	1814	1723	1833	1842	1851	1860
	1806	1815	1824	1834	1843	1852	1861
			1825				

As to the Infuence of the Moos, on the changes of the weather, and the constitution of the buman body, it may be obsersed, that the vulgar doctrine concerning it is very ancient, and bas also gained much credit among the leaured, though perhaps without sufficient examination. The common opinion is, that the lunar influence is chiefly exerted about the tine of the full and change, but more especially the latter; and it would seem that long experence has in some degree established the fact: hence, persons observed at those times to be a little deranged in their intellects, are called lunatics; and hence many persons anxiously look for the new moun to bring a change in the weather. The moon's influence on the sea, in producing tides, being agreed upoti on all hands, it is argued that she must also produce similar changes in the atmosphere, but in a much bigher degree; which changes and commotions there, must, it is intierred, have a considerable influcnce on the weather, and on the human body.

Besides the observations of the ancients, which tend to establish this doctrine, several ainong the modern philosophers have defeuded the same opinion, and that upon the strength of experience and observation; while others as strenuuusly dony the fact. The celebrated Dr. Mead was a believer in the influence of the sun aad moon on the human body, and published a book on this subject, intitled, De Iinperio Solis ac Lunz in Corpore Humapo. The existence of such influence was however oppused by bishop Ilorsky, in a learned paper on this subject, in the Philos. Trass. for the year 1775 ; where be give a specimen of a rranging tables of meteorological observations, so as to deduce from them facts, that muy either confirm or rifute this popular opinion; recomnending it to the karued, to collect a large serics of such obscrvations, as no conclusions can be drawn from one or two only. On the other band professor Toaldo, and some French philosophers, tahe the opposite side of the question; and, from the authority of a long serics of observalions, pronounce decidedly in favour of the Lunar Influence.

Afceleruiom of the Moon. Sec Acceleration.
Mouv-Dhel. Ser Dial.
Horizontal Moon. See Apparent Magitude.
MOOILE (bIr Josas), a very respectable mathematician, and surseyor-gen ral of tbe ordnance, was burn at Whatbee in Lancashire, about the year 1620 . Afier enjoying the advantages of good schoul education, he beut his studies principally to the mathematics, to which he had always a strong inclitation. In the expeditions of King Charles the lst into the northern parts of England, our author was introduced to him, as a person studtous and learned in those sciences; when the king expressed much approbation of him, and promised him encouragemem; which indeed laid the fuandation of his furtune. He was aftere wards appointed mathematical master to the king's second
son James, to instruct him in arithmetic, geography, the use of the globes, \&ec. During Cromwell's government it seems he followed the prolession of a public teacher of mathematics; for I find him styled, in the title-page of some of his publications, "professor of the nathematics." After the return of Charles the 2 d , he found great favour and promotion, becoming at length surveyor-gelkral of the king's ordnance. He was also a great tavourite both with the king and the duke of lurk, who often consulted hims, and were advised by him on many occasouns. And it must be owned rhat he often employed his interest with the court to the advancement of learning and the encouragement of merit. Thus, it was through his inmerest thut Flamsteed-house was buitt in 1675, as n public observatory, recommending Mr. Flamsteed to be the king's astronomer, to make the observations there: and being sur-veyor-general of the ordunnce himselt, be mate the salary of the astronomer-royal payable out of the oflice of ordnance, as it still contmu's. Being also a governor of Christ's-hospital, he prevalled on the king to found the mathematical schuol there, allowing a handsome salary for a masiet to instruct a certain number of the boys in mathematics and navigation, to qualify them for the seaservice. Here he soon found an opportunity of exerting his abilities in a manner somewhat answerable to his wishes, namely, that of serving the rising generation. And considering with himself the benctit the nation might receive from a mathematical schorl, if rightly conducted, he made it his utmost care to promote the improvement of it. But though the school was established, there still wanted a methodical institution from which the youths might receive such necessary helps us their studies required: a laborwus work, from which his other great and assiduas employments might very well have exempted him, had not a pretominant segard to a more general usefulness engaged him to devote all the leisure hours of his declining years to the improvement of so useful and important a seminary of learning.

Having thus engaged himself in the prosecution of this general design, he next sketelied out the plan of a course or system of mathematics for the use of the school, and then drew up and published several parts of it himself, when death put an end to his lubours, before the work was completed, about the middle of 1681 , the year in which the work was published by bis sons-in-law, Mr Hanway and Mr. Potinger. Of this work, the Arithmetic, Practical Geometry, Trigonometry, and Cosmography, were written by Sir Jonas hinself, and printed before his death. The Algebra, Navigation, and the books of Euclid were supplied by Mr. Perkins, at that time master of the mathematical school. And the Astronomy, or Doctrine of the Sphere, was written by Mr. Fiamsteed, the astrono-met-royal.

Further, as be was the king's constant counsellor in all matters of science, it was doubtless by his advice that the Royal Society also was founded in the year 1662.
'The list of Sir Jonas's works, as far as 1 have seen them, is as follows:

1. The New System of Mathematics; above mentioned, in 2 vols 4 to, 1681 .
2. Arithmetic in two books, viz, Vulgar Aritbmetic and Algebra. To which are added two Treatises, the one, A wew Contemplation Geometrical, upon the Oval Figufe called the Ellipyis; the other, The two first books of Mydorgius, his Conical Sections analized \&c. 8vo, 1660.
3. A Mathematical Compendium ; or Usefui Practices in Aruthmetic, Geometry, and Astronomy, Gengraphy and Navigatioli, \&ec, \&e. 18mo, 4 th edition in 1705.
4. Modern Fortification, $\mathbf{\Delta c}, \mathbf{1 6 7 3}$, in 8vo.
5. \AA Gencral Tratise of Artillery : or, Cirent Ordannce. Written in Italian by Tomaso Moretii of Brecia. Translated into English, with notes thereupon, and some addtions out of French for Sea-Gunners. By Sir Jonas Muore, Kt. $8 \mathrm{vv}, 1683$.

MORELAND or MORLAND (Sir Samuth), ma ingemous mechanist and philosopher. He was master of mechaties to king Charles the 2d, and be invented several useful machines; as, the upeaking-trumpet, a tireengiae, ond a capstan for heaving up anchors, sc. He published mbo a respectable book on Arithmetic, in 1674. Three papers of his are inserted in the Philos. Trans.; one on the speaking-trumpet above-mentioned; another on a scheme for raising water; and a third on a successiul operation for the hydrous pectoris.

This author was the son of another Sir Samuel Morland, a great statesman, und under-secretary to the minister Thurlow. He was employed by Cromwell in several embassics, and had received the title of baronet for services rendered to King Charles the 1st.

In 167 S , Sir S. pot a patent for a certain powerful engine to raise water, which project was, in the preceding year, announced in the Philus. 'I rans, of the Royal Society; This machine, by the strength of 8 men, would force water, in a continual stream, trom the siver Thames, to the top of Wmisor Castle, and 60 feet higher, at the rate of 60 barrels an hour; which experiment was repeated several times, in the year 1681, before the king, queen, and court; when his majrsty presented to Sir S. a medal, with his effigy set round with diamonds, and constituted him his master of mechanics, acc. So that it seems it has not uluays been the practice to present to this office, without some view to public utility.-To Sir S. also it appears, is due the first account of the steam-engine; on which subject, he wrote a botk, in which he not only showed the practicability of the plan, but went so far as to calculate the power of different eg linders. This booh is now extant in manuscript, in the Harieian collection of MSS. in the British Moseum, described in the improved Harleian catalogue, vol, iii, No. 5771 , and it is also pointed out in the preface to that volume, sect. 32 . The author dates bis invemion in 1682 ; cunsequently $t 7$ years prior to Savery's patent. It was presented to the French king in 1683, at which tine experments were uctually shown at St, Germain's. As Mr, s. held plnecs under Charles the 2d, we must naturally cenclude that he nuuld not have gone over to France to eftio hos invention to Louis the 14 th, had he not found it slighteci at home. The project seems to have remained obscut in buth countries till 1699, when Savery, who probably knew nore of Morland's invention than he ownerl, obitained a patett; and in the very same year, M. Amontons propased sonething similar to the French Acadimy, seeningly as his own.

MORTALITY. Dills of Mortality, are accounts or registers specifying the bumbers born and buricd, und sometimes married, in anry town, parish, or district. Thise are of great use, not only in the ductrome of lite nenuities, but in showing the degrers of henlthimess and prodificnesa, with the progress of population in the places where they are kept. It is thercfore much to be wished that such ac-

MOT

counts had always been correctly kept in every kingdom, and regularly published at the end of every year. We should then have had under inspection the comparative strength of every kingdom, as far as it depends on the number of imhabitants, and its increase or decrease at differem periods.

Such uccounts are rendercd still more useful, when they include the ages of the dead, und the distempers of which they have dicd. In this case they convey some of she must important instruction, by furnishing the means of ascertaining the law which governs the waste of human life, the values of amnuities dependent on the continuance of any lives, or any survivorships between them, and the favourableness or unfavourableness of different situations to the duration of life.

There are however but few registers of this kind; nor has this subject, though so interesting to mankind, ever engaged much attention till lately. Indeed, bills of asortality for the several parishes of the city of London bave been kept from the year 15y2, with little interruption; and a very ample account of them has been published down to the year 1759, by Dr. Bireh, in a large 4to vol. which is pethaps the most complete work of the kind extant; containing besides the bills of inortality, with the diseases and casualties, several other valudile tracts on the subject of them, and on political arithmetic, by scveral other authors, as Capt. John Graunt, p. R. S.; Sir William Petty, f. g. s.; Corbyn Morris, Esq. E. h. s.; and J. P. Fisq. r. R. E; ; the whole forming a valuable repository of materials; and it would be well if a continuation were published, down to the present date, and so continued from time to time.

Bills, containing the ages of the dead, were long since published for the town of Breslaw in Silesia. It is well known what use has been made of these by Dr. Halley, and after bim by Mr. Demoivre. A table of the probabilities of the duration of human life at every age, deduced from them by Dr. Halley, was pablished in the Philos. Trans. vol. 17, and has been inserted in this work under the article Lete-Anmuities; which is the first table of the kird that has been published. Since the publication of this table, similar bills have been established in many other places, in England, Germany, Switzerland, France, Holland, Sc, but more particularly in Sweden; the results of some of which may be seen in the large comparative table of the duration of life, under our article Life. Annuitics, as wrll as in the writings of Dr. Price, baron Mascres, Mr. Baily, \&c.

MORTAR, or Murtar-Piece, a short piece of ordnance, thick and wide, proper for throwing bomb-stells, carcases, stones, grape-shot, \&c. It is thought that the use of mortars is prior to that of cannon: for they were employed in the wars of Italy, to throw balls of' red-hot iron, and stones, long before the invention of shells: and it is generally believed that the Germans were the first inventors. The practice of throwing red-hot balls out of mortars, was first practised at the siege of Stralsund in 1675 , by the clector of Brandenburg; though some say, in 1653 , at the siege of Bremen.

Mortare are inade either of brass or iron, and it is usual to distinguish them by the diameter of the bore; as the 13 inch, the 10 inch, or the 8 inch mortar: there are sotue of a smaller sort, as Cochorns of 4.6 inches, and Royals of 5.8 inches in diameter. As to the larger sizes, as is inches, \&c, they are now disused by the English, as
well as most other Europenn nations. For the circumstances relating to mortars, see Muller's Artillery.

Cochorn Mortar, a small kind of one, invented by the celebrated eugineer baron Coehorn, to throw small shells or greusdes. These mortars have been sometimes tixed, to the number of a dozen, on a block of oak, at the clevation of 43°.

MOTION, or Local Motion, is a continued and successive change of place. Borelli defines it, the successive passage of a body from one place to another, in a determinate time, by becoming successively contiguous to all the parts of the intermediate space. Or motion is that affection of matter by which it is transferred from one puint of space to another.

In order that the doctrine of mechanics may be brought within the boundaries of inathematical investugation, it is necessary, not only that the quantitics it proposes for discussion should be measurable, either in theluselves or in their effects, but also that some general principles should be eatablishted, the truth of which should be incontrovertible, and to which the student may at all times appeal in the course of his researches. Such general principles were first distinctly proposed by Sir 1. Newton, in his Principia, and they have since his time been received as mechanical axioms, or, as they are commonly called, Laws of Motion, which are as follows:

1. Every body continues in its state of rest or uniform motion in a right line, until a change is effected in it, by the agency of some external force.
2. Any change affected in the quiescence, or motion of a body, is in the direction of the force impressed, and is proportional to the quantity of it.
3. Action aud reaction are equal and contrary; or the mutual actions of two bodies on each other, are always equal, and directed to contrary parts.

Continuarion of Motion, or the cause why a body, once in motion, continues to persevere in it, is a subject, that has been much controverted by many celebrated philosophers; we must, however, be content with knowing that it is one of the fundamental laws of nature, which is beyond the comprehemsion of the human mind; and by which, motion once begun, would be continued in infinitum, were it to meet with no interruption from external causes, such as the power of gravity, the resistance of mediums, \&c, \&c.

Communication of Mottos, or how a body in motion communicates the same to a body at rest, by coming in contact with $i t$, is also a subject which has been as much controverted by philosophers as the former, and after all, is as little understood as the coutinuation of motion, the cause of gravity, and other speculative inquiries of a similur nature.

Motion, as we before observed, is the proper sulject of mechanics, and these are the basis of all natural philosophy; and hence the denomination, Mechanical, or Experimental Philosophy.

In ettict, all the phenomena of nature, all the changes that happen in the system of bodies, ate owing to motion; and are directed according to the laws of it. Hence the modern philosophers have applied themselves with peculiar ardour to constder the doctrine of motion; to investigate the properties and laws of it; by obscrvation and experiment, anded by the use of geometry. And to this is owing the great advantage of the modern philosophy over that of the ancients; who geuerally founded their systems of
philosopliy on sotme absurd bypothesis of their own invention; whereas the moderns, by deducing theirs from experiments, carefully and frequenily repuated, are enabled to procoed from effects to their causes in a much mare rational manner.

Motion is considered as of various hinds, viz, Absolutc, Relative, Equable, Accelerated, Retarded, \&.c.

Absoiute Mortos, is an absolute change of place, in any moving body, considered independently of any other mution, the celerity of which will thereforc be nicasured by the quantity of absolute space which the moveable body has passed over. And

Relative Motion, is the change of the relative place of a moving body, considered with respect to some other body also in motion, and the celerity of it is estimated by the quamity of relative space run through. This may be illustrated by considering two vessels, sailing cither in the same, or in contrary directions, but with diffierent velocities in the former case; both of which are in absolute motion with regard to the port whence they salled, or any other fixed point, but in relative motion with respect to each other.

Among the ancients, there is nothing estant on motion, excepting some things in Archimedes's books De Equipouderantibus, and in Aristotle's. We are indebted to Galileo for a great part of the doctrine of motion: he first discovered the general laws of it, and particularly of the descent of heavy bodies, both perpendicularly and on inclined platics; the laws of the motion of projectiles; the sibrations of penduluins, and of stretched cords, with the theory of resistances, \&.c: things which the ancients had little notion of.

Torricelli considerably improved on the discoveries of his master, Galikeo; and added many experiments concerning the force of percussion, and the equilibrium of fluids. Huygens extended the doctrile of pendulums; and both he and Borelli the effects of percusvion. 'Lastly, Newe ton, Leibnitz, Varignon, Mariottc, \&c, have bruught the doctrine of motion still nearer to perfection.

The general laws of motion were first hrought into a system, and analytically demonstrated together, by Dr_{r}. Wallis, Sir Christopher Wren, and M. Huygens, all much about the same time; the first in bodies not clastic, and the two latter in elastic bodirs. Lastly, the whole ductrine of motion, including all the discoverics both of the ancients and moderns on that head, was given by 1)r. Wallis in his Mechanica, sise De Motu, published is 1670.

Quanily of Motov, is the same as Momentum, which sec. It is a priuciple maintaned by the Cartesians, and some others, that the Creator at the beginning impressed a certain qualtity of motion on bodies ; and that under such laws, as that no part of it should be lost, but the same portion of motion should be coustantly preserved in matter: and hence they conclude, that if any moving body strike another body, the furmer lases no more of its motion than it communicates to the latter. This position however has been opposell by other philosophers, and perhaps justly, unless the preservation of motion be understood unly of the quantity of it as estimated always in the sume direction; in which case the principle will hold good. However, the reasoning ought to have proceeded in the contrary order; by first observing from experiment, or otherwise, that when two bodies act upon each other, the one gains exactly the motion which is lost by the other,

Fot. II. ,
in the same direction; and hence bave drawn the inference, that there is therefore the same quantity of motion preserved in the universe, as was created by God in the beginning; since no body can act upon another, without being isself equally acted on in the opposite or contrary direction.

Eyuable Motion, is that by which the moving body proceeds with exactly the same velocity or celerity; passing slways over equal spaces in equal times.

The Laws of Equable Motion, are these: 1. The spaccs described, or passed over, are in the compound ratio of the velocities, and the times of deseribing those spaces. So that, if v and v be any two uniform velocities, s and s the spaces described or passed over by them, in the respective times T and $t:$

> then is s $s:: \mathrm{Tv}: t v$,
> or $20: 12:: 4 \times 5: 3 \times 4 ;$
> taking $\mathrm{T}=4, t=3, v=5$, and $v=4$.
2. In uniform inotions, the time is as the space directly, and as the velocity reciprocally; or as the space divided by the velocity. So that

$$
\mathrm{T}: t:: \frac{\mathrm{s}}{\mathrm{v}}: \frac{\mathrm{s}}{\mathrm{v}} \text { or }:: \mathrm{sv}: \mathrm{sv} .
$$

3. The velocity is as the space directly, and the time reciprocally; or as the space divided by the time. That is, $v: ص:: \frac{s}{T}: \frac{s}{8}$ or $:: s t: s \boldsymbol{r}^{2}$.

Accelerated Motion, is that which continually receives frrsh accessions of velocity. And it is said to be uniformly accelerated, when its accessions of velocity are equal in equal times; such as that which is produced by the continual action of one and the same force, like the force of gravity, \&c.

Retarded Motion, is that whose velocity continually tecreases. And it is said to be uniformly retarded, when its decrease is continually proportional to the time, or by equal quantities in equal times; like that which is produced by the contiuual opposition of one and the same force; such as the force of gravity, in uniformly retarding the motion of a body that is tbrown upwards.

The laws of motion, uniformly accelersted or retarded, are these: 1. In uniformly varied motions, the space, 5 or s, is as the square of the time, or as the square of the greatest velocity, or as the rectangle or product of the time and velocity.

$$
\text { That is, } s: s:: \mathrm{T}^{2}: t^{3}:: \mathrm{v}^{2}: \nabla^{2}:: \mathrm{Tv}: t v \text {. }
$$

2. The velocity is as the time, or as the space divided by the uime, or as the square root of the space.
'That is, $v: v:: \mathrm{r}: t:: \frac{s}{\boldsymbol{r}}: \frac{1}{\mathrm{f}}:: \sqrt{ } \mathrm{s}: \sqrt{ } \mathrm{s}$.
3. The time ia as the velocity, or as the space divided by the velocity, or as the square root of the space.

That is, $\mathrm{r}: t:: \mathrm{v}: v:: \frac{\mathrm{s}}{\mathrm{v}}: \frac{5}{v}:: \sqrt{\mathrm{s}}: \sqrt{ } \mathrm{s}$.
4. When a space is described, or passed over, by an uniformly varied motion, the velocity cither beginning at nothing, and continually accelerated; or else beginning at some determinate velocity, and continually retarded till the velocity be reduced to nothing; then the space, so described by any body, is exactly equal to half the space that would be ran over in the same time by the greatest velocity if uniformly continued for that time. So, for instance, if g denote the space run ovcr in one second, or any other time, by such a variable motion; then 2 g would be the space that would be run over in one second, or the L
same time, by the greatest velocity uniformly continued for the same time; or $2 g$ would be the greatest velocity per second which the moving body had. Consequently, if t be any other time, s the space run over iu that time, and p the greatest velocity attained in it; then, from the foregoing articles, it will be

$$
1^{\prime \prime}: t^{\prime \prime}:: g g: 2 g t=v \text { the velocity }
$$

and $t^{2}: t^{2}:: g: g t^{2}=s$ the space.
And hence, for any such uniformly varied motions, the relations among the several quantities concerned, will be expressed by the following equations: viz,

$$
\begin{aligned}
& s=g r^{2}=\frac{1}{t} t v=\frac{v^{*}}{4 g} ; \quad t=\frac{v}{2 g}=\frac{23}{v}=\sqrt{ } \frac{t}{g} \\
& v=2 g^{t}=\frac{2 s}{t}=2 \sqrt{ } g^{s} ; g=\frac{v}{v t}=\frac{v}{r^{2}}=\frac{v^{2}}{4 t}
\end{aligned}
$$

And these equations will hold good in the motion either generated or destroyed by the force of gravity, or by any other uniform force whatever. Sce also the articles Gravity, Acceleration, Retardation, \&c. Agaid,

Simple Motiox, is that which is produced by some one power or force only, and is always rectilinear, or in one direction, whether the force be only momentary or continued. And

Compound Motion, is that which is produced by two or more powers acting in different directions. See Compoun d, and Compositiox of Motion.

If a moving body be acted on by a double power; the one according to the direction $\triangle \mathrm{B}$, the other according to AC ; then, with the compound motion, or that which is compounded of these two together, it will describe the diagonal AD of the parallelogram, whose sides AB and AC it would have described in the same time with each of the respective powers separately ap-
 plied.

And if the radius of a circle be macle to revolve about the centre c, while a point in the radius sets off from A, and keeps moving along the radius towards the centre; then, by this compound motion, the path of the point will be a kind of spiral A BC.

For the particular laws of motion, arising from the collision of bodies, hoth elastic and non-elastic, and that where the directions are both perpendicular and oblique, see Percussion.

For Circular Mofion, and the Lases of Projectiles, sec the respective words.

For the Motion of Pendulums, and the Laws of Oscillation, see Pendulum.

Perpertual Morion, is a motion which is supplied and renewed from itself, without the intervention of any external cause. The celebrated prublem of a perpetual motion, cunsists in the inventing a machine, which has the principle of its motion within iself; and is a problera that has engaged the attention of certain mathematicians for 2000 years; though nove perhaps have prosecuted it with attention and caruestness equal to those of the last century. Infinite are the schemes, designs, plans, engines, wheels, \&c, to which this long-desired perpetual motion bas given birth.

M1. Labire has proved the impossibility of any such machine, and finds that it amounts to this; viz, to find a
body which is both heavier and lighter at the same time, or 10 find a body which is heavier thun itself. Indeed there seems but little in nature to countenance all this sssiduity and expectation: among all the laws of matter and motion, we know of none yet that seem likely to furnish an! principle or foundation for such an effect.

Action and reaction it is allowed are always equal and a body that gives any quantity of motion to anothes always loses just so much of its uwn; but under the pre sent state of things, the resistance of the air, the friction c the parts of machines, \&c, do necessarily retard ever motion. To continue the motion therefure-cither, firs there must be a supply from some foreign cause; which i a perpetual mution is excluded. Or, 2dly, all resistant from the friction of the parts of matter must be removet which necessarily implies a change in the nature of thins Or, 3dly and lastly, there must be some method of gai ing a force equivalent to what is lost, by the artiul disp sition and combination of mechanic powers; to whi last point then all endeavours are to be directed: b how, or by what muans, such force shuuld be gained, still a mystery. The multiplication of powers or forces is certain, avails nothing; for what is gained in power lost in time, so that the quantity of mution still reina the same. This is an invariable law of nature; by whi nothing is left to art, but the choice of the several com nations that may produce the same effect.

There are various ways by which absolute force may gained; hut since there is always an equal gain in op site directions, and no increase obtained in the same dir tion; in the circle of actions necessary to make a perpet movement, this gain must be prescutly lost, and will serve for the necessary expense of force employed in or coming friction, and the resistance of the medium. \& therefore, though it could be shown, that in an infi number of bodies, or in an infinite machine, there coul, a gain of force for ever, and a motion continued to infin it does not follow that a perpetual movement can be m That which was proposed by M. Leibnitz in the Lei Acts of 1690 , as a consequence of the common estima of the forces of bodies in motion, is of this kind, and this and other reasons ought to be rejected. See C yyreus's Wheel, \&c, also my Recreations, vol. 2, p 52 on Mechunics.

Anivual Motion, is that by which the situation, fil magnitade, \&cc, of the parts and members of animal: changed. Under these motions, are included all the an functions; as respiration, circulation of the blood, e ? tion, walking, running, \&c.

Animal motions are usually divided into two spe viz, Natural and Spontaneous.

Natural Morsos, is that involuntary one whis effected without the command of the will, by the mechanism of the parts. Such as the motion of the and pulse; the peristaltic motion of the intestines But

Spontaneous, or Muscular Motrox, is that which is formed by means of the muscles, at the command c will; which is hence called voluntary motion. Borel a celebrated treatise on this subject, entitled De Animalium.

Intestine Moriox, denotes an agitation of the pris of which a body cousists. Some philosuphers will every body, and every particle of a body, in con motion. As for fluids, it is the detiaition they
them, that their parts are in continual motion. And es to solids, they infer the like motion from the effluvia continually emitted ibrough their pores. Hence intestine motwon is represented to be a motion of the internal and smaller parts of matter, continually excited by some external, latent agent, which of itself is insensible, and only discovers itself by its effects; appointed by nature to be, ihe great instrument of the cbanges in bodies.

Motion, in Astronomy, is peculiarly applied to the orderly courses of the heavenly bodies.

Mean Motion. Sice Mean.
The motions of the celestial luminaries are of two kinds: Diurnal, or Common; and Secundary, or Proper.

Diurnal, or Primary Motion, is that with which all the heavenly bodies, and the whole mundane sphere, appear to revolve cvery day about the earth, from east to west. This is also called the motion of the primuin mobile, and the common motion, to distinguish it from that rotation which is peculiar to each planet, \&c.

Secondary, or Proper Morion, is that with which astar, planet, or the like, advances a certain space every day from the west towards the east. See the several motions of each luminary, with the irregulnrities, \& c , of them, under the proper articles, Eartil, Mon, Star, \&c.

Angular Motion, is that by which the angular position of any thing varies. Se Angular.

Horary Motion, is the motion during each hour. See Horary.

Paracentric Motion of Impetus. See Pallacentric.
Mution of Trepiduion, ofc. See Thepidation and Libration.

MOTIVE Power, or Force, is the whole power or force acting upon any body, or quantity of matter, to move it; and is proportional to the momentum or quantity of motuon it can produce in a given time. And it is thus distinguished from the accelerative force, which is considered as afficting the celerity only.

MOTRIX, something that has the power or faculty of moving. See Vis Motrir, and Motion.

MOVEABLEE, sumething susceptible of motion, or that is disposed to be moved. A sphere is the most moveable of all bodies, or is the casiest to be moved on a plane. A door is moveahle on its hinges ; the magnetic needle on a pin or pivot, \&cc. Moveable is often used in contradistinction to fixed or fixt.

Moveazle Feasts, are such as are not always beld on the same day of the year or month; though they may be on the same day of the week. Thus, Easter is a moveable feast ; being always held on the Sunday which falls upon ur next after the first full moon, following the 21 st of March. See Philos. Trans. No. 240, pa. 185. All the other noveable feasts follow Easter, keeping their constant dislance from it; so that they are fixed with respect to this, though movcable through the course of the year. Such are Septungesima, Sexagesima, Ash-Wednesday, AscensionDay, Pentecost, Trinity-Sunday, \&c.

MOVEMENT, a term often used in the same sense with automaton. The most usual movements for keeping time are clocks and watches: the latter are such as show the parts of time by inspection, and are portable in the pocket; the former such as publish it by sounds, and are fixed as furniturc.

Movement, in its popular use, signifies all the inner works of a clock, watch, or other machine, that move, and by that motion carry on the design of the instrument. The
movement of a cluek, or watch, is the inside; or that part which measures the time, and strikes; exclu-ive of the frame, case, dial-plate, de.

The parts common to buth of these movements are, the main-spring with its nppurtensunces, lying in the spring box, and in the middle of it lapping about the springarbor, to which one end of it is fasmened. On the upper part of the spring-arbor is the endless screw, and its wheel; but in spring clocks this is a ratchet-wheel with its clich, that stops it. Tlust part which the main-spring drans, and round which the chain or string is wrapped, is called the fusee, the proper curve fur which is the hyperbola; in large works, going wish weights, it is cylindrical, and is called the barrel. The small teeth at the botton of the fusce or barrel, which stop it in winding up, is called the ratchet; and that which stops it when wound up, und is for that end driven up by the spring, the gardegut. The wheels are various: the parts of a wheel are, the hoop or rim; the teeth, the cross, and the collet, or piece of brass soldered on the arbor or spindle on which the wheel is riveted. The little wheels, playing in the teeth of the larger, are called pinions ; and their teeth, which are 4, 5, 6,8, \&ce, are called leves; the ends of the spindle are called pivots; and the guttured wheel, with iron spikes at bottom, in which the line of cummon clocks runs, the pulley.

Theory of Calculating the Numbers for Movements.

1. It is first to be observed, that a wheel, divided by its pinion, shows how many turns the pinion has to one turn of the whed.
2. That from the fusee to the balance the whecls drive the pinions, consequently the pinions run faster, or make more revolutions, than the wheel; but it is the contrary from the great wheel to the dial-wheel.
3. That the wheels and pinions are written down cither as vulgar fractions, or in the way of division in common arithmetic: fur example, a wheel of 60 teeth, moving a pinion of 5 , is set down either thus 60 , or thus 5)60, which is better. And the number of turns the pinion has in one turn of the wheel, as a quotient, thus 5) 60 (12. A whole movement may be writter as annexed: where the up-

$4)$	36	$(9$
5$)$	35	$(11$
$5)$	45	$(9$
$5)$	40	$(8$
		17

4. Hence, from the number of turns any pinion makes, in one turn of the wheel it works in, may be determined the number of turns a wheel or pinion has at any greater distance, viz, by multiplying the quotients together; the product being the number of turns. Thus, suppose the wheels and pinions as in the case above; the quotient 11 muluplied by 9 , gives 99 , the number of turns in the second pinion 5 to ont turn of the whel 55 , which runs concentrical, or on the same spindle, with the pinion 5 . Again, 99 multiplied by 8, gives 792, the number of turns the last pinion has to one turn of the first wheel 5 . Hence we proceed to fiad, not only the turns, hut the number of beats of the balance, in the time of those turns. For, having found the number of turns the crown-wheel has in one turn of the wheel proposed, those turns multiplied by its notches, give half the number of beats in that one L 2
turn of the wheel. Suppoer, for example, the crownwheel to have 720 turns, to one of the first whed; this, number multiplied by 13 , the notches in the crown-whecl, produces 10800 , half the number of strokes of the bslance in one turn of the first wheel of 80 teeth.- The general division of a movement is, into the clock, and watch parts.

MOULDINGS, in Architecture, are certain projections beyond the naked of a wall, column, waiuscot, Axe, the assemblage of which forms cornices, door-casts, and other decorations of architecture.

Mouldings, are annexed to great guns by way of ornament, or perhaps in some parts for strength; and probably are derived from the hoops or rings which bound the long iron bars together, anciently used in making cannon.

MOUNTAIN, a considerable eminence of hand, elevated above every thing around it. The name is also given to a chain of such masses; as when we speak of Mount Atlas in Africa; or Mount Caucasus, extending from Colchis to the Caspian Sea; or the Pyrenean Mountains, which separate France from Spain; and the Apennine Mountains, traversing the whole of lialy:

Naturalisty reckon several kinds of mountains; and conjecture that they have not all the same origin, nor the same date. As, ist, "lbose mountains which form a chain, and are covered with snow, are considered as primitives or antediluvian. These greatly exceed other mountains in height; in general their elevation is very sudden, and their ascent very steep and difficult: their shape is pyramidical, crowned with sharp and prominent rocks. No shells, or uther organized matine bodics, are found in the upper parts of these primitive mountains, except on the sides near the base. The stone of which they consist is an immense mass of quartz, which penetrates into the bowels of the earth in a direction ulmost vertical. Of this kind in Europe are the P'yrenees, the Alps, the Aprennines, those in Tyrol, in Silesin, in Carpathia, Suxony, Norway; \&ce. In Asia are the Riphean Monntains, Mounts Cuucasus, Taurus, and Libanus. In Africa, Atlas and the Mountains of the Moon; and in America the Apalachian Mountains, and the Andes or Cordilleras. Many of the latter have been the seats of volcanoes.-2d, Another kind of mountains are such as are either detached, or surrounded with groups of little hills, the crust of which is gravelly and confusedly arranged togethor. These are truncated, or bave a wide mouth in the shape of a funnel in the summit, being composed of, or surrounded with heaps of calcined and half vitrified bodics, lava, \&c. These appear to have been formed by different strata thrown up into the air, on the eruptions of subterrancous fire: such as the isles of Santorin, Moma-Nuovo, Xtma, Adam's Peak in the island of Crylon, the J'rak of 'Teneriffe, and many others, have been formed in this nanner. -3d, Those mountains, whether arranged in a group or not, the earth or stone of which is dispesed in strata, and of one or more colouss and substances, are supprosed to be produced by the subistances deposited slowly and gradually by the water, or by soil gained at the time of great floods. Though these mountains, formed by strata, sone. times degenerate into litule hills, and even bocome almost flat, they always consist of an immense collection of fossils of different kinds, in good preseriation, and which are pretty easily detached from their beds. These fassits, consisting of marine shells, intermixed and confounded with heaps of organised bodies of other species, have an
appeurance of great disorder, by means of some extrandinary and vinleht currents. All these phenomena seem to prove that most of these mountains chiefly owe their origin to the sea, which once covered some parts of our contlnents, now left dry by its retreat.

Of those nountains which extend in a dircetion north and south, it has been observed that their west side is usually inuch streper than the east side; but, in sucti as extend cast and west, the south sides are much steeper than the northern: that the Alps are stceper on their western and southern sides, than on the castern and northern: that in America the Cordilleras are steepest on the western side. And so in like manner, in all continents, as well as hills and islands, the west and southern sides are commonly the steepest.

Mountaiss, Attraction of. As attraction is found to be a geteral property of all matter, evincing itself universally by the tendency of all bodies towards the centre of the globe; so particularly in hills, it is shown by theor drawing the plumb-line aside from the perpendicular, sideways towards the hill, more or less according to its magnitude, density, and situation. And by the observed effect of these, compared with that of the whole earth, it has been determued that the medium densiny of this whole globe of carth, is about 5 times that of common water. See the articles Attraction, Dessity, and EARTH, also my Tracts, vol. 2.
Mountains, Height of. The following is a list of the measured altitules of the most remarhable mountains in most parts of the carth, in linglish feet.

Chimboraço	19505	Source of the Nile	8082
Cayambourou	19391	Monast. St. Bernard	7944
Antisana	19290	Pic de los Reyes	7620
Pichinho	15070	Puy de Dounine	. 5088
Mont Blane	1.66%	Mount Ilicla	4.57
Moute Rosa	150s	Monnt Vesuvius	3y38
Pic of Teneriffe	1.4026	Ibon Latrrs	3858
Aiguille d'Argenture	15402	Ben Morr	3723
Pic d'Ossano	11700	Snowdon	3535
Muunt Etna	10154	Ben Glue	34\%
City of Quito	9997	Schilutilen	3.61
Pic du Medi	9300	Table Hill,Good Hope	345:
Alount Cenis	12212	Ben Lamond	3180
Canegay	8.544	Finto	-314
Gundar, in Abyssinia	$8+40$	Geneva lake	$1 \geqslant 32$

moyneau. Sce Morseau.
MULLER (Joms), commonly called RegomonTint's, from Mons Regius, of Koningberg, a town in Franconia, where he was born in $1+30^{\circ}$, and be became the greatest astronomer and matietnatician of his time. Having first acquired grammutical learuing in his own county, he was admitted, while get a boy, inta the academy at Leipaio where le furmed a strong attachment to the mathematical sciences, arithonelic, geometry, astronomy, \&c. lisut not tinding proper assistance in these studies at this place, te removed, when only 1.5 years of age, to Vienna, to study under the celebrated Purbach, the professor there, who read lectures on those sciences with the highest reputation. A strong and affectionate friendship soon took place between them; and our author made such rapid improvement in the sciences, that he was soon able to be assisting to his master, and to become a companion in all bis labours. In this manner they spent about ten years together; elucidating obscurities, ubseri a
ing the motions of the heavenly bodies, and comparing and correcting the tables of thetn; particularly those of Mlars, which they found to disagree with the inotions, sometimes as much as 2 degrees.

About this tine there arrived at Vienna the cardinal Bessarion, who came to negotiate some aflairs for the pope; who, being a lover of astronomy, soon formed an acquaintance with Purbach and Regiomontanus. He had begun to forin a Latiu version of Ptolemy's Almagest, or an epitome of it ; but not having time to go on with it hitaself, be requested Purbach to complete the work, and for that purpose to return with bim into Italy, to make himself master of the Greek tungue, which he was as yet unacquainted with. To these proposals Purbach only assented, on cordition that Regiomontunus would accompany him, and slare in all the labours. They first however, hy means of an Arabic version of Ptolemy, made some progress in the work; but this was soon interruptéd by the death of Purbach, which happened in 1461, in the 39th ycar of his age. The whole task then devolved on Regiomontanus, who fibished the work, at the seque'st of Purbach, made to him when on his death-bed. This work our author afterwards revised and perfected at Rome, when be had learned the Greek language, and consulted the commentator Theon, \& ce.

Regiomontanus accompanied the cardinal Bessamion in his return to Rome, being then near 30 years of age. llese be applied hinnself diligently to the study of the Greck language; not neglecting however to make astronomical observatime and compose vurious works in that science; as his Dinlogue agamst the 'Theorits of Cremonensis. The cardiaal going to Grecce soen after, Regiomontanus went to Ferrara, where he continued the study of the Greek language under Theotore Gaza; who explained to him the text of Ptolemy, with the commentaries of Theon; till st length be becane so perfect in it, that he cuald compose verses, and read it like a critic.-In 1463 be wrint to l'aduat, where he becane a member of the university; and, at the request of the students, explainerl Altraggnas, an Arabian philosopher.-In 1464 lie removed to Venice, to meet and attend his patron Bessarion. Here be wrote, with great accuracy, th Treatise on Triangles, and a Refutation of the Quadrature of the Circle, which cardmal Cusan pretended be had demotestrated. The same year lue returned with Bessarion to Ronic; where he made some stay, to procure the most curiaus books: those which he could not purchase, he took the pains to transcribe, for he wrute with great facility and elegance; and others he got copied nt a great expense. For as he was certain that none of these books could be had in Germany, he thought on his return thither, be would at his leisure translate and publish some of the best of them. During this time two he had a severe contest with Guorge Trabczumile, whom he had greatly offended by anumudverting on some passages in his translation of Theon's Commentary.

Being bow weary of rambling about, atal having procured a great number of manuscripte, which was one great ubject of his tratuls, lee returned ta Vienna, and performed for some time the offices of his profosorship. by reading of lectures \& ce. Alter being thus cmployed, be went to Buda, on the invitation ot Matthas king of llungary, who was a great lover of letters and the scicures, and had founded a rich and noble library there; for be bald bought up all the Greek books that cuadd led
fuand on the sacking of Constantinople; also those that were brouglet from Athens, or wherever else they could be met with through the whele Tuihish dominions, collecting thera all together intor a library at Buda. But a war breahing out in this country, he luoked out for some other place to settle im, where be might 1 , ursue bis studien, and for this purpuse he retired to Nuramberg. He tells us, that the reasuns which induced him to ilesire to reside in this city the remainder of his life were, shat the artists there were dextrous in fubricating his astronomical machines; and besides, he could from thence easily transmit his letters by the merchants into forvign counries. Being now well wersed in all parts of tearning, and having made the utmust proficiencs in mathematics, he determined to accupy himself in publishing the best of the ancient authors, is well as lis own Jucubrations. For thix purpose be set up a proming house, and formed a nomenclature of the hooks he itstended to publish, which still remans.

Here that excellemt man, Bernard Walther, one of the principal citizens, who wis wrll skilled in the sciences, especially astronomy, cultivated an intimacy with Regiomontanus ; and as sown as be understood those laudable designs of bit, be touk upon himself the expense of constructing the astronomical instrumets, and of erecting a printing-house. And tirst he ordered astronomical rules to be made of tin, fur observing the altitudes of the sun, mono, and planets. Jle next constructed a rectangular, or astionomical radius, for taking the distance of those luminaries. Then an armillary astrolabe, such as was used by Ptolcowy and Hipparchus, for observing the places and motions of the stars. Lastly, he made other smaller instruments, as the torquet, and Ptolemy's meteoroscope, with some others which had more of curiosity than utulity in them. From this apparatus it evidently appears, that Regiomontanus was a most diligent observer of the laws and inotions of the celestial boties, if there were not still stronger evidences of it in the accounts of the observations themselves which he made with them.

With regard to the printing-house, which was the other part of his Jesign in settling at Noremberg, as soon as be bad completed it, he put to press two works of his own, and two others. The latter were, The New Theories of his master Purbach, and the Astronomicon of Manilius. And his own were, the New Calendar, in which were given (as he says in the index of the books which he intendid to publish) the true conjunctions and oppositions of the luminaries, their eclipees, their true places every day, \&e. His ather work was his Ephemerides, of which he thus sprahs in the said index: "The Fphemerides, which is sulgarly called an Amanac, for 30 gears: where you may every day see the true motion of all the planets, of the moon's modes, with the a-peces of the moon to the sun mud planets, the eclipses of the luminaries; and in the fronts of the pages are marked the latitudes." He published also most acnte commentaries on Ptolemy's Almagest : a work which cardinal Bessarion so highly valued, that he scrupled nat to estem it worth a whole province. He prepared also new versions of Ptolemy's Cosmegraphy; and at his leisure hours examined and explained works of another nature. He imquired how high the vapours are carried above the earth, which he finced to be tot more than 12 German miles. He set down observations of two cumets that appeared in the years 1471 and 1472 .

Io 147, pope Siatus the 4 th conceived a design of re-
forming the calendar; and sent for Regiomontanus to Rome, as the most proper and able perwon to accomplish his purpose. Kegiomontanus was very unvilling to interrupt the studies, and printing of books, he was engaged in at Norenberg; but recciving great promises from the pope, who also for the present naned him bishop of Ratisbon, he at length consented to go. He artived at Rome in 1475 , but died there the year after, at only 40 years of age; not without a suspicion of baving been poisoned by the sons of George Trabezonde, in revenge for the death of their father, which was said to have been caused by the grief he felt on account of the criticisms made by Regiomontanus on his translation of Ptolemy's Almagest.

Purbach first of any reduced the trigonometrical tables of sines, from the old sexagesimal division of the radius, to the decimal scalc. He supposed the radius to be divided into 600,000 equal parts, and computed the sines of the ares to every ten minutes, in such equal parts of the radius, by the decimal notation. This project of Purbach was perfected by Regiomiontanus; who not only extended the sines to every minute, the radius being 600,000 , as designed by l'urbach, but afterwards, disliking that scheme, as evidently imperfect, he computed them likewise to the radius $1,000,000$, for every minute of the quadrant. Regiomontanus also introduced the tangents into trigonometry, the canon of which he called forcundus, because of the many great advantages arising from them. Besiles these things, he enriched trigonsmetry with many theorems and precepts. Indeed, excepting for the usc of logarithms, the trigonometry of Regiomontanus is but little inferior to what ours was, before the improvements made in it by Euler. His Treatise, on both Plane and Spherical I'rigonometry, is in 5 hooks; it was written about the year 1464, and printed in folio at Noremberg in 1533. Int the 5 th book are various problems concerning rectilinear triangles, some of which are resolved hy means of algebra: a proof that this science was not wholly unhnown in Europe before the treatise of Lucas De Burgo.

Regiomontanus was author of some other works besides those already mentioned. Peter Raruus, in the account he gives of the admirable works attempted und performed by Regiomontanus, tells us, that in his workshop at Noremberg there was an automaton in perpetual motion : that he made an artificial fy wbich, taking its flight from his hand, would fly round the room, and at last, as if weary, would return to his master again: that he fabricated an eagle, which, on the emperor's approach to the city, be sent out, high in the air, a great way to meet him, and that it kept him company to the gates of the city. Let us no more wonder, adds Ramus, at the dove of Archytas, since Noremberg can show a fly, and an eagle, armed with geometrical wings. Nor are those famous artificers, who were formerly in Greece and Egypt, any longer of such account, since Noremberg can boast of her Regiomontanuses. For Wernerus first, and then the Schoneri, father and son, afterwards, revived the spirit of Regiomontanas.

MULTANGULAR Figune, is one that has many angles, and consequently many sides also. These are otherwise called polygons.

MULTILATERAL Figures, are such as have many sides, or more than four sides.

MULTINOMIAL, or Multiwomial Rooes, are such
as are composed of many names, parts, or members ; ma, $a+b+c+d \& c$. - For the raising an infinite multinomial to any power, or extuacing any root out of such power, see a method hy M. Demulvre, in the Philos. Trans. Nu. 230. See also Polinemias.

MULTIPLE, Multiplex, a number which comprehends some other number several times. Thus, 6 is a multiple of 2, this being contained in 6 just 3 times. Also 12 is a common multiple of 6,4 , and 3; compreliending the first twice, second thrice, und the third four times.

Multiple Ratio or Proportion, is that which is between multiple numbers \&c. If the less term of a ratio be an aliquot part of the greater, the ratin of the greater to the less is called multiple; and that of the less to the greater submultiple.-A submultiple number, is that which is contained in the multiple. Thus, the numbers 8, 3, and 4 are submultiples of 12 and 24.-Duple, triple, \&c ratios; as also subduples, subtriples, \&c, are so many species of multiple and submultiple ratios.

Mulitple Superparticular Proportion, is when one number or quantity contains another more than once, and a certain aliquot part; as 10 to 3 , or $3 \frac{1}{2}$ to 1 .

Multiple Superpartient Proportion, is when one number or quantity contaims another several times, and some parts besides; as 29 to 6 , or $4 \frac{1}{6}$ to 1 .

MULTIPLICAN I, is one of the two fectors in the rule of multiplication, being that number given to be multiplied by the uther, called the multiplicator, or multiplier.

MULTIPIICATION, is, in general, the taking or repeating of one number of quantily, called the multiplicand, as often as there are units in unother number, called the nultiplier ; and the number or quantity resulting from the multiplication, is called the product of the two foregaing numbers or factors.- Multiplication is a compendious addition; performing at once, what in the usual way of addition would require many operations; for the multiplicand is only added to itself, or repeated, as often as is expressed by the units in the multiplicr. Thus, if $\mathbf{6}$ were to be multiplied by 5 , the product is 30 , which is the sum arising from the addition of the number 6 five times to itself.-In every mulifiplication, 1 is in proportion to the multiplier, as the multiplicand is to the product.

Multiplication is of various kinds, in whole numbers, in fractions, decimals, algebra, \&c.

1. Muitiplicatiox of Whole Numbers, is performed by the following rules: When the tnultiplier consists of only one figure, set it under the first, or right-band figure, of the multiplicand; then, drawing a line under it, begin at the said first figure, and multiply every figure of the multiplicand by the multiplier; setting down the several products below the line, proceeding orderly from right to left. But if any of these products amount to 10 , or several 10's, either with or without some overplus, then set down only the overplus, or set down 0 if there be none; and carry, th the next produch, as many units as the former contained of tens. Thus, to multiply 35092 by 4.

Multiplicand	35092
Multiplier Product	$\mathbf{4}$
	140368

When the multiplier consists of several figures, multiply the multiplicand by each figure of it, as before, and place the several lines of products below each other in such order, that the first figure of each line may fall straight us-
der its respective multiplier, or multiplying figure; then add these several lines of products together, as they stand, and the sum of them all will be the product of the whole multiplication. Thus, to multiply 63017 by 236 :

Multiplicand	63017
Multiplier	236
Product of 63017 by 6	378109
Product of 630 t 7 by 30	189051
Product of 63017 by 200	126034
Whole product	14872012

The several lines of products may be set down in any order, or any of them first, and any other of them second, sce: for the order of placing them can make no difference in the sum total. There are many abbreviations, and peculiar cases, mecording to circumstances, which inay be seen in most books of arithmetic. The inark or character now used for multiplication, is cither the x cross, or a single point . ; the former being introduced by Oughtred, and the latter I think by Leibnitz.

To Prove Multiplication. This may be done various ways; either by dividing the product by the multiplier, then the quotient will be equal to the multiplicand; or divide the same product by the multiplicand, and the quotient will coroe out equal to the multiplier: or in general divide the product by either of the two factors, and the quotient will be equal to the other factor, when the operations are all right. But the more usual, and compendious way of proving multiplication, is by what is called the cross, by casting out the nines; which is performed thus: Add the figures of the multiplicand all together, and as often as the sum amounts to 9 , reject it, and set down the last overplus as in the margin; this in the foregoing example is 8 . Then do the same by the muliplier, setting down the last overplus, which is 2 , on the right of the former remainder 8 . Next multiply these two remuinders, 2 and 8 ,

7

8 together, and from their product 16 , cast out the 9 , and there remains 7 , which set down over the two former. Lastly, add up, in the same manner, all the figures of the whole product of the multiplication, viz 14872012 , casting out the 9 's, and then there remains 7, to be set down under the two first remainders. Thus when the figure at top, is the same as that at bottom, as they are here both 7's, the work it may be presumed is right ; but if these two figures should not be the same, it is certainly wrong.

The above method of proving multiplication depends on a particular property of the number 9: which is this. If the sum of the digits of any number be divisible by 9 , the number itself is also divisible by 9 ; and consequently the sum of the digits of any nuanber being divided by 9 , leaves the same remainder as the number itself when divided by 9 . Another method is derived fram a peculiar property of the number 11, which is this. When a number is divisible by 11 , the sum of the 1 st , $3 \mathrm{~d}, \$ \mathrm{c}$, digits, is equal to the sum of the $2 \mathrm{~d}, 4 \mathrm{th}, \& \mathrm{c}$, digits, or the one exceeds the other by some exact multiple of 11. Consequently any number whatever when divided by 11, will leave the same remainder as the difforence of the two sums when divided by that number; observing always to subtract the latter sum from the former, or from the former plus some multiple of 11 , when the sum of the digits in the $2 \mathrm{~d}, 4 \mathrm{th}, \& \mathrm{c}$, places is the greatest. Whence the following
rule. Cast all the 11's out of the sums of the digits, both in the even and odd places of the multiplicand, and subtract the former remainder from the latter, or from the latter plus 11, and reserve the difference; do exactly the same with the multiplier and product. Multiply the two first differences together, and cast all the 11's out of the result, so shall this last remainder be the same as that before found in the product, if the work be right. Thus in the above example:

	Maltiplic.	Maluplies	Produet		
$\left.\begin{array}{l} \text { Sum of odd } \\ \text { digits } \end{array}\right\}$	13	8	13		
$\left.\begin{array}{c} \text { Sum of even } \\ \text { digits } \end{array}\right\}$	4	3	12	9	
Differences	9	5	1		

And the product $9 \times 5 \div 1 t$, leaving the remainder 1 , which being the same as the remainder of the product, indicates that the work is right.
2. To Mrultiply Mowey, or any other ahing, convisting of different Denominations logether, by any number, winally called Compound Multiplication. - Begin at the lowest denomination, and multiply the number of each name aeparately by the multiplier, setting down tbe products below them. But if any of these products amount to as much as 1 or more of the next higher denominations, carry so many to the next product, and set down only the overplus.

If the multiplier exceeds 12, then resolve it into its factors, if it be a compound number; and multiply successively by those factors; but if the given multiplier be not a compound number, then resolve the next greater or less compound number into its factors, and multiply with those factors as above; and from the result deduct, or add, so many times the multiplicand, as this last compounded number is greater or less than the given multiplier. Also if there are fractional parts in the given multiplier, take such parts of the multiplicand as these are of a unit, which added to the product will give the answer sought; as will appear in the following examples.

3. To Multiply Vulgar Fractions.-Multiply all the given numerators together for the numerator, and all the denominators together for the denominator of the product sought.

Thus, $\frac{3}{2}$ multiplied by $\frac{4}{5}$, or $\frac{3}{3} \times \frac{4}{3}=\frac{8}{4}{ }_{5}$.
And $\frac{4}{5} \times \frac{3}{3} \times \frac{4}{4}=\frac{15}{175}$.
And here it may be noted that, when there are any common numbers in the numerators and denominators, these may be omitted in buth, which will make the operation shorter, and bring out the whole product in a fraction much simpler or in lower terms. Thus,
$\frac{3}{3} \times \frac{1}{4} \times \frac{8}{6}$, become $\frac{2 \times 5}{4 \times 6}=\frac{10}{26}$ or $\frac{3}{12}$, by leaving out the two 3's.

Also, when any numerators and denominators will both abbreviate or divide by one and the same nuinber, let them ${ }^{\prime}$ be divided, and the quotients used iustcad of them. So, in the above exauple, after umitting the two 3^{\prime} 's, let the 2
and 6 be both divided by 2 , and use the quotients 1 and 3 instead of them, so shall the expression become $\frac{1 \times 3}{4 \times 4}=\frac{3}{124}$, as before.
4. To Multiply Decimals.-Multiply the given numbers together the same as if they were whole numbers, and point off as nany decimals in she whole product as there are in both factors; as in the annexed exsmple, where the number of decituals is five, because there are sbrev in the multiplicand, and two in the inultiplier. - When it happens that there are not so many figures in the

2.305
21.86
13830
18440
2305
4610
30.38730

5. Choss Multiplication, otherwise called Duodecimal Arithmetic, is the multiplying of numbers sogether whose subdivisions procied by 12 's ; as feet, inches, and parts, that is 12 th-parts, \& Cc ; a rule of frequent use in squaring, or multiplying together the dimensions of the works of bricklayers, carpenters, and other artificers. For Example. To multiply 5 feet 3 inches by 2 feel 4 inchers. Set them down as in the margin, and multiply all the paris of the multiplicand by each part of the multiplier; thus, 2 times 3 make 6 inches, and 2

$$
\begin{array}{r}
5^{1 \cdot} 3^{12} \\
2 \quad 4 \\
\hline 1066 \\
199 \\
\hline 123
\end{array}
$$ times 5 make 10 feet; then 4 tumes 3 make 12 parts, or 1 inch to carry; and 4 times 5 make 20, and 1 to carry makes 21 inches, or If. 9 inc. to set down below the former line: Lastly adding the two lines tugether, the whole sum or product amounts to 12 f .3 inch.-See Du 0 DECIMALS.

6. Multiplication in Algebra. This is performed, 1. When the quantities are simple, by only joining the letters together like a word; and if the simple quantities have any cocfficients or numbers joined with them, multiply the numbers together, and prefix the producs of thens to the letters so joined together. But, in algebra, we liave net ouly to attend to the quantities themselves, but also to the signs of them; and the general rule fur the signs is this: When the signs are alike, or the sume, cither both + or both - , then the sign of the product will always be + ; but when the signs are different, or unlike, the one + , and the other - , then the sign of the product will be - . Hence these
EXAMPles.
ENAMPLES.
Mult. $+a-2 a+6 r-8 r-3 a b$
By $+b-4 b-3 a+3 a-3 a c$
Products $+a b+8 a b-18 a r-40 a x+15 a^{2} b c$
7. In compound yuantities, multiply every term or part of the multiplicand by each verm separately of the multiplier, and set down all the products with their signs, collecting always into one sum as many terms as are similar or like to one another. And it is usual in algebra, to begin to multiply on the left hand, and thence proceed towards the right ; being directly contrary to the method in mulniplication of numbers.

$$
\begin{array}{lll}
a+b & a-b & a+b \\
a+b & \frac{a-b}{a^{2}-a b} & \frac{a}{a^{2}+b} \\
\frac{a+a b}{a^{2}+a b} & \frac{-a b}{a^{2}+a b+b^{2}} & \frac{-a b+b^{2}}{a^{2}-2 a b+b^{2}}
\end{array}
$$

$2 a-3 b$
$4 a+3 b$ $\overline{8 a^{3}-12 a b} \quad \frac{2 a}{4 a^{2}+8 a x} \quad \frac{2 a+2 x}{9 a^{3}-2 r^{2} x}$ $+10 a b-15 b^{2}-8 a x-16 x^{2}+2 a^{2} x-2 a x^{2}$ $8 a^{4}-2 a b-15 b^{2}-16 a^{2}-16 r^{2}-2 a a^{2}$
3. In surd quantities, if the terms can be reduced to a common surd, the quantities under each may be multiplied together, and the mark of the same surd prefixed to the product; but if not, then the different surds may be: set duwn with the mark of mulniplication between them, to denote their product.

Examples.

$7 \sqrt{ }{ }^{\text {a }}$	$\begin{array}{cc} \sqrt{7} & Y / 7 a b \\ \sqrt{7} & 1 / 4 a c \end{array}$	$\sqrt{12 a}$	$6 a \sqrt{2 c x}$ $2 b \sqrt{3 a x}$
$\frac{5 \sqrt{\text { a }} \text { cr }}{35 \sqrt{\text { acx }}}$	$\frac{\sqrt{5}}{\sqrt{35}} \frac{\sqrt{4 a c}}{\sqrt{28} a^{2} b c}$	$\frac{\sqrt{136} a^{4}=6 a}{}$	$\frac{24 b \sqrt{6 a c s}}{}$

4. Powers or roots of the same quantity are multiplied together, by adding their exponents.
Thus, $a^{3} \times a^{3}=a^{5}$; and $(a+x)^{3} \times(a+x)^{3}=(a+x)^{5}$: alsa $x^{3} \times x^{\frac{1}{4}}=x^{\frac{1}{2}}$; and $a^{\frac{1}{2}} \times a^{\frac{1}{4}}=a^{1}$ or a.

To Multiply Numbers together hy Logarishms.-This is performed by adding together the logarithms of the given numbers, and taking the number answering to that sum, which will be the product sought.

Descartes, at the beginning of his Gcometry, performs multiplication (and indeed all the other common arithmetical rules) in geometry, or by lines; but this is no more than taking a 4th proportional to three given lines, of which the first represents unity, and the $2 d$ and 3 d the two facturs or terms to be multiplied, the product being expressed by the 4 th proportional ; because, in every multiplication, unity or 1 is to either of the two factors, as the other factor is to the product.

MCLTIPLIER, or Multiplicator, is the number or quantity which multipliesanother, called the multiplicand, in any operation of multiplication.

MUNSTER (Sebastiax), an eminent German divine and mathematician, was born as Ingelheim in 1489. At the age of 14 he was sent to Heidelberg to study. Two yeurs after, heeptered the convent of the Cordeliers; where be assiduously studied divinity, mathematics, and geography. Ile was the first who published a Chaldee Grammar and Iexicon; and he shortly after produced a Talmudic Dicionary. He atterwards became professor of the Hebrew language at Basil. He wos one of the first who attached hinself to Luther, aud embraced Protestantism: yet behaved himself with great moderation; never colrcerning himself with their disputes; but shut himself up at home and pursued his favourite studus, which were mathematics, natural philosophy, with the Ilebrew and other Oriental languages. He published a great number of books on these subjects; particularly, a Latin version. from the Hebrew, of all the books of the (Mid Tiestament, with learned notes, printed at Basil in 153.4 and 1546; Josephus's Ilistory of the Jens in Latin; a 'Treatise of Dialling, in folio, 1536 ; Universal Cusinograply, in 6 books folio, Basil 1550. For these works he was styled the German Strabo; as he was the German Edras, for his Oriental wriliugs.

Munster was a meek, pacific, sIudious, retired man, who wrote a great number of books, but wever meddled in controversy.-He died of the plague ar Hasil, in 1552 , at 63 years of age.

MLRAL-Areh, or Instrament, or Quadrant, is one that
is fixed against a wall or pillar, such as is employed in fixed observatories.

MURDERERS, a small species of ordnance once used on shipboard; but now out of use.

MUSIC, the science of sound, considered as capable of producing melody, or harmony. Among the ancients, inusic was taken in a much more extensive sense than among the moderns: what we call the science of music, was by the ancients rather called Harmonica.

Music is onc of the seven sciences called liberal, and comprohended also among the mathematical sciences, as having for its object discrete quantity or number; not however considering it in the abstract, like arithmetic; but in relation to time and sound, with intent to constitute a delightful melody.

This science is also 'Theoretical and Practical. Theoretical, which examines the nature and properties of concords and discords, explaining the proportions between them by numbers. And Practical, which teaches not only composition, or the manner of composing tunes, or airs; but also the art of siuging wish the voice, and playing on musical instruments.

It appears that music was one of the most ancient of the arts; and, of all others, vocal music must doubtless have been the first kind. For man had not only the various tones of his own voice to make his observations on, before any other art or instrument was invented, but had the various natural strains of birds to give him occasign to improve his own voice, and the medulations of sounds it was capable of. The first invention of wind instruments Luerelias ascribes to the ubservation of the winds whistling in the hollow reeds. As for other kinds of instruments, there were so many occasions for cords or strings, that men could not be long in observing their various sounds; which might give rise to stringed instruments. And for the pulative instruments, as drums and cymbals, they might arisc from the observation of the naturally hollow noise of concave bodies.

As to the inventors and improvers of music, Plutareb, in one place, ascribes the first invention of it to Apollo; and in another place to Amphion, the son of Jupiter and Antiope. The latter indeed, it is generally allowed, first brought music into Greece, and invented the lyre. To hims succeeded Chiron, the demigod; then Demodocus; Hermes Trismegistus; Olympus; and Orpheus, whom some make the first introducer of music into Grecee, and the inventor of the lyre: to whom they add Phemius, Thales, and Thamgris, who, it has been said, was the first inventor of instrunental music without singing.

Tbese were the eminent musicians before llomer's tine: others of a later date were, Terpander, who was contemporary with Lycurgus, and set his laws to music; to whom also some attribute the first institution of musical modes, and the invention of the lyre: also, Lasus Hermionensis, Melanippides, Philoxenus, Timotheus, Phrynnis, Ejpigonius, Lysander, Simmicus, and Diodorus; who were all of them considerable improvers of music. Lasus, it is said, way the first author who wrote upon music, in the time of Darius Hystaspis ; Epigonius invented an instrument of 40 sarings, called the Epigonium. Simmicus also invented an instrument of 35 strings, called a Simmicium; Diodorus improved the tibia, by adding new holes; and Timotheus the lyre, by adding a new string; for which he was fined by the Lacedemonians.

As the accounts we have of the inventors of musical inVol. II.
struments among the ancients are very obscure, so also are the accounts of those instruments themselves; of most of them indeed we know little more than the bare names, The general division of instruments is, into stringed instruments, wind instruments, and those of the pulsatile kind. Of stringed instruments, mention is made of the Iy ra or cithara, the psalterium, trigonum, sambuca, peetis, magas, barbitun, testudo, epigonium, simmicium, and panderon; which were all struck with the hand, or a plectrum. Of wind instruments, were the tibia, fistula, hyIraulic organs, tuba, cornua, and lituus. And the pulsatile instruments were the tympanum, cymbalum, creptaculum, tintinnabulum, crotalum, and sistrom.

Music has ever been in the highest esteem in all ages, and among all people; nor could authors express thear opinion of it strongly enough, but by inculcating that it was used in heaven, and as one of the principal entertainments of the gots, and the souls of the blessed. The effects ascribed to it by the ancients are almost miraculous: by its means, it has been said, discases have been cured, unchastity. corrected, seditions quelled, passions raised and calmed, and even madness occasioned. Athenaxus assures us, that auciently all laws, divine and civil, exhortations to virtue, the knowledge of divine and luman things, with the lives and accions of illustrious men, were written in verse, and publicly sung by a chorus to the sound of instruments; which was found the most effectual means to impress morality on the minds of men, and a right scuse of their duty.

Dr. Wallis has endeavoured to account for the surprising effects attributed to the ancient music; and ascribes them chiefly to the novelty of the art, and the byperboles of the ancient writings: nor does he doubt, but the modern music, in like cases, would produce effects at least as considerable as the ancicut. The truth is, we can match most of the ancient stories of this kind in the modera histories. If Timotheus could excite Alexander's fury with the Phrygian mode, and soothe lim into indolence with the Lydian ; a more modern musician has driven Eric, king of Denmark, into such a rage, as to kill his best servanis. Dr. Niewentyt spenks of an Italian who, by varying his music from brisk to solemn, and the contrary, could so move the soul, as to cause distraction and madness ; and Dr. South has founded his poem, called Masica Incantans, on an instance be knew of the same kind.

Music however is found not only to exert its force on the affections, but on the parts of the body also: witness the Gascon knight, mentioned by Mr. Boyle, who could not contain his water at the playing of a bagpipe; and the woman, mentioned by the same author, who would burst into thars at the hearing of a certain tune, with which other people were but a little affected. To say nothing of the trite story of the Tarantula, we have an instance, in the History of the Academy of Sciences, of a musician being cured of a violent fever, by a little concert occasionally played in bis room.

Nor are our ininds and bodies alone affected with sounds, but even inanimate bodies are so. Kircher speaks of a large stone, that would tremble at the sound of one particular organ pipe; and Morhaff mentions one Petter, a Dutchman, who could break rummer-glasses with the tone of his voicc. Mersenue also mentions a particular part of a pavement, that would shake and tremble, as if the earth would open, when the organs played. Mr. Boyle adds, that seats will tremble at the sound of organs; that M
he has felt his hat do so under bis hand, at cerlain motes both of organs and discourse: and that he was well informed every well-built vault would thus answer to some determinate note.

It has been disputed among the learted, whether the ancients or moderns best understood und pructioed music. Some maintain that the ancient art of music, by which such wonderful effects were perforined, is quite lost; and others, that the true science of harmony is now arrived at much greater perfection than was known or practised among the ancients. This point seems no other way to be determinable but by comparing the principles and practice of the one with those of the other. As to the theory or principles of harmonics, it is certain we understand if better than the ancients; because we know all that they knew, and have improved considerably on their foundations. The great dispute then lies on the practice ; with regard to which it may be observed, that among the ancients, music, in the most linited sense of the word, included harmony, rythmus, and verse; and consisted of verses sung by one or more voices alternately, or in choirs, sometimes with the sound of instruments, and sometimes by voices only. Their musical faculties, we have just observer, were melopœia, rythmopœia, and poesis; the first of which may be considered under two heads, melody and symphony. As to the latter, it seems to contain nothing but whet relates to the conduct of a single voice, or making what we call melody. It does not appear that the ancients ever thought of the concert, or harmony of parts; which is a modern invention, for which we are beholden to Guido Aretine, a Benedictine friar.

Not that the ancients never joined more soices or instruments than one in the same symphony; but that they never joined several voices so as that each had a distinct and proper melody, which made among them a succession of various concords, and were not in every note unitons, or at the same distance from each other as octaves. This last indeed agrees to the general definition of the word symphonia; yet it is plain that in such cases there is but one song, and all the voices perform the same indivitual melody. But when the parts differ, not by the tension of the whole, but by the different relations of the successive notes, this is the modern art, which requires so peculitara genius, and on which account the modern music seems to have much the advantage of the ancient. For further sazisfaction on this head, see Kircher, Perrault, Willis, Malcolm, Cerceau, and others; who unanimously agree, that after all the pains they bave taken to know the irue state of the music of the ancients, they could not find the least reason to think there was any such thing in their days as music in parts.

The ancient musical notes are very mysterious and perplexed: Boethius and Gregory the Great first put them into a more easy and obvious method. In the year 1204, Guido Aretine, a Benedictine of Arezzo in Tuscany, first introduced the use of a staff with five lines, on which, with the spaces, he marked his notes by setting a point up and down upon them, to denote the rise and fatl of the voice: though Kircher says this artifice was in use before Guido's time.

Another contrivance of Guido's was to apply the six syllables, ut, re, mi; fu, sol, la, which he took out of the Latin hymn.

$$
\begin{array}{ll}
\text { UT queant laxis } & \text { REsonare tibris } \\
\text { Mlra gestorum } & \text { ISmuli tuarum, }
\end{array}
$$

SOLve polluti
LAbii reatum,

- Pater Alme.

We find another application of them in the following lines.
UT RElevet Mlseruin FAtum, SOLitosque LAbores
Aevi, sit dulcis musica nuster amor.
Besides his notes of music, by which, according to Kircher, he distinguished the tones, or modes, and the seats of the semitones, he also invented the scale, and several musical instruments, called polyplectra, as spinets and harpsichords.

The next considerable inprovement was in 1330, when Joannes Muria, or de Muris, doctor at Paris (or as Bayle and (resnct make him, an Englishman), invented the different figures of notes, which express the times or length of every note, at least their true relative propornons to one another, now called longs, breves, semi-breves, crotchets, quavers, \&c.

The most ancient writer on music was Lasus Hermicnensis: but his works, as well as those of many othery, both Greek and Roman, are lost. Aristoxenus, disciple of Aristotle, is the carliest author extant on the subject : after whom came Euclid, nuthor of the Elements of Geometry ; and Aristides Quintilianus wrote after Cicero's time. Alypius stamls uext; after him Gaudentius the philosopher, and Nicomachus the Pythagorean, and Bacchius. Of which seven Greek authors we have a fair copy, with a translation and notes, by Meibomius. Ptolemy, the celebrated astronomer, wrote in Greck on the principles of harmonics, about the time of the emperor Antoninus Pins. This author keeps a medium between the Pythagoreans and Aristoxenians. He was succeedcd at a considerable distance by Manuel Bryenaius.

Of the Latins, we have Boctius, who wrote in the tinc of Theotoric the Goth; and one Cassiodorus, about the same time; Martianus, and St. Augustine, not far remote. And of the moderns are Zarlin, Sulinas, Vincenzo Galileo, Doni, Kircher, Mersenne, Paran, De Caux, Perrault, Descartes, Wallis, Holder, Malcolm, Rousseau, \&c.
Mustcal Numbers, are the numbers 2, 3, and 5, together with their composites. They are so called, because all the intervals of music may be expressed by such numbers. This is now generally admittod by musidal theorists. Mr. Euler seems to suppose, that 7 or other primes might be introduced; but he speaks of this as a doubtful and diffcult matter. Here 2 corresponds to the octave, 3 to the fifth, or rather to the 12th, and 3 to the third niajor, or rather the seventeenth. From these three may all other intervals be found.

Musical Proportion, or Harmonical Pruportion, is when, of four terins, the first is to the 4 th, as the difference of the 1st and 2 d is to the difference of the 3d and 4th: as 2, 3, 4, and 8 a re in nusical proportion, because $2: 8:: 1: 4$. And hence, if there be only three terms, the middle term supplying the place of both the 2 d ani 3 d , the 1 yt is to the 3 d , as the difference of the Ist and 2 d , is to the difierence of the 2 d and $3 \mathrm{~d}:$ as in these 2,3 , 6; where $2: 6:: 1: 3$. Sce Hanmonical. Proporiom.

MUSSCHENBROEK (PETRR), a very distinguished natural philosopher and mathematician, was born at Utrecht about the year 1700 . He was first professor of these sciences in his own university, and was afterwards invited to the chair at l.eyden, which he filled with repttation and honour till his death, which happened in 176 L . He was a mumber of several academies, particularly the Academy of Sciences at Paris. He published sevecal
wóks in Latin, all of them displaying his great penetration and accuracy. As,

1. His Elements of Physico-Mathematics, in $\mathbf{1 7 2 6}$.
2. Elements of Physics, in 1736.
3. Iustitutions of Physics; containing an abridgment of the new discoveries made by the moderns; in 1748 .
4. Introduction to Natural Philusephy; whith he began to print in 1760 ; and which was completed and pubfished at Leyden, in 1762, by M. Lulofs, afier the death of the author. It was translated into French by M. Sigaud Delufond, and published at Paris in 1769, in 3 vols. $4 t 0$; under the title of A Course of Experimental and Mathematical Physics.

He had also several papers, chiefly on meteorology. printed in the volumes of Mernoirs of the Academy of Sciences, viz, in those of the years 1734, 1735, 1736, 1753, 1756 , and 1760 .

MUTULE, a kind of square modillion in the Doric frize.

MYOPS, one who is near-sighted, or purblind, from whatever cause it may happen; either from too great a convexity of the cornea, or from too great length of the bulb, \&c, causing the adunation of the rays of light in a focus before the retina.

MYRIAD, the number of 10,000 , or ten thousand.

NA \mathbf{P}

NFABONASSAR, first king of the Chaldeans or Babylonians; memorable for the Jewish era which bears Lis name, which began on Wednesday February 26th in the $396{ }^{7}$ th year of the Julian period, or 747 ycars before Christ; the years of this epoch being Egyptian ones, of 365 days each. This is a remarkable era in chronology, becauve Ptolemy assures us there were astronomical observations made by the Chuldcans from Nabonassar to his time; also Ptolemy, and the oiher astronomars, account their years from that epuch.

The Babylonians having revolted from the Medes, who had overthrown the Assyrian monarcliy, did, under $\mathrm{Na}-$ bonassar, found a dominion, which was much increased under Nebuchadnezzar. It is probable this Nabonassar is that Baladan in the 2d Book of Kings, xx, 12, father of Merodach, who sent ambassadors to Hezekiah. Sce 2 Cliron. xxii.

NADIR, that point of the heavens diametrically under our feet, or opposite to the zenith, which is direcily over our heads. The zenith or oadir are the two poles of the borizon, each being 90° distant from it.

The Sun's Nadir, is the axis of the cone projected by the shadow of the earth: so called, because that axis being prolonged, gives a point in the ecliptic diametrically opposite to the sun.

NAKE.D, in Architecture, as the Naked of a Wall, \&c. is the surface, or plane, from whence the projectures arise; or which serves as a ground to the projectures.

NAPIER or Neper (John), baron of Merchiston in Scotland, the inveutor of logarithms, was the eldest son of sir Archibald Napier of Merchiston, and born in the ycar 1550. Having giyen carly indications of great natural parts, his father was careful to have them cultivated by a liberal education. After going through the ordinary course of studies at the university of St. Andrews, he made the tour of France, Italy, and Germany. On bis return to his native country, his literature and other fine accomplishments soon rendered him conspicuous; be bowever retired from the world to pursue literary researches, in which he made an uncommon progress, as appears by the several useful discoveries with which he afterwards favoured mankind. He chiefly applied bimself to the study of mathernatics; without however neglecting that of the Scriptures; in both of which he dis-
covered the most extensive knowledge and profound penetration. His Essay on the Book of the Apocalypse indicates the most acute investigation; though time hath discovered that his calculations concerning particular events had proceeded on fallacious data. But what has chiefly rendered his name famous, was his great and fortunate discovery of logarithms in trigonometry, by which the case and expedition in calculation have so wonderfully assisted the science of astronomy and the arts of practical geometry and navigation. Napier, having a great attachment to astronomy and spherical trigonometry, had occasion to make many numeral calculations of such triangles, with sines, tangents, \&c; and these being expressed in large numbers, they hence occasioned a great deal of labour and trouble: to spare themselves part of this labour, Napier, and other authors about his time, set themselves to find out certain short modes of calculation, as is evident from many of their writings. To this necessity, and these endeavours it is, that we owe several ingenious contrivances; particularly the computation by Nam pier's Rods, and several other curious and short methods that are given in his Rabdologia; and at length, after trials of many other means, the most complete one of logarithras, in the actual construction of a large table of numbers in arithmetical progression, adapted to a set of as many others in geometrical progression. The property of such numbers liad been long known, siz, that the addition of the former answered to the multiplication of the latter, \&cc; but it wanted the necessity of such very troublesome calculations as thosc above mentioned, joined to an ardent disposition, to make such a use of that property. Perhaps also this disposition was urged into action by certain attempts of this kind which it seems were made elsewhere; such as the following, related by Wood in his Athenx Oxonienses, under the article Briggs, on the authority of Oughtred and Wingate, viz, "That one Dr. Craig, a Scotchman, coming out of Denmark iuto his own country, called upon John Neper baron of Marcheston near Edinburgh, and told him, among other discourses, of a new invention in Denmark (by Longomontanus as 'tis said) to save the tedious multiplication and division in astronomical calculations. Neper was very solicitous to know fartber of him concerning this matter, but he could give no other account of it, than that it was by propor-
tionable numbers. Which hint Neper taking, he desired him at his ruturn to cell upon him again. Craig, after some weeks had passed, did so, and Neper then showed bim a rude draught of that he called Canon Mirabilis Logarithmorum. Which draught, with some niteratiuns, he printed in 16t4. It came forthwith into the hands of our author Briggs, and into those of William Oughtred, from whom the refation of this matter came."

Whatever might be the inducement however, Napier published his invention in 1614, under the titie of Loganithmorum Canonis Descriptio, \& c, containing the description and canon of his logarithms, which are those of the kind that is called lyyperbolic. This work coming presently to the hands of Mr. Briggs, then professur of geometry at Gresham-college in London, be immediatcly gave it the greatest encouragement, teaching the nature of the logarithms in his public lectures, and at the same time recommending a change in the scale of them, by which they inight be advantageously altered to the hini which he afterwards computed biinself, which are thence called Briges's Logarithms, and are those nuw in common use. Mr. Briggs also presently wrote tolord Napier upon this proposed change, and mate journeys to Scotland the two following years, to visit Napier, and consult with him on the subject of this alteration, before he set about making it. Briggs, in a letter to archbishop Ushier, March 10, 1615, writes thus: "Napier lord of Markinston hath set my pead and hands at work with his new and admirable logarithms. I hope to see him this summer, if it please God; for 1 never saw a book which pleard me better, and made me more wonder." Briggs accordingly made lord Napier the visit, and staid a month with him.

The following passage, from the Life of Lilly the astrologer, cortains a curions account of the meeting of those two illustrious men. "I will acquaint you (sàys Lilly) with one memorable story related unto me by John Marr, an excellent mathematician and geometrician, whom I conceive you remember. He was servant to King James and Charles the First. At first when the lord Napier, or Marchiston, made public his logaruthons, Mr. Briggs, then reader of the astronomy lectures at Greshan-college in London, was so surprised with admiration of them, that he could have no quietness in himself until he had seen that noble person the lord Marchiston, whose only invention they were: he acquaints Johin Marr lierewith, who went into Scotland brfore Mr. Briggs, purposely to be there when those two so learned persins stould meet. Mr. Briggs appoints a certain day when to mertat Edinburgh; but failing thereof, the lord Napicr was doubtful he would not come. It happened one day as John Marr and the lord Napier were speaking of Mr. Briggs; 'Ah, John (said Marchiston), Mr. Brigg will not now come.' At the very instant one knocks at the gate; John Marr liastens down, and it proved Mr. Briggs to lis great contentment. He brings Mr. Briggs up into ay lord's chamber, where almost one quarter of an hour was spent, each beholding other almost with admiration before one word was spoke. At last Mr. Briggs brgan: 'My lord, I have undertaken this long journey purposely to see your person, and to know by what engine of wit or ingenuity you cume tirst to think of this most excellent help into astronomy, viz, the logarithms; but, my lord, being by you found rut, I wonder nobody else found it out before, when now hnown it is so easy.' He was nobly entertained by the lord Napier; and every summer after that, during the
lord's being alive, this vencrable man Mr. Briggs went purposely into Scotland to visit him."

Napier made also considerable improvements in spherical trigonometry $\& x$, particularly by bis Catholic or Universal Rule, being a general theorem by which he resolves all the cases of right-angled spherical triangles in a manner very simple, and easy to be remembered, nanne$1 y$, by what he calls the Five Circular Parts. His Construction of Logaritbms too, besides the labour of them, manifests the greatest ingenuity. Kepler dedicated his Fphemerides to Aapier, which were published in the year 1617; and it appears from many passages in his letter about this time, that he accounted Napier to be the greatest man of his age in the particular department to which he applied his alilities.

The last literary exertion of this eminent person was the publication of his Rabdology and Promptuary, in the year 1617; soon after which be died at Marchiston, the Bd of Aprit in the same year, and in the 68th year of his age.The list of his works is as follows:

1. A Plain Discovery of the Revelation of St.John; 1593.
2. Logarithmorum Canonis Descriptio; 1614.
3. Alrifici Logarithmorum Canonis Cunstructio: \&c. Quibus accessere propositiones ad triangula spharica faciliore calculo resolvenda. Una cum Annotationibus aliquot doctissimi D. Henrici Briggii in eas, et memoratam appendicem. Published by the author's son in 1619.
4. Rabdologia, selu Numerationis per Virgulas, libri duo ; 1617. This contains the description and use of the bones or rods; winh several other short and ingenious modes of calculation.
5. His Letter to Anthony Bacon (the original of which is in the archbishop's libraty at Lainbeth), eatitled, Sccret Inventions, Profitable and Necessary in these days for the Defeuce of this Island, and withstanding Strangers Einemies to God's Truth and Religion; dated Jum 2, 1596.

Napter's Bomes, or Rods, an instrument contrived by Lord Napier, for the more easy performing of the arithmetical operations of multiplication, division, \&ce. These rods are five in number, made of bone, ivory, horn, wood, or pasteboard, \&c. Their faces are divided into nine little squares (fig. 7, pl. 20) ; each of which is parted into two triangles by diagonals. In these little squares are written the numbers of the multiplication-table; in such a manner that the units, or right-hand figures, are found in the right-hund triangle; and the tons, or the left-hand figures, in the left-hand ariangle; as in the figure.

To Multiply Numbers by Napier's Bones. Dispose the rods in such a manner, as that the top figures may exhibit the multiplicand; and to these, on the left-hand, join the rod of units: in which serk the right-hand figure of the multiplier; and take out the numbers corresponding to it, in the squaters of the other romb, by adding the several numbers occurring in the same rhomb together, and their sums. After ble sume manner write out the numbers corresponding to the other figures of the multiplier: disposing them under one another as in the common multiplication; and lastly add the several numbers into one sum. For examplo, suppose the inultiplicand 5978 , and the multiplier 937. From the outermost tringle on the righthand (fig. 8, pl. 80) which corresponds to the right-hand 6gure of the multiplier 7 , take out the figure 6, placing it under the line. In the next rhomb towards the left,
ald 9 and 5 ; their snm being 14 , write the right-hand figure 4, against 6; carrying the left-hand figure 1 to 4 and 3 , which arv found in the next rhomb; and join the sum 8 to to, already sel down." After the same manner, in the last rhomb, add 6 and 5, and the latter figure of the sum 11 , set down as before, and carry 1 to the 3 found in the lett-hand triangle; the sum 4 join as before on the left-hand of 1846 . Thus you will have 41846 for the product of 5978 by 7 . And in the same manner are to be found the products for the other figures of the muluplier; after which the whole is to be added tugether as osual.

To perform Division by Na pizr's Bones. Dispose the rods so, that the uppermost figures may exhibit the divisor; to these on the left-hand, join the rod of units. Descend under the divisor, till you meet thase figures of the divillend in which it is first required how oft the divisor is found, or at least the next less number, which is to be subtracted from the dividend; then the number correspunding to this, in the place of units, set down for a quotient. And by determining the other parts of the quotiont after the same manuer, the division will be completed.

For example ; suppose the di- 597 s) 5601386 (037 vidend 5601386 , and the ditisor 5978 ; since it is first inquised how ofien 5978 is found in $\mathbf{5 6 0 1 3}$, descend under the divisor (fig. 8) till in the lowest series you find the number 53802, approaching nearest to 56013 ; the former of which is to be subtracted from the latter, and the figure 9 corresponding to it in the rod of units set down for the quotient. To the remainder 2211 join the following figure 8 of the dividend; and the number 17934 being found as before for the next less number 10 it, the corresponding number 3 in the ford of units is to be set down for the noxt figure of the quotient. After the same manner the third and last figure of the quotient will be found to be 7 ; and tbe whole quotient 937.
natural Day, Year, \&c. See Day, Year, \&cc.
Natural Horizon, is the sensible or physical horizon.

Natural. Magic, is that which only makes use of natural causes ; such as the treatise of J. Bapt. Porta, Magia Naturalia.

Natumal Philonophy, otherwise called Physics, is that seience which considers the powers of nature, the properties of natural bodies, and their actions on one another.

Lawe of Natere, are certain axioms, or general rules, of motion and rest, observed by natural bodies in their actions on onc ancther. Of these laws, Sir 1. Newton has establisbed the three following.

1st Law. - That every body perseveres in the same state, either of rest, or uniform rectilinear motion; unless it is compelled to change that state by the action of some foreign force or agent. Thus, projectiles presevere in their motions, except so far as they are retarded by the resistance of the air, and the action of gravity: and thus a top, once set in motion, only ceases to turn round, because it is resisted by the air, and by the friction of the plane upon which it moves. Thus also the larger bodies of the planets and comets preserve their progressive and circular motions a long time undiminished, in regions void of aH sensible resistance.-As body is passive in receiving its motion, and the direction of its motion, so it retaim them, or
perseveres in them, without any change, till it be acted on by soure hing external.

2d L.AW:-The mution, or clange of motion, is always proportional to the moving furce by which it is produced, und in the direction of the right line in which that force is impressed. If a given force produce a certain motion, a double force will produce duable the motion, a triple force triple the motion, and so on. And this motion, since it is always directed to the same point with the generating force, if the undy were in mntion before, is either to be adked to it, as when the motions conspire: or subtracted from it, as when they are opposite; or combined obliquely, when oblique: being always compounded with it according to the determination of each.
3d LAW.-Reaction is always contrary, and equal to action; or the actions of two bodies upon cach other, are ulways motually equal, and directed contrary ways; and are 10 be estimated always in the sante right line. Thus, if one budy press or draw another, it is equally pressed or drawn by it. So, if 1 press a stone with my finger, the finger is equally pressed by the stane: if a horse draw a weight forward by a rope, the horse is equally opposed or drawn back towards the weight; the equal tension or stretch of the rope hindering the progress of the one, as it promoles that of the other. Again, if any body, by stribing on another, do in any manner change its motion, it will itself, by menus of the other, undergo also an equal change in it cown motion, on account of the equality of the pressire, When two bodies meet, each endeavours to persevere in its state, and resists any change: and because the change which is produced in cither may be equally measured by the action which it excites upon the other, or by the resislance which it meets with from it, it follows that the changes produced in the motions of each are equal, but are made in contrary dinctions: the one acquires no new force but what the other loses in the some direction; nor does this last luse any force but what the other acquires; and hence, though by their collisions, motion passes from the one to the vther, yet the sum of their motions, estimated in a given direction, is preserved the same, and is unabierable by their mntual actions upon each other. In these actions the changes are equal ; not those, we mean, of the velocities, but those of the motions, or momentums; the bodies being supposed free from any other impediments. Fot the changes of velocities, which are likewise made conirary ways, inasmuch as the motions are equally changed, are reciprocally proportional to the bodies or mases.- The sane law oblains also in attractions.

NAVIGATION, is the art of conducting a ship at sea from one port or place to another. This is perhaps the most useful of all arts, and is of the highest autiquity. It is impossible to say who were the inventors of it ; but it is probable that many people cultivated it, independent of each other, who inhabited the sea coasts, and had occasion, or found it convenient, to convey themselves upon the water from place to place; beginning from ratts and logs of wood, and gradually improving in the structure and management of their vessels, according to the length of time and extent of their voyages. Writers however ascribe the invention of this art to different persons, or nations, according to the different sources of their information. Thus,
The poets refer the invention of navigation to Neptune, some to Bacchus, others to Hercules, to Jason, or to

Janue, who it is said mate the first ship. Historians ascribe it to the Eginetes, the Phonicians, 'Tyrians, and the ancient inhabitants of Britain. Some are of opimion that the first bint was taken from the flight of the kite; and some, as Oppian (De Piscibus, lib. 1), from the fish called Nautilus; while some ascribe it 10 accident; and others again deriving the hint and invention from Noab's ark.

However, history represents the Phuricians, especially those of the capital Tyre, as the first navigators that made any extensive progress in the art, so far as has come to our knowledge; and inderd it must have been this very art that made their city what it was. For this purpose, Lebanon, and the other ncighbouring mountains, furnishing them with excellent wood for ship-buihling, they wore speedily masters of a numerous fleet, with which constuntly hazarding new navigations, and settling new trades, they soon arrived at a high pitch of opulence and population; so as to be in a condition to send out colonies, she principal of which was that of Cartbage; which, heeping up their Phaenician spirit of commerce, in time far surpassed Tyre itself; rending their merchant-ships shrough Hercules's pillars, now the straits of Gibraltar, and thence along the western consts of Africa amil Europe; and even, according to some authors, to America itself. The city of Tyre being destroyed by Alexandre the Girat, its navigation and commerce were transferred by the conqueror to Alexandria, a new city, well situated for these purposes, and proposed for the capital of the cinpire of Asia, the conquest of which Alexander then meditated. And thus arose the navigation of the Egyptians; which wus afterwards so cultivated by the Ptolemies, that 'Tyreand Carthage were quite forgotten.

Egypt being reduced to a Roman province afier the batthe of Actium, its trade and uavigation fell into the hands of Augustus : in whose time Alexandria was only inferior to Rome; and the magazines of the capital of the world were wholly supplied with inerchandises from the capital of Egyyt.

At length, Alexandria itself underwent the fate of Tyre and Carthage; being surprised by the Saracens, who, in spite of the Emperor Heraclius, overspread the northern coasts of Africa, \&c; and the merchants being drivell thence, Alexandria bas ever since been in a languishing state, though still it has a considerable part of the comumerce of the Christian merchants trading to the Levant.

The fall of Rone and its empire drew along with it, not only that of leasning and the polite arts, but that of navigation also; the barbarians, into whose hands it fell, contenting themselves with the spoils of the industry of their predecessors.

But no sooner were the brave among those nations well settled in their new provinces; some in Gaul, as the Franks; others in Spain, as the Goths; and others in Italy, as the Lombards; than they began to learn the advantages of navigation and commerce, with the methods of managing them, from the people they subdued; and this with so much success, that in a litte time sume uf them became able to give new lessons, and set on tuot new institutions for its advantage. Thus it is to the Lombards we usually ascribe the invention and use of Lanks, bouk. keeping, exchanges, rechanges, de.

It does not appear which of the European nutions, after the settlement of their new masters, first engaged in navigation and commerce.-Some think it began with the

French; though the Italians seem to have the juster title to it, and are usually considered as the restorers of both. as wall as of the polite arts, which had been banished together fiom the time the empire was torn asunder. It is the prople of Italy then, and particularly those of Venice and Genoa, who tave the glory of this restoration; and it is to their advantageous situation for navigation that they in a great measure owe their glory. From about the time of the 6th century, when the inhabitants of the islands in the bottom of the Adriatic began to unite sogether, and by their union to form the Venetian state, their fleets of merchantmen were sent to all the parts of the Mediterranenn; and at last to thome of Eipypt, particularly Cairo, a new city, built by the Saracen princes on the eastern banks of the Nile, where they 1 raded for their spices and othrer products of the Imalies. Thus they flourished, and increased their commerce, their navigation, and their conquests on the terra tirma, till the league of Caunbray in 1508, when a number of jealous princes conspired to their ruin; which was the more crasily effected by the diminution of their Eust-India commerce, of which the Portuguese had got one part, and the French another. Genoa too, which had cultivated navigation at the same time with Venice, and that with equal success, was a long time its dangerous rival, disputed with it the empire of the sea, and shared with it the trade of Egypt, and other parts both of the past and west.

Jealousy soon began to break ont; and the two republics coming to blows, there was almost continual war for three centuries, before the superiority was ascertansed; when, towarils the end of the 14th century, the bastle of Chroza endert ilie strife: the Genoese, who till then had usuatly the advantage, having now lost all; and the Venetians, almost become desperate, at one happy blow, beyond all expectation, secured to themselies the empire of the sea, and the superiority in commerce.

About the same time that nasigation was retrieved in the southern parts of Europe, a new seciety of merchants wus formed in the North, which not only carried commerce to the greatest perfection it was capable of, till the discovery of the East and West Indies, but also tormed a new scheme of laws for the regulation of it, which still obtain under the name of, Uses and Customs of the Sea. This society is that celebrated league of the Hanse-'Towns, which was begun about the year 1164 .

The art of navigation has been greatly improved in modern times, both in respect to the form of the vessels themselves, anal the methods of working or conducting them. The use of rowers is now enturely superseded by the improvements made in the sails, rigging, \&cc. The ancients were neither so well skilled in finding the latitudes, nor in steering their vessels in places of difficult navigation, as the inoderns. But the greatest advantage which these have over the ancients, is from the mariner's compass, by which they are enabled to find their way with as much facility in the midst of an immensurable ocean, as the ancients could have done by creeping along the coast, and never going out of sight of land. Some people indeed contend, that this is no new invention, but that the ancients were acquainted with it. They say, it was impossible for Solomon's ships to go to Oplar, Tarshish, and Parvaim, which last they will have to be Peru, without this useful instrument. They insist, that it was impossible for the ancients to be acquainted with the attractive virtuc of the magnet, without knowing its pola-
rity. They even affirm, that this property of the magnet is plainly mentioned in the Book of Job, where the luarstone is called topaz, or the stone that turns itself. But, not to mention that Mr. Bruce has lately maile it appear bighly probable that Solomon's ships made no more than coasting voyages, it is certain that the Romans, who conquered Juden, were ignorant of this instrument; and it is very probable, that so useful an invention, if once it had been commonly known to a nation, would never linve been forgotten, or perfectly concealed from so enterprising a people as the Romans, who were so tnucb interested in the discovery of it.

A mong those who do agree that the marincr's compass is a mendern invention, it has been much disputed who was the inventor. Some give the honour of it to Flavio Gioia of Amalti in Campania, about the beginning of the 14 th century: while others say that it came from the East, and was carlier known in Europe. But, at whatever time it was invented, it is certain, that the marincr's compass was not commanly used in mavigation before the ycar 1420. In that year, the science was considerably improved under the auspices of Heury duke of Visco, brother to the hing of Portugal. In the year 1485, Roderic and Juseph, physicians to king John the 2d of Portugal, together with one Martin de Buhemia, a Portuguese native of the island of Fayal, and pupil to Regiomontanus, calculated tables of the sun's declination for the use of sailors, and recommended the astrolabe for taking observations at sea. The celebrated Columbus, it is said, availed himself of Martin's instructions, and improved the Spunimrds in the hnow ledge of this art; for the farther progress of which, a Ircture was afterwards founded at Seville by the emperor Charles the 5 th.

The discovery of the variation of the compass, is claimed by Columbus, and by Sebastian Cabot. The former certainly did ubserve this varjation without having heard of it from any other person, on the 1 th of September 1492, and it is very probable that Cnbot might do the same. At that time it was found that there was no variation at the Azores, for which rcason some geographers made that the first meridian, though it bus since been discovered that the variation alters in tinue. The use of the cross-staff now began to be introduced among sailors. This ancient instrument is described by John Werner of Nuremberg, in his annotations on the first book of Ptolemy's Geography, printed in 1514: he recommends it for observing the distance between the moon and some star, from which to determine the longitude.

At this time the art of navigation was very imperfect, from the use of the plane chart, which was the only one then known, and which, by its groas errors, must have greatly misled the mariner, especially in places far distant from the equator; and also from the want of books of instruction for seanken.

At length two Spanish treatises appeared on this subject, the one by Pedrode Medina, in 1545 ; and the other by Martin Cortes, or Curtis as it is printed in Einglish, in 1556, though the author says he composed it at Cadiz in 1545, containing a complete system of the art as far as it was then known. Medina, in bis dedication to Pbilip prince of Spain, laments that multitudes of ships daily $\mathrm{p}^{\mathrm{k}-}$ rished at sca, because ibere wese neither teachers of the art, nor buoks by which it might be learned; and Cortes, in his dedication, boasts to the emperor, that he was the
first who had reduced navigation into a compendium, valuing himself much on what he had performed. Medina defendeyl the plane chart; but lie was opposed by Cortes, who showed its errors, and endeavoured to account for the variation of the compass, by supposing the needle was intluenced by a magnetic pole, different from that of the world, and which he called the Point Attractive: which notion bas been further prosecuted by others. Medina's book was soon translated into Italian, Fronch, and Flemish, alld served for a long time as a guide to foreign navigators. However, Coltes was the favourite author of the English mation, and was translated in 1561, by Richard Eden, while Medina's work was much neglected, though translated also wihin a short time of the other. At that time a system of navigation consisted of materials such as the following. An atcount of the Ptolemaic bypothesis, and the circles of the sphere; of the roundness of the earth, the longitudes, latitudes, climates, \&ec, and eclipses of the luninaries: n calendar; the method of finding the prime, epact, noon's age, and tides; a description of the compass, an account of its variation, for the discovering of which Cortes sald an instrument might easily Le contrived; tables of the sun's declination for $4 y$ years, in order to find the latitude from his meritian altiture; directions to find the same by ceriain stars; of the course of the sun and moon; the length of the days; of time and its divisions; the method of finding the hour of the day and night; and lastly, a dicseription of the sea-chart, on which to discover where the ship is; they inade use also of a small table, that showed, on an alteration of one degree of the latitude, how many lengues were run on each rhumb, together with the departure from the meridian; which might be called a table of distance and departure, as we bave now a table of difference of latitude and departure. Besides, some instruments were described, especially by Cortes; one of which was for finding the place and declination of the sun, with the age and place of the moon; certain dials, the astrolabe, and cross-staff; with a complex machine to discover the hour and latitude at once.

About the same time proposals were made for finding the longitude by obscrations of the moon. In 1530° Gumma Frisius advised the keeping of the time by means of small clocks or watches, then newly invented, as he says. He also countrived a new hind of cross-staff, and an instrument called the Nautical Quadrant; which last was much praised by Willian Cuningham, in his Cosmographienl Glass, printed in the year, 1539.

In the yenr 1537 Pedro Nunez, or Nonius, published a book in the Portugucse language, to explain a difficulty in navigation, proposed to hum by the commander Don Martin Alphonso de Susa. In this work lee oxpuses the errors of the plane chart, and gives thic solution of several curious astronomical problens; arnong which, is that of determining the latitude from two alservations of the sun's altitude and the internedinte nzimuth being given. He observer, that though the rlowmbs are spiral lines, yet the direct course of a ship will always be in the arch of a great circle, by which the angle with the nomdians will continually change: ull that the steersinan can bere do for preserving the original rhumb, is to correct these devia tions ax soon as they apprar sensible. But thus the ship will in reality describe a course without the rburub-line intended; and therefore his calculations for assigning the Intitude, where any rhumb line crosses the several meri-
dians, will be in some measure erroncous. He invented a method of dividiug a quadrant by means of concentric circles, which, after being much improved by Dr. Halley, is used at present, and is called a Nonius.

In 1577, Mr. William Bourne published a treatise of navigation, in which, by considering the irregulatities in the moun's motion, he shows the errors of the sallors in finding her ase by the epact, and also in determining the hour from observing on what point of the compass the sun and moon appeared. In sailing towards high latitudes, be advises to kecp the reckoning by the globe, us the plane chart is most erroneous in such situations. He despairs of our ever being able to find the longitude, unless the variation of the compass should be occusioned by some such attractive point as Cortes had imagined; of which however he doubts: but as he had shown how to find the variation at all times, he advises to keep an account of the observations, as useful for finding the place of the ship; which advice was prosecuted at large by Simon Stevill in a treatise published at Leyden in 1599; the substance of which was the same year printed at London in Eisglish by Mr. Filward Wright, entitled the Haven-finding Art. In the same old tract also is decribed the method by which our satiors estimate the rate of a ship in her course, by the instrument called the Log. The author of this contrivance is not known; neither was it farther noticed till 1607, when it is mentioned in an East-India voyage published by Purchas: but from this time it became common, and is mentioned by all authors on navigntion ; and it still continues to be used as at first, though many attempts have been made to improve it, and contrivances proposed to supply its place; some of which have succeeded in still water, but proved useless is a stormy sea.

In 158 i Michatl Coignet, a native of Antwerp, published a treatise, in which be animadverted on Medina. In this he showed, that as the rhumbs are spirals, making endless revolutions about the poles, numerous errors mast arise from their bring represented by straight lises on the sea-charts; but though be hoped to find a remedy for these errors, he was of opinion that the proposals of Nonius were scarcely practicable, and therefore in a great measure useless. In treating of the sun's declination, he took notice of the gradnal decrease in the obliquity of the ecliptic ; be also described the cross-staff with tirve transverse pieces, as it was thell in common use among the sailors. He likewise gave some instruments of his own invention; but all of them are now laid aside, excepting perhaps his Nocturnal. He constructed a sca-table, to be used by such as sailed beyond the 6oth degree of latitude; and at the end of the book is delivered a method of sailing on a parallel of latitode, by means of a ring-dial and a 2 -hour-glass.

In the same year Mr. Robert Norman published his Discovery of the Dipping-needle, in a pamphlet called the New Attractive; to which is always subjoined Mr. William Burrough's Discourse of the Variation of the Com-pass.-In 1594, Captain John Davis published a small treatise, entitled The Seaman's Secrets, which was inuch esteemed in its time.

The writers of this period complained much of the errors of the plane chart, which continued still in use, though they were unable to discover a proper remedy: till Gerrard Mercator contrived his Universal Map, which he
published in 1569 , without clearly understanding the principles of its construction; these were tirst discovered by Mr. Edward Wright, who sent an account of the true method of dividing the meridan from Carmbridge, where he was a telluw, to Mr. Blundeville, whh a short table for that purpose, and a specimen of a churt so divided. These were publishod by Blundeville in 1594, annoug his Exercises; to the later editions of which was added his Discourse on Universal Maps, first printed in 1589. However, in 1599 Mr. Wright printed his Currection of certain Errors in Navigation, in which work he shows the reason of this division, the manner of constructing his table, and ins uses in navigution. A second editiou of this treatise, wath further improvements, was printed ia 1610 , and a third edtion by Mr. Moxon, in 1657. - The method of approximation, by what is called the middle latitude, now used by our sallors, occurs in Gunter's Worhs, first printed in 1623.-A bout this time logarithms began to be introduced, which were applied to navigation in a variety of ways by Mr. Edinund Gunter ; though the first application of the logarithmic tables to the cases of sailing, was by Mr. Thomas Addison, in his Arithmetical Navigation, priuted in 1625 .-In 1655 Mr . Henry Gellibrand printed a Matbematical Discourse on the Varration of the Magnetical Needle, containing his discovery of the changes to which the variation is subject.-In $1631, \mathrm{Mr}$. Richard Norwood published an excellent 'I'reatise of 'Trigonometry, adapted to the invention of logaritbms, particularly in applying Napier's general canons: and for the farther improvement of navigation, he undertook the laborious work of measuring a degree of the meridian, for examining the divisious of the log-line. He has given a full and clear account of this operation in his Seaman's Practice, first published in 1637 ; where he also describes his own excellent method of setting down and perfecting a sea-reckoning, \&cc. This treatise, and that of irignoumetry, were often reprinted, as the principal books for learning scientifically the art of navigation. What he had delivered, especially in the latter of them, concorning this subject, was contracted as a manual for sailors in a very sinull piece, called his Epitome, which has gone through a great number of editions.-About the year 1643, Mr. Bond published, in Norwood's Epitome, a very great inuprovement on Wright's method, by a property in lis meridian line, by which its divisions are more scientifically assigned. than the author was able to eflect; which he deduced from this theorem, that these divisions are unalugous to the exccoses of the logarithmic tangents of hall the respective latitudes increased by 45 degrees, above the logarithm of the radius: this he atterwards explained more folly in the 3 d edition of Gubter's Works, printed in 1653; and the demonstration of the general theorem was supplied by Mr. James Gregory of Aberdeen, in his Exercitanones Geonetrica, prinied at Londen in 166%, and afterwards by Dr. Halley, in the Philos. Trans. No. 219, as also by Mr. Cotes, No. 388.-In 1700, Mr. Bond, who innagined that be had discovered the longitude, by having discovered the true theory of the magnetic variation, pullished a general map, on which curve lines were drawn, expressing the paths or places where the maguetic needle had the same variation. The positions of these curves will indeed continually experience alterations; and therefore they should be corrected frem titne to time, as they have already been for the years 1744, and 1756, by Mr. Willian Mountainc,
and Mr. James Dodson.- The, allowances proper to be tande for Ire-way, are very particularly set down by Mr. John Buckler, and published in a small tract first printed in 1702, entitled a New Compendiun of the whole Art of Navigation, written by Mr. William Jones.

As it is now generally agreed that the earth is a spheroid, whose axis or polar dianneter is shorter than the equatorial diameter, Dr. Murdoch published a tract in 1741, in which he adapted Wright's, or Mercator's sailing to such a figure; and in the same year Mr. Maclaurin also, in the Philos. Trans. No, 461, for determining the meridional parts of a sphercid; and he has further prosecuted the same speculation in his Fluxions, primed in 1742.

The method of finding the longitude at ses, by the observed distances of the moon from the sun and stars, commonly called the lunar method, was proposed at un early stage in the art of navigation, (viz, in 1514 , by John Werner of Nuremberg,) and bas now beon happily carried into effectual execution by the encouragement of the Buard of longitude, which was established in England in the year 1714, for rewarding any successful endeavours to keep the longitude at sea. In the year 1767, this board published a Nautical Almanac, which has been continued annually ever since, by the adivice, and under the direction of the astronomer-royal at Greenwich: this work is purposely adapted to the use of navigators in long voyages, and, among a great many useful articles, it contains tables of the lunar distances accurately computed for every $\$$ hours in the year, for the purpose of comparing the distance thus known for any time, with the distance observed in an unknown place, from which to compute the longitude of that place. Under the auspices of this Board too, besides giving encouragement to the authors of many useful tables aud other works, which would otherwise have been lost, time-keepers have been brought to a great degree of excellence, by Mr. Harrison, Mr. Arnold, and many other persons, which have proved highly advantageous in keeping the time during long voyages at sea, and thence giving the longitude to a goud degree of accuracy.

Some of the other principal writers on navigation are, Stevin, before 1600, in his Hydrography; Bartholomew Crescenti, of Rome, in 1607 ; Willebrord Snell, at Leyden, in 1624, his Tiphys Batavus' Geo. Fournier, at Paris, 1633 ; John Baptist Riccioli, at Bologna, in 1661 ; Dechales, in 1674 and 1677 ; the Sieur Blondel St. Aubin, in 1671 and 1673 ; M. Dassier, in 1683 ; M. Sauveur, in 1692; M. John Bouguer, in 1698; F. Pezenas, in 1733 and 1741 ; and M. Peter Bouguer, who, in 1753, published a very elaborate treatise on this subject, entitled, Nnuveau Traité de Navigation; in which he gives a variation compass of his own invention, and attempts to reform the log, as he had before done in the Memoirs of the Arademy of Sciences for 1747. He is also very particular in determining the lunations more accurately than by the common methods, and in describing the corrections of the dead reckuning. This book was abridged and improved by M. Lacaille, in 1760 . To these may be added the navigation of Don George Juan of Spain, in 1757. And, in our own nation, the several treatises of Messrs, Newhouse, Seller, Hodgson, Atkinson, Harris, Patoun, Hauxley, Wilson, Moore, Nicholson, \&c ; but, ahove all, The Elements of Navigation, in 2 vols, by Mr. Jolin Robertson, first printed about the year 1750 , and since often re-printed; which is the most complete work of the kind Vol. 1 L .
extant ; and to which work is prefixed a Dissertation on the llice and Progress of the medern Art of Navigation, by Dr. James Wilson, containing a very learned and elaborate history of the writings and improvements in this art.

For anaccount of the several instruments employed for the purposas of navigation, with the methods for the longitude, and the various kinds and methods of navigation, ace, see the respective articles themelves, as also the preface to Robertson's Navigation.

Navigation is either Proper or Common.
Navigation, Common, usually called coasting, in which the places are at no great distance from each other, and the ship sails usually in sight of land, and mostly within soundings. In this, little else is required besides an acquaintance with the lands, the compass, and sound-ing-line; each of which, see in its place.

Navigation, Proper, is where the voyage is long, and pursued through the main ocean. And here, besides the requisites in the former case, are also required the use of Mercator's Chart, the aximuth and amplitude compasses, the log-line, and other instruments for celestial observations ; as forestaffs, quadrants, and other sectors, \&c.

Navigation turns chiefly upon four things; two of which being given or known, the rest are thence easily found out. These four things are, the difference of latitudr, difference of longitude, the reckoning or disiance run, and the course or rhumb sailed on. The latitudes are easily found, and that with sufficient accuracy : the course and distance are had by the \log.line, or dead reckoning, together with the compass. Nor is there any thing wanting to the perfection of uavigation, but to determine the longitude. Mathematicians and astronomers for many ages have applied themselves, with great assiduity, to supply this grand desideratum, but not altogether with the success desired, considering the importance of the object, and the magnificent rewnrds offered by several states to the discoverur. See Lonoittide.

Sub-Marine Navioation, or the art of sailing under water, is mentioned by Mr. Boyle, as the desideratum of the art of navigation. This, he says, was successfully attempted, by Cornelius Drebbel; several persons who were in the boat breathing freely all the time. See DivimoBell.
Inland Navigation, is that performed by small craft, upon canals, \&c, cint through a country.

NAVIGATOR, a person capable of conducting a ship at sea to nny place proposed.

NAUTICAL, Chart, the same as Sea-Chart.

Nautical. Compass, the same as Sea-Compass.
Nautical Planiophere, a projection or construction of the terrestrial globe on a plane, for the use of mariners; such as the plane chart, and Mercator's chart.

NEAP, or NeEp-Tides, are those that happen at equal distances between the spring tides. The neap tides are the lowest, as the spring tides are the highest ones, being the opposites to them. And as the highest of the spring tides happens about 3 days after the full or change of the moon, so the lowest of the neap tides fall about 3 days after the quarters, or 4 days before the full and change; when the seamen say it is deep neap.

NEAPED. When a ship wants water, so that she cannot get out of the harbour, out of the dock, of of the ground, they say, she is neaped, or beneaped.

NEBULLE, or Nebulous, or Cloudy, a term applied
to certain fixed stars, which show a dim, hazy light; being less thun those of the fith magnatude, and therefore scarcely visible to the naked eye, to which at best they only appear lihe little dusky specis or clouds. - Through a moderate telescope, most of these nebulou; stars plainly appear to be congeries or clusters of everal little stars. In the nebulous star called Presepe, in the breast of Cancer, there are reckoned 36 little stars, 3 of which Mr. Flamsteed sets down in his catalogue. In the mebulous star of Orion, are rechoned 21. F. le Compte adds, that there are 40 in the Pletades; 12 in the star in the middle of Orion's sword; 500 in the extent of two degrees of the same constellation; and 2500 in the whole constellation. It may further be observed, that the galaxy, or milky-way, is a continued assemblage of nebulx, or vast clusters of small stars.

Though some of these nebulous spots in the heavens consist of cluste1s of small stars, others uppear as luminous spots of different forms. A remarkable one is in the midway between the two stars on the blade of Orion's sword, marked 9 by Bayer, discovered in the year 1656 by Huygens: it contains only 7 stars, and the other part is a bright spot on a dark gronnd, appearing like an opening into brighter regious beyond.

Dr. Halley and others have discovered nebulaz in several parts of the heavens. In the Connoissance des Temps, for 1783 and 1784 , there is a catalogue of 103 nebula, observed by Messier and Mechain. But to Dr. Herschel we owe catalogues of 2000 nebulie, and clusters of stars, discovered by lim. Sone of these form a round compact system; others are more irregular, and of various forms, some being long and nurrow. The globular systems of stars appear thicker in the middle, than they would do if the stars were all at equal distances from each other; they are therefore condensed toward the centre. These he supposes are brought together by their mutual attractions, and that the gradual condeusation toward the centre is a proof of a central power of such a kind; and that though the forms are various, it is plain that there is always a tendency to sphericity. And granting that these nebulas and clusters of stars are formed by mutunl attraction, Dr. H. concludes, that we may judge of their relative age by the disposition of their component parts, those being the oldest that are most compressed. He supposes, and indeed offers powerful arguments to prove, that the milkyway is the nebula of which our sun is one of its component parts.

Dr. Herschel has also discovered other phenomena in the heavens, which he calls nebulous stars; that is, stars surrounded by a faint luminous atmosphere of large extent. Thase which have been thus styled by other astronomers, he says, ought not to have been so called; tor, on examination, they have proved to be either mere clusters of stars plainly to be distinguisbed by his large telescopes, or such nebulous appearances as might be occasioned by a multitude of stars at a vast distance. The milky-way consists entircly of stars; and he says, "I have been led on by degrecs from the most evident congeries of stars, to other groups in which the lucid points were smaller, but still very plainly to be seen; and from thern to such in which they could barely be suspected, until I arrived at last to spots in which no trace of a star was to be discovered. But then the gradations to these latter were by such comnected steps, as left no room for doubt, but that all these phenomena were equally oceasioned by stars
variously dispersed in the immense expanse of the universe."

III, the same paper is given an account of some nebulous stars, one of which is thus described: "Nov. 13, 1790. A most singular phenomenot! A star of the Sth magutude, with a faint luminous atmosphere, of a circular form, and of about 3 ' in diameter. The star is periectly in the centre, and the atmospliere is so diluted, faint, and equal throughout, that there can be no surmise of its comsisting of stars, nor can there be a duubt of the evident connection between the atmusphere and the slar. Another star, not mucb less in brightness, and in the same field of virw with the above, was perfectly tree from any such appoarance. Hence Dr. H. draws the following consequences: grauting the connection between the star and the surruuading nebulosity, if it consist of stars very remote, which gives the nebulous appearance, the central star, which is visible, must be immensely grenter than the rest; or if the central star be no larger than common, how extrenely small and compressed nust be those other luminous points which occasion the nebulesity. As, by the former supposition, the luminous central point must far exceed the standard of what we call a star ; so in the latter, the shiming matter about the centre will be too small to cone under the same denomination; we therefore cither have a central body which is not a star, or a star which is involsed in a shining fluid, of a nature totally unkuown to us." This last opinion Dr. H. adopts.

Light retlected from the star could not be seen at this distance. Besides, the outer parts are nearly as bright as those near the star. Further, a cluster of stars will not so completely account for the mildness or soft tint of the light of these ishula, as a self-luminous fluid. What a field of nowelty, says Dr. H., is here opened to nur conceptious! A shining fluid, of a brightness sufficient to reach us from the regions of a star of the 8 th, 9 th, 10 th, 11 th, 12 th magnitude ; and of an extent so considerable as to take up 3, 4, 5 , or 6 minutes in diameter. Hic conjectures that this shining fluid may be compused of the light perpetuaily conitted from millions of stars. Sce Philos, Trans. an. 1791, pa. 1, or my Abridg. vol. 17, pa. 18.

In the vol. for 1811, pa. $269, \mathrm{Dr}$. Herschel has much farther continued his observations into the nature, construction, and uses of nebulous mutter. He shows that it is distributed through the immensity of space, in quantities inconceivably great, and in separate coliections of all shapes and sizcs, and of all degrees of brightness, between a mere milky appearance and that of a fixed star. He states substantial reasons for conceiving that the whole furniture of the universe is furnished and formed out of collections of it; that it is naturally opaque though selfshining; that by its central gravitation eacib collection gradually becones more and inore condensed, and more and more rounded in its form ; that trom the excentricing of its shape, and gravitation, it açuires gradually a rotary motion; that probably this condensation, and roundness, and rotation, go on costinually increasing, till the mass conte to a lard or firm consistence, and receive all the other characters of a comet or a planet ; that by a still further process of condensution, the body becomes a real star self-shining; and that thus, the waste of the celestis! bodies, by the perpetual diffusion of their light, is contiuually compensated and restored, by new Cormations of such bodics, to replenish for ever the universe with planets and stars !

NEE

Dr. H. has again returned to this prolific subject, in a paper communicated to the Royal Society, and read at their meetings Feb. 24, and March S, 1814. He bere relates his observations on the relative magnitudes of the stars, considering those of the first magnitude to be equal to our sun; determined the magnitudes and clanges in the appearance of a great number of fixed stars ; gave a history of the alterations which be has noticed in the aspect of the sidereal heavens, during the last 30 years; and described those stars which have increased in mugnitude or brilliancy, have lust or acquired surrounding nebula, or have had wings, or tails, or other peculiaritios. He seems of opinion that new sidereal bodies are in a constant and progressive state of formation; that nebulous appearances gradually assume a globular form. He considers the origin and progress of sidereal bodies to be nearly in the following order: first, vague and indistinct nebular, like the milky-way ; 2d, detached ur clustered nelpula, which consolidate iuso clusters of stars; 3dly, these stars, becoming mure definite, appear with ncbulous appendages, in the different forms of wings, tails, \&c ; and lastly, that all are finally concentrated into one clear, bright, and large star.

NEEDHAM (John Tubeaville), a respectable phiIosopher and catholic divine, was born at London December 10,1713 . Ilis father prossessed a considerable patrimony at Ililston, in the county of Monmauth, being of the cathalic branch of the Needtram family, and who died young, leaving but a mmall fortune to his four children. Our author, who was the eldest son, studied in the English college of Doual, where he took orders, taught ibetoric for several years, and surpassed all the other professors of that seminary in the knowledge of experimental philosophy.
In $17+0$, he was engaged by his superiors in the service of the English mission, and was intrusted with the direction of the sclivol erected at Twy ford, near Winchester, for the education of the Roman Catholic youth.In 1744 he was appointed professor of philosophy in the English college at Lisbon, where, on account of his bad health, be remained only 15 months. After his return, he passed several sears at London and Paris, which were chiefly employed in microscopical observations, and in other branches of experimental philosophy. The results of these ubservations and experiments were published in the Philos. Trans, in the year 1749, and in a volume in 12 mo at Paris in 1750 ; and an account of them was also given by M. Buffon, in the first volumes of his natural history. An imsinate connection subsisted for a long time between Mr. Needham and this illustrious French naturalist: they made their experiments and observations together; though the results and systems which they deduced from the same objects and operations were tutally different.
Mr. Needham was clected a member of the Royal Society of London in the year 1747, and of the Antiquarian Society some time after.-Fiom the year 1751 to 1767 he was chiefly employed in finishing the education of several English aud lrish noblemen, by attending them as tutor in their travels through France, Italy, and other countrics. He then retired from this wandering life ta the Finglish seminary at Paris, and in 176 s was chosen by the Royal Academy of Sciences in that city a corresponding member.

When the regency of the Austrian Netherlands, for the revival of philusophy and literature in that country, formed the project of an Imperial Acadeny, which was
preceded by the erretion of a small literary suciety to pre pare the way for its execution, Mr. Needham was insited to Brussels, and was appointed successively chiel director of both these foundations; an appointment which he held, together with some ecelesiastical proterruents in the Jow Countries, till his death, which bappened December the 30th 1781.

Mr. Needham's papers inserted in the Philosophical Tranasctions, wete the following, viz;

1. Account of Chalhy Tubulous Concretions, called Malm: vol.42.-2. AherósenpicalObservations on Worms in SmottyCorn:vol.42.-3.ElectricalF:xperimentslately made at Paris: vol. 44.-4. Account of M. Bution's Mirror, which burns at $66 \mathrm{feet:} \mathrm{ib}-$.5 . Observations on the G neration, Composition, and 1)ecomposition of Animal andVegetable Substances: vol. 45.-6. Un the Discovery of Asbestos in France: vol 51.

Other works printed at Paris, in French, are,

1. New Microscopical Discovertes: 1745.
2. The same enlarged: $\mathbf{1 7 5 0}$.
3. On Microscopical, and the Generation of Organized Bodies: 2 vols, 1760.

NEEDLE, Magnetical, denotes a needle, or a slender piece of iron or steel, touched with a loadstone; which, when freely suspended on a pivot or centre, on which it plays, settles at length in a certain direction, cinber duly, or nearly north-und-suuth, and called the magnetic meridian. Magnetical needles are of two kinds; horizontal and inclinatory.

Horisontal Nevdees, are those equally balanced on each side of the pisot which sustains them; and which, playing horizontally, with their two extremes, point out the north and south parts of the horizon.

Construction of a Horizontal Needie. Having procured a thin light piece of pure stcel, about 6 inches long, a perforation is made in the middle, over which a brass cap is soldered on, baving its inner cavity conical, so as to play freely on the suile or pisot, which has a fine steel point. To give the needle its verticity, or directive faculty, it is rubbed or stroked leisurely on each pule of a magnet, from the south pole towards the north; first beginning with the vorthern end, and going back at each repeated stroke towards the south: being careful not to give a stroke in. a contrary direction, which uould counteract the power it had already obtaince. Also the hand should not return elirectly hack again the same way it came, but should return in a kind of oval figure, carrying it about 6 or 8 inches beyond the point where the touch ended, but not beyond on the side where the touch begins.

Before louching, the north end of the needle, in our hemisphere, is made a little lighter than the other end; because the touch always destroys an exact balance, and thus causing the neville to dip. And if, atter touching, the needle be out of its equilibrium, samething must be filed off from the heuvier side, till it bo found to balance evenly.

Needles may also acquire the magnetic virtue by means of artificial magnetic bars in the following manner: Lay two equal needles parallel, and about an inch asunder. with the north end of one and the sauth end of the other pointing the same way, and apply two conductors in contact with their ends: then, with two magnetic hard bars, one in each hand, und beld as nearly horizontal as can be, with the upper ends, of contrary names, turned ontwards to the right and left, let a needle be stroked or rubbed

N 2
from the middle to both ends at the same time, for ten or twelve times, the north end of a bar going oucr the south end of a needle, and the south end of a bar going over the north end of a necdle: then, without moving from the place, change hands with the bars, or in the same hands turn the other ends downwards, and struke the other needle in the same manner; so will they both be magnetical. But to make them still stronger, repeat the operation three or four times from oeedle to needle, and lastly turn the lower side of each needle upwards, and repeat the operations of touching them, as on the former sides.

The needles that were formerly applied to the compass, on board merchant-ships, were formed of two pieces of steel wire, each being bent in the middle, so as to form au obtuse angle, while their ends, being applied together, make an acute one, so that the whole represented the form of a lozenge. Dr. Knight, who has so much impruved the compass, found, by repeated experiments, that parily from the foregoing structure, and partly from the unequal hardening of the ends, these needles not only varied from the true direction, but from one another, and from them-selves.-Also the needles formerly used on board the men of war, and some of the larger trading vensels, were made of one piece of stecl, of a spring termper, and broad towards the ends, but tapering towards the middle. Every ncedle of this form is found to have six poles instead of two, one at each end, two where it becomes tapering, and two ut the hole in the middle.

To remedy these errors and inconveniences, the needle wbich Dr. Knight contrived for his compass, is a slender parallelopipedon, being quite straight and square at the ends, and so has only two poles; but the curves are a little confused about the hole in the middle, though it is, upon the whole, the simplest and best.-Mr. Michell suggests, that it would be useful to increase the weight and length of magnetic needks, which would render them both more accurate and permanent; also to cover them with a coat of linseed oil, or varnish, to preserve them from rust.-A needle may be prepared occasionally without touching it on a loadstone: for a fine steel sewing-needle, gently laid on the water, or delicately suspended in the air, will take the north-and-south direction.-Thus also a necule beated in the fire, and cooled again in the direction of the meridian, or only in an erect position, acquires the same faculty.

Declination or Variation of the Needee, is the deviation of the horizontal needle from the meridian; or the angle it makes with the meridian, when freely suspended in an horizontal plane. A needle is always changing the line of its direction, traversing slowly to certain limits towards the east and west sides of the meridian. It was at first thought that the magnetic ncedle pointed due north; but it was observed by Cabot and Columbus ihat it had a deviation from the porth, though they did not suspect that this deviation had itself a variation, and was continually changing. This clange in the variation was first observed, according to Bond, by Mr. John Mair, secondly by Mr, Gunter, and thirdly by Mr. Gellibrand, by comparing together the observations made at different times near the same place by Mr. Burrewes, Mr. Gunter, and himself, un which subject he published a discourse in 1635. Soon after this, Mr . Bond ventured to deliver the rate at which the variation changes for several years; by which he foretold that at London in 1657 there would be no variation of the compass, und from that time it would gradually
increase the other way, or towards the west, making apparent vibratory motions between certain limits; which happened accordingly: and upon this variation he proposed a method of finding the longitude, which has been further improved by many others since his time, though with wery litule success. See Variation.

The period of the variation, according to Mr. Henry Philips, is only 370 years, but Mr. Bond 600 years, and their gearly motion 36 minutes. The first good observations of the variation were made by Burrowes, about the year 1580, when the variation ht London was $11^{\circ} 15^{\circ}$ east; and siace that time the needle has been moving to the westward at that place; also by the observations of different persons, it has been found to poiut, at different times, as beluw :

Yean.	Obseners.		Variat. E. or W. $11^{\circ} 15^{\prime}$ East.		
1580	Burrowes	-			
1622	Gunter	-	5	56	
1634	Gellibrand	-	4	3	
1640	Bond	-	3	7	
1637	Bond	-	0	0	
1665	${ }^{\text {B }}$ Bond	-	1	23	West.
1666	Bond	-	1	S6	
1672	- -	*	2	30	
1683	- -	-	4	30	
1692	- -	-	6	00	
1723	Graham	-	14	17	
1747	- -	-	17	40	
1774	Royal Society	-	21	16	
1775	Royal Society	-	21	43	
1786	Royal Society	-	21	47	
1777	Ruyal Society	-	22	12	
1778	Ruyal Society	-	22	20	
1779	Royal Society	-	22	28	
1780	Royal Society	-	22	41	
1804	Royal Society	-	24	10	
1805	Royal Society	-	24	8	
1806	Royal Sociely	-	24	9	
1807	Royal Society	-	24	10	
1808	Royal Society	-	24	12	
1812	Royal Socicty	-	24	10	

By this table it apprars that, from the first observations in 1580 till 1657, the change in the variation was $11^{\circ} 15^{\prime}$ in 77 years, which is at the rate nearly of 9^{\prime} a year; and from 1657 till 1780 , or the space of 123 years, it changed $22^{\circ} 41^{\prime}$, which is at the rate of 11^{\prime} a year nearly; which it may be presumed is very near the truth.

The variation and dip of the needle was for many years carefully observed by the Royal Society while they met at Crane-court; but were discontinued for many years after removing to their new aparıments in Somerset-place; though they have lately been there renewed again.

Dipping, or Inclinatory Needie, is a needle to show the dip of the magnetic needle, or how far it points below the borizon.

The inclination or dip of the necdle was first obscrved by Rubert Norman, a compass-maker at Rateliffe; und according to him, the dip at that place, in the year 1576. was $71^{\circ} 50^{\prime}$; and at the Royal Sociely it was observed for some years lately as follows:

viz, in 1776	$=$	72°	30°
1778	$=$	72	25
1780	$=$	72	-17
1805	$=$	70	25
1808	$=$	70	1.

Mr. Henry Bond makes the variation and dip of the needle depend on the same niotion of the magnetic poles in their revolution, and upon it he founded a method of discovering the lungitude at sea.

Neep Tides. See Neap Tides.
NEGATIVE, in Algebra, something marked with the sign - ; or minus, as being contrary to such as are positive, or marked with the sign plus, + ; as negative powers and roots, negative quantities, \&c. See Puwen, Ruot, Quanтіту; \&c.

Negative Sign, the sign of subtraction -, or that which denotes something in defect. Stulel is the first author I find who used this mark - fur subtraction, or negation; before his time, the word aninus itself was used, or else its initial m.

The use of the negative sign in algebra, is attended with several consequences which at first sight are not admitted witbout some difficulty, and hat sometirnes given oceasion to notious that seem to have no real fuundation. This sign implies, that the real value of the quantity represented by the letter to which it is prefixed, is to be subtracted; and it serves, with the positive sign, to keep in view what clements or parts enter into the composition of quantitics, and in what manner, whether as incremeuts or decrements, that is whether by addition or subtraction, which is of great use in alycbra.

Hence it serves to express a quantity of an opposite quality to a positive; such as a line in a contrary position, a motion with opposite darecuon, or a centrifugal force in opposition to gravity; and thus it often saves the trouble of distinguishing, and demonstrating separately, the various cases of proportions, and preserves their analogy in view. But as the proportions of lines depend on their magnitude only, without regard to their position; and motions and forces are said to be equal or unequal, in any given ratio, without regard to their directions; and iu general the proportion of quantities relates to their magnitude only, without determining whether they are to be considered as increments or decrements ; so there is no ground to inagine any other proportion of $+a$ and $-b$, than that of the real magnitudes of the quantities represented by a and b, whether these quantities are, in any particular case, to be added or subtracted.

As to the usual arithmetical operations of addition, subtraction, \&c, the case is different, as the effect of the negative sign is here to be carefully attended to, and is to be considered always as producing, in those operations, an effect directly opposite to the positive sign. Thus, it is the same thing to subtract a decrement, as to add an equal increment, or to subtract - b from $a-b$, is to add $+b$ to it: and because multiplying a quantity by a negative number, implies only a repeated subtraction of it, the multiplying $-b$ by $-n$, is subtracting $-b$ as often as there are units in n, and is therefore equivalent to adding $+b$ so many times, or the same as adding $+n b$. But if we infer trom this, that 1 is to $-n$ as $-b$ to $n b$, according to the rule, that unit is to one of the factors as the other factor is to the product, there is not ground to imagine that there is any mystery in this, or any other meatiing than that the real quantities represented by $1, n, b$, and $n b$ are propurtional. Fur that rule relates unly to the magnitude of the factors and product, without determiliing whether any factor, or the product, is additive or subtractive. But this must be determined in algetraic cons-
putations; and this is the proper use concerning the signs, without which the operation could not proceed. Because a quantity to be subtracted is never produced, in composition, by any repeated addition of a positive, or repeated subtraction of a negative, a negative square number is never produced by composition from a root. Hence the $\sqrt{ }-1$, or the square root of a negative, implies an imaginary quantity, and in resolution is a mark or character of the impossible cases of a problem, unless it is compensated by another imaginary symbol or supposition, for then the whole expression may have a real signification. Thus $1+\sqrt{ }-1$, and $1-\sqrt{ }-1$, taken scparately, are both imaginary, but yet their sum is the number 2 : as the conditions that separately would render the solution of a problem impossible, in some cases destroy each other's effect when conjoined. In the pursuit of general conclusions, and of simple forms for representing them, expressions of this kind must sometimes arise, where the imaginary symbol is compensated in a manner that is not always so obvious. By proper substitutions, however, the expression may be transformed into another, wherein each particular term thay have a real signification, as well as the whole expression.

The theorems that are sometimes briefly discovered by the use of this symbol, may be demonstrated without it by the inverse operation, or some other way; and though such syinbols are of great use in the computations in the method of fluxions, trigonometry, \& c, their evidence cannot be sald to depend upou may arts of this kiod. See Maclaurin's Fluxious, book 2, chap. 1; Maseres's Use of the Negative Sign, Ludlum's Algebra, and Carnot's Geo metrie de Position.

For the rules or ways of using the negative sign in the several rules of algebra, see those rulcs severally, viz, ADDItion, Subtraction, Multiplication, \&e. And for the method of managing the roots of negative quantities, see Impossibles.

NEIL (William), an ingenious mathematician, son of Sir Paul Neil, usher of the privy chamber to King Charles 1, and was grandson of Dr. Rd. Neil, archbishop of York. He was born Dec.7, 16s7, and was educated at Oxford, in Wadhain-collegr, under Dr. Wilkins; by whose instructions, and those of Dr. Seth Ward, he greatly improved his genius in mathematics. His success in that study appeared as early as 1657 , at 19 years of age, when he, first of any one, accurately rectufied a curve linc, the semicubical parabola, as was testified by the letters of Dr. Wallis, Lord Viscount Brouncker, and Sir Chr. Wren, printed in the Philos. Trans. an. 1673, and my Abridg. vol. 2, pa.112,-Mr. Neil became an early member of the Royal Society, of which he was elected a fellow in 1663. And his Theory of Mation was communicated to the society in 1669 . But the further expectations, which bad been conceived of his genius in mathematical and philosophical subjects, were disappointed by his early death, which happened 1670 , in the 330 year of bis age.

NEl'ER. See Napien.
NEWEL, the upright post that stairs turn about; being that part of the staircase which sustains the steps.

NEWTON (Dr. Junx), an eminent Einglish mathematician and divine, was the grandson of John Newton of Axmouth in Devonshire, and son of Humphrey Newton of Oundle in Northamptonshire, where he was born in 1622, After receiving the proper foundation of a gram-
matical education, he was sent to Oxford, where he was emered a commener of St. Edmund'shall in 1637. He took the depree of bachelor of ants in $\mathbf{t} 6+1$; and the year following he was created master, in precedence to many students of quality, on account of his distmguisbed talents in the great branches of literature. His genius leading hiru strungly to astronony and mathematics, he aiplied himself diligently to those sciences, as nell as to divinily, and made a great proficiency in them, which be found of some service to him during Cromewdi's government.
Afer the restoration of Charles the 2 d , he reaped the fruits of his loyalty: bring created doctor of divinity at Oxford, Sept. 166 t , he was made one of the King's chapLams, and rector of Russ in Herefordshire, mated of Nir. John Trombis, ejected for noneonformity. lie held this living till his death, which happened at koss on Chiristras day 1 ti 78 , at 36 years of age.

Mr. Wood gave him the character of a capricions and humorsume person. However that be, hiswriligg, are a proof of hisgreat application to study, and a suiticierat monumen of his genius mad skill in the mathematical sciences. Thesenate,

1. Insttemio Mahematica: 1654 , in 12 mo .
2. Tabule Mathematica: 1654 , in 12 mo .
3. Avtronomia Brilamica, \&c: 1656 , in 440 .
4. Help to Calculaton; with Tables of Decliuttion, Exc: 1637, 410.
5. Trigonometria Britanaica, in a botks; the one consposed by our author, und the other trauslated from the Latin of Henry Geltibrand: 1658 , tuloo.
6. Chiliates Centum Logarishmorum, printed with,
7. Geometrical Trigonometry: 1659.
8. Mathematical Elements, 3 parts: $1660,4 t 0$.
9. A Perpetual Diary, or Almanac: 16062.
10. On the Use of the Carpenter's Rule: 1667.
11. Ephemerides, showing the interest and rate of moncy at 6 per cem, \&c: 1667 .
12. Chiliades Centura Locarithmorum et Tabula Partium Proportionaliun: 1667 .
13. The Rule of Interest, or the Case of Decimal Fractions, \&cc, patt $2: 166 \mathrm{~s}$, svo.
14. Schnol-pastimes for young children, \&cc: $1699,8 \mathrm{vo}$.
15. Art of Practical Gatging. \&c: 1669.
16. Introduction to the art of Rhetoric: 1671 .
17. The Art of Nalural Arishmetic in Whole Numbere, and Fractions Vulgar and Decimal: 1671, 8vo.
18. The linglish Academy: 1677, Svo.
19. Cosnography.
20. Introduction to Astronomy.
21. Introduction to Geugraphy: 1678,8 vo.

NEWTON (Sir Isaac), one of the greatect philosophers and mathematicinns the world has proluced, was born at Woolstrop in Lincolnthire on Christmas day t642. He was descended from the eldest branch of the tamily of Sir John Newton, Bart. who were lords of the manor of Wuolstrop, and had heen possessed of the estate for pbout two centuries before; to which they had remosed from Westley in the same county, but originally shey came from the town of Newton in Lancashire. Other accounts say, I think more truly, that he was the only child of Mr. John Newton of Colesworth, near Granthon in Lincolnshire, who had there an eslate of about 120t. a year, which he kept in his own hands. His mother was of the
ancient and opulent family of the Aysenughs, or Ashews, of the sume couns. Our author losing ins tather while be was very young, the care of his eaucation desolved on his mollere, who, lhough she married agamafter his father's death, did not neglect to improve by a hberal education the promising gemus that was olserved in her son. At 12 jears of aze, by the advice of bis maternal uncle, he was sen: to the grammar schuol at Granthan, where be mate a grod prolickency in the languages, and laid the foundation of bis foture stualies. Eveu here was observed in him a strong inclonation to figures and phalosophical subjects. Olie thait of thes eally disprosition is told ot him: be had then a rude nethod of nuewsuring the force of the uinil blowing against himı, by observing how much farther he could leap in the direction of the wind, or blowing on his back, than be could leap the contrary way, or opposed to the wind: an carly mark of his original infantine genius.

After a few years spent hete, his nother took him home; intendeng, as she had no other child, to have the pleasure of his comprary; and that, ufter the mantier of his father before him, be shouhl occupy his osna csatate. But instead of attending to thic marhets, or the business of the farm, he whas occupied in studylum und proting over his boaks, even by stealth, irem his mulier's knowledge. Un one of these cecasinns his uncle discovered lim one duy in a hay-loft at Girdntham, whithes be had been sent to the market, workong a mathematical problem; and having otherwise observed ahe boy's mind to be uncommonly bent upon learning, he provailed upon his sister to pare with lim ; and lee nis accordmgly sem, ill 1660 , to Trinity-college, in Cambridon, where lis uacle, baving bimsif been a member of it, bati sull many friends. Laac uas liere noticetl by Dr. Harrow, whio vas soon after appointed the first Lucasian professor of mathematics; and observing his bright genius, coltracted a great friendship for him. At his outsetting here, Euclid was first put into his hands, as usual, but that aushur was sonn dismissed; our author's genius and application soon rendering him muster of the Elements: and as the analy tical method of Descartes was then much in vogue, be particularly applied to it, and Kepler's Optics, \&c, making several improvements on them, which he entered on the murgons of the broks as be went on, as his custom was in studying any aushor.

Thus he was euployed 111 the yoar 1664, when he opened a way into liss new method of Fluxions and Infinite series; and the same year took the degree of bachelor of arks. In the mean time, observing that the mathematiciuns were much engaged in the busmess of improving telescopes, by grinding glasses into one of the figures made ty the three sections of a cone, on the principte then generally entertained, that light was homogencous, be set himself to grinding of optic glasses, of other figures than splecrical, huving as yet no distrust of the homogeneous niture of light: but nos litting presently on any thing in tiis attempt to satisty his mand, he procured a glass prism, that he might try the celebrated phenomena of colours, discovered by Grimaldi not long before. He was much pleased at first with the vivid brightness of the colours produced by this experiment; but after a while, considering them in a philosoplical way, with that circumspection wlich was natural to him, he was surprised to see them in an oblong form, which, according to the received rule of refractions, ought to be circular. At first he thought the irregularity might possibly be no more than accidental;
the common estimate in use among the geographers and our seamen, before Norwood had measured the earth, namely, that 60 miles make one degree of latitude; but as that is a very erroneous supposition, each degree containing about $69_{15} \frac{1}{3}$ of our English miles, tis computation upon it did not make the power of gravily, decreasing in a duplicate proportion to the distance, answerable to the power which retained the noon in her orbit: whence be concluded, that some other cause inust at least join with the action of the power of gravity on the moon. For this reason be laid aside, for that time, any further thoughts on the matter. Mr. Whiston (in his Memoirs, pa. 33) says, he told him that he thought Descartes's vortices might concur with the action of gravity.

Nor did he resume this inquiry on his return to Cambridge, which was shortly atter. The truth is, his thoughts were now engaged on his newly projected reflecting telescope, of which he made a small specimen, with a metallic reflector spherically concave. It was but a rude essay, chiefly defective from the want of a good pulish for the metal; which instrument is now in the possession of the Hoyal Society. In 1067 he was chosen fellow of his college, and toak the degree of master of arts. And in $1669, \mathrm{Dr}_{\mathrm{r}}$, Barrow resigned to him the mathematical chair at Cambridge, the busmess of which appointment interrupted for a while his attention to the telescope: however, as his thoughts had been for some time chiefly employed upon optics, he made his discoveries in that science the subject of his lectures, for the first three years after be was appointel mathematical prolessor; and having now brought his Theory of Light and Colours to a considerable degree of perfection, and having been elected a fellow of the Royal Sociely in Jan. 1672, he communicated it to that body, to have their judgment upon it; and it was afterwards published in their Transactions, viz, of Feb. 19, 1672. This publication occasioned a dispute upon the truth of it, which gave him so much uncasiness, that he resolved not to publish any thing further for a while on the subject ; and in that resolution, he laid ap his Optical Lectures, though he had prepared them for the press. And the Analysis by Infinite Series, which be had intended to subjoin to them, unhappily for the world, underwent the same fate, and for the same reason.

In this temper he resumed his telescope; and observing that there was no absolute necessity for the parabolic figure of the glasses, since, if metals could be ground truly spherical, they would be able to benr as great apertures as men could give a polish to, he completed another instrument of the same kind. This answering the purpose so well, as, though only half a foot in length, to show the planet Jupiter distinctly round, with his four sateilites, and also Venus horned, he sent it to the Royal Society, at their request, together with a description of it, with further particulars; which were published in the Philosnphical Transactions for March 1672 . Several attempts were also made by that society to bring it to perfection; but, for want of a proper composition of metal, and a good polisb, nothing succeeded, and the invention lay dormant, till Hadley made his Newtonian telescope in 1723. At the request of Leibnitz, in 1676 , be explained his invention of Sifinite Series, and took matice how far he bnd improved it by his Methad of Fluxions, which however he still concealed, and particularly on this occusion, by a transpusition of the letters that make op the two fundamental propositions of it, into an alphabetical
order; the letters concerning which are inserted in Collins's Commercoum F.pistolicum, printed 1712. In the winter betueen the years 1670 and 1677 , he discovered the grand propasition, tbat, by " centripetal force acting reciprocally as the square of the distance, a planet must revolve in an ellipsis, about the centre of torce placed in its lower fucus, and, by a radius drawn to that centre, describe areas propurtional to the tunis. In 1680 he made several astronomical observations on the comet that then appeared; which, for some considerable time, he took not to be one and the same, but two different consets; and on this occasion several letters passed between him anti Mr. Flamsteed.

He was sull under this mistake, when he received a letter from Dr. Hooke, explaining the nature of the line described by a falling body, supposed to be moved circularly by the diurual motion of the earth, and perpendicularly by the power of gravity. This letter put him on inquiring anew what was the real figure in which such a body moved; and that inquiry, convincing him of another mistake which he had before fallen into concerning that figure, put lim upon resuming his former thoughts with regard to the moon; and Picurt having not long beforc, viz, in 1679 . measured a degrec of the earth with sufficient accuracy, by using his measures, that planet appeared to be retained in her orbit by the sole power of gravity; and consequently that this power decreases in the duplicate ratio of the distance; as he had formerly conjectured. On this principle, he found the line described by a talling body to be an ellipsis, having one focus in the centre of the earth. And finding by this means, that the primary planets really moved in such orbits as Kepler had supposed, he had the satisfuction to see that this inquiry, which be had undertaken at first out of mere curiosity, could be applied to the greatest purposes. Hercupon he drew up about a doxen propositions, relating to the motion of the primary planets round the sun, which were communicated to she lloyal Society in the latter end of 1683. Becoming thus known to Dr. Halley, that gentleman, who had attempted the demonstration in vain, applied, in August 168t, to Newton, who assured hitu that he had absolutely completed the proof. 'Tlis was also registered in the books of the Royal Society; at whose earnost solicitation Newton firished the work, which was printed under the care of Dr. Halley, and came out about midsummer 1687, under the title of, Philosopliz Naturalis l'rincipia Mathematica, containing in the third book, the Cometic Astronomy, which bad been lately discovered by him, and now made its first appearance in the world: a work which may be considered as the production of a celestial intelligence, rather than of a man.

This work however, in which the great author has built a new system of natural philosophy on the most sublime geometry, did not meet at first with all the applause it deserved, and which it was destined one day to receive. Two reasons concurred in producing this cffect: Descartes had then got full possession of the opinion of the scientific world. His philosophy was indeed the creature of a fine imagination, gaily dressed out: he had given ber likewise some of nature's fine features, and painted the rest to a seeming likeness of her. On the other hand, Newton had with an unparalleled penetration, and force of genius, pursued nature up to her must secret abode, and was intent to demonstrate her residence to others, rather than anxious to describe particularly the way by which he ar-
rived at it bimseli: he firished his puccein that slegant concseness, whech had justly gained the ancients universal esteem. In fuct, the consequences flow with such rapidity from the principles, that the render is often left to supply a long chain of reasoning to comect them : so that it required sone time before the werld could understand it. The best mathematicians were obliged to study it with care, before they could make themselves inaster of it; and those of a lower rank durst not venture upon it, till encouraged by the testimonies of the more learned. But at last, whon its value became sufficently known, the approbation which had been so slowly gained, became universal, and nothing was to be heard from all quarters, but one general burst of admiration. "Does Mr. Newton eat, drink, or sleep like other men ?" says the marquis de l'Hospital, (one of the greatest mathematicians of the age,) to the English who visited him. "I represent him to myself as a celestial genius entirely disengaged from matter."

In the midst of these profound mathernatical researches, just before his Jrincipia went to the press in 1686, the privileges of the university being attacked by James the 2 d , Newton appeared among its most strenuous defenders, and was on that occasion appointed one of their detegates to the bigh-commission court; where they made such a defence, that James thought proper to drup the affair. Our author was also chosen une of their members for the Con-vention-Parliament in 1688, in which he sat till it was dissolved.

Newton's merit was well known to Mr. Montague, then chancellor of the exchequer, and afterwerds earl of Halifax, who had been educated at the same collrge winh him; and when he undertook the great work of recoining the money, he fixed his eye upon Newton for shassistant in it; and accordingly, in 1696, he was appointed warden of the mint, in which employment, he rendered very signal service to the nation. And three years after he was promoted to be master of the mint, a place worth 12 or * 15 huudred pounds per antum, which he held till his death. On this promation, he appointed Mr. Whiston his deputy in the mathematical professorship at Cannbridge, giving bim the full profits of the place, which appointment inself he also procured for him in 1703. The same year our author was, chosen president of the Royal Society, a situation which he lield till his death, haviug then presided over it for 25 years; he had also been chosen a mumber of the Royal Academy of Sciences at Paris in 1699, as soon as the new regulation was made for admitting foreigners into that society.

From the first discovery of the heterogeneous mixture of light, and the production of colours thence arising, he had employed a great part of his time in bringing the experiment, on which the theory is founded, to a degree of exactness that night satisfy himself. The truth is, this seems to have been his favourite invention; so years be had spent in this arduous task, before he published it in 1704. In infinite serics and fluxions, and in the power and rule of gravity in preserving the solur system, there had been some, though distant bints, given by others before him : whereas in dissecting a ray of light into its primary constituent particles, which then adminted of no further spparation ; in the discovery of the differeut refrangibility of these particles thus separated; and that these constituent rays had each its own peculiar colour inherent in it; that rays falling in the same angle of incidence
have alternate fits of reflection and refraction; that bodies are rendered transparent by the minuteness of their pares, and becume opaque by baving them large; and that the most transparent body, by having anextreme thinurss, will become less pervious to the light: in all there, which make up his new theory of light and colours, he was absolutely and entirely the first inventor; and as the subject is of the most subth and delicate nature, he thought it necessary to be himself the last finisher of it.

In fact, the afinir that chiefly employed his researches for so many gears, was far from being contined to the subject of light alone. On the contrary, all that wi know of natural bodies, seomed to be comprehended in it; le had found out, that there was a tatural action at a distance between light and other bodes, by which buth the reflections and refractions, as well as miflections, of the former, were constantly produced. To ascertain the force and extent of this principle of action, was what bad all along engaged bls thuughts, and what ufter all, by its extreme subtlety, escaped bis most penetrating spirit. However, though he has not made so full a discowery of this principle, which directs the counse of light, as he has in regard to the power by which the planets are hept in their courses; yet be gave the best prossbli. directions for such as should be disprosed to carry oth the work, and furnisbed matter abundantly suflicient to ammate them to the pursuit. He has indeed hereby opened a way of passing from optics to an entire system of physics ; and, if we consider his queries as containing the bistoty of a great man's first thoughts, even in that view they must be always at Ienst entertaiting and curious.

This same year, and in the same book with his Optics, he publisted, for the first time, his Method of Fluxions. It Las been already ubsersed, that these two inventions

- were intended for the public so long before as 16i2? but were laid by then, in order to prevent his boing engaged on that account in a dispute about them. And it is not a little remarkable, that cren now this last piece proved the occasion of whethes dispute, which continued for many jears. Ever since 1684, Leibnitz seems to bave claimed the honour of hasing first insented this meiled. - Newton saw his design from the beginning, and had sufficiently obviated it in the first edition of the P'rincipia, in 1687 (viz, in the Scholium to the 2d lomma of the od book): and with the same view, when he now publibhed that method, be took occasion to acquaint the world, that he invented it in the years 1665 and 1666 . In the Acta Eruditornm of Laipsic, where an account is given of this book, the author of that account aseribed the invention to Leibnitr, intimating that Newton burrowed it from bim, Dr. Keill, the astronomical professor at Osiord, undertook Newton's defence; and after seteral aysners on both sides, Leibnitz complaining to the Roy al Socicty, this body appointed a commatter of their members to examine the inerits of the case. These, after considering all the papers and letters relating to the point in controversy, decided in favour of Newton and Keill; as is related at large in she lite of this last-mentioned gentleman; and these papres themselses were published in 1i12, under the title or Commercium Epistolicum Juhannis Collins, 8ro.

In 1505, the honour of huighthood was conferred upon our author by queen Anne, in consideration of his great mevit. And in 1714 he was applied to by the llouse of Commons, for his opinion on a new method of discovering the longitude at sea by signals, which had beco laid lefore

Vol. II.
them by Ditton and Whiston, in order to procure their encouragement; but the petition was throwa aside on reading Newton's paper dehsered to the commitiec.

The folluwing year, 1715, Leibnita, with the view of broging the wurld more casily into the belief that Newton bad tahen the inethod of thusions from lis ditferentual nethon, attempted to foil his mathematical shill by the fanous problem of the trajectories, which he therefore proposed to the Einghish by way of challenge; but the sulation of this, though the most difficult proposition he was able to devise, and whan might pass for an arducus affair to any uther, yet was bardly any mote than an anusement to Nowtun's penetrating genius: he received the problem at 4 oclock in the afternoon, as he was returning from the Mint; and, though extremely fatigurd with busincss, yot he finshed the solution before be wetit to bed.

An I aibnitz was prixy-counsellor of justice to the electur of Ilanover, so when that prince was raised to the British throne, Nenton came more under the notice of the court; nowl it was for the immediate satisfaction of George the First, than he was prevailed on to put the last hand to the dispute about the insention of fluxions. In this court, Caroline princess of Wales, alterwards queen-consurt to George the heond, happened to have a curiosity for philusmphical inquiries; no sooner therefore was she informed of our author's attachonent to the house of Hanover, than the engaged lis conversation, which suon endeared him to her. Here she found in every difficulty that full salisfaction, which she had io vain sought for elsewbere; and she was often heard to declare publicly, that she thought heraels happy in coming into the world at a juncture of time, whicb put it in ber power to converse with him. It was at this princess's solicitation, that lie drew up an alstract of his Clirunology; a copy of which was at her request comnituicated, about 1718 , to signior Conti, a Venctian nobleman, then in England, on a pronise to kerp it secret. But notwithstanding this pramise, the able, (who, while here, had also afiected to show a parncular friendship for Newton, though privately betraying him as much as lay in his power to Leilnitz,) was no sooner got across the water into France, than be dispersed copies of it, and procured an antiquary to translate it into Freuch, as well as to write a confutation of it. This, being primted at Paris in 1725, was deliwered as a present from the brookseller that printed it to our author, that he might obtain, as was said, his consent to the pullication; but though he eapiressly refused such consent, yet the whole was published the same year. IJereupon Newton found it necessary to publi,b a lefince of himself, which was inserted in the Phlosophical 1 ransacions. Thus he, who had so much all his life long been studious to avoid disputes, was unavoidally all his lifetime, in a manner, involved in them; nor did this last dinpute even fitush at his death, which happened the your following. Newton's paper was republished in 1726 at Paris, in French, with a letter of the ablé Conni in answer to it; and the sane year some dissertations were printed there by father Souciet against Newton's Chronological Index, an answer to which was inserted by Halley in the Pluslos. Trans. No 997.

Sume time before this business, in his soth year, our author was seized with an incontinence of urine, thought to proceed from the stone in the bladder, and dectwed to be incurable. However, by the belp of a strict rogimen 0
and other precautions, which till then he never had occasion for, he procured considerable intervals of ease during the five remaining years of his life. Yet be was not free from some severe paroxysms, which even forced out large drops of sweat that ran down his face. In these circumstances be was never observed to utter the least complaint, nor express the least mpatience ; and as sum as he had a moment's case, he would smile and talk with his usual cheerfulness. He was now obliged to rely upon Mr. Conduit, who had married his niece, tor the dischatpe of his office in the mint. Saturday morning March 18, 1727, he read the newspapers, and discoursed a long tinte with Dr. Mead his physician, having then the perfect use of all his senses and his understanding; but thut night he entirely lost them, and did not recover them afterwards ; he died the Monday following, March 20, in the 85 th year of his age. His corpse lay in state in the Jerusalemchamber, and on the 28 th was conveyed into Wesimusterabbey, the pall being supported by the lord-chancellor, the dukes of Montrose and Roxburgh, and the earls of Pembroke, Sussex, und Macclesficld. He was interred near the entrance into the choir on the left hand, where a stately monument is erected to his memory, with a most degant inscription upon it.

Newton's character has been attempted by M. Fontenelle and Dr. Pemberton, the substance of which is as follows. He was of a middle stature, and somewhat inclined to be fat in the latter part of his life. His countenance was pleasing and venerable at the same time; especially when he took off his peruke and showed his white hulr, which was pretty thick. He never made use of spectacles, and lost but one touth during his whole lite. Bishop Atterbury says, that, in the whole air of Sir Isaac's face and make, there was nothing of that penctrating sagacity which appears in his compusitions: that he had something rather languid in his look and manner, which did not raise any great expectation in those who did not know him.

His temper it is said was so equal and mild, that no accident could disturb it. A remarkable instance of which is related as follaws. Sir lsaac had a lavourite little dog, which he called Diamond. Being one day called out of his study into the next room, Dumond was left behint. When Sir lsaac teturned, having been absent but a few minutes, he had the mortification to find, that Diamond having overset a lighted candle among some papers, the nearly finisbed labour of many years was in flames, and almost consumed to ashes. This loss, as Sir Iseac was then very far advanced in years, was irretrievable; yet, without unce striking the dog, he only rebuked him with this exclamation, "Oh Diamond! Diamond! thou little hnowest the mischief thou hast done!" Dr. Wallis (Algeb. p. 347) says, some papers on series and curves were rrady for the press in 1674 , but by mischance were burnt.

Newion was indeed of so meek and gentle a disposition, and so great a lover of peace, that he would rather have chosen to remain in obscurity, than to have the calm of life rufiled by thuse storms and disputes, which gonius and learning always draw upon those tbat are most eminent for them.

From his love of peace, no donbt, arose that unusual kind of horror which he felt for all disputes: a stcady unbroken attention, free from those frequent recoilings inseparably incident to others, was bis peculiar filicity; he knew it, and be knew the value of it. Nu wonder
then that controversy was looked on as his bane. Whea some onjections, hastily made to his discoveries concerning light and culoura, induced him to lay aside the design he hisd taken of publishing his Optical Lectures, we find him seflecting on thot dispute, wito which he had been unavoidably drawn, in these terms: " 1 blamed my own imprudence for parting with so real a hlessing as my quiet, to run sfter a shadow." It is true this shadow, as Fontenelle obmerves, aid not escape him afterwards, nor did it cost him that quiet which he so much valued, but proved as much a real hoppiness to him as his quiet itself; yet thrs was a happiness of his own making: he took a reso lution fiom thicse disputes, not to publish any more concerning that theory, till be had put it above the reach of controversy, by the most exact experiments, and the stictest demonstrations; attil accordingly it has never been called in question since. In the sane temper, after he had sent the inanuscript to the Royal society, with his consent to the printing of it by them; yet upon Hooke's injuriously insisting that he himself had demunstrated Kepler's prohlem before our author, he determined, rather than be involved again in controversy, to suppress the third book; and lee was very hardly prevailed on to alter that resulution. It is truc, the public was thereby a gainer; that book, which is inteed no more than a corollary of some propusitions in the first, being originally drawn up in the popular way, with a design to publish it in that form; whereas he was now convinced that it would be best not to let it go abroad without a strict demonstration.

In cuntemplating Newton's genius, it presently becomes a doubt, which of these endownents had the greatest shure, sagacity, penetration, strength, or diligence; and, after all, the mark that seems most to distinguish it is, that he himself made the justest estimation of it, ileclaring, that if he had done the world any service, it was due to notbing but industry and patient thougbt; that be kept the sulject of consideration constantly before him, and waited till the firt dawning opened gradually, by little and little, into a full and clear light. It is said, that when he had any raathematical problems or solutions in his mind, he would never quit the subject on any account. And his scrvant has said, when he bus been getting up in a morning, he has sometimes begun to dress, and with one leg in bis brecches, sat down again on the bed, where he has remained for hours befure be has got his clothes ont: and that dinner has been often three hours ready for him before he could be brought to table.

After all, notwithstanding his anxious care to prevent interruption in his intense application to study, he could nevertheless, when occasion required it, lay aside his thoughts, though engaged in the most intricate researches, when his other affairs required his attention; and, as soon as he bad leisure, resume the subject at the point where he had left off. This he seems to have done not so much by any extraordinary strength of memory, as by the force of his inventive faculty, to which every thing opened itself ngain with ease, if nothing intervened to ruffle him. The readiness of his invention made him not think of putting his memory much to the trial ; but this was the offspring of a vigorous inteneness of thought, out of which he was but a common man. He sprat therefore the prume of his age in those abstruse researches, when his situation in a college gave him leisure, and while study was his proper business. But as soon as he was removed to the mint, be applied
himself chiefly to the duties of that office; and so far quitted mathernatics and philosophy, as not to engage in any pursuits of either kind afterwards.

Dr. Pemberton observes, that though his memory was much decayed in the last years of his life, yet he perfectly understood his own watings, contrary to what 1 had formerly heard, ssys the doctor, in discourse from many persons. This opinion of theirs might arise perhaps from bis not being always ready at speaking on these subjects, when it might be expected he should. But on this head it may be ubserved, that great geniuses are often liable to be a beent, not only in relation to common life, but with regard to some of the parts of science that they are best informed of: inventors geem to treasure up in their minds what they have found out, after a nother manner than those do the same things who have not this inventive faculty. The former, when they have occasion to produce their knowledge, are in some measure obliged immediately to investigate part of what they want; and for this they are not equally fit at all times: from whence it has often happened, that such as retain things chiefly by means of a very strong memory, have appeared off-hand more expert than the discoverers themselves.

It was evidently owing to the sameinventive faculty that Newton, as this writer found, had read fewer of the modera mathematicians than one could have expected; his own prodigious invention readily supplying him with what he might have occasion for in the pursuit of any subject he undertook. However, he often censured the handling of geometrical subjects by algebraic calculations; and his book of algebra be called by the name of Universal Arithmetic, in opposition to the injudicious title of Geometry, which Descartes had given to the treatise in which he shows how the geometrician may assist his invention by such kind of computations. He fiequently praised Slusius, Barrow, and Huygens, for not being influenced by the Galse taste which then began to prevail. He used to commend the laudable attempt of Hugo d'Omerique to restore the ancient analysis; and very much esteemed Apollonius's book De Sectione Rationis, for giving us a clearer notion of that analysis than we had before. Dr. Barrow may be esteemed as having shown a compass of invention equal, if not superior, to any of the moderns, our author only excepted: but Newton particularly recommended Huygens's style and manner: he thought him the most elegant of uny mathematical writer of modern times, and the truest imitator of the aucients. Of their taste and mode of demonstration our author always professed bimself a great admirer; and even censured bimself for not following them yet more closely than he did; and spoke with regret of his mistake at the beginning of his mathe-matical studies, in applying binself to the works of Descartes, and other algebraic writers, before he had considered the Elements of Euclid with that attention which so excellent a writer deserves.

But if this was a fault, it is certain it was a fault to which we owe both his great inventions in speculative unathematics, and the doctrine of fluxions and infinite series. And perhaps this mighe be one ressen why his particular reverence for the ancients is omitted by Fontenelle, who however certainly maken some amends by that just elogium which he makes of our author's modesty, which amiable quality he represents as standing foremost in the character of this great man's mind und manners. It was in reality greater than can be easily imagined, or will be
readily believed: yet it always continued so without any alteration ; though the whole world, says Fontenelle, conspired against it; let us add, though he was thereby robhed of his invention of fluxions. Nicholas Mercator publishing his Logarithmotechnia in 1668, where be gave the quadrature of the hyperbola by an infinite series, which was the first appearance in the learned world of a series of this sort drawn from the particular nature of the curve, and that in a manner very new and abstracted; Dr. Barrow, then at Cambridge, where Newton, then about 26 years of age, resided, recollected, that he had met with the same thing in the writings of that young gentleman; and there not confined to the hyperbola only, but extended, by general forms, to all kinds of curves, even such as are mechanical ; to their quadratures, their rectifications, and their centres of gravity; to the solids formed by their rotations, and to the superficies of those solids; so that, when their determinations were possible, the series stopped at a certain point, of at least their sums were given by stated rules: and if the absolute determinations were impossible, they could yet be infinitely approximated; which is the happiest and most refined method, says Fontenelle, of supplying the defects of human kiowledge that man's imagination could possibly invent. To be master of so fruitful and general a theory was a mine of gold to a geometrician; but it was a greater glory to have been the discoverer of so surprising and ingeuious a system. Su that Newton, finding by Mercator's bonk, that be was iu the way to it, and that others might follow in his truck, should naturally have been forward to open his treasures, and secure the property, which consisted in making the discovery; but he contented himself with his treasure which he had found, without regarding the glory. What an idea does it give us of his unparalleled modesty, when we find him declaring, that he thought Mercator had entirely discovered his secret, or that otbers would, before he should become of a proper age for writing! His manuscript on infinite series was communicated to none but Mr. John Collins and the lord Brounker, then president of the Royal Society, who had also done something in this way bimself; and even that had not been complied with, but for Dr. Barrow, who would not suffer him to indulge his modesty so much as he desired.

It is further observed, concerning this part of bis character, that he never talked either of bimself or uthers, nor ever behaved in such a manner, as to give the most malicious censurers the least occasion even to suspect him of vanity. He was candid and affable, and always put himself upon a level with his company. He never thought either his merit or his reputation sufficient to excuse him from any of the common offices of social life. No siugularities, either naturnl or affected, distinguished hign from other men. Though he was firmly attached to the church of England, he was averse to the persecution of the nonconformists. He judged of men by their manners; and the true schismatics, in his opinion, were the vicious and the wicked. Not that heconfined bis principles to natural religion, for it is said he was thoroughly persuaded of the truth of revelation; and amidst the great variety of books which he had constantly before him, that which he studied with the greatest epplication was the Bible, at least in the. latter years of his life: and he understoud the nature and force of moral certainty as well as he did that of a strict demonstration.

Sir Issac did not aeglect the opportunities of doing grod, Ol_{2}
when the revenues of his patrimony and a profitable employment, improved by a prudent arconomy, put it in his poner. We have two rentarkable mstances of his bounty and generosity; one to Mr. Maclaurin, extra professor of mathematics at Ediuburgh, to cocourage whose appointnomt he offered so pounds a-ycur to that office; and the othor to has nicce Barton, upon whom he had settled an annuity of 100 pounds per annum. When decency on any occasion required expense and show, he was magnificent without grudging it: at all other times, that pomp which seens gieat to low minds only, was utterly retrinehcd, and the expense reserved for betuer uses.- On this head it may be remarked however, as a curious fact, that by an order of council, dated Jan. 28, 1675, (which was 3 years alter his clection into the Rayal Society,) it was ordered, that he should be excused from roahing the usual weekly payments (one sbilling per week), on acccuat of his low circumstances, as be represented.

Newton trever married; and it has been said, that "perhaps be never had keisure to think of it; that, being immersed in profound sindies during the prime of his age, and afterwards chgased in an employment of great importance, and even quite taken up with the company which his merit drew to him, he was not sensible of any vacancy in life, nor of the want of a companion at bome." These however do not appear to be any sufficient reasons for his never marrying, if he had had an inclination so to do. It is much tone likely that he had a constitutonal indifierence to the state, and even to the sex in general; and it has even bern said of him, that he never once knew wo-man,-He left at his death, it seems, 32 shousand ponnds; but te made no will, which, Fontenclle tell; us, was because tre thought a legacy was no gift,-ds on his works, besides what wrre published in lis life-time, there were found after his death, amung his papers, several discourses on the subjects of antiquity, history, divinity, chemistry, and mathematics: several of which were published at different times, as appears from the following catalogue of all his works: where they are ranked in the order of time in which those upon the same subject were published.

1. Several P'apors relating to his Telescope, and his 'Theory of Light and Colours, printed in the Philosuphical 'Iransactions, Nus, 80, $81,82,83,84,85,88,96,97$, $110,121,12 \mathrm{~J}, 128$; or vols. $6,7,8,9,10,11$.
2. Optics, or a Treatise of the Rellections, Refractions, and Inflections, and the Colours of Light; 1704, 4to.A Latin Iranslation by Dr. Clarke; 1706, 4to,-And a I'rench truislation by Patt. Coste, Amst, 1729, 2vols 12 mo . - Beside seteral English editions in 8vo.
3. Optical Lectures; 1728, 8vo.-Also in several Letters to Mr. Oldenburg, secretary of the Royal Society, imerted in the General Dictionary, under our author's article.
4. Pectiones Opticw ; 1729, 4to.
5. Naturalis Philosophis Principia Mathematica; 1687, 4to.-A second cdition in 1713, with a I'reface, by Roger Cotes.-The 3dedition in 1726, nuler the direction of Dr. Pemberton.-An English translation, by Motte, 1729, 2 volumes 8 vo, printed in several editions of his works, in different nations, particularly all edition, with a laige Commentary, by the two learned Jesuits, Le Seur and Jacquier, in \& volumes 4 (o, in 1739,1740 , and 1742 .
6. A Systepl of the World, translated from the Latin original; $172 \bar{i}, 8$ vo.-This, as has been already obscrved, was at first iutencled to muke the third book of his Principia, an English translution by Motte, 1729, 8vo.
7. Several Letters to Mr. Filamsteed, Dr. Halley, and Mr. Oldenburg. Sec our author's asticle in the General Dictionary.
8. A Paper concerning the Longitude; drawn up by order of the House of Commons; ibid.
9. Abregé de Chronolugic, \&c ; 17:26, under the direction of the abbe Conti, together with some observations upon it.
10. Remarks on the Observations made upon a Chronological Index of Sir I. Newton, ©c. Philes. Trans. vol. 33. See also the same, vol. 34 and 35 , by Dr. Ilalley,
11. The Chronology of Aucient Kingdoms umerded, \&c ; 1728, 4to.
12. Arithmetica Universalis, \&c; under the inspection of Mr. Whiston, Cantab. 1707, und again in 1722, 8vo. I'rinted I thinh without the author's consent, and even ugainst his will : an offience which it seems was hever forgiven. There are also Engli,h editions of the same, particularly one by Witter, with a Commentary, in 1769 , 2 vels 8 vo. And a Latin edtrion, with a Commentary, by Castilion, $\%$ vels + to, Amst, \&c.
13. Analysis per Quantitatuin Series, Fluxiones, et Differentias, cum Eutumeratione Linearum Tertii Urdinis ; 1711, 4to; under the inspection of W. Joncs, Esq. V. R. s. -The last tract had been published before, together with another on the Quadrature of Curses, by the Method of Fluxions, under the title of Tractatus duo de Speciebus ct Magnitudine Figuraıun Curvilincarum; subjoined to the first edition of his Optics in 1704 ; and other letters in the Appendix' to Dr. Giregory's Catoptrics, \&c, 1735, 8vo.-Under tbis head may be ranked Nentuni Genesis Curvarum per Umbras ; Leyden, $17+0$.
14. Several Letters relating to his Dispute with Leilnitz, on his Itight to the Invention of Fluxions; printed in the Commercium Epistolicun D. Johannis Collins et aliorum de Aualysi Promota, jussu Sucietatis Regia editum; 1712, 8vo.
15. Postscrijt and Letter of M. Leibnitz to the Abbe Conti, with Renuarks, and a Latter of his own to that Ablé; 1717, 8vo. To which was added, Itaphsou's Ilistory of Hluxions, as a Supplemetut.
16. The Method of Fluxions, and Analysis by Intinite Series, translated into English from the original Latin; to which is added, a Perpetual Commentary, by the translator Mr. Juhn Celson; 1736, 410.
17. Several Miscellaneous Picces, and Letters, as fol-Low:-(1) A Letter to Mr. Boyle on the subject of the Philosopher's Stone. Inserted in the General Dictionary, under the article Boyme.- (2) A Letter to M1. Aston, containing directions for his travels; ibid. under our author's article.-(3) An English Trauslation of a Latin Dissertation on the Sacred Cubit of the Jews. Inserted among the miscellancous worhs of Mr. Julin Greavis, vol. 2, published by Dr. Thomas Birch, in 1737, 2 vols. 8 vo . This Dissertation was found subjoined to a wook of Sir Iswac's, not finished, cutitled Lexicon Propheti-cum.-(4) Four Letters from Sir Isaac Newton to Dr. Bentley, containing some arguments ia proof of a Deity; 1756, 8vo.-(3) 'Two Letters to Mr. Clarhe, de.
18. Olservations on the Prophecies of Danicl and the Apocaly pse of St. John; 1733, 4to.
19. Tables for purchasing College Leases; 17\$2, 12mo.
20. Corollaries, by Whistoth.
21. A Collection of several pieces of our author's, under the following title, Newtoni ls. Opuscula Mathematica

N E W

[101
Philos. et Plilol. eollegit J. Castilioneus; Laus. 17 +4, 4to, 8 tomes.
22. Two Treatises on the Quadrature of Curvis, and Analysis by Equations of an Intinite Number of Terms, explained: translatel by John Stewart, with a large Commentary; 1745,4 to.
23. Description of an Instrument ofor observing the Moon's Distance from the Fixed Stars at Sea. Philos. 'Irans. vol. 42.
24. Newton also published Barrow's Optical Lectures, in 1609, 4to: and Bern. Varẹuii Geographia, \&ec; 1681, svo.
25. The whole works of Newion, published by Dr. Horsley; 1779, 4ro, in 5 volumes.

The following is a list of the papers left by Newton at his death, as mentiored abuve.

A Catalogue of Sir Isaac Newton's Manuscripts and Papers, as annexed to a Bond, given by Mr. Conduir, to the Administrators of Sir Isaac; by which he obliges himself to account for any protit he shall muke by publishing any of the papers.

Dr. Pellet, by agreement of the executors, entered into Acts of the Prerogative Court, being appointed to peruse ull the papers, and juige which were proper for the press.

No.

1. Viaticum Nautarum ; by Robert Wright.
2. Miscellanea; not in Sir Isaac's hand-writing.
3. Miscellanea; part in Sir lsaac's hand.
4. Trigonometra; about 5 sheets.
5. Definitions.
6. Miscrllanea; part in Sir lsaac's hand.
7. 40 sheets in tho, relating to Church History.
8. 186 sheets writen on one side, being foul draughts of the Prophetic Stile.
9. 88 sheets relating to Church History.
10. About 70 loose sheets in small 4 to, of Chemical papers; some of which are not in Sir Isaac's hand.
11. About 68 ditto, in folio.
12. About 15 large sheets, doubled into 4 tn ; Chemical.
13. About 8 sheets ditto, written on one side.
14. About 5 sheets of foul papers, relating to Chemistry.
15. 12 half-sheets of ditto.
16. 104 half-sheets, in 4 to, ditto.
17. A bout 22 sheets in $+t$, ditto.
18. 24 sheets, in 45 , on the Prophecies.
19. 29 hali-sheets; being an answer to Mr. Hooke, on Sir Isaac's' Theory of Colours.
20. 87 half-sheets relating to the Optics, some of which . are not in Sir Isaac's hand.
From No. 1 to Nn. 20 examined on the 20th of May 1727, and judged not fit to be printed.

T. Pellet.

$\stackrel{H}{ } \quad$ Witness, Tho. Pilhington.
21. 328 half-sheets in folio, and 63 in small 4 to ; being loose and foul papers relating to the Revelations and Prophecies.
22. 8 half-sheets in small 4 to, relating to Church Matters.
23. 24 half-sbeets in small to; being a discourse relating to the 2d of King.
94. 353 half-sheets in folio, atad 57 in small 4to; being

NEW
foul and loose papers relating to Figures and Mathematics.
25. 201 half-shects in folio, and 21 in small 4 to; loose and foul papers relating to the Conmercium Epistolicum.
26. 94 half-sheets in small 4 to, in I atin, on the Temple of Solemon.
27. 37 half-sheets in folio, on the Host of Heaven, the Sanctuary, and other Church Matters.
28. 44 balf-sheets in fulio, on ditto.
29. 25 half-sheets in folio ; being a farther account of the Host of Heaven.
30. 51 half-sheets in folio; being an Histerical Account of two notable Corruptions of Scripture.
31. 83 half-sheets in small $4 t 0$; being Eatracts of Church History.
32. 116 half-sheets in folio; being Paraduxical Questions concerning Athanasius, of which speveral leaves in the beginning are very much damaged.
33. 56 half-sheets in folio, De Motu Corporum; the greatest part not in Sir Isaac's hand..
34. 61 half sheets in small $4 t 0$; being various sections on the A pocalypse.
35. 25 half-sheets in folio, of the Working of the Mystery of Iniquity.
36. 20 half-shects in folio; on the Theology of the Heatheus.
37. 24 balf-sheets in folio; being an Account of the Contest between the Ilost of Heaven, and the Transgressors of the Covenant.
38. 31 lalf-sheets in folio; being Paradosical Questions concerning Athanasius.
39. 107 quarteresheets in small 4 to, on the Revelations.
40 Tt half-sheets in folio; being loose papers reluting to Cburch History.
May 22, 1727, examined from No. 21 to No. 40 inclusive, and judged them not fit to be printed; only No. 33 and No. 38 should be reconsidered.

T. Peller.

Witncss, Tho. Pilkington.

41. 167 half-sheets in folio ; being loose and fuul papers relating to the Cominercium Epistolicum.
42. 21 half-sheets in folio; being the 3d letter on Texts of Scripture, very much danaged.
4s. 31 half-sheets in folio; being foul papers relating to Church Matters.
43. 495 half-sheets in tulio; being loose and foul papers relating to Calculations and Mathemntics.
44. 335 half-sheets in folio; being loose and foul papers relating to the Chronologs:
45. 112 sheets in small 410 , relating to the Revelations and other Church Matters.
46. 126 half-sheets in folio; being loose papers relating to the Chronolugy, part in English and part in Latin.
47. 400 half-sheets in folio; being loose mathematical papers.
48. 109 sheets in 4 to, relating to the Prophecies, and Church Matters.
49. 127 lalf-sheets in folio, relating to the University ; great part not in Sir Isaac's hand.
50. 18 sheets in 4 to; being Chensical papers.
51. 255 quarter-sheets; being Chemical papers,
52. An Account of Corruptions of Scripture ; not in Sir Isaac's hand.
53. 31 quarter-sheets; beiug Flammell's Explication of Hicroglyphical Figures.
54. About 350 half-sheets; being Miscellaneous papers.
55. 6 half-sheels; being A_{n} Account of the Empires, \&c, represented by St. Jolın.
56. 9 half-sheets folio, and it quarter-sheets 4to; being Mathenatical papers.
57. 140 halfosheets, in 9 chapters, and 2 pieces in folio, titled, Concerning the Language of the Prophets.
58. 606 balf-sheets folin, relating to the Chronology; 9 morc in Latin.
59. 182 half-sheets folio; being loose papers relating to the Chronology and Prophecies.
60. 144 quarter-shects, and 95 half-sheets folio; being lone Mathematical papers.
61. 137 half-sheets folio; being loose papers relating to the Dispute with Leibnitz.
62. A folio Commonoplace book; part in Sir lsaac's hand.
63. A bundle of English Letters to Sir Isaac, relating to Mathematics.
64. 54 hulf-shects; being loose papers found in the Principia.
65. A bundle of loose Mathematical Papers; not Sir lsaac's.
66. A bundle of French and Latin Letters to Sir Isaac.
67. 136 sheets folio, relating to Optics.
68. 22 half-sheets folio, De Rationibus Motuum, \&sc : not in Sir Isaac's hand.
69. 70 half-sheets folio; being loose Mathematical Papers.
70. 38 half-sheets folio; being loose papers relating to Optics.
71. 47 half-sheets folio; being loose papers relating to Chronology and Prophecies.
72. 40 hulf-shects folio; Procestus Mysterii Magni Philosophicus, by Win. Yworth; not in Sir lsaac's hand.
73. 5 half-sheets; being a Letter from Rizzetto to Martine, in Sir Isaac's hand.
74. 41 half-sheets ; being loose papers of several kinds, part in Sir Isaac's hand.
75. 40 half-sheets; being loose papers, foul and dirty, relating to Calculations.
76. 90 halfsheets folio; being loose Mathematical papers.
77. $\mathbf{1 7 6}$ half-sheets folio; being loose papers relating to Chronology.
78. 176 half-shects folio; being loose papers relating to the Prophecies.
so. $\left\{\begin{array}{l}12 \text { half-sheets folio; An Abstract of } \\ \text { nology. } \\ 92 \text { hall-sheets folio; The Chronology. }\end{array}\right.$
79. 40 halfsheets folin; The History of the Prophecies, in 10 chapters, and part of the 1tth unfinished.
80. 5 small bound books in 12 mo , the greatest part not in Sir Isaac's hand, being rough Culculations.
May 26th 1727, Examined from No. 41 to No. 82 inclusive, and judged not fit to be printed, except No. 80,
which is agreed to be printed, and part of No. 61, and 81, which are to be reconsidered.

Th. Pellet.

Witness, Tha. Pilkington.
It is astonishing what care and industry Sir lsaac had employed about the papers relating to Chronology, Church History, \&c; as, on examining the papers themselves, which are in the possession of the family of the earl of Portsmouth, it appears that many of them are copies over and over again, often with little or no variation; the whole number being upwards of 4000 sheets in folio, or 8 reams of folio paper; besides the bound books $\& \mathbf{c}$ in this catalogue, of which the number of sheets is not mentioned. Of these there have been published only the Chronology, and Observations on the Prophecies of Daniel and the Apocalypse of St. John.

Many other curious particulars concerning Sir Iseac Newton, may be seen in Mr. Edmund Turnor's Collections relating to the town of Grantham, published in 1806.

NEWTUNIAN Philosophy, the doctrine of the universe, or the properties, laws, affections, actions, forces, motions, $\& c$, of bodies, both celestial and terrestrial, as delivered by Newton.

This term however is differently applied; which has given occasion to some confused notions relating to it. For some authors, under this term, include all the corpuscular philosophy, considered as it now stands reformed and corrected by the discoveries and improvements made in several parts of it by Newton. In which sense it is, that Gravesande calls his Elements of Physics, Introductio ad Philosophiam Newtonianam. And in this sense the Newtonian is the same as the new philosophy; and stands contradistinguished from the Cartesian, the Peripatetic, and the ancient Corpuscular.

Others, by Newtonian philosophy, mean the method ot order used by Newton in philosophising ; viz, the reasoning and inf rences alrawn directly from phenomens, exclusive of all previous hypotheses; the beginning from simple principles, and deducing the first powers and laws of nature from a few select phenomena, and then applying those laws \&ec to account for other things. In this sense, the Newtonian philosophy is the same with the experimental philosophy, or stands opposed to the ancient corpuscular, and to all hypothetical and fanciful systems,Others again, by this term, mean that philosophy to which physical bodies are considered mathematically, and where geometry and mechanics are applied to the solution of phenomena. In which sense, the Newtonian is the samo with the mechanical and mathematical philosophy.Others, by Newtonian philosophy, understand that of physical knowledge which Newton has handled, improved, and demonstrated.-And lastly, others, by this philosophy, mean the new principles which Newton has brought into philosophy; with the new system founded upon them, and the new solutions of phenomena thence deduced; or that which characterizes and distinguishes his philosophy from all others. And this is the sense in which we shall here cliefly consider it.

This philosophy was first published in the year 1687, the author being then professor of mathematics in the university of Cambridge; a 2 d edition, with considerable additions and improvements, appeared in 1713; and a 3 d in 1726. An edition, with a very large commentary, was published in 1739, by Le Seur and Jacquier; besides the complete edition of all Newton's norks, with notes, by

Dr. Horsley, in 1779 \&c. Several authors have endeavoured to make it plainer; by setting aside many of the more sublime mathematical researches, and substituting either more obvious reasonings or experiments mstead of them; particularly Whiston, in his Praelect. Phys. Mathem.; (iravenunde, in Elem. et Inst.; Pemberton, in his View \&c; and Maclaurin, in his Account of Nenton's Philosophy.

The chief parts of the Newtonian philosophy, as deli* vered by the author, execpt his Optical Discoveries \&c, are contained in his Principia, or Matbenatical P'riaciples of Natural Philosophy. Ile founds his system on the following detinitions. 1. Quantity of Matter, is the measure of the sume, arising from its density and bulk cor-jointly.-Thus, air of a double denaty, in the same space, is double in quantity; in a double space is quadruple in quantity $;$ in a triple space, is sextuple in quanuty, dec. 2. Quantity of Motion, is the measure of the same, arising from the velocity and quantity of matter conjunctly.This is evident, because the motion of the whole is the motion of all its parts; and therefure in a bodly double in quantity, with equal velocity, the Motion is double, \&ec. -3. The Vis Insita, Vis Inertix, or innate force of matter, is a power of resisting, by which evely botly, as much as in it lies, endeavours to persevere in its present state, Whether it be of rest, or moving unitormly forward in a right line. -This detittition is proved to be just by experience, from observing the difficully with which any body is moved out of its place, upwards, or obliquely, or even downwards when acted on by a Lody endeuvouring to urge it quicker than the velocity given it by gravity; and any how to change its state of motion or rest. Atid therefore this force is the same, whether the bolly have gravity or not; and a cann n-ball, void of gravity, if it could be, being discharged horizontally, will go the same distance in that direction, in the same time, as if it were endued with gravity.-4. An Impressed Force, is an action exurted on a body, in order to change its state, whether of rest or motion.-This force consists in the action only; and re mains no longer in the body when the action is over. For a body maintains every new state it acquires, by its vis inertiae only.-5. A Centripetal Force, is that by which bodies are drawn, impelled, or any way tend towards a point, us to a centre. This may be considered of three kinds, absolute, accelerative, and motive.-6. The Absolute quantity of the centripetal force, is a measure of the same, proportiontal to the efficacy of the cause that urges it to the centre. -7. The Accelerative quantity of a centripetal force, is the measure of the same, proportional to the velocity which it generntes in a given tume.-8. The Motive quantity of a centripetal force, is a measure of the same, proportional to the motion which it generates in a given time,-This is always known by the quantity of a lorce equal and contrary to it, that is just sufficient to hinder the descent of the body.

After these definitions, follow certain Scholia, treating of the nature und distinctions of Time, Space, Place, Motion, Absolute, Relative, Apparent, Truc, Real, \&c. After which, the author proposes to show how we are to collect the true motions from their causes, effeets, and apparent differences ; and vice versa, how, from the motions, either true or apparent, we may arrive at the knowledge of their causes and effects. In order to this, he lays down the following axtoms or laws of motion.

1st Law. Every body perseveres in its state of rest, or
of unifurm motion in a right line, unless it be compelled to change that atate by furces impressed on it.-Thus, ${ }^{4}$ Projectiles persevere in their motions, so far as they are not retarded by the resistance of the air, or impelled downwards by the force of gravity. A top, whose parts, by their cohesion, are perpetually drawn aside from rectilinear motions, does not cease its rotation otherwise than as it is retarded by the air or friction, \&c. The greater bodies of the planets and comets, meeting with less resistance in more free spaces, preserve their motions, both progressive and circular, for a nuch longer time."

2d Law. The Alteration of motion is always proportional to the notive force impressed; and is nuade in the direction of the right line in which that force is impressed. Thus, if any force generate a certain quantity of motion, a double loree will generate a double quantity, whether that force be impressed all at once, or in successive monents.

3d Law. To every action there is always opposed an equal re-action: or the mutual actions of two borlies upon each other, are always equal, and directed to contrary parts. Thus, whatever draws or presses another, is as much drawn or pressed by that other. If you press a stone with your finger, the finger is also pressed by the stone: \&c.

From this axiom, or law, Newton deduces the following corollaries.-1. A body by two forces cunjoined will describe the diagonal of a parallelogram, in the same time that it would deccribe the sides by those furces apart. 2. Hence is explained the composition of any one direct force out of any two oblique ones, viz, by making the two oblique forces the sides of a parallelograin, and the daigonal the direct one,-3. The quantuty of motion, which is collected by taking the sum of the mutions directed towards the same parts, and the difference of those that are directed to contrary parts, suffers no change from the action of bodies umong themselves; because the motion which one body lores, is communicatedt to another.4. The common centre of gravity of two or mure bodies does not alter its state of motion or rest by the actions of the bodies among themselves; and therefore the common centre of gravity of all bodies, acting on each other, (excluding external actions and impediments,) is either at rest, or moves uniformly in a right line.-5. The tnotions of bodies included in a given space are the same among themselves, whether that space be at rest, or move unifurmly forward in a right line without any circular motion. The truth of this is evident from the experiment of a ship; where all motions are just the same, whether the ship, be at rest, or proceed uniformly forward in a straight line.6. If bodies, any how moved anong themsetves, be urged in the direction of parallel lines by equal accelerative fores, they will all continne to move among themselies, after the same manner as if they had not been urged by such furces.
'The mathematical part of the Newtonian Philosophy depends chicfly on the following lemmas; especially the first; containing the doctrine of prime and ulumate ra-tios.-Lem. 1. Quantities, and the ratios of quantutics, which in any finite time converge continually to equality, and before the end of that time approach wearer the one to the other than by any given difference, become ultimatcly equal.-Lex. 2 slows, that in a space bounded by two right lines and a curve, if an infinite number of parallelograms be inscribed, all of equal breadth; then the ultimate sutio of the curve space and the sum of the pural-

Iclograms, will be a ratio of equality:-lem. 3 shows, that the same thag to true when the bicadtho of the paralliblograms are undqual.

In the sucereding lommav it is shown, in like manner, that the ultimate ratios of the sine, chord, and sangent of arce infuitely diminished, are ratios of equality, and therefore that in all our reakoningy athout these, we may soffly use the one for the oblier:-that the ultimare form of evaneseent triangles, made by the are, chomd, or tanRent, is that of similitude, and their ulumate ratio is that of equality ; and lience, in reasonings about ultinate ratios, these triangles may saidy be used one tor another, whether they are made muh the sine, the are, or the tan-pent.- The abthor then demonstrates some propertics of the ordmates of curnilmear figures; and shows that the spaces which a body describes by any finite force urging i1, whether that force is deterinined and immutable, or continually varicd, ure to each other, in the vers beginming of the mation, in the duplicate ratio of the forces: -and lastly, having nded some lemonstrations concerning the evanescence of angles of contact, be praceds to by down the mathematical part of his system, which depends in the following theorems.

Theor. 1. The areas which revalving bodies describe by tallii drawn to an immoveable centre of force, lie in the same imunavable plane-, and are proportional to the times in which they are described.-To this prop. are ammexed several corollaries, lespecting the velucities of bodies revolong by centripetal buters, the directions and proportions of those forces, Ac; such as, that the velocity of such a revolving body, is reciprocally ns the perpendicular let fall from the cemire of force ufon the line touching the orbit in the place of the body, sc.

Theor. s. Fivery boaly that moses in any curse line described in a plane, und, by a radius draun to a point either immowable or moving forward with a uniform rectilinear motion, describes about that point areas proportional to the times, is urged by a centripetal force directed to that print. - With corollaries relating to such motions in resisting mediums, and to the direction of the forces when the areas are not proportional to the times.

Tupor. 3. Exery body liat, by a radius drawn to the centre of another budy, any how moved, descrilus areas about that centre proportioual to the times, is urged by a force compounded of the contripetal faress tending to that other body, and of the whole aceclerative foree by whech that other bouly is impelled. - With several corollarics.

Trufor. 4. The cenirnpetal force of hodies, which hy equal motions describe different circles, tenit to the eentres of the same circles; and are one to the other as the squares of the ares described in equal times, applied to the radii of the circles.- Wilh many corollaries, relating to the velocities, times, periodic forces, \&ec. And, in a scholium, the author further adits, Moreover, by menns of the foreg ing proposition and its corollarics, we may discoter the proportion of a centripetal force to any other known force, such ns that of gravity. For if n body by means of its graviy rewque in a circle, concentric to the carth, shis gravity is the centripesal force of that bady.- But from the descent of heavy bodies, the time of one entire revolution, as well as the are described in any given time, is given by a corel, to this prop. And by such propositions, Mr. Iluygens, in live excellent book De Horologio Uscillatorio, has compared the force of gravity with the centrifugal forces of revolving bodies.

On these, and such like principles, depends the Newtonian inatiematical philusophy. The author further show how to find the ecmice to which the torees impeling an; Lody are directed, having the velucity of the body given: and finds that the centrifugal force is always as the versed sine of the hascent are directly, and as the square of the time inversely; or directly as, the square of the welocity, and inseroly as the cliord of the nascent arceon From these premiscs, be deduces the method of finding the centripetal force directed to any given point when the body verolves in u circle; and this, whether the central point be near, or at immense distance; so that all the lines drawn from it may be considered as paraltels. And he, shows the same thing with regard to bodies revolsing in spirals, ellipses, hyperbolas, or parabolas. He shows also, huving the figures of the orbits given, low to find the selocities and moving powers; nad indeed resolves all the most difficult problems relating to the celestial bodies with a surprising degree of mathematical shill.' These problems and demonstrations are all contained in the fisst book of the Principia: but an account of them here would neither be generally understood, nor easily comprised in the limits of this work.

In the second book, Neuton treats of the properties and motion of fluids, and their powers of resistance, with the motion of bodies through such resisting mediums, thuse resistances bemg in the ratio of nuy powers of the velocities; and the inotions heing either inade in right limes or curves, or tibating like penduluas. And here he demonstrates such principles as entirely overthrow the doctrine of Descartes's sortices, which was the fashionable system in his time ; concluding the bork with these words: "So that the hypothesis of vortices is uttenly irreconcileable with astronomical phonomena, nod rather scrves to perplex than explain the heavenly motions. How these motions are perlormed in free spaces without vortices, may be understocd by the first book; and I shall now mure fully trat of it in the following book Ot the Sybem of the World."-In this second book be makes great use of the doctrine of Huxions, then lately invented; lor which purfose lie lays down the principles of that doctrine in the $2 d$ lemma, in these nords: "The moment of any genitum, is equal to the moments of each of the generating sides drawn into the indices of the powers of those sides, and into their coefficients continually:" which rule he demenstrates, aud then adds the following seholium concerning the invention of that doctrine' " "In a letter of mine," says he, "to Mr. J. Collins, duted December 10, 107 2 , baving described a method of tengents, which I suspected to be the same with Slusius's method, which at that time was not made public; I suljoined these words: "I his is one particular, or rather a corollary, of a general method which extends itself, withent any troublesome calculation, not only to the drawing of taingents to any cutve lines, whether geometrical or neeclannical, or any how respecting right lines or other curves, but also to the resolving other abstruser kinds of problems al,out the curvature, areas, lengths, centres of gravity. of curves, de; nor is it (as Hudden's method de maximus et minimis) limited torquations which are free from suad quantities. This nethod I have interwosen wilh that other of working in equations, by reducing thein to infioite series.' So far that letter. And these last words relate to a treatise 1 composed on that subject in the year 1671." Which, at least, is therefore the date of the invention of the doctrine of tluxiuns.

On entering upon the S_{d} book of the Principia, Newton brielly recapitulates the contents of the two former books in these words: "In the preceding books I have laid down the principles of philosophy; principles not philosophical, but mathematical ; such, to wit, as we may build our reasonings upon in philosophical inquiries. These principles are, the laws and conlitions of certain motions, and powers or furces, which chielly have respect to philosophy. But lest they should have appeared of themselves dry and barren, I have illustrated them here and there with some philosophical scholiums, giving an account of such things as are of a more general uature, and which philusophy scems chiefly to be founded on; such as the density and the resistance of bodies, spaces void of all matter, and the motion of light and sounds. It rew mains, he adds, that from the same principles I now demonstrate the frame of the system of the world. Upon this subject, I had indeed composed the 31 book in a popular mithod, that it might be read by many. But alterwards consideripg that such us had not suffictenily entered into the principita could not casily discern the strength of the 'consequenees, nor lay aside the prejudices 10 which they had been mnny gears accustomed; therefore to prevsent the disputes which might be raised on such accounts, I chose to reduce the substance of that book into the form of propositions, in the mathematical way, which should be read by those only, who had lirst made themelves masters of the principles established in the preceding Invohs."

As a necestary preliminary th this 3 d part, Newton lays down the followng rules for reasoriog in natural philosuphy: -1 . We are to admit no more causes of natural thaggs. than such as are both true and sufficient to explain their nalural appearances.-2. Therefore to the same natural etfects we must always assign, as far as possible, the sunce causes. -3 . The guialities of botlies which adonit mether inteiniun nor remasion of degress, and which are found to bolong tos all bodiss within the reach of our experiments, are so be stseemed the universal qualities of all bodice whatever. -4. In expromental philosophy, we are to considee propusitions collected by general induction from phithomena, as atcurately or viry nearly true, notwithatanding any counrary bypothoses that may be inagued, uff such lime as other phenomena occur, by which thry taay enther be made mure accurate, or liable to exceptions,

The plornonena first considered are, 1. That the satellites of Jupiter, by radii drawn to his centre, describe areas proportional to the times of description; and that their periodic tinies, the fixed stury being at rest, are in the sesquiduplicate ratio of their distanees from that centre. 2. The same thing is lihewise observed of tixe phenomena of Saturn. 3. The five primary planels, Mercury, Venus, Mars, Jupiter, and Satam, with their meveral orbits, encompuss the sun. 4 . The fised stars being supposed at vest, the periodic thmes of the suid five primary planets, ast of thecarth, about the sun, are in the sesquiduplicute propation of their mean distances from the stin. 5. The prinary planets, by radii drawn to the earth, deacribe areas no ways proportional to the times: but the arcas which they descrite by radii drawn to the sum are propertional to the times of alescription. 6. The moon, by a radius ilrawn to the cenne of the earth, describes in urea propurtunal to the time of description. All which phermountare clearly evinced by ustonomical ubserva-

Fiol. II.
tions. The mathematical demonstrations are next applied by Newton in the following propositions.
Prop. 1. The forces by which the satellites of Jupiter are continually drawn off from rectilinear motions, and retained in their proper orbits, tend to the centre of that planet ; and are reciprocally as the squares of the distances of those satellites from that centre,-Prop. 2. The same thing is true of the primary planets, with respect to the sun's centre.-Prop. 3. The same thing is also true of the moon, in respect of the earth's centre,-Pror. 4. The moon gravitales towards the earth; and by the force of gravity is contiuually drawn off frotu a reculinear unotion, and retained in her orbit--Prop. 5. The same thing is true of all the other plancts, foth primary and secondary, each with respect to the centre of its motiun.-Prop. 6. All bodies gravitate towards every planet; and the weights of boties towards any one and the same planet, at equal distances from its centre, are proportional to the quantities of matter they contain,-Prop. 7. There is a power of gravity tcuding to all bodies, proportional to the several quantities of matuer which they contan.--Prop. 8. In two spheres mutually gravitating each towards the other, if the matier in places on all sides, rounc about and equidistant from the centres; be similar; the weight of enther xpbere tuwards the other, will be reciprocally as the square of the distance between their centres. - Hence are compared together the weights of berclies towards different planets: bence ulso are discovered the quantities of matter in the several planets: and hence likewise are found the densities of the plasets.-Prop. 9. The force of gravity, its parts downuards fron the surface of the planets tuwards their centres, decreases nicatly in the proportion of the distances from those centres.

These, and many other propositions and corollaries, are proved or illustrated by a great varicty of experimens, in all the great points of physical astronomy; such as, 'That the motions of the planets in the heavens may subsst all exceeding long time:-That the centre of the system of the worlt is immoveable: - That the common centre of gravity of the carth. the sun, and all the planets, is inInowrable: - That the sun is agitated by a perpethat mato tion, but never recedro fal from the common cemare of gravity of all the planets:- -I hat ibe planeis move m ellipses which have their common focus in the cemre of the sun ; and, by radin drawn to that centre, they descriw areas proportuonal to the timen uidescription :- The apheliuns, und nodes of the ortars of the planets are fint:- To find the aphelions, excentricitics, and principal diamemers of the orbits of the planets:-That the diurnal motions ct the planets ars uniform, and that the libration of the moon arises from ber dournal motion:-Of the proportein tris tween the aver of the planets and the dianieters perporntio cular to thase axes:-Of the wrights of bodiew in the ditforent regious of our earth:- That the equinuctial ponnts go backwards, and that the vartli's asis, by a nutation in every annual revolution, twice vibrates inwards he eclij!tic, and as often returns to is former poshinh:-That all the motions of the morn, and all the ine graditien ot thase motions, follow from the principles above laid down:Of the unequal motions of the satellites of Jupises mad Saturn:-Of the Jux and reflux of ilesem, ax arisang trom the actions of the sun wind motw; -Of the farces with which the sun disturbs the motions of the mum ; wf the vasions mutjons of the anona, of her orbin, variation, imelitins. ${ }^{\prime \prime}$
tions of her orbit, and the several motions of her nodes: -Of the tides, with the forces of the sun and moon to produce them :-Of the figure of the moon's body :-Of the precession of the equinoxes :-A ad of the motions and trajectory of comets. 'The great author then concludes with a general schohium, containing reflections on the principal parts of the great and beautiful system of the universe, and of the intinite, eternal Creator and Governor of it.
"The hypothesis of vortices," says he, " is pressed with many difticulties. That every planet by a radius drawn to the sun may describe areas proportional to the tintes of description, the periodic times of the several parts of the vortices should observe the duplicare proportion of their distances from the sun. But that the periodic times of the planets may obtain the sesquiduplicate proportion of their distances from the sun, the periollic times of the parts of the vortex ought to be in the sesquiduplicate proportion of their distances. That the smaller vortices may maintain their lesser revolutions about Saturn, Jupiter, ${ }^{\text {and }}$ other planets, and swin quictly and undisturbed in the greater vortex of the sun, the periodic times of the parts of the sun's vories should be equal. But the rotation of the sun and planets about their axes, which ought to correspond with the moions of their vortices, recede far from all these proportians. The motions of the comets are exceeding regular, are governed by the same laws with the motions of the planets, and can by no means be accounted for by the hyporhesis of vortices. For comets are carried with very excentric motions through all parts of the heavens indifferemly, with a freedom that is incompatible with the notion of a vortex.
"Bodies, projected in our air, suffer no resistance but from the air. Withdraw the aur, as is done in Mr. Boyle's vacuum, and the resistance ceascs. For in this void a bit of fine down and a piece of solid gold descend with equal velocity. And the parity of reason must take place in the celestial spaces above the earth's atmosphere; in which spaces, where there is no air to resist their motions, all bodies will move with the greatest freedom; and the planets and comets will constantly pursue their revolutoons ill orbits given in kind and prosition, according to the laws above explained. But though these budies may indeed persevere in their orbils by the mere laws of gravity, Flt they could by no means have at first derived the regular position of the orbits themselves from those laws.
"The six primary planets are revolved about the sun, in circles concentric with the sun, and with motions directed towards the same parts, and almost in the same plane. Ten moons are revolved about the earth, Jupiter and Saturn, in circles concentric with them, with the same direction of motion, and nearly in the plaues of the orbits of those planets. But it is not to be conceived that mere mechanical causes could give birth to so many regular motions: since the comets range over all parts of the heavens, in very excentric orbits. For by that kind of motion they pass casily through the orbs of the planets, and with great rapidity; and in their aphelions, where tbey move the slowest, and are detained the longest, they recede to the greatest distances from each other, and thence suffer the least disturbance from their mutual attractions. This most beautitul system of the sun, planets, and comets, could only proceed from the counsel and dominion of an intelligent and powerful Being. And if the
fixed stars are the contres of other like systems, these being formed by the like wise counsel, must be all subject to the dominion of one; especially, since the light of the fixed stars is of the saine nature with the light of the sun, and from every system light passes into all the other systems. And lest the system of the fixed sars should, by their gravity, fall on each other mutuslly, he hath placed those systems al immense distances one from another."
'Then, after a truly pious und philusophical descant on the attributes of the Bing who could give existence and continuance to such prodigious mechanisn, and with so much beantiful order anid regularity, the great author proeecds; "Hitherto we have explained the phenomena of the theavells and of our sea, by the power of gravity, but have not yet assigned the cause of this power. This is cortain, that it must procced from a cause that penetrates to the very centres of the sun and plancts, without suffering the keast diminution of ins force; that it operates, not according to the quantity of the surfaces of the particles upon which it acts (us mechanical causes do), but according to the quanity of the sold matter which they contain, and propagates ita virtue on all sides, to immense distances, decreasing always in the duplicate proportion of the dissances. Gravitation towards the sun, is made up out of the gravilations towards the several particles of which the body of the sun is comprosed; and in receding from the sun, decreases accurately in the duplicate proportion of the distances, as far as the onb of Sarurn, ns evidently appears from the quicscence of the aphelions of the planets; nay, and even to the iemolest aphelions of the comets, if those aphclions are also quiescent. But hitherto I have not bern able to discover the cause of those properties of gravity from phenontena, and I frame no hypotheses. For whatever is not deduced from the phenomena, is to be called an hypothesis; and hypotheses, whether metaphysical or physical, whether of occult qualities or mechanical, have tho place in experimental philosophy. In this philosophy, particular propesitions are inferred from the phenomeva, and atterwards rendered general byinduction. Thusit was that the impenetrabiliny, the mobility, and the impulsive furce of badies, and the laws of motion and of gravitation, were discovered. And to us it is enough, that gravity dors really exist, and act according to the laws which we have explained, and abundamily serves to account for all the motions of the celestial bodies, and of our sea.
"And now we might add something concerning a cortain most subtle spirit, which pervades and lies hid in all gross bodies, by the force and action of which spirit, the particles of bedies mntually attract one another at near distances, and colsere, if contiguous, and electric bodies operate to greater distances, as well repelling as attructing the neighbouring corpuscles; and light is emitted, reflected, refracted, infectud, and heats bodien; and all sensation is excited, and the members of animal bodies move at the command ef the will, namely, by the vibrations of this spirit, mutually propayated along the solid filaments of the nerves, from the ouiward organs of selnse to the brain, and from the brain into the muscles. But hose are things that cannot be explained in frew words, nor are we furnished with that sufficiency of experiments which is required to an accurate determination and demonstration of the laws by which this electric and etastic spirit operates."

NI G

NICHE, a cavity, or hollow part, in the thickness of a same; 1744.-26. Determination, by Incomenensurables wall, to place a figure or statue in.

NICOLE (Fraxcis), a celebrated French mathematician, was born at Paris December the 29d, 1683. His early atuachment to the mathematics induced M. Montmort to take the charge of his education; und he opened to him the way to the higher geometry. He first became publicly remarkable by detecting the fallacy of a pretended quadrature of the circle, This quadrature \& M. Mathulon so assuredly thought he hod discovered, that he deposited, in the hands of a public notary at Lyons, the sum of 3000 livres, to be paid to any person who, in the judgment of the Academy of Sciences, should demonstrate the falsity of his solution. M. Nicole, piqued at this challenge, undertook the task, and exposing the paralogism, the Academy's judgment was, that Nicole had plainly proved that the rectilineal figure which Mathulon had given as equal to the circle, was not only unequal to it, but that it was even greater than the polygon of 32 sides circumscritu-d about the circle.- The prize of 3000 livers, Nicole presented to the public hospital of Lyous.
The Acalemy named Nicole, Elève-Mechanician, March 12, 1707 ; Adjunct in 1716, Associaue in 1718, and Pensioner in 1724; which he contiaued till his death, which happened the 181h of January 1758, at 75 years of age.

His worhs were all inserted in the different volumes of the Memoirs of the Academy of Sciences; and are as follow :

1. A General Method for determining the Nature of Curves formed by the Rolling of other Curves upon any Given Curve; in the volume for the year 1707.-2. A General Method fire Rectifying all Roulets upon Right and Circular Bases; 1708-3. General Meshod of determining the Nature of those Curves, which cut an Infinity of other Curses given in Powition, cutting them always in a Constant Angle; 1; t5.-S. Solution of a Problem proposed by M. de Lagny; 1716.-5. Treatise of the Calculus of Furite Ditisrences; 1717.-6. Second Part of the Calculus of Fimite Differences; 1723.-7. Second Section of dituo $1723 .-8$. Addition to the iwo foregoing papers; 1724.-9. New Proposition in Elementary Gicometry; 1725-10. New Solution of a Problem proposed to the English Mathematicians, by the late M. Leibnitz: 1723. - 11. Methoi of Samming an Infinity of New Series, which are not summable by any other knowu method; 1727.-12. Treatise of the Lines of the Third Order, or the Curves of the Sccoud Kind; 1729.-13. Ex. atmination and Resolution of some Questions relating to Play: 1730.-14. Method of determining the Chances at Play.-15. Obvervations on the Conic Sections; 1731.16. Manner of generating, in n Solid Body, all the Lines of the Third Order; 1731.-17. Mamuer of determining the-Nature of Roulets formed on the Convex Surface of a Sphere; and of determining which are Gcometric, and which are Rectifiable; 173\%-18. Solation of a Problem in Geometry; 17: 1 . 19. The Lise of Series in resolving many Problems in the Inverse Method of Tangents: 1737 -20. Observations on the Irreducible Case in Cubic Equations; 1738.-21. Observations on Cubic Equations; 1738.-29. On the Trisection of an A pgle; 1740.29. Un the Irreducible Case in Cubic Equations; 1741.*4. Addition to ditto; 1743.-25. His Last Paper on the
and Decimals, the Values of the Sides and Arens of the Sesies in a Double Progression of Regular Polygons, inscribed in and circumecribed about a Circle; 1747.

NICOMEDES, an ancient mathernatician, who flourished in the 2d century of the Christian mera, and was celcbrated for bis invention of the curve calied the Concboid.
NHELWENTYT (Bernard), an eminent Dutch philosopher and mathematician, was horn on the 10th of August 1654, at Westgraafdyk in North Holland, where his father was minister. He discovered very early a good genius and a strong inclination for learning: which was carefully improved by a suitable education. He had also that prudence and sagacity, which led him to pursue literature by sure and proper steps, acquiring a kind of mastery in one science before he proceeded to another. Ilis father had designed him for the ministry; but seeng: his inclination did not lie that way, he prudently left him to pursue the bent of his genius. Accordingly young Nicuwentyt, apprehending that nothing wam more useful than fixing bis imagination and forming his judgment well, applied himself early to logic, and the art of reavoning justly, in which he grounded himself on the principles of Descartes, with whose philosophy he was greatly delighted. From thence he proceeded to the mathematics, in which he made a considerable proficiency; though the application he gave to that branch of learning did not prevent him from studying both law and physic. In fact he succeeded in all these sciences so well, as deservedly to acquire the character of a good philosopher, a great mathematician, an expert physician, and an able and just magistrate.

Though he was naturally of a grave and serious disprsition, yet he was very aflable and agreable in conversation. His engaging manuer procured the affection of every one; and by this means he often drew over to his opinion those wha before differed very widely from him. Thus accomplished, he acquired a great esteem and credit in the council of the town of Puremerende, where he resided; as he did also in the states of that province, who respected him the more, inasmuch as he never engazed in any cabais or factions, in order to secnre it; regarding in hip conduct, an open, boncst, upright behuviour, as the bersk source of satisfaction, and relying solely on his merit. In fact, he was more attentive to cultivate the sciences, than eager to obsain the honours of the government; contenting himeelf with being counsellor and burgomaster, without courting or accepting any other posts, which might interfere with his studies, and draw him too much out of his library.-Nieuwentyt died the 7 th of March 1730, at 76 years of age, laving been twice married.-He was author of several works, in the Latin, Freuch, and Dutch languages, the principal of which are the following.

1. A Treatise in Dutch, proving the Existence of God by the Wonders of Nature; s much esteemed work, which went thruugh many editions. It was translated also into several languages, as the French, and the English, under the title of, The Heligious Philosopher, \&cc.
2. A Refutation of Spinona, in the Dutch language. 3. Analysis Infinitorun: 1695, 4to.-4. Considerationes secunder circa Calculi Differentialis Principia; 1696, 8vo. -In this work he attacked Leibnits, and was answered by John Bernoulli and James Herman.-5. A Treatise on

12
the New Use of the Tables of Siucs and Tangents-6. A Letter to Botinnia or Burmania, on the Subject of Meteurs.

NiIRUGEN, of Nitrous, Gas, (the phlogisticated air of Prestiey,) forms the unrespiratle part of atmospheric air, and exists in it in the propeution of 78 per cent, calltakatl by bulk, or $7+$ per cent. by weight. Sue Aikin's Ciseinical Dictionary, article Azote.

NIGHT, that part of the natural day, during which the suin is below the horizon: though sometimes it is understood that the twilight is referred to the cisy, or the time the sun is above the horizon; the remander muly beling the night. Under the equator, the nights, in the former sense, are always equal to the days; each leing 12 hours long. But under the poles, the night contnnues half a year.-The ancient Gauls and Gernaans divitedt their tuen nut by days, but nights; as apprars from Caesar and ' 'acitus; also the Arabs and the Icelandery do the satuc. The same may also be ubserved of our Saxon ancestors: whence uur custom of suying, seveninght, fortnight, \&c.

NOCTILUCA, a species of phusphorus, so called becane it shines in the night, without any light being thrown on it: such is the phosphorus made of urine. By which it stands distunguished from some other species of phosphurus, which require to be exposed to the sun-beans befure they will shine; as the Bononian-stone, \& c. Mr. Buyle hus a particular treatise on this subject.

NUC'IURNAL Arci, is the arch of a circle described by the sull, or a star, in the night.

Nocturnal, or Noctublabicis, denotes an instrument, chielly used at sen, to take the altitude or depression of the pole-star, and some viber stars about the pole, for finding the latitude, and the hour of the night.

There are several kinds of this instrument; some of which are projections of the sphere; such as the hemispheres, or planispheres, on the plane of the equinoctial. The seamen commonly use two kinds; the one adapted to the pole-star, and the first of the guards of the Little Bear; the otber to the pole-star and the pointers of the Great Bear.

The bucturnal consists of two circular plates (fig. 15, pl . 17) applied over each other. The greater, which has a handle to hold the instrument, is about $2 \frac{1}{2}$ inches diameter, and is divided into 12 parts, answering to the 12 months; also each month subdivided into every 5 th day ; and in such manner, that the middle of the handle corresponds to that day of the year in which the star here respected has the same right ascension with the sut.

When the instrument is fitted for two stars, the handle is made moveable. The upper circle is divided into 24 equal parts, for the 24 hours of the day, and each hour subdivided into quarters, as in the figure. These 24 hours are denoted by 24 teeth; to be told in the night. Is the centre of the two circular plates is adjusted a long index a, moveable on the upper plate. And the three picces, vis, the two circles and index, are joined by a rivet w hich is pierced through the centre, with a hole 2 inches in diameter, for the star to be observed through.

To Use the Noctuanal. Turn the upper plate till the longest tooth, marked 12, be against the day of the month on the under plate; and bringing the instrument near the eye, suspend it by the handle, with the plane nearly parallel to the equinoctal; then viewing the polestar through the hole in the centre, turn the index about till, by the edge coming from the ceatre, you see the
bright star or guard of the Little Bear, if the instrument be fitted to that star: then that tuoth of the upper circle, under the edge of the index, is at the hour of the night on the edge of the hour-circle, which may be knowil withont a hight, by counting the teth from the longest, which is fur the hour of 18.

NODAIED Hyperbola, one, so called by Newton. which by turning round decussates or crinases itself: as in the $2 d$, and seseral other specns, of his Enumeratio Linesrum Tertii Ordinis.

N(ODFS, the two opposite points where the orbit of a planet intersects the ectiptic. That, where the planet ascends from the south to the north side of the eecliptic, is called the ascending nudr, or the Dragon's ha ad in the moon, and marked thus 8: and the opposite point, where the planet devends from the north to the south side of the ecliptic, in called the descending node, or Dragon's tail in the moon, and is thus marked 8 . Atso the right line drawn from the one nude to the other, is called the line of the nodes.

By observation it appears that, in all the planets, the line of the nodes continually changes its place, its motion being in antecedentia; i. e. cuntrary to the order of the signs, or from cast to west ; with a peculiar degrece of motion for ench planet. Thuy, by a retrograde motus, the line of the moon's nodes completes its circuit in 18 years and 225 days, in which time the node returns agains to the saıne point of the celiptic. Newton has not only shown, that this motion arises from the action of the sun, but, fivin its cause, he has with great skill calculated all the elcthents and varieties in this motion. Sec his Princip. lib. 3, prop. 30, 31, \&c.-The moon inust be it or near one of the nodes, to make an eclipse cither of the sun of moon.

For a full treatise on the nodes of the planets, see Lalande's Astronomy, in many articles an shown by the index at the end of the $3 d$ volume, and the result of the whole in vol. 2, pa. 124, where he gives a table of the nodes of the several planets, for the year 1730, and their unnual variations, thus :

See also our article Orbit.
NODUS, or Node, in Dialling, denotes a point or hole it the gnomion of a dial, by the shadow or light of which is shown, either the hour of the day in dials without furniture, or the paraltels of the sun's declination, and his place in the ucliptic, \&c, in tials with furniture.

NOLLET (the Abié Joun Anthony), a considerable French philosopher, and a member of must of the philosophical sucieties and acadenies of Ehrupe, was born at Pimpre, in the district of Noyon, the 19th of November 1700. From the profuund retreat, in which the mediocrity of his fortune olliged him to live, his reputation continually increased troti day to day. M. Dufay asso-
ciated hinr in his Electrical Rescarches; and M. de Reaumur resigned to him his laboratory. It was under these masters that be developed bis talents. M. Dufay took him along with him in a journey be made into Eungand; and Nollet prufited so well of this opportunity, as to institute a friendly and literary correspondence with some of the most celebrated men in this couniry.

The king of Sardinia gave him us invitation to Turin, to perform a cuurse of experimenal philusophy to the duke of Savoy. From thence lie travelled into Italy, where be collected some good olservations cuncerning the natural history of the country.
In France lee was master of philorophy and natural bistory to the royal family; and profibsur-royal of experunental philosophy to the college of Navarre, and to the schouls of artilley and cugineers. The Acadeany of Sciences appointed him adjunct-mechanician in 1730, aso suciate in 1742, and pensicner in 1737. Nollet dicd the 2 th of April $1 ; 70$, regretted by all his friends, but especially by his relations, whom he Hlways succoured with an uffectionate attention. The works published by Nollet, are the following:

1. Recueils de Lettres sur l'Electricité ; 1753, 3 vols in $12 \mathrm{mo}-$ 2. Essai sur l'Electricité des Corps; I vol, in $12 \mathrm{mon},-3$. Recherches sur les Causes particulieres des Phenomenes Electriques; 1 vol. in 12 mo.-4. L'Art des Experiences; $\mathbf{3 7 7} 0,3$ vels in 12 mo .
this papers printed in the difterent volumes of the Memoits of the Academy of Sciences, are much too numerous to be particularized here; they are inserted in all or most of the voluines from she year 1740 to the year 1767 inclusive, and generally several papers in each volume.

NONAGESIMAL, or Nonagesimal Degree, called also the nudi-heaven, is the bighast paint, of yoth degree of the ecliptic, rechoned from its intersection with the horizon at any time; and its altitude is equal to the angle that the ecliptic makes with the horizon at their intersection, or equal to the dintance of the zenith from the pole of the ecliptic. It is much used in the calculation of sular eclipses.

NONAGON, a figure having nine sides and angles. -In a regular nonagon, or that whose angles, and sides, are all equal, if each side be 1 , its area will be 6.1818242 $=\frac{9}{4}$ of the tangent of 70°, to the radius 1. See my Mensuration, pa. 85, 4th edit.

NONES, in the Roman Calendar, the 3th day of the months January, February, April, June, August, September, Nuvember, and December; and the 7ih of the other months March, May, July, and October: these last four months having 6 days before the nomes, and the others only four.-They bad this nan.e probably, because they were always 9 days inclusively, from the first of the nones to the ider, i. e. rickoning inclusively both those days.

NONIUS, or Nunez (Petex), an eminent Portugacse mathematician and physician, was born in 1497, at Alcaxar in Poriugal, anciently a remarkable city, known by the name of Salacia, whence be was surnamed Salacieusis. He was professor of tuathematics in the university of Coinbra, where be published some pieces which procured him great reputation. He was mathernatical preceptor to Don Henry, son to king Emanuel of Portugal, and principal cosmographer to the king. Nunius was viry serviccable to the designs which this court entertained, of carrying on their maritime expeditions into the East, by the publication of his book On the Art of Navi-
gation, and various other works. He died in 1577, at 80 years of age.

Nonius was the author of several ingenious works and inventions, and was justly estecmed one of the most eminent mathematicians of his age. Concerning his Art of Navigation, father Dechales says, "In the year 1530, Peter Nunius, a celvbrated Portugucse mathematician, on occasion of some doubts proposed to him by Martinus Alphonsus Sofa, wrote a Treatise on Navigation, divided into two books; in the first, he answers some of those doubts, and explains the nature of loxodromic lines. In the second book, lie treats of rules and instruments proper for inavigution, purticularly sea-charts, and instruments serving to find the clesation of the pole; but says he is rather olscure in bis manner of writing."-Furetiere, in his Dictionary, takes nutice that Peter Nonius was the first who, in i530, invented the angles which the loxodromic curves make with each meridian, culling them in his Ianguage Rhumbs, and which he calculated by spherical triangles. Stevinus acknowledges, that Peter Nunins was scarce inferior to the very best mathematicians of the age. And Schottus says, be explained a great muny problems, and particularly the mechanical problem of Arir stotle on the motion of vessels by oars. His Notes upon Purbach's Theory of the Planets, are very much to be esteemed: he there explains several things, which had either not been noticed before, or not rigbily understood.

In 1542, be published a 'Treatise on the 'Twilight, which he dedicated to John the 3d, king of Portugal ; to which he added what Alhazen, an Arabian author, has composed oll the same subject. In this work he describes the method or instrument called, from him, a Nunius; a particular account of which see in the following article.-He corrected several mathemetical mistakes of Orontins Finaus. -But the must celebrated of all his works, or that at least he appcared must to value, was his Treatise of Algebra, which be had composed in Portugucse, but translated it into the Castilian tongue, when be resolved to make it public, which be thought would render bis book more useful, as this language was more generally known than the Portuguese. The dedication, to his former pupil, prince Henry, was dated from Lisbon, Dec. 1, 1564. This work contains 341 Ifaves, or 682 pages, in the Antwerp edition of 1567, in svo; the folios being numbered only on one side.

The cataloguc of his works, chiefly in Latin, is this :

1. De Arte Navigandi, libriduo; 1330.-2. De Crepusculis; 1542.-3. Annotationes in Aristotelem.-4. Problema Mechanicum de Motu Navigii ex Remis.- ${ }^{\text {J. Anno- }}$ tationes in Planetarum Theorias Genrgii Purbachii, \&c.6. Libro de Algebra ell Aribhnetica y Geometra; 1564.

AH these pieces, the Algebra excepted, were collected and published, in a folio volume, at Basil, in 1566.

Noxtus, is a name also erroneously given to the method of graduation now gencrally used in the division of the scales of various instruments, and which should be called Vernier, from its real inventor. The method of Nonius, so called from its inventor Pedro Nunez, or Nonius, and described in his treatise De Crepusculis, printed at Lisbon in 1542, consists in describing within the same quadrant, 45 concentric circles, dividing the outermost into 90 equal parts, the wext within into 89. the next into 88, and so on, till the innermost was divided into 46 ouly. By this meaz:s, in most observations, the plumb-line or iudex must cross one or other of those
circles in or very near a puint of division: whence, by talculation, the degrees and minutes of the arch might easily be obtained. This method is also described by Nunez, in his treatise De Arte et Ratione Navigandi, lib. Q. cap, 6 , where he imagin's it was not unknown to Ptolemy. But as the degress are thus divided unequally, and it is very difficult to attain exactness in the division, especially when the numbers, into which the arches are to be divided, are incomposite, of which there are no less than nine, the method of diagonals tirst pubJished by Thomas Digges, Esq. in his treatise Ala seu Scala Mathematice, printed at Lond. in 1573, and said to be invented by one Richard Chamseler, a very skilful artist, was substituted is its stead. However, Nonius's method was improved at different times; but the cominodious division now so much in use, is the most considerable improvement of it. See Vettnier; also Roberison's Navigat. Pref. ρ. iv; or Kubins's Tracts, v. 2, p. 265, for a curious history of many other such contrivances.

NORMAL, is used sometimes for a perpendicular.
NORTH Star, called also the Polc-star, is the last in the tail of the Litule Bear.
. Northern Signs, are those six that are on the north side of the equator; viz. Arics, Tuurus, Gemini, Cancer, Leo, Virgo.

NORTHING, in Navigation, is the difference of latitude, which a ship makes in sailing northwards.

NORWOOD (Riciasd), a respectable teacher of mathematics, in London, expecially navigation, in which it scems he had some practice. He published several useful books; as, 1. The Epitome and Doctrine of Triangles, 1673, in 8vo ; 2. Trigntometry, 1685 , in 410 ; 3. The 'saman's Practice, 1697, in 4to; where we find that for which he has been chiefly noted, viz. his determination of the raugnitude of the earth, and the dagrees of the meridian, by means of the distance measured between London and York, in the year 1635. This mensurement at so early a date, was ingeniously devised, and simply executed, reflecting on the author considerable credit, whose means and convenience for the performance were small and humble. The deviation from an accurate result is however not so considerable as might be expected from the rude manner of his measuring with a chain, along the high road in all directions, to the right and left, as well as up and down hills, and sometimes only by pacing or stepping the distances. It seems however he did not make a sufficient allowance for those zigzag directions and estimations, as his conclusion gives the mean length of a degree of latitude too great by alnost half a mile, viz, 699_{7}^{5} miles to a degrec, instead of 699^{2}, as deduced from later and more accurate measurements.

Mr. N. had also an ingenious paper on the Tides, of Wells, on Salt and Fresh Wiater, and on Whale-fishing, inserted in the Philos. Trans, an, 1667 , or in my Abridgement, vol. I, pa. 206.

NOSTRADAMUS (MıcuRL), an able physician and celebrated astrologer, was born at St . Remy in Provence, in the disecse of Avignon, December 14, 1503. His father was a notary-public, and his grandfather a plysician, from whom he received some tincture of the mathematics. He afterwards completed his courses of languages and philosophy at Avignon. Heuce, going to Montpelier, he applied bimself to physic; but being forced away by the plague, be travelled through different places till be carae to Bourdeaux, undertaking all such patients as were
willing to put themselves under bis care. This course occupied him five years; after which he returned to Moutpelier, and was created doctor of his faculty in 1529; after which he revisited the same places where he had practised physic before. At Agen he formed an acquaintance with Johus Casar Scaliger; but quitted it atter a residence of about $\$$ years. He next settied at Marscilles, but repaired to salon about the year 1544 .

In 1546, Aix beng afllicted with the plague, he went thitier at the solicitavion of the inbubitants, to whum he rendered great service, particuluily by a powder of his own invention: so that the town, in gratitude, gave bim a considerable pension for several years after the contagion censed. In 1547 the city of Lyons, being visited with the same distemper, had recourse to our physician, who attented them also. Afterwards roturning to Salnn, he began a more retined course of life, and in this time of leisure applied himself closely to his studies. Ihe had for a long time followed the trade of a conjurer occasionally; and now he began to fancy himself inspired, and miraculously illuminated with a pruspect moto futurity. As fast as thesc illuminations bad discovered to him any future event, be entered it in writing, in sisple prose, though in enigmatical sentenc's: but revising them atterwards, he thought the astenticer would appear mote respectable, and savour more of a prephetic spifit, if they were expressed in verse. 'This opmion determined him to throw them all into quatrains, and lee afterwand ranged thenn into centusies. For some tine the could not venture to publibh a work of this nature; but afterwards perceiving that the time of many events foretuld in his quatrains was very near at hatid, he resolved to print them, as he did, with a dedication addresed to his son Cassar, an infant only some monthe old, and dated Mareh 1, 1553. To this first edition, which comprised but 7 centuries, he prefixad his nume in Latin, but gase to his son Cesar the name as it is pronounced in French, Notradame.

The public were divided in their sentiments of this work: many considered the author as a simple visionary; by others he was accused of inagic or the black art, and treated as an itmpious person, who held a commerce with the devil; while great numbers believed him to be really endued with the supernatural gift of prophecy. However, Henry the 2d, and queen Catharine of Medicis, his mother, were resolved to see our prophet, who receiving orders to that effect, he preseatly sepaired to Paris; where he was very graciously received at court, and received a present of 200 crowns. He was sent nfierwards to Blois, in visit the king's clildren there, and report what he should be able to discover concerning their detinies, It is not known what his prediction was ; however he returned to Saton louded with honour, and guorl presents.

Animated with this auccess, be augmented his work to the number of 1000 quattrains, nad published it with a dedication to the king $m 1.558$. That prince dying the next year of a wound which be received at a tournament, our prophet's book was immenliately consulted; and this unfortunate event was found in the 35th quatrain of the first century, which runa thus in the Loadon edition of 1672:

Le lion jeune lo vicux surmontera,
En champ bellique, par vingulier duelle,
Dans cage d'ur l'ail il lui crevera,
Deux playes uhe, puiy mourir mort cruelle.
In English thus, from the same edition:

The young Lion sball overcome the old one, In martial field by a single duel, In a golden cage he shall put out his eye,
Two wounds trom one, then he shall die a cruel death. So remarkatle a prediction adiled new wings to bis fame; and be was honoured soon after with a visit from Emanuel duke of Savny, and the princess Margaret of France, his colsort. From this time Nostradamus found hamself even overburthened with visitors, and his fame made every day new acquisitions. Charles the 9 th, coming to Salon, waseager above all thing ta have a sight of him: Nostradumus, who then was in waiting as one of the retinue of the magistrates, being instantly presented to the king, complained of the little esteem his countrymen bad for him ; upon which the monarch publicly declared that be should hold the encmies of Nustradamus to be his enemies, and desired to sec his chitdren. Nor did that prince's favour stop bere; in passing, not tong atter; through the city of Arles, be sent tor Nostradamus, and presented bim with a purse of 200 crowns, together with a brevet, constituting him his playsician in ordinary, with the same appointment as the rest, But our prophet enjoyed these honours only a short time, as he died 16 months after, vix, July 2, 1566, at Salon, being then in his grand climacteric, or f3il year. - He had published several other piecer, chiefly rolating to medicine.

He left three sons and three daughters. Cassar the eldest son was born at Saton in 1555, and died in 1629: he left a maniuscript, giving an account of the most renarkable events in the history of Provence, from 1080 to 1494 , in which he inserted the lives of the puets of that country. These menoirs falling into the hands of his mppew Casar Nostradapnus, gentheman to the duke of Guise, he undertook to complete the work, and being encouraged by the cstates of the country, be carried the account up to the Celtic Gauls: the impression was finished at Lyons in 16i14, and published under the tithe of Chronique de l'ilistuire de Provence.-The second son, John, exercised with reputation the business of a proctor in the parliament of Provence.-He wrote the Lives of the Arcient Provençal l'oets, calted Tronbadours, and the work was printed at Lyons in $1575,8 \times 0$. - The youngest \sin it is said undertook the trade of peeping into futurity like his fasher.

NOIATION, is the representing of any given number by means of certain significant characters, or numerical sy misols; and thus stands in contradistinction to Numeration, which is the wording or expressing in words any number represented by those symbols.

It is highly probable, that in the early stages of society, every distinet number had a peculiar characteristic representatise, which must however bave led to great difficulty and enbarrassment, on account of the number of different characters with which the memory must have been incunberod; at the sane time it must also have been very lisuited it its application. Therefore, as soon as the state of society reguired the use of great numbers, which must hase immediately followed the witroduction of commerer, it became necessary to have a more concise notation; and the most proper inethod of accomplishing this, was that of givang to each symbol a local as well as a simple value. Thas however was a relinement that could hardly be expected in the first lude efferts of the human mind; and probmbly there are now tho traces leit of the first attempt of thin kind.

We know now of only three different modes of notation, namely; the Roman, the Grecian, and the Indian; the latter of which is the only one at present in use, at least in arithmetical calculations: but cach of these agree in one material point, which is that of dividing all numbers into periods of tens, a custom almost miversally adopted by all nations; and as this is not the best number that might have been employed for forming the radix of a system of arithmetic, we must look to some general physical cause, for this siugular coincidence of different people, many of whom had probably no communication with each other.

Matheruaticians, so far back as the time of Aristotle, have noticed this singularity; and have endcavoured to account for it from different principles: it had, however, 110 doubt, its origin in the natural formation of man. Every one in the inlancy of his reason makes the first efforts of calculation on bis fingers, which being ten in number, evidently led to the separation of quantities of all kinds into periods of tens. For after baving counted to this number, they were under the uecessity of beginning aguin, and committing to their memory that they had already counted one period of ten: having then completed a second, third, \&c, period, they still continued to count in the same manuer, and still employed their fiugers, as the proper instluinctuts for assisting the memory in retaining the number of those periods, as well as for still pursung their calculations: this therefore necessarily led to the second principal separation of number into hundreds; and so on for thousands, tens of thousands, \&c.

Hence it appears, that the idca of our present scale of notation had, in reality, its foundation in the structure of the human frame: but to what nation we are indebted for the method of expressing tuumbers by means of ten simple characters, by giving to each a local, as well as a primitive value, is unknown : it is however pretty evident that it is only an improvement on the first rude attempts at numbering, above-mentioned.

The honour of this invention has beenl ascribed to different nations ; some have attributed it to the Greeks, others to the Arabs, the Chaldeans, Indians, \&c.

The first traces of it however, that bave been discovered, are among the Arabs, who themselves attribute it to the Indians; but whether it had its origin with those people, or they dierived it from any other nation, is a very doubtful question, which will perhups ever remain undecided.

Montucla, in his Mistoire des Mathematiques, book 2, vol. 1, has entered munutely into the subject, and has shown in the most unequivocal manner, not only that the Indians were in possession of this art before it was known to the Arabs, but also that the characters employed by them 2000 years back, did wot very materially ditfer from those in present use; and it is to this work we are indebted for the specimen of the ancient and unodern characters that we have given in plate 23, the last line of which is Al-Sephadi's expression for the number 184467440737.3709515615 ; and each of the other liues stands opposite the name of the author, or the nation, by whom they have been empluyed. From these specimens it will be readily perceived how our madern symbols have been detived, with some slight moditications, from those of the most ancient date.

It has been befure observed, that almost all nutions have adopted, as it were by common consent, the decimal
scale of notation: this is not however without some exceptions. The ancient Chinese are said to bave employed the binary scale (sce Binamy), and a nation of Thrace, mentioned by Aristotle, used the quaternary scale, counting by, periods of fours; and another people bordering on Senegal, make all their calculations by periods of fives, which they designate as follows; one, two, three, four, five, they call ben, niard, niet, guyanet, guiron; and six, seven, eight, nine, by guiron ben, guiron niard, guiron niec, \&c. and ten by fouque, and probably eleven by fouque ben.

But these exceptions to the general mode of notation are very inconsiderable, and none of those scales that we have mentioned are by any means so well adapted to arithmetical purposes as our own; but this it must be acknowledged is inferior in many respects to the duodenary scale; which, by the addition of two extra characters, would perform all arithruetical operations with greater ease and expedition; and with respect to diccinals, of duodecimals, as they would be in that casc, we should have a great many more finte expressions that we have at present. In the decimal scale, if we consider only the reciprocals of all numbers under 20 , we find only the six following that give finite decimals:
 -0625; but in the duodenary scale, we have nine finite expressions with the same numbers, which are as folluws;
$\frac{1}{\frac{1}{2}}=\cdot 6 ; \frac{1}{3}=\cdot 4 ; \frac{1}{4}=\cdot 3 ; \frac{1}{6}=\cdot 2 ; 1=\cdot 16 ;$

Hence it is evident that, with this scale of notation, we should have more finte fractional numbers that in our common arithmetic; and besirle this ronvenience, all upeyations would be more readily performed, and larger nuinbers would be expressed with fewer digits. Still how ever the advantages of this system are not such as can lead us to expect, or even to wish, that it should ever be substinuted for that, which long established practice has rendered so familiar to all our ideas of numbers.

Notation of the Greeks. The Grecian infation, though it approached in many respects very near to that of the moderns, still it wanted one principal and distinguishing feature of the present improved system, which is that of giving to every character, a incal as well as a sinuple value, for want of which they were under the necessity of employing a greut number of characters, which were chiefly derived from the letters of their alphabet.
Instead of the figures $1,2,3,4,3,6,7,8,9$, The Greeks made use \} of these letters - \} $\alpha, \beta, \gamma, \delta, \quad k, \geqslant \%, \%$.

And instead of $\quad=10,20,30,40,50,60,70,80,90$, $\left.\begin{array}{c}\text { They employed the } \\ \text { characters }\end{array}\right\} i, x, \lambda, \mu, y, \xi, 0, \pi, b$.
$\left.\begin{array}{c}\text { For expressing the } \\ \text { hundreds they had }\end{array}\right\} \&, \sigma, \tau, v, \phi, \%, \psi, u, D$,

That is, they had recourse to the characters of the simple units, but instead of giving to them a local value, as we do, and in which consists the superiority of the suodern method, they distinguished them by means of a small dash placed at the botom of the letters. And hence we see that the Greeks could express with these characters any number under 10,000 ; thus,

9999 they represented by				
7382	-	-	by	万T\%
8036	-	-	by	,
6420	-	-	by	Yux
4001	-	-	by	${ }^{81} \times$
3000	-	-	by	\%

10000 was sometimes expressed by placing a small dash over the iota ; thus, 3; but mathematicians, in their calculations, generally employed for this purpose the compound character ${ }_{m}^{\alpha}$; and any number of times this period, by placing the letter m under the characters expressing the number of periuds that they wished to indicate; thus,

So, that placing the letter m under any given number had the same effect as our annexing four ciphers.

Diophantus and l'appus deviated a little in this respect from their predeceswars, by making sy the characteristuc of $10000_{\text {, }}$ and then distinguishing any number of those periods by pretixing the number to this character; thus, the foregoing numbers, according on these authors, were

And wherebmaller numbers were muxed with thuse larger periods, they were anuexed to the foregoing characters; hence,

$$
\begin{aligned}
& 1719999 \text { was written grasey9bs } \\
& 43728097 \quad-\quad \text { dгosmeys: }
\end{aligned}
$$

Thus resembling what we make use of at this day for exprossing compond numbers, as 7 ft fin 7 pts .

The same authors also sometimes cmployed a still more simple nethod, which was by omitting the character m:", and only spparsting the two sets of symbols by a point.
Thus 99999999 was written 3 S4. 9 h, which was the largest number that the Greeks could express; and therefore, when'they wanted to make use of largur numbers than this, they were under the necconty of assuming a Jarger unit ; meseral examples of which are to be met with in the ancient Greek authors.

Apullonius ut length conceived the idea of disiding sll . numbers into periods of feur charactury, the first of which represented units, the second the number of 10000 , the third the square of 10000 's, \&c. This was a great step towards our present syotem, for here was evidemily a loca! value gisen to the difierent periods, and the suave only
wanted to have been carried downwards to the units, to have completed the discovery.

In this manner the circumfergnec of a circle whose diameter is 1 , according to the notation of Apollonius, would be expressed by

3. 1415 . 9265. 3559.7932 . 3846. 2643.

From what has been already observed, it appears, thut the Greck notation resenbled what we now employ fior componnd numbers, und in short their whole arithmetic differed from ours chicfly in this, that for want of giving a local value to their characters, all their operations were performed much in the same manner as we now perform ours in duodecimals, and compound multiplication, division, \&e. None of the Greek writers whose works have come down to us, have attempted to teach the first fundamental rules of their arithmetic; we can therefore only judge fron the disposition of their characters, the exact method of operation that they followed. It seems however probable, that they generally worked from the left band towards the right; but in their alditions and subtractions this was no manifestly disadvantagenus and troublesome, compared with what it would have been to have performed the same operations in a contrary order, that one can hardly suppose they could have overlooked such an evident and advantageous procecding.

As to their multiplications, it was not of so much importance, and there seems no doubt that in this rule, their operations were performed from left to right, as we do ours in algebra. In their divisions they approached nearer to our method for compound division, except that they gencrally found the whole quotient at one step, which must therefore have been the result of several tedious trials, or by means of a table for that purpose; that is, they found the greatest quotient in the fins period, and then, having subtractelf, they found the second period of the quotemt, \&c. The square root was extracted in a manner also much resembling ours, differing from it, only in finding each period of the root at one step, as they did the quoticuts in division.

It would be inconsistent with the nature of our work to enter upon this subject at any considerable length, we shall therefore confine ourbelves to exhibiting a few exumples, wizh the corresponding operations in our aithunctic, referring the curious reader for farther information on this head, to an ingenious and learned Essay, by Delanbre, adiled to the French translation of the works of Arehimedes, where be will find ample gratification.

Voz. II.

The above examples will convey a slight idea of the notation of the Greeks, and their method of performing the fundamental rules of their arithmetic, which is evidently, in every respect, very much inferior to that of the moderns.
Roman Notation. The Romans also employed some of the letters of their alphabet for designating different numbers, which, though sufficiently commodious in point of representation, was by no means adapted for arithmetical calculations. The simple characters were as fullow :

1	was represented by 1		
5	-	-	by v
10	-	-	by x
30	-	-	by
100	-	-	by c
500	-	-	by
1000	-	-	by M

And by means of these characters, and the varions combination of them, they expressed any number whatever. These are still in use for representing dates, zumbering of chapters, pagey, \&c.

NOTES, in Music, are characters which mark the tones, i. e. the elevations and fallings of the voice, or sound, und the swiftness or slowness of its motions, \&c ; and these have undergone various alterations and improvements, before they arrived at their present state of perfection.

NOVEMBER, the eleventh monh in the Julian year, but the ninth in the year of Romulus, beginning with March; whence its name. In this month, which contains 30 days, the sun enters the sign f, viz, usually about the 21st day of the month.

NUCLLEUS, the kernel, is used by Hevelius, and some other astronomers, for the bouly of a comet, which others call its head, as distinguished from its tail, or beard.

Nucleves, is also used by some writers for the central parts of the earth, and other planets, which they suppose firmer, and as it were separated from them, considered as a cortex or shell.

NUEL, the same as Newel of a Staircass.

NUMBER, a collection or assemblage of several units, or several things of the same kind; as 2, 3,4, \&c, exclusive of the number 1: which is Euclid's definition of ntim-ber.-Stevinus defines number as that by which the quatrtity of any thing is expressed: agrecably to which Newton conceives a number to consist, not in a multitude of inits, as Euclid dcfines it, hut in the abstract ratio of a quantity of any kind to another quantity of the same kind, whitels, is accounted as unity: and in this sense, including all these three species of nutn ber, vir, Integers, Fractions, and Surds.

Wolfius defines number to be something which refers to unity, as une right line refers to another. Thus, assuming a right line for unity, a number may likewise be expressed by a right line. And in this way also Descartes considers numbers as expressed by lines, where he treats of the arithinetical operations as performed by lines, in the beginning of his Geometry.

Mathematicians divide number into different classes ; as,

Numbeas, Absolute, Abstract, Abundant, Amicable, Applicate, Circular, Concrete, Conposite, Cubic, Defectioe, Fractional, Figurate, Polygonal, Perfect, Prime, Pyramidal, Rational, Similar, Square, \&c, for which see the respective adjectives.

Beside these divisions, which form the principal heads under which numbers are considered, they are also divided into even and odd, and formerly they were distinguished into evenly even, evenly odd, \&c: but these denominations are now disused, and the same is expressed by saying, numbers of the form $4 n, 4 n+1,4 n-1, \$ c$; by which is to be understood that, in the first place, the number is exactly divisible by 4 ; in the second, the number being divided by 4 it leaves a remainder 1 ; and in the third place, when divided by 4 , it leaves a remainder 3 or -1 ; and the same is implied when numbers are said to be of any other form as $7 n+1,7 n+3,11 n+2, \delta c$: this is a much more simple and general method of classing numbers, and is that which is now commonly empluyed.

We find from the different fragments that have been transmitted to us, some of which are found in the Elements of Euclid, that the ancient mathematicians had made some considerable progress in the investigation of the properties of numbers; but they wanted two powerful instruments, in order to fathom this subject, of which the moderns have availed themselves; these are the present mode of notation, which expregses numbers with so much facility, ard the science of algebra, which generalizes the results, and with which we can operate with the same ease on known and unknown quantitics. These inventions could not but have a powerful influence in promoting the progress of the scienco of numbers; and accurdingly, we find the work of Diophantus, the most ancient author on algebra that we know of, is entirely dedicated to the propertics of numbers, and contains many difficult questions which required considerable address and sagacity to resolve.

From Diophantus, to the time of Vieta and Bachet, mathematicians continued to occupy themselves with the subject of numbers, but without much success; at length Vieta, by adding a new degree of excellence to algebra, resolved many difficult problems relating to numbers. Bachet, in his work entided Problémes Plaisans et Délectables, gave a solution to all indeterminate equations of the first degree, by a method as ingenious, as it was general in its application. To the same ingenious author we are indebted for an excellent commentary on Diophantus, which was afterwards enriched by the marginal notes of Fermat, who was one of those that most contributed to bring this science to perfection, by the great variety of elegant theorems that he pruposed, though he left many of them without demonstrations; they, however, had the effect of calling into action the talents of many eminent mathematicians. It was the custom at that time to propose questions by way of challenge to each other, the solutions to which were accordingly concealed, in order to secure to themselves, or to their nation, the honour of solving them; this was at least the case with the English and French mathematicians, between whom there was much ivalry at that time.

We are however inclined to think, that many of the theorems of Fermat were only the result of observation and trials, and that he himself never arrived at their demonstrations; though the expressly says, in one of his uotes
on Diophantus, pa. 180, that he was engaged in writing a work on this subject, which would contain multa varia et abstrusissima numerorum mysteria: and it has long been regretted by mathematicians that this work never appeared. Some celebrated forcign authors seem to attribute the circumstance to the ignorance of the persons into whose hands Fermat's papers were consigned at his death; but we are rather inclined to ascribe it to a different cause; we suppose that at the time the note was written, Fermat was really engaged in such a work, and expected to be able to complete the underaking; but probably failing in some of bis most celebrated theurems, he suppressed the work entirely: and this idea receives considerable strength from the circumstance of Euler having shown, that one at least of his theorems, though true in a great many cases, is not generally so. Fermat had said, that $2^{x}+1$ is always a prime, if \boldsymbol{x} be taken any number in the scries 2, 4, 8, 16, \&c; but Euler found that $2^{3 .}+1=$ 641×6700417, and therefore is nut a prime number. It should however be observed, that Fermat had made no mention of bis having denonstrated this theorem.

But of all those mathematicians who have treated on the science of numbers, Euler claims the most distinguished situation: we are also much indebted to the labours and ingenuity of Lagrange, Legendre, and Gauss. The two latter have published works expressly on this subject, entirely independent of each other's method, both of which possess a very great degree of merit; but the latter has the greatest claim to originality. The former work is in French, entitled Essai sur la Theorie des Nombres, par Legendre; the first edition of which was published in 4 to, at Paris, in the year , and a second edition, with considerable improvements, in 1808. The latter work is in Latin, under the title of Disquisitiones Arithmeticar, and it has since been translated into French.

It is impossible for us, in the space to which we must confined this article, to enter at length on the subject of numbers; we shall therefore confine ourselves to the enumeration of some of the most curious and important properties.

Propertics of Numbers.

1. Every even number is of the form $2 n$, and every odd number of the form $2 n \pm 1$.
2. Every prime number, greater than 3 , is contained in one of the formula $6 n+1$, or $6 n-1$; and every prime number greater than 2, in one of the forms $4 n+1$, or $4 n-1$.
3. Every even square number is of the form $4 n$, and every odd square number of the form $8 n+1$.
4. The following table exhibits the forms of all square numbets, with regard to every modulus from 1 to 12 .

Motoli,	Fommula.			
2	$2 n$	$2 n+1$		
3	$3 n$	$3 n+1$		
4	$4 n$	$1+1$		
5	$5 n$	$5 n \pm 1$		
6	$6 n$	$6 n+1$	$6 n+4$	
7	$7 n$	$7 n+1$	$7 n+2$	
8	$8 n$	$8 n+1$	$8 n+1$	
9	$9 n$	$9 n+1$	$9 n+4$	$9 n+7$
10	$10 n$	$10 n \pm 1$	$10 n \pm 4$	$10 n+5$
11	$11 n$	$11 n+1$	$11 n+4$	$11 n+9$
12	$11 n+3$			
	$12 n$	$12 n+1$	$12 n \pm 3$	$12 n+4$

And consequently every number that does not fall under some one of the above forms is not a square.
5. The following tables exhibit all the impossible forms of square numbers, as referred to the moduli 3,4 , and 5 ; that is, no number that falls under any of the forms in the rable can be a square number.

Modulus 3.	Modulus 4.	Matulues.
$2 t^{4} \pm 3 q u^{2}$	$2 t^{2} \sim 4 q u^{2}$	$2 t^{2} \sim 5 q u^{3}$
$3 r^{2} \pm 3 q u^{2}$	$3 d^{3} \pm 4 u^{2}$	$3 u^{4}+3 \mathrm{gu}$
$5 r^{2} \pm 3 q z^{3}$	$6 t^{2} \sim 4 g u^{2}$	$7 A^{4} \cap 5 \mathrm{mb}^{2}$
$8 t^{2} \pm 3 q u^{3}$	$10 u^{4} \pm 4 q u^{2}$	$8 t^{4} \sim 5 q u^{2}$
$114^{2} \pm 3 q^{*}{ }^{2}$	$11 f^{9} \sim 4 q u^{4}$	$12 t^{2} \leqslant 5 q u^{2}$
$146^{2} \pm 3 g^{4}$	$14 r^{2} \pm 4 q u^{2}$	$13 t^{2}-5 q u^{2}$
Geperal Forms.	General Fonns.	General Form.
$\begin{gathered} (3 p+2) t^{3} \pm 3 q u^{2} \\ \text { and } \\ 3 p t^{2}+3 q u^{3} \\ \hline \end{gathered}$	$\left\{\begin{array}{c} (4 p \pm 2) t^{2} s 4 q u^{2} \\ \text { and } \\ (4 p+3) c^{2} \pm 4 q u^{2} \end{array}\right.$	$(5 p \pm q) t^{2} \sim 5 q u^{4}$

Where it is only necessary to observe, that q and its respective moduli must be prime to each other.
6. The powers of all numbers from the 2 d to the 12 th (the 7th excepted), are of the following specified forms.

a^{3}	is one of the forms	$3 n$ or	$5 n+1$	
a^{3}	-	-	$7 n$ or	$7 n \pm 1$
a^{4}	-	-	$5 n$ or	$5 n \pm 1$
a^{8}	-	-	$11 n$ or $11 n \pm 1$	
a^{6}	-	-	$7 n$ or	$7 n+1$
a^{3}	-	-	$17 n$ or $17 n \pm 1$	
a^{0}	-	-	$19 n$ or $19 n \pm 1$	
a^{80}	-	-	$11 n$ or $11 n \pm 1$	
$a^{0 n}$	-	-	$23 n$ or $23 n \pm 1$	
a^{22}	-	-	$13 n$ or $13 n+1$	

The 7 th power is not reducible to a similar form, because neither $7+1$ nur $2 \times 7+1$ is a prime number.
7. Every prime number $8 n+1,8 n+5$, is, exclusively of all others, of the form $x^{2}+y^{2}$; or, which is the same thing, every prime number of the form $4 n+1$ is the sum of two squares.
8. Every prime number $8 n+1,8 n+3$, is, exclusively of all others, of the form $x^{2}+2 y^{2}$.
9. Every prime number $8 n+1,8 n+7$, is, exclusively of all others, of the form $x^{2}-2 y^{2}$.
10. Every prime number $8 n-1$ is of the form $p^{2}+q^{2}+2 r^{2}$.
11. Every nuinber of the form $24 n+5$ is the sum of five, or a less number of squares, whose roots are of the form $6 n-1$.
19. Every number of the form $8 n+6$, is the sum of six, or a less number of squares, whose roots are of the form $4 m-1$.
13. Every odd number, except those of the form $8 n+7$, is the sum of three squares. And no numbers of this form can be the sum of three squares.
14. Every odd number, without exception, is of the form $p^{2}+q^{2}+2 r^{2}$. It should be observed that in this form, as aiso in all others we have mentioned, any one or more of those squares may become acro.
15. Every number of the form $p^{2}+q^{2}+r^{2}$, when multiplied by 2 , gives a number of the form $p^{2}+9^{2}+2 r^{2}$; and the latter form being multiplied again by 2 , reproduces the former.
16. If a number be the sum of two squares, its double is the sum of two squares.
17. A number that is the sum of two squares, being multiplied by a number of the same form, gives a product that is the sum of two squares : that is, $\left(p^{4}+q^{2}\right) \times$ $\left(r^{2}+\delta^{3}\right)=\left(x^{2}+y^{2}\right)$.
18. The product of the sum of four squares, by the sum of four squares, is itself the sum of four squares; or,

$$
\begin{aligned}
& \left(p^{2}+q^{2}+r^{2}+s^{2}\right) \times\left(\dot{p}^{2}+\dot{q}^{2}+\dot{r}^{2}+\dot{r}^{2}\right)= \\
& \left(w^{2}+x^{2}+y^{2}+z^{2}\right) .
\end{aligned}
$$

19. Every number is a triangular number, or the sum of two or three triangular numbers. A square, or the sum of two, three, or four squares. A pentagonal, or the sum of two, three, four, or five pentagonals, \&c.-This is one of the celebrated theorems of Fermat; but it has never been demonstrated, except for the two first cases. The other part of it still remains, to exercise the ingenuity of mathematicians.
20. Every number is a cube, or the sum of $2,3,4,5$, $6,7,8$, or 9 cubes.-This is one of Dr . Waring's theorems, but we believe it has never been demonstrated.
21. If p and q be any two numbers prime to each other, then $p^{2}+q^{2}$ can only be divided by numbers of the same form. Or, which is the same thing, a number that is the sum of two squares, can only be divided by numbers that are the sum of two squares : the two given squares being prime to each other.
22. And, in general, all numbers comprised in any of the following forms; viz, $p^{2}+q^{2}, p^{2}+2 q^{2}, p^{2}-2 q^{2}$, can have for divisors, only those numbers which fall under the same form as tbemselves.
23. Every prime number $4 n+1$, which divides the formula $p^{2}+2 q^{2}$, will also divide the formula $p^{2}-2 q^{2}$.
24. A prime number $4 n-1$, that divides the formula $p^{2}+a q^{2}$, can not be a divisor of the formula $p^{2}-a q^{2}$.
25. Every prime number $8 n+1$, or $8 n+7$, will divide, at the same time, the two formula $p^{2}+a q^{2}$, and $p^{2}+2 a q^{2}$, or it will divide neither of them.
26. Every prime number $8 n+3$, or $8 n+5$, will always divide one of the two formulx $p^{3}+a q^{2}$, or $p^{2}+2 a q^{2}$, but it can divide only one of them.
27. If c be a prime number, and n any number not divisible by c, then n divided by c, will leave the same remuinder as n^{e} divided by c. Hence is readily deduced the following theorem, which is of the greatest use in the theory of numbers.

9s. If c be a prime number, and n any number not divisible by c, then will $n^{c-1}-1$ always be divisible by c.
49. If n be a prime number, then will (1.2.3.4 \&c. $(n-1)+1)$ always be divisible by n.
This theorem is given in a more general form by M . Gauss, in his Disquisitiones Arithmetica; thus:
30. If n be any number whatever, and $a, b, c, \& c c$, all those numbers less than n, and also prime to it, then will (a.l. c. \&c. $(n-1)+1$) be divisible by n.

From the former of these two enumerations is readily deduced the following corollary; namely,
51. If n be a prime number, then will $\left(1^{2} \cdot 2^{2} \cdot 3^{2} \cdot 4^{2} \cdot \& c_{0}\right.$ $\left.\left(\frac{n-1}{2}\right)^{2}+1\right)$ when divided by n, always have a remainder ± 1; that is +1 , when n is of the form $4 n-1$, and -1 when n is of the form $4 n+1$.
32. If sa be made to represent the sum of all the divisors of any nuraber a, then will $\mathrm{s} n=\mathrm{s}(n-1)+$

Q2
$s(n-2)-s(n-3)-s(n-4)+s(n-5)+$ $s(n-6)-s c$.
33. Neither the sum nor difference of two cubes can be a cubc.
34. Neither the sum nor difference of two biquadratures, can be a square.
35. And, generally, the equation $x^{n} \pm y^{n}=z^{n}$ is always impossible when n exceeds 2.-This is one of Fermat's theorens, which has neter been demonstrated, except for the first two cases. Vuler has generalized those cases, by demontrating that the equation $a^{3} b x^{4} \pm b^{3} a y^{4}=z^{3}$ is always impossible.
36. The sum of any number of coneecutive culies, begirning at unity (or at any other number that is buth u square and a cube), is a square number.
37. The second differences of consecutive square numbers is 2 ; the third difference of cubes is 6 : and generally, thenth differences of the nth powers of any numbers in arithmetical progression, is constant, and is equal to $1 \times 2 \times$ $S \times 4 \cdots(n-1) \times \pi d^{n}$, when d is the common difierence of the strics.
38. The area of a rational right-angled triangle cannot be a square number.
39. In any rational right-angled triangle, one of the sides is divisible by 5 .
40. There cannot be more than three square numbers in an arithmetical progreasion.
41. The differeuce between any number, and another number formed with the same digits any how transposed, is always divisible by. 9 .
42. The difference between any odd power and its root, is divisible by double the exponent of that power.
43. The formula $a^{m}-a^{a}$ is always divisible by $a-1$.
44. If $m-n$ be even, then will $a^{\text {mi }}-a^{\text {b }}$ be divisible by $a+1$.
45. If $n-n$ be odd, then will $a^{m}+a^{*}$ be divisible by $a+1$.
46. The formula $a^{m}-b^{-\infty}$ is always divisible by $a-b$, whatever be the value of m.
47. If m be even, then will $a^{\text {m }}-b^{\text {m }}$ be divisible both by $a-b$ and $a+b$.
48. If m be odd, then will $a^{m}+b^{m}$ be divizible by $a+b$.
49. No algebraical formula can be found that will contain prime numbers only.-This theorem is demonstrated by Legendre in his Essai sur la Theorie des Nombres.
50. The greatest known prime number is 2147483647 .

The above numerical properties have been chiefly selected from Waring's Meditationes Algebraica; Euler's Anal. Infin., and his Algebra; Legendre's Lsaai sur la Theorie des Nombres; and from Gauss's Disquisitiones Arithmetice: to which works the reader is referred for every information that can be desired on this interesting subject.

Number, Golden. See Goldpry Number and Cyclet!
Number of Direction, in Chronology, some one of the 35 numbers between the Easter limits, or between the earliest aud latest day on which it can fall, i. e. between March 22 and April 25, which are 35 days; boing so called, because it serves as a direction for finding Easter for any year; being indeed the number that expresses how matuy days after Mareh 21, Easter-day falls. Thus, Faster-day falling as in the first line helow, the number of dirsetion will be as on the lower line :

March
April
Faster-day, 22, 23, 24,25, 26, 27, 28, 29, 30, 31, 1, 2, \&c. No. of dir. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, dec and so on, till the number of direction on the lower line be 35, which will answer to April 23, being the latest that Easter can happen. Therefore add 21 to the number of direction, and the sum will be somany days in March fur* the Easter-day: if the sum exceed 31 , the excess will be the day of April.

To find the Numazr of Direction. Enter the following table (which is adapted to the new style), with the dominical letter on the left hand, and the golden number at the top, then where the columns meet is the number of direction for that ycar. Sce Ferguson's Astron. pa. S81, ed. 8 vo.

Thus, for the year 1814, the dominical letter being B, and the golden number 10; on the line of B , and below 10 , is 20 for the number of direction. To this add 21, the sum is 41 days from the 1st of March, which, deducting the 31 days of March, leaves 10 for the day of April, for Easter-duy that ycar.

Numeral Characters. Sce Characters.
Numeral Figures. The antiquity of thes- in England has, for several reasons, been supposed as high as the eleventh century ; in France about the middle of the tenth century; having been introduced into buth countries from Spain, where they had been brought by the Moors or Saracens. Sec Wullis's Algebra, pa. 9 \& ct, nud pa. 1.53 of additions at the end of the same; also Philos. 'Thans. No. 439 and 475. Sec also Notation.

NUMERATION, in Arithmetic, the art of estimating or pronouncing any nuinber, or series of numbers.

Numbers are usually expressed by the ten following characters, $1,2,3,4,3,6,7,8,9,0$; the first nine denoting respectively the first nine ortinal numbers ; and the last, or cipher 0 , joined to any of the others, denotes so many tens. In like manner, two ciphers joined to any one of the first nine significant figures, make it become so many hundreds, three ciphers make it thonsands, and so on.

Weigelius indeed shows how to number, without going beyond a quaternary ; i. c. by beqinning to repeat at each fourth. And Leibnitz and De Lagny, in what they call their binary arithmetic, begin to ripeat at every 2 d place; using only the two figures 1 and 0 . 1 But these are rather matters of curiosity than use. See Notation.

That the nine significant figures may exphess not only units, but also tens, hundreds, thonsanls, de, they have a local value given them, as hinted above; su that, though when alone, or in a righr-hand place, they dencte only units or ones, yet in the Id place they denote tens, in the 3d place hundreds, in the 4 th place thousnuds, \&cc ; as the number 3555 is five thousand five bundred fifty and five.

Hence then, to express any written number, or assign the proper value to each character; beginning at the right hand, divide the proposed number into classes, of three characters to each class; and consider two classes as making up a period of six figures or places. Then every period, of six figures, has a name common to all the figures in it ; the 1st being primes or units ; the 2 d is millions; the 3d is millions-of-millions, or billions; the 4th is millions-of-millionsoof-milliuns or trillions; and so on; also every class, or half-period, of three figures, is read separately by itself, so many hundreds, tens, and units; only, after the left-hand half of each period, the word thousands is added; and at the end of the 2d, 3d, 4th \&c period, its common mame millions, billions, $\& \mathrm{c}$, is expressed. Thus, the nutaber 4,391 , is 4 thousand 5 hundred and 91 .-The number 2t0, 463 , is 2 hundred and 10 thousands, and 463.-The number $281,427,307$, is 281 millious, 427 thousands, and 307.

NUMERATOR, of a Fraction, is the number which shows how nany of those parts, which the integer is supposed to be divirled into, are denoted by the fraction. And, in the nutation the namerator is set over the denominator, or number that shows into how many parts the integer is disided, in the fraction. So, ex. gr. $\frac{1}{4}$ denotes three-fourths, or 3 parts out of 4 ; where 3 is the numerator, and 4 the denominator.

NUMERICAL, Numerous, or Numeral, something that relates to number.

Numeral Algebra, is that which makes use of numbers, in contradistinction from literal algebra, or that it which the letters of the alphabet are used.
NUNEZ (Pereh). See NONIUS.
NU'TATION, in Astronoms; a kind of libratory motion of the carth's axis; by which its inclination to the plane of the ecliptic is continually varying, by a certain nuniber of seconds, backwards and forwards. The whole extent of this change in the inclination of the earth's axis, or, which is the same thing, in the apparent declination of the stars, is about 19", and the period of that change is little more than 9 years, or the space of time from its setting out from any point and returning to the same point again, about 18 years and 7 months, beng the same as the period of the noon's motions, upon which it chiefly depends; being indeed the joint effect of the inequalities of the action of the sunand moon upon the spherodal figure of the earth, by which its axis is made to revolve with a conical motion, so that the extremity of it describes a small circle, or rather an ellipse, of $19 \% 1$ seconds diameter, and $14^{\prime \prime}-2$ conjugate, each revolution being made in the space of 18 years 7 months, according to the revolution of the moon's nodes.

This is a natural consequence of the Newtonian system of universal attraction; the first principle of which is, that all bodies mutually attract cach other in the direct ratio of their masses, and in the incorse ratio of the squares of their distances. From this mutual attraction, combined with motion in a right line, Newton deduces the figure of the orbits of the planets, and particularly that of the earth. If this orbit were a ciscle, and if the earth's form were that of a peafect sphere, the attraction of the sun would bave no other effeet than to heep the earth in its orlit, without causing any irrogularity in the pasition of its axis. But neither is the earth's orbit a circle, tor its busly a splece; for the earth is sensibly protuberant towards the equator, and its orbit is an ellipsis, whach has the sun in its fucus.

Now when the position of the carth is such, that the plane of the equator passes through the centre of the sun, the attractive power of the sun acts only so as to slraw the earth towards it, stll parallel to itselif, and without changing the position of its axis; a circumstance which happens only at the time of the equinoxes. In proportion as the earth recedes from those puints, the sun also goes out of the plane of the equator, and approaches that of the one or other of the tropics; the semidiameter of the earth, then exposed to the sunt, being unequal to what it was in the former case, the equator is more powerfully attracted than the rest of the globe, which causes some alteration in its position, and its inclination to the plane of the ecliptic: and as that part of the orbit, which is comprized between the autumnal and sernal equinox, is less than that which is compried between the vernal and autumnal, it follows, that the irregularity caused by the sun, during his passage through the northern signs, is not entircly compensated by that which he causes during his passage through the southern signs; and that the parallelism of the terrestrial axia, and its inclination to the ecliptic, is thence a little altered.

The like effect which the sung produces on the earth, by bis attraction, is also produced by the moon, which acts with greater force, in proportion as she is more distant from the equator. Now, at the time when her nodes agree with the equinoctial points, leer greatest latitude is added to the greatest obliquity of the ecliptic. At this time therefore, the power which causes the irregularity in the position of the terrestrial axis, acts with the greatest force; and the revolution of the nodes of the moon being performed in 18 years 7 months, hence it bappens that in this time the nodes will twice agrec with the equinoctial points; and consequently, tuice in that period, or ohce every 9 years, the earth's axis will be more influenced than at any other time.

That the moon has also a like motion, is shown by Newton, in the first book of the Principia; but he observes indeed that this mution must be very small, and scarcely sensible.

As to the history of the nutation, it seems there have been hints and suspicions of the existence of such a circuinstance, eyer since Newton's discovery of the system of the universal and mutual attraction of matter ; some traces of which are found in his l'rincipia, as abovementioned.

We find too, that Flamsteed had hoped, about the year 1690, by means of the stars near his zenith, to deterinine the quantity of the nutation which ought to follow from the tbeory of Newton; but he gave up that project, because, says he, if this effect exists, it nust remain insensible till we have instruments much longer thall 7 feet, und more solid and better fixed than mine, Hist. Corlest. vol. 3, pa. 1 t3.

And Horrebow gives the following passagr, extracted from the manuseripts of his master Howmer, who died in 1710, and whose observations he published in 1753 , under the tinle of Basis Astronomix. By this paragraph it appears, that Ruemer suspected alsi, a nutation in the earth's axis, and had sume hopes to give the theory of it: it runs thus; "Scd de altitudinibus non perinde certus iedacbar, tàm ob refractionum varietatem quàm ub aliam nondum liquido perspectam causam ; scilieet pers hus duer annos, quemadmodum et alias, expertus sum esse quandam in declinationibus varietatem, quar nee refractionibus nee parallaxibus tribui potest, sine dubio ud vacillutioners
aliquam poli terrestris referendam, cujus me verisimitem dare posse theoriam, observatiombus munitam, spero." Basis Astronomix, 1735, pa. $6 \mathrm{t}^{\circ}$.

These ideas of 1 nutation would naturally present themselves to those who might perceive cortain claanges in the declinations of the stars; and we have seen that the first suspicions of Bradley in 1727, were that there was some nutation of the earth's axis which caused the star y Draconis to appear at times more or less near the pole; but further observations obliged him to search another cause for the annual variations (art. Aberration) ; it was not till some years after that he discovered the second motion which we now treat of, properly called the nutation. See the art. Star, where Bradley's discovery of it is given at length ; to which may be further added the following summary.

For the better explaining the discovery of the nutation by Bradley, we must recur to the time when he observed the stars in discovering the aberration. He perceived in 1728, that the annual change of declination in the atars near the equinectial colure, was greater than what ought to result from the annual precession of the equinoses being supposed $50^{\prime \prime}$, and calculated in the usual way ; the star ${ }_{7}$ Urse Majoris was in the month of September $1725,20^{\prime \prime}$ more south than the preceding year, which ought to have been only $18^{\prime \prime}$; from whence it would follow that the precession of the equinoxes should be $55^{\prime \prime} \frac{1}{4}$ instead of $50^{\prime \prime}$. without ascribing the difference betwern the 18 and 20° to the instrument, because the stars about the solstitial colure did not give a like difference, Philos. 'Irans. vol. 35. pa. 659.

In general, the stars situated near the equinoctial colure had changed their declination about $2^{\prime \prime}$ more than they ought by the mean precession of the equinoxey, the quantity of which is very well known, and the stars near the solstitial colure the same quantity less than they ought ; but, Bradley adds, whether these small variations arise from some regular causc, or are occasioned by some change in the sector, I am not yet able to determine. Bradley therefore ardently continued his observations for determining the period and the law of these variations; for which purpose he resided almost continually at Wansted till 1732 , when he was obliged to repair to Oxford to succeed Dr. Halley; he atill however continued to ubserve with the same exactness all the circumstances of the changes of declination in a great number of slars. Each year he saw the periods of the aberration confirned according to the rules be had lately discovered; but from year to year he found also other differences; the stars situated between the vernal equinox and the winter solstice approached nearer to the north pole, while the oppesite ones receded further from it: he began therefore to suspect that the action of the moon on the elevated equatorial parts of the carth might cause a variation or libration in the carth's axis: his sector laving bern left fixed at Wansted, he often went there to make observations for many years, till the year 1747, when he was fully salisfied of the cause and effects, an account of which he then communicated to the world. Philos. Trans, vol. 45, an. 1748 .
"On account of the inclination of the mron's orbit to the ecliptic," says Dr. Maskelyne, (Astronomical Observations 1776, pa. 2), " and the revolution of the nodes in antecedentia, which is performed in 18 years and 7 months, the part of the precession of the equinoxes, owing to her action, is not uniform ; but subject to an equation, whose
maximum is $18^{\prime \prime}$: and the obliquity of the ecliptic is also subject to a periodical cquation of $9^{\prime \prime} \cdot 35$; being greater by $19^{\prime} 1^{\prime \prime}$ when the moon's ascending node is in Aries, than when it is in Libra. Both these efficels are represented together, by supposing the pole of the earth to describe the periphery of an ellipsis, in a retrogiade manber, during each period of the noon's nodrs. the greater axis, lying in the solstitial colure, being $19^{\circ} 1^{\prime \prime}$, and the lesser axis, lying in the equinoctinl colure, $14 \cdot 2^{\prime \prime}$; being to the greater, as the cosine of double the obliquity of the ecliptic to the cosine of the obliquity itself. This motion of the pole of the earth is called the nutation of the earth's axis, and was discovered by Dr. Bradley, by a series of observations of several stars made in the course of 20 years, from 1727 to 1747, being a continuation of those by which he had discoyered the aberration of light. But the exact law of the motion of the earth's axis has been settled by the learned mathenaticians Dalembert, Luler, and Simpson, from the panciples of gravity. The equation lience arising in the place of a fixed star, whether in longitude, right ascension, or declination (for the latitudes are not affected by it) has been sometimes called mutation, and sometimes deviation." And again (nay; the doctor, pa. 8), "the above quantity $19^{\prime \prime} 1^{\prime \prime}$, of the greatest nutation of the cardi's axis it the solatitial colure, is what I found from a serupulous culculation of all Dr. Bradley's observations of 7 Draconis, which he was pleased to communicate to one for that purpose. From a like examination of his observation of y Urma Majoris, I found the lesser axis of the ellipsis of nutation to be $14 \cdot 1^{\prime \prime}$, or only Teth of a second less than what it should be from the abservations of γ Dracotis. But the result from the observations of γ Dra* contis is mest to be depended ont."

Mr. Machin, secrelary of the Royal Society, to whom Bradley communicated his conjeciures, soon perceived that it would be sufficient to explain, both the nutation and the change of the precession, to suppose that the pole of the earth described a small circle. He stated the diameter of this circle a! $1 \mathrm{~S}^{\prime \prime}$, und he supposed that it was described by the pole in the space of one revolution of the moon's nodes. But later culculutions, and theory, bave shown that the pole describes a small ellipsis, whose axes are $19^{\prime} 1^{\prime \prime}$ and $14^{\prime} 2^{\prime \prime}$, as above mentioned.

To show the agrecment between the theory and observatuons, Bradley gives a great multitude of observations of a number of stars, taken in different positions; and out of incse than 300 observations which he made, be found but 11 which were different from the imean by so much as $2^{\prime \prime}$. And by the supposition of the elliptic rotation, the agrecwent of the theory with observation comes out still nearer.

By the observations of 1740 and 1741, the star $y_{\text {f }}$ Urse Majoris appeared to be $3^{\prime \prime}$ farther from the pole than it ought to be according to the observations of other years. Biadley thought this difference arose from some particular cause; whicb however was chiefly the fault of the circular hypothesis. He suspected also that the situation of the apogee of the moon might have some influence on the nutation. He invited therefore the mathematicians to calculate all these effects of attraction; which has beren ably done by Dalembert, Euler, Walmesky, Simpaon, and others; and the astronomers to contmue to observe the positions of the smallest stars, as well as the largest, to discover the physical derangements which thicy may be subject to, and which had been observed in some of them.

Several effects arise from the nutation. The first of
these, and that which is the most easily perceived, is the change in the obliquity of the ecliptic; the quantity of which ought to be varied from that cause by $1 \delta^{\prime \prime}$ in about 9 years. Accordingly, the obliquity of the ecliptic was observed in 1764 to be $23^{\circ} 28^{\prime} 15^{\prime \prime}$, and in 1755 only $23^{\circ} 28^{\circ} 3^{\prime \prime}$: not only therefore had it not diminished by $8^{\prime \prime}$, as it ought to have done according to the regular mean diminution of that obliquity; but it hal been augmented by $10^{\prime \prime}$; making together $18^{\prime \prime}$, for the effect of the nutation in the 9 years.

The nutation changes equally the longitudes, the rightascensions, and the declinations of the stars, as before observed; it is the latitudes only which it does not affect, because the ecliptic is immoveable in the theory of the nutation.

Dr. Bradley illustrates the furegoing theory of nutation in the following manner. Let P represent the mean place of the pule of the equator; about which point, as a centre, suppose the true pole to move in the small circle abcd, whose diameter is $1 \mathrm{~s}^{\prime \prime}$. Let E be the pole of the ecliptic, and EF be equal to the meun distance between the poles of the equator and ecliptic; and suppose the true pole of the equator to be at A, when the moon's ascending node is in the
 beginning of Aries; and at m, when the node gets back to Capricorn; and at C, when the same node is in Libra: at which time the north pole of the equator being nearer the nortb pole of the ecliptic, by the \mathbf{w} bole diameter of the little circle $A C$, equal to $18^{\prime \prime}$; the obliquity of the ecliptic will then be so much less than it was when the moon's ascending node was in Aries. The point \mathbf{P} is suppused to move round \mathbf{E}, with an equal retrograde motion, answerable to the mean precession arising from the joint actions of the sun and moon: while the true pole of the equator moves round \mathbf{p}, in the circumference ABCD, with a retrograde motion likewise, in a period of the moon's nodes, or of 18 years and 7 months. By this means, when the moon's ascending node is in Aries, and the true pole of the equator at A, is moving from a towards E ; it will approach the stars that come to the meridian with the sun about the verual equinox, and recede from those that come with the sun near the nutumnal equinox, faster than the mean pole \mathbf{P} does. So that, while the moon's node goes back from Aries to Capricorn, the apparent precession will seem so much greater than the mean, as to cause the stars that lic in the equinoctial colure to have altered their declination $9^{\prime \prime}$, in about 4 years and 8 months, more than the mean precession would do; and in the same time, the north pole of the equator will seem to have approached the stars that come to the meridi.n with the sun of our winter solstice about $9^{\prime \prime}$, and to have receded as much from those that come with the sun at the summer solstice.

Thus the phenomena before recited are in general conformnale to this hypothesis. But to be more particular ; let 5 be the place of a star, ps the circle of declination passing through it, representing its distance from the mean pole, and \boldsymbol{r} ps its mean right-ascension. Thus if o and n be the points where the circle of declination cuts the little circle $A 8 C D$, the true pole will be nearest that star at o, and furthest from it at n; the whole difference amounting to $18^{\prime \prime}$, or to the diameter of the little circle. As we true pole of the equator is supposed to be at A,
when the moon's ascending node is in Aries; and at B , when that node gets back to Cupricorn; and the angular motion of the true pole about \mathbf{P}, is likewise supposed equal to that of the moon's node about E , or the pole of the ecliptic ; since in these cases the true pole of the equator is 90 degrees before the moon's ascending node, it must be so in all others.

When the true pole is at A, it will be at the same distance from the stars that lie in the equinoctial colure, as the mean pole r is; and as the true pole recedes back from a towards a, it will approach the stars which lie in that part of the colure represented by $\mathrm{P} \boldsymbol{r}$, and recede from those that lie in $\mathbf{P} \cong$; not indeed with an equable motion, but in the ratio of the sine of the distance of the moon's node from the boginning of Aries. For if the node be supposed to have gone backwards from Aries 50°, or to the beginning of Pisces, the point which represents the place of the true pole will, in the mean time, have moved in the little circle through an arc, as $\mathbf{A O}$, of $\mathbf{3 0 ^ { \circ }}$ likewise; and would therefore in effect have approached the stars that lie in the equinoctial colure $\mathbf{P} \boldsymbol{r}$, and have receded from those that lie in $P \cong$ by $4 I$ seconds, which is the sine of 30° to the radius $A P$. For if a perpendicular fall from o on AP, it may be conceived as part of a great circle, passing through the true pole and any star lying in the equinoctial colure. Now the same proportion that holds in these stars, will obtain likewise in all others; and from hence we may collect a general rule for finding how much nearers or farther, any star is to, or from, the mean pole, in any given position of the moon's node.

For, if from the right-ascension of the star, we subtract the distance of the moon's ascending node from Aries ; then radius will be to the sine of the remainder, as $9^{\prime \prime}$ is to the number of seconds that the star is nearer to, or farther from, the true, than the mean pole.

This motion of the true pole, about the mean at p, will also produce a change in the right-ascension of the stars, and in the places of the equinoctial points, as well as in the obliquity of the ecliptic; and the quantity of the equations, in either of these cases, may be easily computed for any given position of the moon's nodes.

Dr. Bradley then proceeds to find the exact quantity of the mean precession of the equinuctial points, by comparing his own observations made at Greenwich, with those of Tycho Brahé and others; the mean of all which be states at 1 degree in $71 \#$ years, or $50 \frac{3^{\prime \prime}}{}$ per year; in order to show the agreement of the foregoing hypothesis with the phenomena themselves, of the alterations in the polar distances of the stars; the conclusions from which approach as near to a coincidence as could be expected on the foregoing circular hypothesis, the diameter of which is $18^{\prime \prime}$; instead of the more accurate quantity $19^{\prime} 1^{\prime \prime}$, as deduced by Dr. Maskelyne, and the elliptic theory as determined by the mathematicians, in which the greater axis $\left(19 \cdot 1^{\prime \prime}\right)$ is to the less axis ($14 \cdot 2^{\prime \prime}$), as the cusine of the greatest declination is to the cosine of double the same.

To give an idea now of the nutation of the stars, in longitude, right ascension, and declination; supprose the pole of the equator to be at any time in the point o, also s the place of any star, und on perpendicular to $A E$: then, like as AE is the solstitial colure when the pole of the equator was at A, and the longitude of the star s equal to the angle $A E s$; so os is the solstitial colure
when that pole is at 0 , and the lengitude is then only the utigle OFS ; liss than betore by the angle AsO, which therefore is the nutation in tongitude: counting the longitudes from the solstitial instas of the equinortided cos lure, from which they ditier equally by 90 degrees, and therefore bave the sume differnce are. Now the ungle aro will be as the line $1 \omega=\sin$, ao to radius $1 \cdot B=4 n$. $A O \times P B=\sin , A O \times 9^{H}$; therefore an $F O: H O::$ radius $1:$ $\frac{n 0}{E 0}=\frac{\sin \cdot A 0 \times 9^{\prime \prime}}{\sin , 23^{\circ} 28^{\prime}}=\frac{\sin \text {. netele } \times 9^{\prime \prime}}{\sin \cdot 2 j^{\prime}} \frac{25^{\prime \prime}}{}$, since $A 0$ is equal to longitude of the moon's node. This expression therefore gives the uutation in longitude, supposing the maximum of nutation, with Bradley, to be $18^{\prime \prime}$; and it is negative, or must be subtracted from the mean longitude of the stars, when the inconis node is in the first 6 signs of its longitude; but additive in the latter 6, to give the true apparent longitude.

This rquation of the nutation in longitule is the same for all the stars; but that for the dectination and right ascemsion is various for the different sals. In the foregoing figure, Ps is the mean polar destance, or mean codeclination of the star s, when the true place of the pole is 0 ; and so the aparent codechnation; abo, the angle spe is the tuean right ascension, and sot the apparent one, counted from the solstitial colure; consequently ors or UPF the difkrence between the right ascension of the star and that of the pole, which is cqual to the longitude of the node increased by 3 signs or 90 degrees; supprasing or to be a small arc perpendicular to the circle of declination PFS; then is $5 F=s o$, and $P F$ the nutation in declination, or the quantity the declination of the star has increased; but radius 1:9 $9^{\prime \prime}::$ cosill. opr : $\mathrm{Pr}=9^{\prime \prime} \times \cos$. OPY; so that the equation of declination wilt be found by multiplying $9^{\prime \prime}$ by the sine of the star's right ascension diminished by the longiture of the wode; for that angle is the complement of the angle spo. This nutation iu declination is to be added to the mean declination to give the apparent, when its argument dors not exceed 6 signs; and to be subtracted in the latier 6 signs. But the contrasy for the stars having south declination.

To calculate the nutation in right-ascension, we must find the ditierence between the angle sor the apparent, and spe the mean right-ascension, counted from the solatitial calure Eo. Now the true right ascension soe is equal to the diffirence between the two variable angles GOE and 60s; the former of which arises from the change of one of the variable circtes zo, and depends only on the situation of the node or of that of the pole o; the latter gos depends on the angle GPs, which in the difficrence between the right ascension of the star and the place of the pole o. Now in the spherical triangle GPE, which changes imo Goz, the side G k and angle of remain constant, and the other parts are variable; bence therefore the small variation Po of the side next the constant augle \boldsymbol{c}, is to the small variation of the angle opposite to the constant side Gr, as the tangent of the side PE opposite to the constant angle, is to the sine of the mogle GPE opposite to the constant side; that is, as tang. $23^{\circ} 25^{\prime}: \sin$. ore : $: 9^{\prime \prime}$: $x=\frac{9^{\prime \prime} \times \text { silh. ope }}{\text { tang. } 23^{L}-28^{\prime \prime}}$, the difference between the angles gos and 6 pe. This is the change which the nutation ro produces in the angle $G P E$, being the first part of the nutation sought, and is common to all the stars and planets. It is to be
subtracted from the mean right-ascension in the first 6 signs of the lungitude of the node, and atded in the other six.

In like manser is found the change which the nutation producey in the other part of the right-ascension spe, that is, in the angle sro, which becomes sug by the effect of the nutation. "This small vatiation will be calculated from the same analogy, by means of the triangle suc, in which the angle σ is constant, as well as the sude $\$ 6$, while $s P$ clanges into so. Hence thereforc, teng.xp: sin. 5FG:: $9^{\prime \prime}$: variation of spg, that is, the cotangent of the declination is to the cosine of the distance between the star and the node, as 9^{*} are to the quantity the angle spa varies in becoming the angle suc, being the second part of the nutation in right-ascension; and if there be taken for the argument, the right-ascension of the star minus the longitude of the node, the equation will be subtractive in the first and last quadrant of the argument, and additive in the 2 d and 3 d , or from 3 to 9 signs. But the contrary for stars latsing south declination.

This second part of the nutation in right-ascension affocts the return of the sun to the meridian, and therefore it inust be taken into the account in computing the equation of time. But the former part of the nutation deves not enter into that computation; because it maly changes the place of the equinox, without changing the point of the equator to which a star corresponds, and consequently without altering the duration of the returns to the meridian.

All these calculations of the nutation, nbove explained, are upon Machin's hypothesis, that the pole discribes a circle; however Bratley bimscif remarked that some of his observations differed too much from that theory, and that such observations were found to agree better with theory, by supposing that the pole, instead of the circle, describes an ellipme, having its less axis $\mathrm{DB}=16^{\prime \prime}$ in the equinoctial colure, and the grruter axis $\mathrm{AC}=18^{\prime \prime}$, Iying in the solstitial colure. But as cien this correction was not sufficient to cause all the inequaities to disappear entirely, Dr. Bradley referred the determination of the perint to theoretical and physical insestigation. Accordingly several mathematicians undertook the trsk, and particulazly Dalembert, in his Recherches sur la Précession des Equinoses, where he determines that the pole reully describes an cllipse, and that narrower than the one assumed above by Bradiey, the greater axis being to the less, as the cosine of $23^{\circ} 28^{\prime}$ to the cosine of double the same. And as Dr. Maskelyne found, from a more accurate reduction of Bradley's observations, that the maximum of the nutation gives $19^{\circ} 1^{\prime \prime}$ for the greater anis, therefore the above propottion gives $14 \cdot 2^{\prime \prime}$ for the less axis of it; and according to these data, the theory and ubservations are now found to agree very near together.

See Lalande's Astron. vol. 3, art. $287+\$ c$, where he makes the corrections for the ellipse. He ubserves how ever that by the circular hyputhesis alune, the computations may be performed as accurately as the observations can be madic; and be cencludes with mome corrections and rules for computing the nutation in the clliptic theary.

The following set of general tables very radily give the effect of nutation on the elliptical hypothesis; they were calculated by the late M. Lambert, and are taken from the Connoissance des Temps for the year 1788.

Table 1.					Table 2.					Tameb 3.				
$\begin{gathered} \text { De- } \\ \text { grees } \end{gathered}$	0.6 +-	1.7 +-	$2 \cdot 8$ +-	*	(De-	0.6 +-	${ }^{1 \cdot 7}$	$2 \cdot 3$ +-		De- grees	$0 \cdot 6$ -+	1.7 -	2.8 -+	
	\%	"	"			${ }^{\prime \prime}$	n	"			,	"	"	
0	0.00	$3 \cdot 93$	6.80	\$0	0	0×00	0.58	100	30	0	$0 \cdot 00$	$7 \cdot 71$	$13 \cdot 36$	50
1	$0 \cdot 14$	$4 \cdot 01$	4.56	29	1	0.02	0.59	$1 \cdot 01$	29	1	$0 \cdot 27$	795	13.50	29
2	0.27	$4 \cdot 16$	6.93	28	2	$0 \cdot 04$	$0 \cdot 61$	- 1*(12	28	2	0.54	$8 \cdot 18$	13.62	28
1	0.41	4-28	6i*99	27	3	0006	0.63	1.02	27	3	0.81	$8 \cdot 40$	13.75	27
4	0.55	4.39	$7 \cdot 06$	26	4	0.08	0.64	103	26	4	1.08	$8 \cdot 63$	13.87	26
5	0.68	4.50	$7 \cdot 11$	25	5	0.10	0.66	1.04	25	5	$1 \cdot \$ 5$	8.85	13.98	25
6	0.82	$4 \cdot 61$	$7 \cdot 17$	24	6	0.12	0.63	1.05	24	6	1-61	$9 \cdot 07$	$1+10$	24
7	0.95	4.72	-23	23	7	0.14	0.69	1.06	23	7	1.88	9.29	14.20	23
8	$1 \cdot 11$	4.83	$7 \cdot 28$	22	8	$0 \cdot 16$	0.71	1007	22	8	$2 \cdot 15$	$9 \cdot 50$	$14 \cdot 31$	22
9	1.23	4-94	$7 \cdot 33$	21	9	$0 \cdot 18$	0.72	$1 \cdot 07$	21	9	$2 \cdot 41$	$0 \cdot 71$	14.41	21
10	$1 \cdot 36$	$5 \cdot 05$	$7 \cdot 38$	20	10	0.20	0.74	$1 \cdot 08$	20	10	2.68	9.92	14.50	20
11	1-30	5.15	$7 \cdot 12$	19	11	0.22	0.75	$1 \cdot 09$	19	11	$2 \cdot 9$	$10 \cdot 12$	14.39	19
12	1.63	. 5.25	$7 \cdot 47$	18	12	$0 \cdot 24$	$0 \div 7$	1.09	18	12	$5 \cdot 21$	10.52	14.67	18
13	1.77	$5 \cdot 95$	$7 \cdot 51$	17	13	$0 \cdot 26$	0.78	$1 \cdot 10$	17	13	3.47	$10 \cdot 52$	14.76	17
14	$1 \cdot 90$	$5 \cdot 45$	$7 \cdot 55$	16	14	0.28	0.80	$1 \cdot 11$	16	14	3-73	10.72	14.83	16
15	2-03	$5 \cdot 55$	$7 \cdot 58$	15	15	$0 \cdot 30$	0.81	$1 \cdot 11$	15	15	3-9!	10.91	14.90	15
16	$2 \cdot 16$	$5 \cdot 65$	$7 \cdot 62$	14	16	0.32	0.83	$1 \cdot 12$	14	16	$4 \cdot 25$	$11 \cdot 10$	1497	14
17	2.30	$5 \cdot 74$	7.65	13	17	0.3.4	0.84	1.12	13	17	4.51	11-28	15.03	13
18	$2 \cdot 4.3$	5*83	$7 \cdot 68$	12	18	$0 \cdot 35$	0.85	$1 \cdot 13$	12	18	477	$11 \cdot 47$	1509	12
19	$2 \cdot 56$	$5 \cdot 92$	$7 \cdot 71$	11	19	$0 \cdot 37$	0.57	$1 \cdot 13$	11	19	5-02	$11 \cdot 65$	$15 \cdot 15$	11
20	$2 \cdot 68$	6.01	$7 \cdot 73$	10	20	0.99	$0 \cdot 83$	1.13	10	20	$5 \cdot 28$	$11 \cdot 82$	15.20	10
21	$2 \cdot 81$	$6 \cdot 10$	7×75	9	21	$0 \cdot 41$	$0 \cdot 89$	$1 \cdot 14$	9	21	5.53	11.99	15-24	9
22	$2 \cdot 94$	6.19	$7 \cdot 76$	8	22	$0 \cdot 43$	0.31	$1 \cdot 14$	8	22	578	$12 \cdot 16$	15-28	8
23	$3 \cdot 07$	$6 \cdot 27$	$7 \cdot 77$	7	23	$0 \cdot 45$	C-92	$1 \cdot 14$	7	23	603	112.32	$15 \cdot 32$	7
24	S.19	$6 \cdot 35$	7.79	6	21	0. +7	$0 \cdot 93$	$1 \cdot 14$	6	24	$6 \cdot 28$	$12 \cdot 76$	15.35	6
25	3.32	$6 \cdot 43$	$7 \cdot 80$	5	25	$0 \cdot 49$	0.94	$1 \cdot 15$	5	25	6.52	$12 \cdot 64$	13.37	5
26	3.4	6.51	$7-82$	4	24	$0 \cdot 50$	0-9.5	$1 \cdot 15$	4	26	6.76	12.79	15.39	4
27	$3 \cdot 56$	6.53	783	3	27	().52	$0 \cdot 96$	$1 \cdot 15$	3	27	7.01	12.94	15.41	3
28	$3 \cdot 69$	6.60	7.84	2	28	$0 \cdot 54$	0-97	$1 \cdot 15$	9	2 S	$7 \cdot 25$	13.09	13.42	2
29	3*81	6.73	$7 \cdot 85$,	29	0.56	$0 \cdot 19$	$1 \cdot 15$	1	29	$7 \cdot 48$	1323	15.43	1
30	$3 \cdot 93$	$6 \cdot 80$	7-83	0	30	0.58	1.00	$1 \cdot 15$	0	30	771	13.36	15.63	0
	$+1$	$+10$	+	De- grecs		$+\overrightarrow{5 \cdot 11}$	$+-$	$+$	(De- ${ }_{\text {gree? }}$		$-\stackrel{+}{5.11}$	$\overline{4 \cdot 10}$	$-+$	Deurees

This table is constructed from Dalenbert's ellipse, whose seni-asts are $y^{\prime \prime}$ and $6.7^{\prime \prime}$; half their sum and half their dilf. are $7 \cdot 85^{\prime \prime}$ and $1.15^{\prime \prime}$, as in the following formula. The number $15.43^{\prime \prime}$, in the 2 d formula, is $=6.7^{\prime \prime} \times$ costangent of the ellipse's obliquity. If the semi-axes be $9 \cdot 55^{\prime \prime}$ and $7 \cdot 1^{\text {II }}$, the formula will give the nutation as in Dr. Maskelyne's Tables, of 1776 .

The Use of the Tables.

The right-ascension of a star minus the moon's mean Jongitude, gives the argument of the first of these three tables. The sum of the same two quantities gives the argumient of the 2 d table. Then the sum or the difference of the quantitics found with these two arguments, will give the correction to be applied to the mean declination of the star, if it is north declination; but if it is southern, the signs + or - are to be changed into - and + :

From each of thuse two arguments for the declination subtracting 3 signs, or 90°, gives the arguments for correcting the right-ascension; the sum or difference of the quantities found, with these two arguments, in tables I and 2, is to be multiplied by the tangent of the star's de-
Vol. II.
clination, and to the prodact is to be adeled the quantity taken out of table 3, the argument of which is the mean longitude of the moon's ascending node: when the declination of the star is south, the tangent will be negative. Erample, To find the nutation in right-ascension pact declin. for the star α Aquilx, the 1st of July, 1788.

> | Right-ascension of the star | 94 | 25° | 7^{\prime} | |
| :--- | :--- | :--- | :--- | :--- |
| Loug, of the inoon's node | 8 | 15 | 40 | |
| Diff, being argument 1, | 1 | 9 | 27 | |
| Sum, argument 2, | \cdots | 6 | 10 | 47 |

The above two arguments being each diminished by 3 signs, give,

$$
\begin{aligned}
& \text { Argument } 1 \ldots0^{\circ} 9^{\circ} 27^{\prime}-{ }_{6}^{3} 06 \\
& \text { Argument } 2 \ldots . . .{ }^{2} 1047 \frac{+1.13}{-4.93} \\
& \text { Declin. of star north, its tangent … 0.146 } \\
& \text { The product is - }-\overline{0.72} \\
& \text { Long. of the f's toode, argum. } 3 \cdots+1404 \\
& \text { Correction of sight-uscension } \ldots-+1+22
\end{aligned}
$$

In general, let $\&$ denote the longitude of the moon's ascending node; r the right-ascension of a star or planet; d its declination; the nutation in declination and rightuscension will be expressed by the two following formula; viz, the nutation in declination
$=7^{\text {II. }} 85 \times \sin (r-8)+1^{\prime 1} 15 \times \sin .(r+8)$; and the nutation in right-ascension
$=\left[7^{\prime \prime} \cdot 85 \times \sin .\left(r-\Omega-90^{\circ}\right)+1^{\prime \prime} \cdot 15 \times \sin \right.$.
$\left.\left(r+8-90^{\circ}\right)\right] \times$ tang. $d-15^{\prime \prime} \cdot 43 \times \sin .8$.

For the mathematical investigation of the effects of universal attraction, in producing the nutation, $\& c$, see d'Alembert's Recherches sur la Precession des Equinoxes; Salvabelle's Treatise on the Precession of the Equinoxes \&c, in the Philos. Trans. an. 1754, pa. 385 ; Walmesley's treatise de Prácessione Equinoctiorum et Axis Terrae Nue tationc, in the Pbilos. Trans. an. 1756, pa. 700; Simpsun's Miscellaneous Tracts, pa. 1; and other authors.

0 B J

OBELLISK, a kind of quadrangular pyramid, very tall and slender, raised as an ornarneut in some public place, or to serve as a memorial of some remarkable transaction.

OBJECT, something presented to the mind, by sensation, or by imagination ; or something that affects us by its presence, that affects the eyc, car, or some other of the organs of scuse.-The objects of the eye, or vision, are painted on the retina; though not there erect, but inverted, according to the laws of optics. This is easity shown from Descartes's experiment, of laying bare the vitreous humour on the back part of the eye, and putting over it a bit of white paper, or the skin of an egg, and then placing the fore part of the eye to the hole of a darkened room. By this means there is obtained a pretty landscape of the external objects, painted invertedly on the back of the eye. In this case, how the objects thus painted invertedly should be seen erect, is matter of controversy.

Onjzct-Glasg, of a telescope or microscope, is the glass placed at the end of the tube which is next or towards the object to be viewed.

To prove the gooduess and regularity of an objectglass; describe two concentric circles on a piece of paper, the one having its diameter the same with the breadth of the object-glass, and the other half that diameter; divide the smaller circumference into 6 equal parts, pricking the points of division tbrough with a fine needle; cover one side of the gluss with this paper, and, exposing it to the sun, receive the rays through these 6 holes upon a plane; then by moving the plane nearer to or farther from the glass, it will be found whether the six rays unite exactly together at any distance from the glass; if they do, it is a proof of the regularity and just form of the glass; and the said distance is also its focal distance.-Another way of proving the accuracy of an objiect-glass, is by placing it in a inbe, and trying it with sinall cye-glasses, at several distant objects; for that object-glass is always the best, which represents objects the brightest and most distinct, and which bears the greatest aperture, and the most conv. x and concave eyc-glasses, without colouring or haziness.

A circular object-glass is said to be truly centred, when the centre of its circumference falls exactly in the axis of the glass; and to be ill centred, when it falls out of the axis. To prove whether object-glasses be well centred, bold the glass at a proper distance from the eye, and observe the two retlected images of a candle, varying the dissance till the two images uaite, which is the true centre

0 BL

point: then if this fall in the middle, or central point of the glass, it is a proof of its being truly centred.

As object-glasses are commonly included in cells that screw upon the end of the tube of a telescope, it may be proved whether shey be well centred, by fixing the tube, and observing while the cell is unscrewed, whether the cross-hairs keep fixed upon the same lines of an object seen through the telescope.-For various methods of tinding the true centre of an object-glass, see Smith's Optics, book S, chap. S; also the Philos. Trans. vol. 48, pa. 177.

OBJ:CTIVE: Line, in Perspective, is any line drawn on the geometrical plane, whose representation is sought for in a draught or picture.

Onjective Plane, in Perspective, is any plane situated in the horizontal plane, whose perspective representation is required.

OBLATE, flattor, or shortened; as an oblate spheroid, having its axis shorter than its middle diameter; being formed by the rotation of an ellipse about the shorter axis.

OBLATENESS, of the carth, the fatness about the poles, or the diminution of the polar axis in respect of the equatorial. The ratio of these two axes has been determined in various ways; sometimes by the measures of different degrees of latitude, or of longitude, and sometimes by the length of pendulums vibrating seconds in different latitudes, αc; the results of all which, as well as accounts of the means of determining thein, see under the articles Earth and Degree. * To what is there said, may be added the following, from An Account of the Experiments made in Russin concerning the Langth of a Pendulum which swings Seconds, by Mr. Krafft, contained in the 6th and 7th volumes of the New Petersburg Transactions, for the years 1790 and 1793 . These experiments were made at different times, and in various parts of the Russian empire: Mr. Kraft has collected and compared them, with a view to investigate the consequences that might thence be deduced; and from the whole he concludes, that the lingth p of a pendulum, which swings seconds in any given lasitude l, tud in a tomperature of 10 degrecs of Reaunur's thermometer, may be determined by the following equation, in lines of a French foot: viz,

$$
p=439 \cdot 17 \mathrm{~s}+2321 \operatorname{sine}^{\theta} I
$$

This expression agrees, very nearly, not only with all the experinents made on the pendulum in Russia, but also with those of Mr. Graham, and thuse of Mr. Lyons in $79^{\circ} 50^{\prime}$ north latitude, wbere be found its laggh to be 4 11.38 lines.-It also shows the augasentacion of gravily from she equator to the parallel of a gisen lutitude l : for, putting g for the gravity under the ercuator, (i) for that
under the pole, and a for that under the latitude l; Mlr. Krafft finds $2=\left(1+0.0052848\right.$ sine $\left.^{2} l\right) \times s$; and consequently $\mathbf{G}=1.0052848 \mathrm{~g}$.

From this proportion of gravity under diffirent latitudes, Mr. Krafft deduces, that on the bypothesis of the cath's being a bomogeneous eliipsoid, its chateness must be a $\frac{1}{\text { bo }}$; instead of $\frac{1}{2}$, which ought to be the result of this hypothesis; but on adopting the suppusition that the earib is a beterogeneous ellipsoid, he finds its oblateness, as deduced from these experiments, to be $\frac{1}{6}$; which agrees nearly with that resulting from the measurement of tegrees of the meridiat.-Tbis confirma an observation of M. Laplace, that, if the hypothess of the earth's homogeneity be given up, then will theory, the incasurement of degrees of latitude, and experirgents with the pendulum, all agree in their result with respect to the oblateness of the earth.

OBLIQUE, aslant, indirect, or deviating from the perpendicular. As,

Oneique. Angle, one that is not a right angle, but cither greater or less than this, bring either obtuse or acute.
$\mathrm{O}_{\mathrm{blig} \mathrm{e}}$-angled Triangle, that whose angles are all oblique.

Oblique Ascension, is that point of the equinoctial which rises with the centre of the sun, or star; or any other point of the heavens, in an oblique sphere.

Oblique Circle, in the stereographic projection, is any circle that is oblique to the plane of projection.

Osbique Descension, that point of the equinoctial which sets with the centre of the sun, or star, or oiher point of the heavens in an oblique sphere.

Onlique Direction, that which is not perpendicular to a line or plane.

Obliquy Force, or Percussion, or Power, or Stroke, is that made in a direction oblique to a berdy or plane. It is demonstrated that the effect of such oblique force $\& c$, upon the body, in to an cqual perpendicular one, as the sine of the angle of incidence is to radius.

Obliger Line, that which makes an oblique angle with sume other line.

Onliqux. Planes, in Dialling, are such as reclino from the zunith, or incline towards the horizon.

Unliuue Prajection, is that where a body is projected or impelled in a line of direction that makes an oblique angle with the horiznatal line.

Onfique Sailiay, in Navigation, is that part which includes the application and calculation of oblique-angled triangles.

Oalique Sphere, in Geography, is that in which the axis is oblique to the borizon of a place. - In this sphere, the equator and parallels of declination cut the horizon obliquely. And it is this oblnpuity that occasions the inequality of days and nighta, and the variation of the seasons. See Spurize.

OBLIQUITY, that which denotes a thing oblique.
Oaliquiry of the Ecliptic, is the augle which the ecliptic makes with the equator. See Eclirtic.

OBLONG, sometimes means any figure shat is longer than it is broad; but more properly it denotes a rectangle, or a right-angled parallelogram, whose length exceeds its breadth.

Obrong, is also used for the quality or species of a fagure that is longer than it is broad: as an oblong spheroid, formed by an ellipse revolved about its longer or transverse axis ; in contradistinction from the oblate spheroid, or that which is flatted at its poles, being gencrated
by the revolution of the ellipse about its conjugate or shorter axis.
OBSCURA Camera. See Camkra Obacura,
Obscura Clara. See Clara Obscura.
OBSERVATION, in Astronomy and Navigation, is the observing with an instrument some celestial phenomenon; as, the altitude of the sun, moon, or,stars, or their distancrs asunder, \&c. But by this term the seamen consmonly mean only the taking the meridian alotudes, in order to find the latitude. And the finding the latitude from such observed altitude, they call Working an Observation.

OBSERVATORY, a place destiued for observing the heavenly bodies; or a building, usually erected on some eminence, for making astronomical observations.

Most nations, at almost all times, have had their observatories, either public or private ones, and in various degrees of perfection. A description of a great many of them may be seen in a dissertation of Weidler's, De presenti Specularum Astronomicarum Statu, printed in 1727, and in different articles of his History of Astronomy, printed in 1741, viz, pa. 86 \&c; as also in Lalande's Astronomy, the preface pa. 34 ; also in Bailly's astronomical works, and elsewhere:

As uavigation essentially depends on the determinations made in observatories, nuch establishments have been considered of great national importance, especially in maritime states; and hence they have been liberally endowed by different governments. Even private observatories have been, in many places, crocted at colisidcrable expense; the number of which has besn greatly increased of late years; a circumstance which, while it marks the progress of science, does honour to the age in which we live.

Fixed observatories are those where instruments are fixed in the meridian, by which, with the aid of astronomical clocks, the right-ascensions and declinations of the heavenly bodies are determined; and motion, time, and space made to measure each other. Such buildings and apparatus only are called regular observatories, though very useful operations are sometimes performed, and iniportant discoveries made, where no instrumeats are fixed in the meridian.

History of Observatories.

All nations, where astrouomy has been cultivated, buast of having had observatories at an early period; thongh ancient hhtory affords but litthe miformatioi on the subject. It was not indeed, until considerable progress had been made, both in astronomy aud tho mechanical arts, that successful attempts wrere made, ether in constructing instruments, or erecting edifices for astronumical purposes. The first observatories of man were the fieldy or hills, and his eyes his instruments; and his progress by these aids alone was astonishing. The instrunients of anicient astronomers were very large, and of rude comstruction ; mostly of wond, and sume of stonc. They consisted cbiefly of gnomons, dials, and astrolabes; and long tubes, like telescopes, were used to assist the sight. For the bane purpose deep wells were also suuk in dry places, frum the bottom of which the stars might be seen iu ihe day-time. Most buildings for astronomical observations were of great altitude, and cheflyderected in very bigh sitautions.

In Chaldmea, a country celebrated in the carly annals of astronomy, the lofty temple of Belus, or tower of Babel, was used as an observatory. And in Egypt, the famous tomb of Osymandias was applied to the same purR 2
pose. This building, it has been said, contained a golden or gilded circle, for celestial observations, which was 365 cubits in circumference, and one cubit in thickness.

The pyramids of Egypt have also been supposed intended for observatorics; and in support of this opinion it is argued, that they were built to face the four cardinal poins, The eqreat beight of these pyramuts is to be sure favourable fur celestial observations, whether they be used as gnomons, or for the purposes of astrology, a favourite study in those times, and which chiefly required an accurate view of the tising and setting of stars. It is iadeed certain that practical astronomy was much improved in Egypt, particularly in the famous school of Alexandria, where an observatory was built 300 yoars before the Coristian era, and continued for more than tive couturies under a succession of celebrated names, such as Aristellus, Hipparchus, Ptolemy, \&c.
'The Chinesce and Gentoo nations appear to have made a very early progress, both in the theory and practice of astronomy. Those people have traditions and vestiges of ancient observatories, on which ingenious distuisitions may be seen in Hailly's History of Ancient Astronomy, and in the Asiatic Researches, by Sir Wm. Jones, by Messrs. Hunter, Bentley, Colebrooke, Sir Robert Barker, and others.

The Hindu institutions, five in number, were constructed nearly at the same periud, about 250 years ago. They were built by order of the emperor Mahonmed Shah, with a view to refurm the calendar by means of astronomical observations; and he chose for his chief astronomer Jeysing, or Jayasinha, the rajah of Ambhere. These observatories were built at Delbi, Benares, Matra, Oujein, and Surai Jeypoor, and all under the direction of Jeysing. The observatory at Benares may be seen minutely described, by Sir Rub. Barker, in the Philos. Trans. for 1777, where he has given several plates of views, both of the buildings and instruments. And as all the other observatories were built and furnished nearly on the same plan, bis description may be demed sufficient for the whole. The instruments are quadrants and guomons of enormous vize, built of stone, of most excellent masonry and constructom, and very accurately divided and cut, into 90 degrees and other subdivisions. The quadrants are of ditherent sizes, some as much as 20 fert radius. The account of the Benares observatory is furthur illugtratel by Wm. Hunter, esq. in a very claborate article in the Asiatic Researches, vol. 5 ; in which he gives a full andparticular description of the other four Hindu observatories.

At Pckin, in China, an imperial observatory was built in the 13 th century, on the city walls. And in 1669 , father Verbtest, a missionary jesuit, having been made president of the tribunal of the tnathematies therr, and chief observer, obtained permission from the emperor Cam-bi, tofurnish it with instruments, a catalogue of which may be seen in Duhalde's Description of Chma.

Other observatories were afterwards built in China by the French missionaries, and by the Portuguese jesuts, who very much dislinguished themselves by their improsements in astrunomy. The instruments of the Pekin observatory are described as viry large; but the divisions less accuratc, and the contrivance less commodious, than the instrunconts made at that period in Europe. The chief were, a sextant 8 feet radius, a quadrant 6 feet radius,
an azimuthal horizon; also a celestial globe, an armillary zodiacal sphere, each 6 feet diameter.
It is said that Copernicus, in 1540, was the first European who set an instrumemt in the meridian, But it is stated by Weider, Bailly, and Costard, thas the first regular ebservatory in Europe was erected at Cassel in 1561, by Willam, landgrave of Hesse, who furnished it with the best insaruments the age could afford; and where it is said he made very accurate obscrvations, in coucert with his friend and correxpondent, Tycho Brahee, who was then rising into great fame.
The next olservatory in Europe, that deserves particular notice, was that of Tycho Brahe humself, which it seems owed its orign to a very exiraordinary cause, the appearance of a new star of the first magnitude, in the constellation Cassiopeia. It was seef by ditkerent astronomers about the 10th Nov. 1572, when it seemed to break furth instantaneously, which added to the great avtomshment that universally prevailed on the occason. It was brighter iban Jupiter or Venu*, when warst to the earth, and was visible to the naked eye at madeday. After a short tume it gradually dechoed, and in 16 mombs totally disappeared. Tycho Bralee was so impressed with this plenoneenon, that he formed the reoolution ot making a new and accurate caalogue of all the stars, as there had bevn nothing of the kind regularly performed since the days of Hipparchus, who, it is renarkable, had been stimulated to the like undernaking by a smilur cause, that is, by the sudden appearance and disappearance of a new star.

For this purpose, Tycho Brahe tirst proposed to settle at Basle, which afforded at once a pure amosphere, and a ready communication with the lrarmed men of Germany, Italy, and France. But the landyrave of Hesse wrote to Frederick the 2nd, king of Denmark, emreating him to encouruge the astronomer to remain in his own country. In consequence the king assigned to hion the small but fruitful island Huen,'or Heven, in the Sound, as a fit situation for an observatory, and conferred on him also other princely crants and immunities: his majesty besides undertosk to defruy the charge of building and furnishing the observatory there, without any limitation of expense; a muniticence which has namortaliad his name. The first stone of the observatory was haid the 8th of August 1576, and the place was called Uranibourg, or the Heavenly City. It was a building of fio fevt square, and 70 feet in heigh, with four towers, all contrived for astronomical purposes. It was turnished with a noble collection of instruments, many of shem invented by the astronomer himself. He had numernus assotanls, whom besupported and instructed. Among his instruments was a celestial globe, of 6 fert diameter, suid to have cost 1000). It was after his death carried tol l'rezue; next to Neis, and lastly to Copenhagen, where it was buint in the great conflagration which happethed there in 1728. Many of the instruments of tha great abtrothmer were long preserved, but have been gradually lost; and his favourite city Uranibururg, which, in his tame, was visited by kings and princes, has been long a heap of ruins, though occasionilly sisited by the learned. His celebrated sextant has been consecrated in the beavens as a constellation, under the breast of the Lion: on lurge globes and athases it is marked Sestuns Uranide, but on common ones only Sexturs.

We shall now proceed to notice some observatories of a more modirn date, beginning with those of France.

French Observatorics.
The Royal, or now Iinperial, Observatory of Paris, was built in 1667 . It is 160 feet in frout by 120 feet in breadth, anal 90 feet high. Its vaults are 90 feet deep; so that it is' 1 so feet from top to hottom. A particular description of the building is given by Blondel, and the arrangement and disposition of the instruments in Bernouli's Lettres Astronomiques, also in Lalande's Astronomic, and in Monnicr's Histure Celeste.

Besides the above building, new rooms have been constructed, close by the side of the observatory, where a large transt instrument and circle, by llansden, have been set up. In 17 ss new vaults were made, and also a small obervatory erected in the top of the building, which commands an extensive view of the horizon; and the hing (lauis the 16 th) establisbed three observers here, that tue course of oiscrvations might as little as possible be tilterrupted.'

The tollowing account of other observatorics at Paris, given by Lalande in 1792, is worthy of notice liere, as interesting in the histary in practical astronoms.

The astronomers of the Acidenyy bad besides several private observateries crected in diflerent parts of Paris, as the rayal obsorvatory was net sufficient for all. That of Monnter has bern. Irom the year 1742, in the garden of the Capuchins. That of the Marine, which Josiph de I'Isle used in 1748 at the Hotel de Clugny, occupied by M. Messier. That of Lacaille still exists in the Mazarin-college. That of the palace of Luxembourg is above the Port Royal. Jowph de Lisle observed there, and Lalande likewise ocrupies it for some time. That of M. Pingre at the abbey of St . Génévève was built in 1756 . There is one of Cagnoli's rue de Ricblieu, which this able astronomer built at his own expense in 1785, when he still resided at Paris.
The observatory of the military school, built for M. Jeaurat in 1768, was occupied afterwards by M. d'Agelet. The late M. Burgeret, receiver-general of finances, constructed in 177.4 a large mural quadrant of 8 English feet radus, the last and the best instrument made by the celebrated Bird. This inotrument was obtained by the military academy, as well as an excellent transit instrument, and a parallactic telescope. . M. d'Agelet made a great number of observations there from 1778 to 1783 , when be left it to make n voyage round the world with La Perouse. In 1788 , the changes made in the military school occasioned the demulition of this obsetvatory; but it has been rebuilt, a little more to the west, with all necessary attention and expense, so that it is the most complete observatory at Paris. Lalande, having received the direction of it, began in 1789 to make a series of observations. M. Ie François Lalande, his relation and pupil, has also made a prodigous number of observations; and they observed, in 1791, more than ten thousund northern stars, with excellent instruments. An obwervatory was built in 177.5, at the lesyal-college, for the use of the professor of astronomy of this celebrated school. M. Geoffroy d'Assy built, in 1788, an observatory at his house, rue de Paradis, which was used by M. Delambre.

Such was the state of nbservatories at Paris in 1792. At piesent (1813) Delambre is the chief of the imperial univernity. Messier and Biot succreded him at the Royalcollege, now the College de France. Burch hardt is astro-
nomer at the military school; Lefrançois Lalande resides at the Place de Caunbray; and Bouvard superintends the imperial observatory, assisted by Aragon.

It may be noticed here, that the famous mural quadrant, with which Lalande and his relation determined the position of a grat number of stars, as above-mentioned, has been consecrated in the beavens as a constellation, and is placed between Hercules, the Serpent, ant Bootes. It is marked Quadrans Muralis, and coutains 40 stars.

The following were the other observatories established in difierent parts of France, as stated by Lalande.

The Marseilles observatory, which has been rendered famous by the observations of Syivabelle.

At Toulouse, the observatory of M. Darquier has been made sacred by the zeal and abolities of this learned man. Observatories have also been built in the same city by M. Garipuy and M. llonrepos. Here astronomy has been more successfully cultivated than in any other pruvincial city in Fisance. The principal observatory is at present (1813) under the superintendener of M. Vidal.

At Lyons, the College observatory, which was built by father $\mathbf{S t}$. Bonnet, is a very fine edifice, on an elevated situation.

At Dijon, M. Nceker, about the year 1780 , converted the tower of the king's lodge to an obmervatory, and the abbé Bertrand has made very uccurate observutions there.

At Montpellier there has long been an observatory erected on one of the towers of the city; where M. Ratte and Poitevin hase distinguished themselves as able astronomers.

At Bezicrs, the bishop's tower was converted to an obscrvatory, where some interesting observations have been made by M. Bouillet, perticularly on Staturn's ring.

At Avignon, all observatory was built by father Bonfa so early as 1683; and it has been since occupied by a succession of learned ecclesiastics, who have distinguished themselves in practical astronomy.

At Strasburg, Brackenhoffier, professor of mathematics, had an observatory over the gntes of the city, and he has been succeeded by Herzenschneider in 1790.

At Bourdeanx is an observatory 75 feet high, and 20 feet square. It is situated in the finest part of Tournay, in latitude 45°. Here M. Turgot procured a conuplete set of observations to be made on the length of a pendulum vibrating seconds; upon which tather Buscovich has made an interesting memoir.

At Breat a small observatory was built for the naval academy, and plans have been set on foot for erecting a more considerable edifice.

At Rowen there is an observatory belonging to M. Bouin, in which he has made many good observations.

At Montawbon the duc de la Chapelle founded an observatory, where he himself has made many accurate and interesting observations, particularly of the transit of Venus over the sunin 1769 .

Gierman Observatories.

In Germany a great number it olservatories have been establisbed, and that country bas produced also neveral very able astronomers.

At Berlin, Frederic the 1st, king of Prussia, founded an observatory in 1711, under the direction of Leibnitz, who was piesident of the Acadeny of sciences there. It is a large square tower, very stealy. Here Griscbow and Kies made various observations: and Lalande also ub-
served here about the year 1732 , where, he says, be saised cnormous pillars, to which be attached the mural quadrants, north and south. (Mcmores de l'Academic, 1751 and 1752 .) King Frederic the edd added a very tine building to it, where the Acaulenny of Sciences of Pruswa has beld its assemblies. M. Borfe has been many years the astronomer-royal there, and hat distinguished biumelf both as an accurate observer, and as the publisher of the most complete celestial atlas extant, cutited Uranugraphia, which is accoropanied with a well arranged catalogue of the stars, and an interesting history of the constellations.

At Fienna, the empress Maria ''icresa built an obacryatory in the year 1755 for the university, and furnished it with wany superb instruments. There is alno one belonging to the acadersical college, which was buitt and endowed by the Jesuits in 1735, and it is also furmasied with very finc instruments, chictly made by Ëughish artists, and a succession of very learned men have observed there. The reputatiou of the university ubservatory was maimained for many years by the able Maximilian Hell, when conducted the Vianna Ephemeris, and the work is now continued by M1. Treisneckir, his successur.

At Gottingen there is an observatory memorable by the labours of Tubas Mayer, and by those more recently of Harding, who discovered the planet Juno in 180.4.

At Nuremberg an observatory was built so early as the year 11 i 7 S , and another in 1692. M. Zimmert and M. Wuzzelbau have distinguished themselves here both as able authors and accurate observers.

At Cassed an obscrvatory was built, in 1714, by Charles 1 , landgrave of Hesse, hicir to the territories and taste of the celebrated Williann, the carly friend and fellow-labourer of Tycho Brahé.

In 1740 an observatory was buile at Griessen; and in 1768 at Ourtsbourg, in Franconia. In 1788 one was built at Leipsic, on an old tower of great tirmbess. Obscrvatories bave been also erected and supported wath great credit at Manlieim, Cremsmunster, Lambach, Polhng, Prague, and Gratz.

At Bremen there is an obscrvasory belonging to Dr. Olbers, an eminent plysician, who has rendered his name immortal by the discovery of the two new planets, Pallas and Vesta.

At Lilienthal, near Bremen, M. Schroeter, governor of the district, erected an observatory about the yoar t786, and furnished it with excellent instruments. He is highly celebrated as an accurate and interesting observer, pasticularly of the surfaces and rotations of the planets and the moon. He approaches nearer than any other astronomer to Dr. Herschel in telescopic discoveries.

At Seeberg, near Gotha, a considerable observatory was built, in the year 1788 , by the duke of Saxe Gotha, and he appointed M. Zach, now baron Zach, the superintendent, who has bighly distinguished himself as a profound and accurate astmonomer. In 1798 he was visited by lav lande, when, according to Voiron (Histoire de I'Astronomic, pa. Sfi9), all the great astronomers of Germany met at Giotha, to see the patriarch of astronomy, and to pay him their homage. This ubservatory is reckoned one of the most beautiful and complete in Europe; it is situated on a fine elevation, about a league from the town. There is hrre a large transit, with two murals of 8 feet radius, and a circle of 8 feetdiameter, all by Ramsden and his auccessor Berge.

At Brauswick there is an observatory belonging to Dr.

Gauss, well known by his determinations of the orbits of the new planets, and otber imporiant labours.

In Hungary there are observatories at Buda, Tyrnau, and Erluu. Similar eatablishments are also at Greiffscalde in Pomerania, and at Mittats in Courland.

In Poland there is an observatory at Cracow, and another at W'ilne: the latter was built, and richly endowed by the countess Puzynina, a lady of fine genius as well as liberality. It was finisbed in 1753, and the instruments with which it is furnished were of great varisty and value. In 170 is the king of Poland, by letters patcut, gave it the tiele of Royul observatory, and appointed she learned Jesuit Porzobut ustronomer-royal, who, in 1785 , added another observatary, which he furaished with new instruments, chie fly made hy Ramsden.

In Stueden observatories have been built at Stockholm and Upsal: that at Stuchholm was fuunded in 1746°, by the Acatiomy of Sciences. In 1753, Wargentin was appointed astronomer to it, and in 1783 he was succeeded by Nicander. 'This observatory is situated on a bill north of the town, and conthas a goed collection of instruseents, all made by Eigglivh artizts.

The observatory at $\boldsymbol{l} p$ sed was built and endowed in 1739 by the king of Sweden: it was first superintended by the celebrated Celsius, who has been followed by a succession of able astronumers, paticularly Homber and Wargentin. The latter is weil hown as the author of the tables of Jupicer's satellines.

At Dantzic there was an old observatory, celebrated as having been used by Heveijus, who has given a full description of it is his worh, entialed Machina Colestis. A new observatory was also built in that city in the year 1778 , which is at present superintended by Dr. Wolf.

At Copenhagen the iamuus astronomical tower was finished in 1656 . It was built by King Christian Iv, at the recommendation of Longomontanus, and has been for many years under the management of Mr. Bugge, who is celehrated as a very able astronomer. In his collection of observatories, he states that the kings of Denmark had established observatories in Norway, Iceland, and Greenland.
In Holland attention was paid to practical astronomy while it was a maritime state; but the science has of hate been much neglected. In 1690 an observatory was erected on the college of the university; and at Utrecht an amcient tower was, in 1726, converted into an observatory. Here the celebrated Van Musschenbruek observed for many years with great accuracy, and he was succeeded by M. Hennert.

In Spain observatories have been built at Cadiz, Madrid, Seville, and Carthagena. The observations made at Cadiz (at the Marine acadcmy) by Miguel and Varilla, have been published in two volumes, which also contain a catalogue of the instruments of the citservatory, cbiefly constructed by French artists; anll hence the observatories of Spain differ very little trom those of France. Of late years, however, English instruments have been introduced there.

At Liabon, in 1728, King John the Sth had an observatory erected at his palace, which was will furmshed, and accurate observations have luen made there by the Josuits, who also erected an observatory at their own college of St. Anthony, wherc father Carbon, in 1726, made good observations on the satellites of Jupiter. Sce Pbil. Trans, vol. 35, pe. 408.

In 1787, a royal observatory was constructed at the Chateau de St. George, in Lisbon, which was superintended by M. Custodio Gornez. There is also one at Coimbra, which contains a fine equatorial by Troughton.

At Petersburg an observatory was built, in 1725 , by the czar Peter, who showed great zeal for science in general, and particularly for astronomy. When he was in England, some years before that period, he visited the Royal Observatory at Greenwich, where he examined buth the buitding and the instruments with very great attention. The observatory which be afterwards built is one of the most magnificent in Europe. It is 130 feet high, with three stories, all fit fur astronomical purposes. M. Delisle has made, according to Lalande, a great number of excellent observations bere, which are preserved in manuscript in the marine depót.

At Moscur an observatory was built a few years ago, and furnished with some excellent English instruments, chiefly by Cary; but it is probable that they have been destroyed in the late conflagration of that city.

In Italy, practical astronomy has been cultivated with much assiduity and success during the last century, cbiefly by ecclesiastics, and particularly by the Jesuits.

At Reme, carditial Z.lada constructed, ht his own expetise, on the southern part of the Roman college, a very fine observatory, with the large sector of father Buscovich, and other instruments by Kamsden and Dollond. The abbé Calandrelli obscreded here with great attention and accuracy for many years. Other buildings of a similar description have beell erected in different parts of Reme.

At Bologna a magnificeut observatory was built in 1714, in the palace of the Institute, by the munificence of the celebrated count Marsigli; and pope Benedict 14 gave afterwards a large sum of money towards the purchase of instruments. Here a succession of able astronomers have obsorved, among whom may be mentioned Manfredi, Zanotti, Canterzani, \&c.

At Pisa the observatory is in the form of a tower. It was built in 1730, at the expense of the university, and supplied with superb apparatus made by Sisson, Short, Graham, \&c. Perelli observed here for many years, and had for a successor M. Slope, who published an excellent collection of observations in 1789.

At Milan there is an observatory, which is reckoned one of the most useful in Italy. It was built in 1765, at the cost of the college of the Jesuits, chiefly through the zeal of father Pallavicini, and under the direction of father Boscovich, who also contributed liberally to the expense. The instruments have been made with great care by the principal French and English artists. Among the observers may be also mentioned Reggio, Oriani, and Cesaris.

At Fiforence, father Ximenes erected an observatory at the cullcge of Jesuits, which contains a quadrant by Toscanelli, larger than any other known, with which be made observations to prove the secular diminution of the obliquity of the ecliptic. At his death he bequeathed the whole to the college. In 1772 the grand duke Leopold built an observatory, which M. Fontana superintended, and in 1786 several fine instruments by Rumsden were added to it.

At Turin father Beccaria erected a small observatory; but in 1790 a large one was built at a very considerable expense, by the king of Sardinia, at the Royal College of Nobles, and the direction of it given to the abbe Caluso.

At Venice an observatory was constructed by father

Panigni, and a small one near the town by M. Miotti. Ore was also built at Porma by father Belgrado, and another at Brescia by father Cavalli.

At Verona, Cugnoli, eminent both as a mathematician and astronomer, erecied an observatory at his own expense, in 1787, and placed in it the best instruments, with which he has made very accurate and important observations, particularly oll the precession of the equinoxes, and on the places of 473 northern stars, and 28 southern, of which lie has made a catalogue. In thege determinations be has been perhaps more attentive than any other astronomer to the minute cbanges of refraction, and to the aberration of light.

At Padua there is an observatory, which in 1778 was furnished with instruments, chicfly made by Ramosden. It has been many years under the direction of M. Toaldo, who bas published several uscful works, especially a treatise on meteorology, which gained him the prize at the acadeniy of Montpellier.

In some of the islands of the Mediterranean observatories have also been established. We shall, however, notice only those of Malta and Sicily,
In 1783, the grand-master E :mmanuel de Rohan, an amateur and enlightened protector of science, invited to Malta chevalier d'Angus, a skilful astronomer, who converted a tower of the palace into an observatory, which was furnished with the finest instruments that could be procured. In a few years be made a great number of valuable observations, which he intended to publish, but in March 1789, the observatory baviug caught fire, the instruments were broken, and the papers burnt, a serious loss to astronomy, particularly as this was the zonest southern observatory of Europe, in latitude 36°.

At Palermo an observatory was constructed in the palace of the viccroy, under the direction of father Piaszi, who went to Paris in 1787 to atudy astronomy, and who afterwards visited England, in order to consult the principal artists on the construction of instruments. In 1789 he returned to Palermo, and added to the apparatus a fine transit instrument, and a complete circle, made by Rainsden. His first labours were directed to the formation of a correct catalogue of stars, and, as n foundation, he chose Wollaston's catalogue, and particularly, as bis chief points of reference. Dr. Maskelyne's 36 stars. The positions of some of the larger stars he verified by nearly a hundred observations, and in the prosecution of this task, in 1801, be discovered a new plam't, which he named Ceres, in honour of Sicily, as that ishand was, on account of its fertility, anciently consecrated to the goddess Ceres. This discovery was the more important, as it excited the curiosity and research of other astronomers, by which three more planets have been since discovered.

Fing lish ObserDatories.
The Greenwich Observatory, or the Royal Observatory of England, was buitt and endowed by King Charles in, who, to use the words of Bailly, "well knew how essential astronomy was to a maritime and commercial people like the English, who aopired to the empire of the seas." This buiding was erected on the site of the ancient moated tower of Duke Hamphrey, uncle to Henry 6, and the first stone of it was haid Aug. 10, 1675, by Mr. Flamsteed, who had been appointed astromomer-royal. It is sifuated on the highest eminence of Greenwich park, about 160 feet above low-water mark. The soil liere is particularly favourable for such an institution, being of a
finty gravel, through which the rain son passes, and thus the atmusphere is generally diry, which contributes to the proservation of the instruments, as well as to the unifurmity of refraction.

This establishment comprehends two principal buildings, one of which is the observatory, and the uther the dwelling-loouse of the astromoner-royal. The observatory is an oblong edifice, running east and west, and containing four rooms or apartments on the ground-fioor. The first, or most easterly \quad oom, has been lately erected for the reception and fitting up of a very fine transit circle, by Troughton, and a clock of great value by Hardy.
'I'se next apartment is the transit room. It has a double sloping roof, with sliding shutters, which are oprned both north and south, with great ease; by pulleys. The transit instrument, which is 8 feet long, and the axis 3 feet, is suspended on tivo stone pillars. This instrument is famous as having been used by Halky, Bradley, and Maskclyne. It was originally made by Bird, and has beensuccessively improved by Dollond and Troughton. The astronomical or transt clock, which is attached to a stone pillar, was inate by Graham, and has been rendered very accurale by Earnshaw.

The third apartment is the assistant observer's library and place for calculation ; and the western apmrtment of the building is the quadrant room. Here is erected a stone pier, running north and south, to which are attached two mural quadrants, each of 8 feet radius. That on the eastern face, which observes the southern meridian, was made by Bird, and the other, which observes the northern, by Graham. Suspended to the western wall is the famous zenith sector, with which Bradley made the observations, at Kew and Wanstead, that led to the discoveries of the aberration of light, and the nutation of the earth's axis.

South of the quadrant room is a small wooden building for making occasisnal observations in any dirrection, where only the use of a telescope, and an accurate knowledge of the time, are required. It is furnished with sliding shutters on the roof and sides, to view any point of the hemisphere, from the prime vertical down ta the southern horizon. It contains some excellent telescopes, particularly a forty-inch achromatic, with a triple object-ylasa, and a five-feet achromatic, both by Dollonil; with a six-leet reflector, by Dr. Herschel.

To the north of the observatory and east of the house are two small buildings, covered with hemispherical sliding dotmes, in each of which is an equatorial sector, by Sissun, and a clock, by Amold. These are chiclly used for observing comets.

Of the dwelling-house, the lower apartments are occupied by the astronomer-royal, and over them is a large octagonal room, which contains a great variety of astronomical instruments, with a library, consisting chiefly of scientific and scarce works. On the top of the house is an excellent camera obscura, which could not be better placed for the exhibition of interesting objects.

In Flamsteed's time a well was sunk in the south-east corner of what is now the garden, behind the observatory, for the purpose of seeing the stars in the day-time, and observing the earth's annual parallax. It was a hundred feet deep, with stone stairs down to the bottom: but it has been long arched over, us the improvements in the telescope have rendered it unuecessary for astronomical purposes.

The observations made at the Royal Observatory are universally allowed to possess un unnvalled degree of accuracy. M. Delambre, in a paper composed by him on the life and labours of Dr. Maskely ne, und read beforche National Institute, Jan. 4, 1819, makes the following remak. "He (Dr. Mashelyne) has given a catalugue of stars, tut numerous, but so accurate, as to have served, almost solely for the last 30 gears, as the foundation of all astronomical researches. In short, it may be said of thas four volumes of Obecrvations which be has published, that if, by a great revolution, the sctences should be lost, and that this collection only were saved, there would be found it it sutficient materials to construct almost an entire edifice of modern astronomy; which cannot be said of any other collection."

The fullowing are the names of the astronomers who have officiated here in succession, with the times of their services respectively: Flamsteed, 43 jears; Halley, 23 yrars; Bralley, 20 years; Bliss, 2 years; and Maskelyne, 46 years. Maskelyne has been succeeded by Jolan Puid, Eqq. Y.r.s. who was appointed astronomer-royal in February 1812.

Dr. Herschel's Obsersatory at Sluugh, near Windsor, though not a fixed one, will ever clasm a distinguished place in the bistory of astronomical intitutions. It uitfers from all other olservatorics in plan and apparatis; and it excects all others in the number of its discoverits.

In describing thit wbservatory, it should be premised, that Dr. Herschel's labours derive a peculiar character and interest from the circumstance, that his discoveries are the resnlt of his own inventions. For to lis profound knowledge of astronomy lie unites that of optics, both in theory and practice, by which he has been enabled to cast and polish mirrors for reflecting telescopes, greatly superior to uny others, not only in magnifying power, but in collecting, or, as it were, preyerving light, by which vision is wonderfully extended, and which he very expressively denominates "the plower of penetrating into space." The telescopes, which are all made under his direction, are of various sizes, from two feet in length up to forty feet, atad the apparatus and machinery with which they are mounted are also of his invention, and exbibit a very ingenions display of mech onism.

As his larger telescopes could not be conveniently managed within the cover of a building, they are mounted in the open air, where they stand puinting to the heasens in dafferent directions, and make a most magnificent and impressive appearance. Thus they are placed in what has been called the primitive abservatory of man, " non sub tecto sed sub ccelo in puro dio."

His largest telescupe is 40 feet long and 5 in diameter. It contains a murur of about a ton weighs; and this great instrument, with nearly an additionul ton of casps, \&c, is manazed by a very slight force. It is placed on a large circular tranie, which turns on rollers, and the top is suspended by ropes from very lufty ladder-work. Thus, by a system of wherels, pinions, lachs, and pulleys, the motiolls, both horizontal and vertical, are given, and hence any cclestial object is reachly found and commodiously viewed. It was finished in 1787, and on the first trial a new satellite of Saturn was discovered by i, and a second soon after. A sery full and accutate account of his inventions and discoseries, as well as a particular description of his telescopes and their apparatus (with plates), will be found in the Philosophical Transactions, to which be
has been a most importaij contributor, having supplied that work with nearly 70 elatorate and ingenious communications.

Two of his telescopes, of smaller size, are famous in the anmals of discovery. The first is a two-fret Newtonian reflector, with which his sister Miss Carolina Hlerschel, whose astronomical attainments do great honour to her sex, discosered six comets; and the other is his seven-feet reflector, by which he discovered the Georgian planet at Bath, in 1781. This telescope has, in consequence of the discovery, been made a constellation in the heavens with the universal approbation of astronomers. It is placed between Gemini, the Lyux, and Auriga, and contains 81 stars. In Bode's atlas it is engraved with its apparatus, and marked Telescopium Herschelii. Dr, Herschel, though in his 76 th ycar, is still an active and indefatigable observer. 1le was born at llanover, Nov. 15, 1738, a period whicb will be ever memorable in the bistory of astronomy.

The King's private Olservatory in Richmond gardens is extremely beautiful in structure and apparatus, as well as in situation. It was built, in 1768, by order of his present majesty George 3, who, it is said, made several observations here, particularly of the transit of Venus in 1769. It contains a file transit instrument, a zenith sector, and a mural are, with several good telescopes, especially a ten-feet reflector of Dr. Herschel's. Here is a superb equatorial on the top of the building, which is covered with a moveable roof. There are also two fine orreries, with an excellent collection of philosophical instruments, and some cases of minerals and other natural curiositics. It was built under the direction of Dr. Demainbray, and has been, for some years, in the care of Mr. Rigaud.

Oxford Observatory is a most magnificent structure, and the instruments perfectly correspond with the building. It was begun in 1772, from very ample funds bequeathed by Dr. Ratieliffe, and the land on which it stands was the * gift of the duke of Marlborough. Tbe transit instrument, wbich is 10 feet long, shows very small stars in the day-time. It is said to have cost 150 guineas, the zenith sector 200 guineas, and the two mural quadrants 600 guineas. There are also very excellent telescopes and clocks here, the former by Herschel and Dollond, and the latter by Shelton. It was built under the direction of Dr. Horusby, professor of astronomy in the university, who observed here for many years, and he bas been succeeded by Dr. Robertsun, the present worthy professor of astronomy. The observations are all registered, and consist chiclly of the right ascensions and zenith ristances of the sun, moon, planets, and fixed stars. In Dr. liornsby's time, the registry was sometimes broken from ill health; for he had no assistant observer; but one las been of late added to the establishment, so that the observations will not, in future, be liable to the like interruptions.

At Cambridge there lave been small observatories at Christciaurch, Trinity, St. John's, \&c, and a plan is said to be now on foot for erecting one upon a great scale, and worthy the scicutitic fame of that learned university.

Portsmouth Objervatory. - At the Royal Marine Academy, Poatsmouth, there is an obsersatnry under the direction of Mr. Professor Inman, which is of peculiar utility, both in teaching the pupils practical astronomy, and in finding the rate of time-keepers for seamen.

Yol. II.
$129]$
At Clrist's Hospital, Mr. Wales (who had served under Dr. Maskelyne and Capt. Cook) erected a small observatory at his own expense, when be became master of the royal mathematieal school there.

The Royal Society have at Somerset House a small observatory, which is generally superintended by the secretary for the time being.

At Highbury House, near Islington, an observatory was built in the year 1787 , by Alexander Aubert, 1isq, which, for perfection of plan and splendour of apparatus, perhaps has never teen equalled by any private individual. This gentleman, whose scientific and liberal pursuits deserve honourable mention, died in the year 1806, and his grand collection of instruments was disposed of by auction, and of course dispersed. Similar notice may be taken of other observatories contemporary with that of Highbury, particularly thuse of Count Bruhl at Harefield, Sir George Shuck burgh at Shuckburgh, William Larkins, Esq. at Blackheath, and the Hon, Charles Greville at Milford, all of which were on a great scale, and have been discontinued after the demise of the owners. Thus in private obscrvaturies, though the astronowers may bequeath their apparatus to their heirs, they cannot transfer either their taste or their science. It is only in public establishments that permanence can be expected.

Among the private observatories of the present day, the following alphabetical list may be also mentioned.
Blackheath - Stephen Groombridge, Esq.
Blenlicim - Duke of Marlborough.
Cambridge - Rev. Mr. Catton.
Cbiscllurst - Rev. Francis Wollaston,
Derby - William Strutt, Esq.
East Sheen - Rev. William Pearson.
Finsbury Square
Godwood Dr. Kelly.
The Duke of Richmond.
Gosport - Dr. William Burney.
Hackney Wick - Colonel Beaufoy. Hayes
Highbury Terrace Hoddeston William Walker, Esq. Willimuar. Islington - Gavin Lowe, Esq. Paragon, Southwark James Strode Butt, Esq. Park-lane - Sir Henry Englefield, Bart. Rose Hill, Susscx John Fuller, Esq. Sherburı - Earl of Macclesfield. St.Ibbs, Hitchin - Mr. Professor Lax.
Woolwich - Royal Mil. Acad.
Scotch Observatories.- In the different universities of Scotland professorships of astronomy have been establishcd, but it has been here, as in most other universities, the theory of the science has been more attended to than the practice. At Edinburgh and Aberdeen there have been, however, observatories; and nt Glasgow there is also in small one belonging to the college, but of late a magnificent one has been erected by a society of gentiemen, which is likely, wheu finished, to be very useful as well as honourable to that commercial city.

Irish Observatories.-In Ireland two observatories have been established on a great scale, the one at Dublin, aod the other at Armagh. The observatory belonging to Tri-nity-college, Dublin, cotnmonly called the Dublin observatory, was begun in the year 1783, It was founded by Dr. Francis Andrews, provost of that college, who bequeathed a large income for this purpose. The apparatus are, a transit instrument of 6 feet focpl length, with a 4 S
feet axis, bearing 4 ioches and a quarter aperture, with three different magnifying powers up to 600. An entire circle of 10 feet diameter on a horizontal axis for measuring meridian altitudes. An equatorial instrument, with circles of 5 feet in diameter: and an achromatic telescope, mounted on a polar axis, and carried by an heliostatic movement. Clocks were also ordered frum Mr. Arnold, without any limitation of price.

The situation chosen for the observatory is on elevated ground, about four English miles N. w. of Dublin. The foundation is a solid rock of limestone, of several miles extent; and the soil is very favourable, being a calcareous substance called linestone gravel, which is remarkable for absorbing the rain, and thus contributing to a dry atmosphere. The plan of the building unites at once both elegance and convenience. In the centre is a magnificent dome of three stories high, with a moveable roof for the equatorial instrument, which is placed on a pillar of 16 feet square, of the most substantial masonry, and surrounded by a circular wall at a foot distance, that supports the moveable dome, and also the floors, which in no part touch the pillar: thus, no motion of the floor or wall can be communicated to the instrument. The aperture fur observation in the dome is two feet and a balf wide.
'The most important erection belonging to this establishment is behind the main building, and at right angles to it, in order to obtain an uninterrupted view both north and south. This is the meridian or transit room, which contains botb the tramit instrument and the circle. It is 37 feet long, by 23 broad, and 21 high. Fine pillars of Purtland stone are erected for both instruments on the most firm basis, and the floor is so framed as to let all the pallars rise totally detached from it. The clocks are attached to pillars of the greatest steadiness also: they were made by Arnold, who exerted his best skill, and are finished in a masterly manner; the pallets are of ruby; and all the last boles of the movement jewelled; the suspension springs are of gold, with Arnold's uwn fivebarred pendulum, and cheeks capable of experimental adjustment, so as to make all vibrations isuchronal, whatever may be the excursion of the pendulum.

The Rev. Dr. Usher, the first astronomy professor, did not long enjoy the pleasures of astrunomy. He died in 1790, before the instruments had been all supplied. He was succeeded by the Rev. Dr. Brinkley, who was reared under Dr. Maskelyue, and had distinguished himseif at Cambridge by profound analytical investigations, and who bas since greatly enriched the Transactions of the Royal
lrish Academy by mathematical and astronomical communications.

From a new 8 fert circle, by Berge, important results are expected, particularly on parallax, aberration of light, and refraction. Dr. B, has been for some time engaged in a series of observations with a view to explain the cause of variations which he has found in the zemth distances of certain stars at different times, which do not seem explicable by any cause at present generally altowed. He bas found a ditterence between the zenith distances of a Lyra, when in opposition and conjunction, which may be explained by a parallax of about 2 seconds. The new transit circle just erected at Greenwich possesses advantagr s for such purposcs, and great hopes may therefore be formed from the concurrent operations of those two instruments.

Armagh Observatory.-At Aimagh, the metropolitan city of Ireland, and anciently the sent of a large university, an observatory has bren ericted and endowed in 1793, by the most reverend Richard lord Rokeby, then primate of Ireland. It is erected on the summit of a gently rising hill, about 90 feet above the general level of the town. The tower, which juins the dwelling house, contains a very fue equatorial by Troughton, fixed on a large pillar, which is raised su, high that the instrunsent in the dome can overlunk all the building*. To the cast of the house is a range of buildings for the transit room, and other astronomical purpotes. 'I le princip. 1 instruments, besides the equatorial and nansit, are a ten-fert sextant by Troughton; a ten-feet reftecting telocope by Dr. Herschel; a five-feet triple object-glass achromatic t-lescope by Dollond; and also a tiue night glass on an equatorial stand. The clocks are by Earaslaw of Lancion, and Crossthwaite of Dublin.

In this establishment a liberal income is allowed to the principal astronomer, and a good salary to bis assistant. It has been superintemed from the beginning by the Rev. James Archibald Hamition, D D. dean of the cathedral church of St. Coleman, Cloyne. 'The registered obervations here, are those made wath the transil instrument and equatorial; and also an acrount of the temperature and weight of the atmusphere. Of these, a series of about 18 years is preserved. The right ascerasions of the sun and moon, compared with the fixed stars, are regular and unbrohen; but their north polar distances hace not been so constantly taken, as they are only otserved by the principal astronomer, whose pastoral duties must occasionally interiere with $!$ is astronomical labours.

ATanle of the Longitudes and Latitudes of the principal Observatorics of Europe, as deduced from the most recent and actaratc Determinntions.

0							Names of Places.				Latitade North.			Langitudr from Greetainh in Time.		
Dublin -	53°	23^{\prime}	$14^{\prime \prime}$	0	25	20 w		Naples		-	40	30	15	0	37	5 5
Eisenbery	30	57	59	0	39	50 E		Nurember		-	49	26	55	0	41	17 E
Florence	43	46	41	0	45	3 E		Oxford		*	51	45	38	0	5	2 w
Genoa	44	24	39	0	35	52 E		Pudua	-	-	45	24	2	0	47	32 E
Glasiow	55	51	32	0	17	4w		Palermo	-	-	38	6	44	0	53	21 E
Giotha (Seeberg)	50	56	7	0	42	56 E		Paris	-	-	48	50	14	0	9	218
Gutingen	51	31	54	0	39	42 E		Petersburg		-	59	36	23	2	1	138
Girenwich	51	28	40	0	0	0		Pisa	-	-	43	43	11	0	41	26 E
Hughbury House	31	33	30	0	0	23 w		Portsmout	b Ac	d.	50	48	2	0	4	24 w
Hytres - .	43	7	2	0	24	31 E		Prague	-	-	30	5	19	0	57	41 E
Leipsic	51	20	44	0	49	28 E		Ratisbon	,	-	49	0	58	0	48	26 E
Leyden	52	9	30	0	17	S5 E		Kichmond		-	51	28	8	0	1	15 w
Lilienthal	53	8	25	0	35	33 E		Rome	-	-	41	54	1	0	49	51 E
Lisbon	38	42	50	0	36	34w		Slough	-	-	51	30	20	0	2	24 w
London (Cbr. Hos.)	51	30	57	0	0	24 w		Stockholm		-	50	20	31	1	12	13 E
Madrid -	40	23	18	0	1%	47 w		Strasburgh		-	48	34	56	0	30	59 E
Manheim	49	29	18	0	33	55 E		Toulouse	-	-	43	35	46	0	5	46 E
Marseilles	43	17	50	0	21	29 E		Turin	-	-	45	4	14	0	30	40 E
Milan -	45	28	2	0	36	45 E		Upsal		-	59	51	50	1	10	36 E
Mirepoix	43	5	19	0	7	30w		Utrecht	-	-	32	5	12	0	20	27 E
Mintau -	56	\$9	6	1	34	51 E		Venice	-	-	45	25	54	0	49	24 E
Montauban	40	0	55	0	13	19 E		Verons	-	-	45	26	6	0	44	1 E
Montpelier	43	36	29	0	15	31E		Vienna	-	-	48	12	36	1	5	31 E
Muscow	55	45	45	2	30	12 E		Viviers	-	-	44	29	13	0	18	41 E
- Munich -	48	8	20	0	46	20 E		Wilna	-	-	54	41	2	1	41	10 E

Observatory Portable, See Equatorial.
OBTUSE Angle, one that is greater than a right-angle.
Obruse-angled Triangle, is a triangle that has one of its angles obtuse: and it can have only one such.

Oeruse Conc, or Oatuse-Angled Conc, one whose angle at the vertex, by a section through the axis, is obtuse.

Ontuse Myperbola, one whose asymptotes furm an obtuse angle.

Oatuss-angular Scetion of a Conc, a name given to the hyperbola by the ancient geometricians, because they considered this section only in the obtuse cone.

OCCIDENT, or Occidextal, west, or westward, in Astronomy ; a planet is said to be oceident, when it sets after the sun.

Occident, in Geography, the westward quarter of the horizon, or that part of the horizon where the ecliptic, or the sun's place in it, descends into the lower hemisphere.

Occident Equimoctial, that point of the hotizon where the sun sets, when he crosses the equinoctial, or enters the sign Aries or Libra.

Occident Estival, that puint of the horizon where the sun sets at bis entrance into the sign Cancer, or in our suramer when the days are longest.

Occident Hybernal, that point of the horizon where the sun sets at midvinter, when entering the sign Capricorn.
Occidextal Horizon. See Horizon.
OCCULT, in Genmetry, is used for a line that is scarce perceivable, drawn with the point of the compasses, or a black-lead pencil. Occult or dry lines are used in several operations; as the raising of plans, designs of building, pieces of perspective, \&e. They are to be effaced or rubbed out when the work is finished.

OCCULTATION, the obscuration of any ster or planet, by the interposition of the body of the moon, or any ether planet.-The occultation of a star by the moon, if
observed in a place whose latitude and longitude are well determined, may be applied to the correction of the lunar tables; but if observed in a place whose latitude only is well known, it may be applied to the deternining the longitude of the place.

Circle of Perpetual Ocevlitation. See Circle.
OCEAN, the vast collection of salt water, which encompasses most parts of the earth. By computation, it appears that the ocean takes up considerably more of what we know of the terrestrial globe, than the dry land does. This is perhaps easiest known, by taking a good map of the world, and with a pair of scissars clipping out all the water from the land, and weighing the two parts separately: by which means it has been found, that the water occupies ebout two-thirds of the whole surface of the globe.

The great and universal ocean is sometimes, by geographers, divided into three parts. As, 1st, the Atlentic and European ocean, lying between part of Europe, Africe, and America; 2d, the Indian ocean, lying between Africa, the East-Indian islands, and New Holland; 3d, the Pacific ocean, or great south sea, which lies between the Philippine islands, China, Japan, and New Holland on the west, and the coast of America on the east. The ocean also takes divers other names, secording to the different countries it borders on: as the British ocean, German ocean, \&ec. Also according to the position on the globe ; as the northern, southern, eastern, and western oceans.

The ocean, penetrating the land at several straits, loses its name of ocean, and assumes that of sea or gulph; as the Mediterranean sea, the Persian gulpb, \&c. In very narrow places, it is called a strait, \&c.

OCTAEDRON, or Octanenton, ode of the five regular bodies; contained under 8 equal and equilateral triangles.-It may be conceived es consisting of two quadriateral pyramids joined together at their hases.

To form an Octacdron. Join together 8 equal and eqzi-
lateral triangles, as in fig. 1 ; then cut the lines half through,

and fold the figure up by these cut lines, till the extreme edges meet, and form the octaedron, as in figure 2.-In an octaedron, if
a be the linear edge or side,
a its whole suriace,
c its solidity, or solid content,
a the radius of the circumscribed sphere, and
r the radius of the inscribed sphere: Then
$\mathrm{A}=\mathrm{r} \sqrt{ } 6=\mathrm{R} \sqrt{ } 2=\frac{1}{6} \mathrm{~B} \sqrt{ } \mathrm{~S}=\sqrt[3]{3} \mathrm{c} \sqrt{ } 2$.
$\mathbf{a}=12 r^{2} \sqrt{3}=4 \mathrm{a}^{2} \sqrt{3}=2 \mathrm{~A}^{2} \sqrt{ } 3=6 \sqrt[3]{1} \mathrm{c} \sqrt[2]{ } 3$.
$c=4 r^{3} \sqrt{3}=\frac{4}{3} R^{3}=\frac{1}{3} A^{3} \sqrt{2}=T_{1}^{\prime} r^{n}(B \sqrt{3})$.
$\mathbf{B}=r \sqrt{3}=\frac{4}{4} \mathrm{~A} \sqrt{2}=\frac{1}{2} \sqrt{ } \mathrm{~B}^{1} \frac{1}{3}=\sqrt[3]{\frac{1}{4}} c$.
$r=\frac{1}{3} \mathrm{n} \sqrt{ } 3=\frac{1}{6} \mathrm{~A} \sqrt{ } 6=\frac{1}{8} \sqrt{ }(\mathrm{~B} \sqrt{ } 3)=\frac{1}{2} \sqrt{ } / \mathrm{c} \sqrt{\frac{1}{3}}$.
See my Mensuration, pa. 188, 4th edition.
OCTAGON, is a figure of 8 sides and angles; which, when these are all equal, is also called a regular ote, or may be inscribed in a circle.

If the side of a regular octagon be $s ;$ then
Its area $=2 s^{2} \times(1+\sqrt{2})=4^{2} 3284271 s^{2}$; and the radius of its circumse. circle $=\frac{1}{\sqrt{2}-\sqrt{x})}$.

Octagon, in Fortification, denotes a place that has 8 sides, or 8 bastions.
OCTANT, the 8th part of a circle.
Octant, or Octile, means also an aspect, or position of two planets, when their places are distant by the 8th part of a circle, or 45 degrecs.

OCNAVE, or 8 th, in Music, is an interval of 8 sounds; every 8 th note in the scale of the gamut being the saine, as far as the compass of music requires.
Tones, or sounds, that are octaves to each other, or at an octave's distance, are alike, or the same nearly as the unison. In this case, the more acute of the two makes exactly two vibrations, while the deeper or graver makes but one; whence, they coincide at every two vibrations of the acuter, which, being more frequent, makes this concord mure perfect than any uther, and as it were an unison. Hence also, it happens, that two chords or strings, of the same matter, thickness, and tension, but the one double the length of the other, produce the octave.

The octave coutaining in it ull the other simple concords, and the degrees being the differences of these concords; it is evident, that the division of the octave comprehends the division of all the rest. By joining therefure all the simple concords to a common fundamental, we bave the following series
$1, \frac{1}{6} \cdot \frac{4}{3} \cdot \frac{1}{4} \cdot \frac{4}{4} \cdot \frac{1}{3} \cdot \frac{1}{4} \cdot \frac{4}{3}$ Fund. 3d $t, 3 \mathrm{~d} g$, 4 th , 5 th, 6 th l, 6th $g, 8 v e$.

Mr. Malcolm observes, that any wind instruinent being over-blown, the sound will rise to an octave, and no other concurd ; whicb he ascribes to the perfection of the octave, and its being next to unison. "

Descartes, from an observation of the like kind, viz, that the sound of a whistle, or organ pipe, will rise to an octave, if forcibly blown, concludes, that no sound is
heard, but its acute octave seems some way to echo or resound in the ear.

OCTILE. Sec Octant.
OCTOBER, the 81h month of the year, in Romulus's calendar; but the tenth in that of Numa, Julius Casar, \&c, after the addition of January and February. This month contains 31 days; about the 22d of which, the sun enters the sign Scorpio, M.

OCTOSTYLE, in Architecture, the face of a building adoroed with 8 columns.

ODD Number, in Arithmetic, is any number in the series 1, 3, 5, 7, \&c. At odd number, \mathbf{u} hen divided by 2, always leaves the remainder 1 ; and bence all odd numbers are said to be of the form $2 n+1$, and all odd square numbers of the form $8 n+1$, that ix, any odd square number, being divided by 8 , always leaves the remainder 1: thus $9=8+1,25=3 \cdot 8+1,49=6 \cdot 8+1, \& c$.

The difference of all the consecutive square numbers, beginuing with units, forms the series of odd numbers, 1 , $3,5,7,9, \& c$, as appears by subtracting each pieceding square from the fullowing one, in the series of squares.
$\begin{array}{lllllllll}\text { Synares } & 1 & 4 & 9 & 16 & 25 & 36 & 49 & \text { dc. }\end{array}$
Difirrences 1, 3, 5, 7, 9, 11, 13, dkc.
An odd number cannot be divided by all even number.
Every prime tumber cxecet $\&$ is an odd number.
Any poner of an odd number is an odd number.
If an odd number divide an even number, it will also divide half that even number.

Every odd number prime to 10 , is a divisor of any repetend digit. Sre Nusmer.

ODINI-ODI). A nutuber is said to be oddly-odd, when an odd number measures it by an odd number. So 15 is a nutnier oditly-edd, breause the odd number 3 masuas it by the odd number 5 .

OFFING, or OHIN, in Navigation, that part of the sea which is at a consideralile dislance from shore; where there is decp water, and no need of a palot to conduct the ship into port.

OFFSE:I'S, in Surveying, are the perpendiculars let fall, and measurd from the station lincs, th the corners or bends in the brdge, fence, or boundary of any ground.

Ofrset-Siaff, a slender rod or stafi; of 10 links, or other consentent length. Its wse is fur measuring the offsetts, and uther short lines and distaness.

OFFWARD, in Navigation, the same with Fiom the shore, Ac.

OGFF, or OG, an ornamental moulding in the shape of an S; consisting of two members, the one concave, and the other cousex.

OLBERS, is a name given by some astronomers to a new plane discovered by Dr. Olbers at Bremen, on the 28ih of March 1802. It is thus mamed in honour of this indefatigabie astronomer, who has since, siz, on the 29th of Masch 1807, discovered a second new planet, to which he has given the name of Viesta; the first having also receised the appellation of tallas. The former of these might be otherwise named Oibers ${ }^{4}$, and the latter Olbers ${ }^{2}$. The elements of each may be found under their respective names. See Pallas and Vesta.
OLDENBURG' (HeNay), who wrote bis name sometimes Grubes dol, transposing the letters, was a learned German getitioman, and born in the duchy of Bremen in the Lower Saxony, about the year 1626, bring descended from the counts of Aldenburg in West phalia; whence his name. During the long English parliament in the time
of Charles the 1st, he came to England as consul for his countrymen; in which capacity he remained at London in Cromwell's administration. But being discharged of that employment, he was engaged as tutor to lord Heary Obrynn, an lrish nobleman, whom the attended to the university of Orford ; and 1 ± 1656 he entered himself a student in that aniversity, chinfly to have the benefit of consulting the Rodleian library. He was afterwards appointed tutor to lord Wilham Cavendroh, and became intimately acquainted with Milton the poel. During his residence at Oxford, he bucame also ecquainted with the members of that suciety there, which gave birth to the Royal Society; and on the establishing of this latter, he was elected a nember of it: and when the Society found it necessary to have two secrrtaries, he was chosen assistant to Dr. Wikins. He applicd himself with extraordinary diligence to the duties of this office, and began the publication of the Philosophical Transactions winh No. 1, in 1664. In order to discharge this task with more credit to bimself and the Suciely, lie held a correspondence with more than seveuty learued persons, and others, on a great variety of subjecis, in different parts of the world. This fatigue would have bevn inaupporiable, had he not, as he told Dr. Lister, managed it so as to make one letter answer another; and that, to be always fresh, he never read a letter before he was ready immediately to answer it: so that the multitude of his letters did not embarrass him, nor ever lie upon bis hands. Among others, he was a constant correspondent of Mr. Robert Buyle, and he translated many of that ingenions genileman's works into Latin.

About the yrar 1674 he was drawn into a dispute with Mr. Hewk", who complained, thut the secretary bad not done him justice, in the llistory of the Transactions, with respect to the invention of the spiral spring for pocket watches; the contest was carried on with some warmth on both sides, but was at length terminated to the honour of Mr. Oldenburg; for, pursuant to an open representarion of the affair to the Royal Society, the council thought fit to declace, ill behalf of their secretary, that they knew nothing of Mr. Hooke having printexl a book entitted Lampas, \&c; but that the publisher of the Transactions had conducted himself faithtully and honestly in managing the intelligence of the Royal Society, aud that he had given no just cause for such reflections.

Mr. Oldenburg continued to publish the Transactions as before, to No. 136, June 25, 1677 ; after which the publication was discontinued till the January following; when they were again resumed by his successor in the secretary's office, Mr. Nebemiah Grew, who carried them on till the end of Pebruary 1678. Mr. Oldenburg died at his house at Charlton, between Greenuich and Woolwich, in Kent, Augusi 1677, aud was interred there, being near 52 years of age.

Ife published, besides what has been already mentioned, 20 tracts, chiefly on theological and political subjects; in which be principally aimed at reconciling differences, and promoting peace and unanimity.

OLYMPIA1), in Clironology, a revolution or period of 4 years, by which the Greeks reckoned their time : so called from the olympic games, which were celebrated every 4 th year, during 5 days, near the summer solstice, on the banks of the river Alplieus, nearOlympia, a town of Elis. As each olympiad consisted of 4 years, these were called the 1 st , $2 \mathrm{~d}, 3 \mathrm{~d}$, and 4 h year of each olympiad; the first year commencing with thenearest new moon to the summer sulstice.

The first olympiad began the 3938th year of the Julimn periad, the 3208th of the creation, 776 years before the birth of Clarist, or 24 years betore ihe foundation of Rome. And the computation by these ended with the 40sth olympiad, beung the 440th year of the present vulgar Christian era.

OMBROMETER, a name given by Mr. Roger Pickering (Philos. Trans. No. 473,) to what is more cummonly, though less properly, called a plusianeter or rain-gage. Sce Pluviameten.

OMPHALOPTER, or OMPHaloptic, in Optics, a glass that is convex on both sides, popular!y called a convex lens.

OPACITY, a quality of bodies which renders them opake, or the contrary of transparcncy.

The Cartestans make opacity to consist in this, that the pores of the body are not all straight, or directly before each other; or rather not pervions every way. This doetrine however is deficient : for though, to have a body transparent, its pores mist be straight, or rather open every way ; yet it is inconceivable how it should happen, that net oilly glass and dianonds, but even water, whose parts are so very moveable, should have all their pores open and pervious every way; while the fiucst paper, or the thimest gald leaf, should exclude the light, for want of such pores. So that another cause of opacity must be sought for.

Now all bodics have vastly more pores or vacuities than are necessary for an infinite number of rays to pass freely through thein in right lines, withoutstriking on any of the parts themselves. For siuce water is 19 times lighter or rarer than gold; and yet gold itself is so very rare, that magnetic eftluvia pass freely through it, without any opposition; and quicksilver is readily received within its pores, and even water itself by compression ; it must have much more pores than solid parts: consequenly water must have at least 40 times as much vacuity as solidity.

The cause therefore, why some budies are opake, does not consist in the want of recthlinear pores, pervious every way; but cither in the unequal density of the parts, or in the magnitude of the pores; and to their being either empty, or filled with a different matter; by means of which, the rays of liglt, in their passage, are arrested by innuinerable refractions and reflections, tillat length falling on some solid part, they become quite extinct, and are utterly absorbed.

Hence cork, paper, wood, \&c, are opake; while glass, diamonds, \&ce, are pellucid. For in the confines or joining of parts alike in density, such as those of glass, water, diamonds, \&c a mong thernselves, no refraction or reflection takes place, because of the equal attraction every way; so that such of the rays of light as enter the first surface, pass suraight through the body, excepting thuse that are lost and absorbed, by striking on solid parts: Lut in the bordering of parts of unequal density, such ns those of wood and water, both with regard to themselves, and winh regard to the air or empty space in their larger pores, the attraction being unvqual, the reffections and refractions will be very greal; and thus the rays will not be able to pass through such bodies, being continually driven about, till they become extinct.

That this interruption or discontinuity of parts is the chief cause of opacity, Sir Isach Newton argues, appears from hence; that all opake bodies immediatcly begn to be trauspurent, when their pores become filled with a sub-
stance of nearly equal density with their parts. Thus, paper dipped in whter or oil, some stones streped in water, linen cloth dipped in oil or vinegar, \& c , become mure tran-parent than before.
$\mathrm{OP}, \mathrm{KE}, \mathrm{n}$, translucent, nor transparent, or not admitting a free passage to the rays of light.

Ul'EN Flawk, in fortitication, is that part of the flank which is covered by the orillon or shoulder.

OPENIN(: of the Trenches, is the first breahing of ground by the besegeres, in order to carry on their approaches townards a place.

OPERA-Giust, is Opucs, is so culled from its use in play-houses, and sumetinies a Diagonal l'irspective, from its construction, which is as follows. A BCD (fig. 5, pl.21) represents a tube about 4 incheslong; in each sideot which there is a hole EY and 611 , exactly against the middle of a plane mirror t K , which reflects the rays falling upon it to the convex glass LM ; through which they are refracted to the concave eye-glass no, whence thry emerge parallel to the eye at the hole r, in the end of the tube. Let paq be an object to be viewed, from which proceed the rays PC, $a b$, and $q d$: these rays, being reflectid by the plane mirror 1 k , will show the object in the direction $\mathrm{cp}, b a, d q$, in the image $p q$, equal to the object rq, and as far behind the mirror as the object is before it: the mirror being placed so as to make anangle of 45 degrees with the sides of the tube. And as, in viewing near objects, it is not necessary to magnify them, the focal distances of both the glasses may be nearly equal ; or if that of $2 \times$ be 3 inches, and that of wo one inch, the distance between them will be but 2 inches, and the object will be magnified 3 times, being sufficient for the purposes to which this glass is applied.

When the object is very near, as x x , it is viewed through a hole xy, at the other end of the tube AB, without an eye-glass; the upper part of the mirror being polished for that purpose, as well as the under. The tube unscrews near the object-glass Lm , for taking out and cleansing the glasses and mirror, The position of the object will be erect through the concave eyc-glass.

The peculiar artifice of this glass is to view a person at a small distance, so that no one shall know who is observed; for the instrument points to a differeut object from that which is viewed; and as there is a bole on each side, it is impossible to know on which hand the object is situated, which you are viewing.

OPHIUCUS, a constellation of the northern hemisphere; called also Serpentarius.

OPPOSITE Angles, or Vertical Angles, are those opposite to each other, made by two intersecting lines; as a and b, or c and d. -The opposite angles are equal to each other.

Oppontte. Cones, denote two similar concs vertically opposite, having the same common vertex and axis, and the same sides produced; as the cones A and B.

Oprosit e Sections, or Hyperbolas, are those made by cutting the opposite cones by the same plane; as the hyperbolas \mathbf{C} and \mathbf{D}.-These are always equal and similar, and have the same transverse axis $E F$, as also the same conjugate axis.

OPPOSITION, is that aspect or situation of two planets or stars, when they are diametrically opposite to each other;

being 180°, or a semi-circle apart ; and marked thus 8 . -The moon is in opposition to the sun when stee is at the full.

UPTIC, or OPTICA L, something that relates to vision, or the seriee of sacing, or the science of optics.

Optic Angle. See Angle.
Optic Aris. See Axis.
Optic Chamber. Sce C'amera Obach: a.
Optic Ciluses, are glasses ground ether concave of convex; so as cither to collect or disperse tise rays of light; by which means vision is imprused, and the eye strengthened, preseridd, isc.-Among these, the pancipal are spectacles, reading glasses, telescopes, inicruscopes, Inagic lanterns, \&c.

Ortic Inequality, in Astronomy, is an apparrnt irregularity in the motions of very distant bodies; so called, because it is not really in the moving bodies, but arising from the situation of the obscrver's cye. For it the eye were in the centre, it would always see the motions as they really are.

The optic inequality may be thus illustrated. Suppose a body revolving with a real unilorm motion, in the periphery of a circle $A B D \& C$; and suppose the eye in the plane of the same circle, but at a distance from it, viewing the motion of the body from o. Now when the body goes from a to B ; its apparent motion is measured by the avgle AOB or the arch or line
 nL, which it will appear to describe. But whilc it moves through the arch nd in an equal time, its apparent motion will be determined by the angle nod, or the arch or line Lam, which is less than the former Lin. But it spends the same time in describing DE , as it does in AB or BD; during all which time of describing DE it appears stationary in the point M. When it really describes evote, it will appear to pass over menkw; so that it will seem to have gone retrograde. And lastly, from \mathbf{Q} to \mathbf{P} it will again appear stationary in the point N .

Opric Nerver, the second pair of nerves, springing from the crura of the medulla oblongata, and passing thence to the eye. These are covered with two coats, which they take from the dura and pia mater; and which, by their expansions, form the two membranes of the cye, called the uvea and cornea. And the retina, which is a third membrane, and the immediate organ of sight, is only an expansion of the fibrous, or inner, and medullary part of these nerves.

Optic Pencil. See Pencil of Rays.
Optic Pyramid, in Perspective, is the pyramid a beco, whose base is the visible object ABC, and the vertex is in the eye at 0 ; being formed by rays drawn from the

several points of the perimeter to the eyc. Hence may appear what is meant by optic triangle.

Oprtic Place, of a star, \&ce, is that point or part of its orbit, which is determined by our sight, whell the star is seen there. This is either true or apparent; true when the observer's cye is supposed to be at the centre of the motion; or apparent, when his eye is at the circumference of the earth. See also Place.

Optic Rays, particularly means those by which an optic pyramid, or optic trangle, is terminated. As OA, un, uc, Ac.
OPTICIAN, a person skilled in optics.
OP'IICS, the science of vision ; including Catoptrics, and Dioptrics; and even Perspective; as also the whole doctrine of light and colours, and all the phenomena of visible objects.

Optics, in its more extensive acceptation, is a mixed mathematical science; which explains the manner in which vision is perfirmed in the eye; treats of sight in general ; gives the reasons of the several medifications or alterations, which the rays of light untergo in the ege; and shows why objects appear sonctimes greater, sonetimes smaller, sometimes more distinct, sometimes nore confuset, sometimes nearer and sometimes more remote. In this extensise signticution it is considered by Newton, in his excellent wi rh on this science. Indeed optics mukes a considetable branch of natural philosophy ; both as it expluins the taws of ature, nccording to which vision is performcd; and us it acceunts fur a variety of physical phenomena, othervisc inexplicable

The principal authors and aiscoveries in Optics, are the following:-E.uclid sermis to be the earliest author on optics that we hase. He composed a treatise on optics and catoptrics ; dinpurics beingless known to the ancients; though it was not entircly unh nown 10 hom, for among the phenomena, at the beginning of that wark, Euclid remarks the effiect of bringing un object into view, by refraction, in the bottoth, of a vessol, by pobritg water into it, which could not be seen over the edge of the vessel, before the water was poured in; and other authors speak of the then known effects of glass globas $\mathbb{E} \mathrm{c}$, both as burning glasses, und as to bodies scen through ibem. Euclid's work however is chiefly on catuptrics, or rellected rays; in whicit he shows, in 31 propositions, the chicf properties of them, buth in plane, conver, and concsve surfaces, in his usual geometrical manner; inginning with that concerning the equality of the angles of incidence and reHection, which he demonstrates; and, in the last proposition, showing the effect of a concave speculum, as a burning glass, when exposed to the rays of the sun. The efiects of burning glasses, both by refraction and reflection, are noticed by several others of the ancients; and it is pronable that the Romans had a method of lighing their sacred fire by some such means. Aristophanes, in one of his comedies, ituroduces a person as making use of a globe filled wish water to cancel a bond hat was against him, by thus melting the wax of the seal. And if we give but a small degree of credit to what some ancient historians are said to have written concerning the exploits of Archimedes, we shall be induced to think that he constructed some very powerful burning mirrors, It is said that this eminent geometrician wrote a treatise on the subject of them, though it be not now extant; as also cullcerning the appearance of a ring or circle under water, and therefore could not bave been ignorant of the com-
mon phenomena of refraction. We find many questions conerrning such optical appearances it Aristotle. This author was also sensible, that it is the reflection of light from the atmosphere which prevents total darkness atter the sun sets, and in places where he does not shine in the day-time. He was ulso of opinion, that rainbows, balus, mind mock suns, were all uccasioned by the reflection of the suabeams in diflerent circumstances, by which an inperiect image of his body was produced, the culour only being exlikited, and not his proper ligure.

The ancients were not only acquainted with the more orilinary appearances of relraction, but knew also the production of colours by refracted light. Seneca says, that when the light of the sun shines through an angular piece of glass, it shows all the colours of the rainbow. 'S hese colours however, he sajs, ure false, such as are seen in a pigeon's neck when it changes its postion; and of the sane nature he says is a speculum, which, without having any colour of its own, assumes that of any ollocr body. It appears also, that the ancients were not tuacquamed with the magnifying power of glass globes filled with water, though it does nut appear thut they knew any thing of the reason of this power: and it is supposed that the ancient engravers made use of a glass globe filled with water to magnify their tigures, that they might work to more advantage.

Ptolemy, about the middle of the second century, wrote a considerable treatise on optics. The work is lust; but from the necounty given of it by others, it appears that lie there treated of sstronomical refractions. The first astronomers were not aware that the intervals between stars appearless when near the horizon than in the meridian; and on this account they must have been much embarrassed in their observations: but it is evident that Ptolemy was aware of this circumstance by the caution which he gives to allow sometbing for it, whenever recourse is had to ancient olservations. This philusopher also udwaces a very sensible hypothesis to account for the remarkably great apparetnt suze of the sun and moon when seen near the horizon. The mind, be say ys, judges of the size of objects by means of a preconceived idea of their distance from us: and this distante is lancied to be greater when a number of objects are interposed betwecta the cye and the body we are viewing: which is the case when we see the beasenly budies near the horizon. In his Almagest, however, he ascribes this appvarance to a refraction of the rays by vapotrs, which actually cularge the angle under which the luminaries appear; just as the angle is enlarged by which an cbject is seen from under water.

Alhazen, an Arabian writer, was the next autbor of any celebrity, and wrote ubout the year 1100. Alhazin tuade many experiments on refraction, at the surface between air and water, nir and glass, and water and glass; and hence be deduced several properties of atmospherical refraction; such as " that it increases the altitudes of all oljects in the heavens;" and be finst advanced that the stars are somefimes seen above the hutizon by means of refraction, when they are really below it: which ubservation was contirimed by . Vitello, Walther, and especially by the obserrations of Tycho Brahie. Alhazen observed, that relraction contracts the diameters and distances of the heavenly boulies, and that it is the caue of the iwinkling of the stars. This refractive power be ascribed, not to the vapours contained in the air, but to its ditiesent
degrecs of transparency: And it was his opinion, thnt so far from vapour being the cause of the beavenly bodu's appearing lasger noar the horizon, that it would make them appear less; observing that twil stars appear neaner together in the horizon, wan near the nicridian. 'This phenomenon he ranks among oplical deceptions. We judge of distanct, be say, by companing the angle under which objects appear, with their supposed distance; so that if these angles be nearly egual, and the dislance of one object be concerved greater than that of the other, this will be imagined to be lageg. And he further obselves, that the sky near the horizon is always imagined to be farther from us than uny other part of the concave surface.

In the writings of Albazen, we also find the first distinct account of the magnifying power of glasses; and it is not improbable that his wrining on this liend gave rise to the useful invention of spectacles: fur he says, that if an object be upplied cluse to the base of the larger segment of a sphere of glass, it will appear magnufied. He also treats of the appearance of an object lhrough a globe, and says that he was the first who observed the refraction of rays trito it.

In 1270, Vitello, a native of Poland, published a treatise on optics, containing all that was valuable in Alhazen, and digested in a better manner. He observes, that light is always lost by refraction, which makes objects appear Jess luminous. He gave a table of the restulis of his experimens on the refractive powers of air, water, and glass, corresponding to differen angles of incidence. He ascribes the twinkling of the stars to the motion ol the air in which the light is refracted; and he illusiates this bypothesis, by observing that thry twinkle still more when viewed in water put in motion. He also shows, that refraction is necessary, as well as reflection, to form the raintrow ; be cause the body which the rays fall upon is a iransparent substance, wt the surface of which one part of the light is always reflected, and another refracted. And he makes some ingenious attempts to explain refraction, or to ascertain the law of it. He also considers the foci of glass spheres, and the apparent size of objeces seen through thers; though with but little accuracy. 'To Vitello may be araced she idea of secing images in the arr. He endeavours to show, that it is possible, by means of a cylindrical convex speculum, to see the images of objects in the air, out of the speculinn, when the objecis themselves cannot be seen.-The Optics of Alhazen and Vitello were published at Basil in 1572 , by Fred. Risner.

Contemporary with Vitelli," was Ruger Bacon, a man of very extenave genius, who wrote upon aimmst cvery branch of science; though it is thought his improvemens in optics were not cafricd far bryond those of Albazen and Vitello. He cven assents to she nbsurd notion, held by all philosophers down to his time, that visible rays proceed from the eye, instead of lowards it. From many elories related of him however, it would seem, that he made greater improvements than appear in his wrilings. It is said he had the use of spectacles; that he had contrivances, by reflection from glasses, to see what was doing at a grcat distance, as in all enemy's camp. And lord chancellor Bacon relates a story, of his having upparently walked in the air between two sierples, and which be supposed was effected by ieflection from glasses, while he walked upon the ground. See the article Bacon.

A bout 1279 was written a truatise oll optics by Peccata, archluslop of Cianterbury.

Oue of the next who distinguished himself as a theoretical optician, was Maurolyc, teacher of nothematics at Mensina. In a treatise De Lumme et Umbia, jublished in 1575 , he demonsirates, that the crystalline liumour of the eye is a lens that coliects the rays of hght issuing trom the objects, und throws them uprun the relua, where the focus of each pencil is siluated. Fiom sbas principle he discovered the reason why some people are short-sighted, and others long-sighted; also why the former are relieved by concave glasses, and the others by convex ones.

Contempurary with Manrolyc, was John Baprista Porta, of Naples. He discovered the camera obscura, which throws considerable light on the nature of vision. Ilis bouse was the conslant resort of all the ingenious persons at Nuples, whom he formed into what he culied An Academy of Secrets ; each inember being obliged to contribute something that was not generally hnown, and might be, us.ful. By this means he whs Jurnished with inaterials for his Magia Naturalis, which comans his account of the camera obscura, und the first cdition of which was published, as he informs us, when he was not quite 15 ycars old. He also gave the first lint of the magic lantein; which Kircber afterwards follotwed and improved. His experiments whth the came ra obscura convinced him, that vision is perfurmed by the intromission of something into the eye, and not by visual rays proceeding from it, as had been formerly imagined; and the was the first who fully satisfied limself and others on this subject. He justly considered the eye as a camera olscura, and the pupit the hole in the window-shutter; but he was mistaken in supposing that the crystalliuc humour corresponds to the wall which reccives the inages; nor was it discovered till the year 1604 , that this office is performed by the retina. Je made a variely of just remarks concerning vision ; and particularly explaned several cases in which we imagine things to be winhout the cye, when the appearances are vecasioned by some affection of the eye itself, or by some motion whhin the eye.- He remarked also that, in certain circumstances, vision will be assisted by convex or concave glases; and he seems even to have made some small advances towards the discovery of telescopes.

Ohber treatises on eptics, wish various and gradual improvetments, were afterwards successively published by several aushors: as Aguilon, Oplicoruin hibr. 6, Antv. 1613: L.Optique, Catoptrique, et Dioptrique of Iterigone, in his Cursus Mlash. Paris 1637 : the Dioptrics of Descarles, 1637 : L'Upique et Cutoptrique of Mersenne, Paris 1651: Scheiner, Optica, Iond. 1659: Manchini, Dioptrica Prachica, Bolagna, 1660 : Barrow, Lectiones Opicx, London 1663 : Jimes Gregory, Opuica Promoti, Lond. 1063 : Grimaldı, Physico-mathesis de Lumine, Coloribus, et Iride, Bononia, 1663 : Ecaphusa, Cogitationes Physico-mechanica de Nuıura Visionis, Heidel. 1 (ifo Kircher, Ars Magna Lucis et U'mbras, Rume 1671: Cherubin, Dioptrique Oculaire, I'aris 1671: Leubhitz, Principe Gerierale de l'Optigue, Leipsic Acts 1682 : Newson's Oplics and Iectiones Opticar, 4to nnd 8vo, liot \&c : N:olyneux, Dioptrics, Lond. 1699 : Dr. Jurin's 'Theory of Disninct and Indistinct Vision.-There is also a large and exccllent work on optics, by Dr. Smith, 2 vols 4 to ; and an elaborate history of the present state of discoveries re lating to vision, light, and colours, by Dr. Priestley, 4to,

1772 ; with a multitude of other authors of inferior note; besides lesser and occasiunal tracts and papers in the Mcmoins of the several learned Academies and Societies of Europe; with inprovements by many other persoas, among whoin are the respectable names of Snell, Fermat, Kepler. Huygens, Hortensius, Boyle, Hocke, Lahire, Lowthorp, Cassini, Halley, Delisle, Euler, Dollond, Clairaut, Dalembert, Zciher, Bouguer, Bufinn, Nollet, Baume; but the particular insprovernents by each author mut be referred tu the bistory of his life, under the articles of their names; while the hivtory and improvements of the several branches are to be found under the various particular articles, as, Light, Colours, Refleetion, Refraction, Intiection, Transinission, \&c, Spectacles, Telescope, Microscope, \& c, \&c.

ORB, a splaerical shell, hollow sphere, or space contained between two concentice spherical surfaces.- The ancient astronomers conceived the beaveas as consisting of several vast azure transparent orbs or spheres, inclosing one another, and including the bodies of the planets.
The Orbis Mugnus, or Great $\mathrm{Okm}_{\mathrm{k}}$, is that in which the sun is supposed tu revolve; or rather it is that in which the earth makes its annual circuit.

OHBIT, is the prath of a planet or comet; being the curve line described by its centre, in its proper motion in the heavens. So the crarth's orbit, is the ecliptic, or the curve it describes in its annual revolution about the sun.
The ancient astronomers mule the planets describe circular orbits, with a uniturn velocity. Copernicus himself could not believe they should do otherwise; being unable to disentangle himself entirely from the excentrics and epicycles to which they had recourse, to account for the inequalities in their motions.
But Kepler found, from observations, that the orbit of the earth, and that of every primary planet, is an ellipsis, having the sun in one of its toci; and that they ull move in these ellipses by this law, that a radius drawn from the centre of the sun to the centre of the plauet, always describes equal areus in equal times; or, which is the same thing, in unequal times, it describes ureas that are proportional to those times. And Newton has since demonstrated, from the nature of universal gravitation and projectile motion, that the orbits must of necessity be ellipses, and the motions are found to'observe that law, both of the primary and secondary planets; excepting in so far as their notions and paths are disturbed by their mutual actions on ote another; as the orbit of the earth by that of the moon; or that of Saturit by the action of Jupiter; \&c:

Of these elliptic orbits, there have been two kinds assigoed; the fint that of Kepler and Newton, which is the comron or conical ellipse; for which Seth Ward, though be himself employs it, thinks we might venture to substitute circular orbts, by using two points, taken at equal distances form the centre, on one of the diameters, is is done in the foci of the ellysis, and which is called his Circular Hypothesis. The second is that of Cassini, of this mature, inz, that the products of the two lines drawn from the two foci, to any point in the circuinference, are everywhere equal to the same constant quantity; whereas, in the common ellipse, it is the sum of those two lines that is always a constant quantity.

The orbits of the planets are not all in the same plane with the ecliptic, which is the earth's orbit round the sun, but are variously inclined to it, and to each other: but still the plane of the ecliptic, or earth's orbit, intersects

Vol. 11 .
the plane of the orbit of every other planet, in a right line which passes through the sun, called the line of the nodes, and the points of intersection of the orbits theruselves are called the nodes.

The mean semidiameters of the several orbits, or the mean distances of the plancts from the sun, with the excentricities of the orbits, their inclination to the eclipuc, and the places of their nudes, are as in the following table; where the 2d column contains the proportions of seminliameters of the orbits, the true semidiameter of that of the earth being 95 millions of miles; and the 3 d columnshows what part of the semidiamcters the excentricities are equal to.

The orbits of comets are also very excentric ellipses.
ORDER, in Architecture, a system of the several members, ornaments, and proportions of columus and pilasters, or a regular arrangement of the projecting parts of a building, especially the column, so as to form one beautiful whole.

There are five orders of coluruns, of which three are Greek, viz, the Doric, Ionic, and Corinthian; and two Italic, viz, the Tuscan and Coroposite. The three Greek orders represent the three different manners of building, viz, the solid, the delicate, and the middling: the two Itulic ones are imperfect productions of these.

Order, in Astronomy. A planet is said to move according to the order of the signs, when it is direct ; proceeding from Aries to Taurus, thence to Gemini, \&c. As, on the contrary, its motion is contrary to the order of the signs, when it is retrograde, or goes backward, from Pisces to Ayuarius, \&c.

Order, in the Geometry of Curve Lines, is denominated from the rank or order of the equation by which the geometrical line is expressed ; so, the simple equation, or 1st power, denotes the 1st order of lines, which is the right line; the quadratic equation, or 21 power, defines the ed order of lines, which are the conic sections and circle; the cubic equation, or 3 d power, defines the 3 d order of lines ; and so ous.
Or, the orders of lines are denominated from the number of points in which tirey may be cut by a right line. Thus, the right line is of the lst order, because it can be cut only in one point by a right line; the circle and conic sections are of the 2 d order, because they can be cut in two points by a right line; while those of the Sd order, are suchas can be cut in three points by a right line; and so on.

It is to be observed, that the order of curves is always one degree lower than the corresponding line; because the lst order, or right line, is no curve; and the circle and

T
conic sections, which are the 2 d order of lines, are only the ist order of curves; \&c. See Curves and Lines. Also Newton's Enumeratio Linearum Tertii Ordinis.

ORDINATES, in the Geometry of Curve Lines, are right lines drawn parallel to each other, and cutting the curve in a certain number of points.

The parallel ordinates are usually all cut by some other line, which is called the absciss, and commonly the ordinates are perpendicular to the abscissal line. When this line is a diameter of the curve, the property of the ordinates is then the most remarkable; for, in the curves of the first kind, or the conic sections and circle, the ordinates are all bisected by the diameter, making the part on one side of it equal to the part on the other; and in the curves of the 2 d order, which may be cut by an ordinate in three points, then the three parts of the ordinate, lying between these three intersections of the curve and the intersection with the diameter, have the part on one side the diameter equal to both the two parts on the other side of it. And so for curves of any order, whatever the number of intersections may be, the sum of the parts of any ordinate, on one side of the diameter, being in all cases equal to the suin of the parts on the other side of $i t$.

The use of ordinates in a curve, and their abscisses, is to define or express the nature of the curve, by means of the general relation or equation between them; and the greatest number of factors, or the dimensions of the highest term, in such equation, is always the same as the order of the line; that equation being a quadratic, or its highest term of two dimensions, in the lines of the 2d ordet, being the circle and conic sections; and a cubic equation, or its highest term containing 3 dimensions, in the lines of the 3 d order ; and so on.

Thus, y denoting an ordinate $n c$, and x its absciss AB; also $a, b, c, \& c$, given quantities : then $y^{1}=a x^{2}+b x+c$ is the general equation for the lines of the 2d order; and $x y^{2}-c y=a y^{3}+b x^{2}$ $+c x+d$ is the equation for the lines of the 3 d order; and 30 on.

ORDNANCE, are all sorts of great guns, used in war; such as cannons,
 mortars, howitzers, \&c.

ORFEYREUS's Wheel, in Mrchanics, is a machine so callen from its inventor, which he asserted to be a perpetual motion. This machine, accurding to the account given of it by Gravssande, in his (Euvres Philosophiques, published by Allemand, Anst. 1774, consisted externally of a large circular wheel, or rather drum, 12 feet in diameter, and 14 inches deep; being very light, as it was formed of an assemblage of deals, having the intevvals between thein covered with waxed cluth, to conceal the interior parts of it. The two extremities of an irom axis, on which it turned, rested on two supports. On giving a slight impulse to the wheel, in cither direction, its motion was gradually accelerated; so that after two or three revolutions it acquired so great a velocity as to make 25 or 26 turns in a minute. This rapid motion it actually preserved during the space of 2 momiss, in a chamber of the landgrave of Hesse, the dour of whtch was kept locked, and sealed with the landgrave's own seal. At the end of that time it was stopied, to prevent the wear of the materials. The professor, who had been an eye-witness to chese circumstances, examined all the exterual purts of
the machine, and was convinced that there could not be any communication betweell it and any maighbouring room. Orffyrcus however was so incensed, or pretended to be so, that he broke the machine in pieces, and wrote on the well, that it was the impertinent curiosity of professer Gravesande which made him take this stip. The prince of Hesse, who had seen the interior paits of this whed, but sworn to secrecy, being asked by Gravesande, whether, after it had been in mation for some time, there was uny change observable in it, and whether it contained any pieces that indicated fraud or deception, answered both questions in the neguive, und declared that the inachine was of a very simple constinction.

ORGANICAL. Description of Cuves, is the description of them on a plane, by means of instruments, and commonly hy a continued motion. The most simple construction of this kind, is that of a circle by means of a pair of compasses. The next is that of an ellipse by uncans of a thread and two pins in the foci, or the ellipse and hyperbola, by means of the elliptical and hyperbolic compasses. A great variety of edscripmons of this sort are to be found in Schooten De Orgamea Conic. Sect. in Plano Descriptione ; in Newton's Arithmetica Universalis, De Curvarum Descriptione Organica: Machaurin's Geometria Organica; Blackenridge's Descriptio Lincarum Curvarum ; \&c.

OllGUFS, or Oreans, in Fortification, long and thick pieces of wood, shod with pointed iron, and hung each by a separate rope over the gate-way of a town, ready on any surprise or attempt of the enenuy to be let down to stop up the gate. The ends of the several ropes are wound about a windlass, so as to be let down all togesher.

Orgees is also used for a machune compoted of several barquebusse or musket-barrets, bound tugether; so as to make several explosions at the same lime. They are used to defind breaches and other places attarked.

ORIENT, the east, or mastern point of the horizon.
Orient Equinoctial, is used for that point of the horizon where the sun rises when he is in the equinoctial, or when he enters the signs Ares and Libra.

Ortent. Estional, is the point where the sun rises in the middle of summer, when the dars are longest.

Orient Hybernal, is the point where the sinn rises in the middle of winter, when the days are shortest.

ORIENTAL, situated towards fhe enst with regard to us: in opposinion to occidental or the west.

Onizatal Aatranomy, Thalasophy, \&c, used for those of the east, or of the Arabians, Ctaldcans, Persians, Indians, \&c.

ORILLON, in Fontification, a small rounding of carth, lined with a wall, ruised on the shoulder of those bastions that have casenates, to cover the calinon in the retired flank, and present heir being dismounted by the enering:There are other sorts of orillons, properly called epuutements, or shoulderings, which are almost of a squase figure.

OlRION, a constellation of the soublern hemisphere, winh respect to the ecliptic, but balf in the northern, and bulf on the southern side of the equinoctial, which runs actoss the midelle of his body. The stars in this censtellation are, 38 in Ptolemy's catalogue, 42 in Tycho's, 62 in Hevelius's, ind 78 in Flamsleed's. But some telescopes have discovered several thousands of stars in this constellation, of which there are 2 of the first magnitude, and 4 of the second, besides a great many of the third and
fourth. One of those two stars of the first magnitude is on the midtle of the keft foot, and is called legel; the other is on the right shoulder, and ealled Betelguese; of the 4 of the eccond magnitude, one is on the left shoulder, and ealled Bellatrix, and the other three are in the belt, lying nearly in a right line and at equal distanecs from cach other, furming what is popularly called the Yardwand.
This constellation is one of the 48 old asterisms, and one of the most remarhable in the heavens. It is in the figure of a man, having a sword by his side, and seems attacking the bull with a club in his right hand, his left bearing a shield.

No constellation was so terrible to the mariners of the early periots, as this of Oriun, Ile is mentioned in this way by all the Greck and Latin pocts, and even by their bistorians; lis ristig and settung being attended by storms and tempests: and as the northern constellations are made the followers of the Pleiades; so are the southern ones made the attendants of Orion.

The name of this constellation is also met with in Scripture several times, viz, in the books of Job, Amos, and Isaiah. In Job it is asked, "Canst thou bind the sweet itfluenec of the Pleiadey, or loose the bands of Orion ?" And Amos snys, "Seek him that maketh the Seven Stars and Orion, and turneth the shadow of death into morning."

Orson's River, the same as the constellation Eridanus.
ORLE, One et, or Orlo, in Architecture, a fillet under the ovolu, or quarter-round of a capital. - When it is at the top or bottom of the shaft, it is called the cineture. -Palladio also uses Orlo for the plinth of the bases of eolumns and pedestals,

ORRERY, an astronomical machine, for exhibiting the various motions and appearances of the sun and planets; hence often called a Planctarium. The tern Ortcry applied to this instrument, we are informed by Desaguliers, arose from the following cireumstance $:-\mathrm{Mr}$. Rowley, a mathematieal instrument-maker, having got one from Mr. Gcorge Graham, the original inventor, to be sent abroad with some of his own instruments, he copied it, and afterwards constlucted one for the earl of Orrery. Sir Richard Steele, who knew nothing of Mr. Graham's maehine, thinking to do justice to the first encourager, as well as to the iuventor of sueh a curious instrument, ealled it an orrery, and gave Rowley the praise due to Mr. Grabam. Desaguliers's Experin:. Philos. vol. 1, ph. 430. The figure of this grand orrery is exhibited at fig. 1, pl. 24. It is sinec made in sarious other figures.

ORTEIL, in Fortification. See Berme.
ORTELIUS (AbRABA ${ }^{\text {(}}$), a celebrated geographer, was born at Antwerp, in 1527. He was well skilled in the languages and mathematics, and aequired sueh reputation ty his gkill in geography, that he was surnamed the Ptolenny of his time. Justus Lipsius, and most of the learned men of the 16 th eentury, were our author's intimate friends. He passed some time at Oxford in the reign of Edwurd the 6th; and he visited England a second time in 1577.

His 'Theatrum Orbis Terre was the completest work of the kind that liad ever been published, and gained our author a reputation adequate to his inmense labour in eompiling it. Ile wrote also several other excellent geographical works; the principal of which are, his Thesaurus, and his Synonyma Geographica. - The learned world is also indebted to bim for the Britannia, which was undertaken by

Cambden at his request.-He died at Antwerp, 1598, at 71 years of age.

ORTHODROMICS, in Navigation, is Great-circle sailing, or the art of sailing in the areb of a great cirele, which is the shortest courve: for the areh of a great cirele is orthodromia, or the shortest distance between two points or places.

OITTHOGONIAL, in Geometry, is the same as rectangular, or right-angled. When the term refers to a plane figure, it supposes one leg or side to stand perpendieular to the other: when spoken of solids, it supposes their axes to be perpendicular to the plane of the horizon.

ORTHOGRAPHIC, or Orthooraphical Projection of the Sphere, is the projection of its surface or of the sphere on a plane, passing through the middle of it, by an eye vertically at an infinite distaner. Ser Projection.

ORTHOGRAPHY, in Geometry, is the drawing or delineating the front plan or side of any object, and of expressing the heights or elevations of every part: being socalled from its delineating objects by perpendicular right lines falling on the geometrieal plan; or rather, becauso all the borizontal lines are bere straight and parallel, and not oblique as in representations of perspective.

Orthograpity, in Architecture, is the profile or clewation of a building, showing all the parts in their true proportion. This is either external or internal.

Extetnal Ontiograpis; is a delineation of the outer face or ftont of a building; showing the principal wall with its apertures, roof, ornaments, and every thing visible to an eye plaeed before the building. And

Internal Orthograpiry, called also a Section, is a delineation or draught of a building, such as it would appear if the external wall were removed.

Orthograpity, in Fortitication, is the profile, or representation of a work; or a draugbt so conducted, as that the length, breadth, Leight, and thiekness of the several parts are expressed, such as they would appear if it were perpendicularly cut from top to bottom.
Orthography, in Perspective, is the front side of any plaee ; that is, the side or plane that lies parallel to a straight line that may be imagined to pass through the outward convex points of the eyes, continued to a convenient length.
ORTIVE, or Eastern Amplitude, in Astronomy, is an arch of the horizon intereepted between the point where arstar rises, and the east point of the horizon.
OSCILLATION, in Mechanics, denotes the vibration, or the reeiproenl ascent and descent of a pendulum.

If a simple pendulum be suspended between two semicycloids, BC, CD, that have the diameter CF of the generating cirele equal to balf the length of the string, so that the string, as the body \mathbf{E} uscillates, follds about them, then will the body oscillate in another eycloid AEAD,similar and equal to the former. And the time of the oscillation inanyare AE, measured from the lowest point A, is always the same eonstant quantity, whe-
 ther that are be latger or smaller. But the oscillations in a circle are unequal, those in the smaller arcs being less than those in the larger; and so always less and less as the ares are smaller,

T 2
but still greater than the time of oscillation in a cycloidal arc; till the circular arc becomes very small, and then the time of oscillation in it is very pearly equal to the time in the cycloid, because the circle and cycloid have the same curvature at the vertex, the length of the string being the common radius of curvature to them both at that point.

The time of one whole oscillation in the cycluid, or of an ascent and descent in any arch of $i t$, is to the time in which a heavy body would fall freely through CF or FA, the diameter of the generating circle, or through balf the length of the pendylum string, as the circumterence of a circle is to its diameter, that is as 3.1416 to 1 . So that if l denote the length of the pendulum CA , and $\mathrm{g}=16_{\mathrm{T}}^{\mathrm{I}}$ feet $=193$ inclies, the space through which a heavy body falis in the ist second of time, and $p=3 \cdot 1+16$ the circumference of a circle whose diameter is 1 : then by the laws of falling bodies, it is $\sqrt{ } g: \sqrt{ } \frac{1}{5} l:: 1^{\prime \prime}: \sqrt{ } \frac{l}{2 g}$, the time of falling through CP or $1 l$; therefore $1: p:: \sqrt{\frac{l}{2 g}}: p \sqrt{ } \frac{l}{2 g}$, which is the time of one vibration in any arch of the cycloid which has the diameter of its gencrating circle equal to $\frac{1}{2} l$. Or, by substituting the known numbers for p and q, the
 nearly, or more nearly $\frac{1}{1} \frac{1}{3} l, l$ being the length of the pendulum in inches. And therefore this is also very nearly the time of an oscillation in a small circular arc, whose radius is l inches.

Hence the limes of the oscillation of pendulums of different fengths, are directly in the subduplicate ratio of their lengths, or as the square roots of their leugths.-The more exact time of oscillating in a circular arc, when this is of some finite small lengtb, is $2_{25}^{6} \sqrt{l} \times\left(1+\frac{h}{i l}\right)$; where h is the height of the vibration, or the versed sine of the single arc of ascent or descent, to the radius l.
The celebrated Huygens first resulved the problem concerning the oscillations of pendulums, in his book De Horologio Oscillatario, reducing compound pendulums to simple oties. And his docttine is fuunded on this hypothesis, that the common centre of gravity of several bodies, connected together, must ascend exactly to the same beight from which it fell, whether those bodies be united, or separated from ore another in ascending again, provided that each begin to ascend with the velocily acquired by its descent.

This supposition was opposed by scveral persons, and very much suspected by others. Aid those even who believed the truth of it, yet thought it too daring to be admitted without proof into a science which demonstrates every thing.

At length James Bernoulli demonstrated it, from the nature of the lever; and published bis solution in the Mem. Acad. des Scienc. of Paris, for the year 1703. |After his death, which happened in 1705, Lis brother John Bernoulli gave a more easy and simple solution of the same problem, in the same Memoirs for 1714; and about the same time, Dr. Brook 'Taylor published a similar solution in his Methodus Incrementorum: which gave occasion to a dispute between these two mathematicians, who accused each uther of baving stolen their solutions. The particulars of which dispute may be seen in the Leipsic Acts for 1716 , and in Bernoulli's works, printed in 1743.

Axis of Oscillation, is a liae parallel to the horizon, supposed to pass through the centre or fixed point about
which the pendulum oscillates, and perpendicular to the plane in which the oscillation is made.

Centre of Oscillation, in a suspended body, is a certain puint in it, such that the oscillation of the bouly will be made in the same time as if that point alone were suspended at that distance from the point of suspension. Or it is the point into, which, if the whole werght of the body be cellected, the several uscillations will be performed in the same tine as before: the oscrilations being made only by the force of gravity of the oscillating body. See Centhe of Oscillation.

OSCULATION, in Geometry. denotes the contact between any curve and its osculatory circle, that is, the circle of the same curvature with the given curve, at the point of contact or of osculation. It ac ise the evolute of the involute curve AEF, and the tangent ces the radius of curvature at the point E , with which, and the centre c , if the circle aza be described; this circle is said to osculate the curve aer in the point e, which point e M. Huygens calla the point of osculation, or kissing point.

The line CE: is called the oscnlatory radius, or the radius of curvature; and the circle aeg the osculatory or kissing circle.

The evolute ac is the locus of the centres of all the circles that osculate the involute curve aep.

Oseclation alsu means the point of concourse of two branches of a curve which twuch each other. Furexample, if the equation of a curve be $y=\sqrt{x}+\sqrt[V]{ } x^{2}$, it is casy to sce that the curic has two branclies touching one another at the point where $x=0$, because the roots bave each the signs + and - .

The point of osculation differs from the cusp or point of respecession (u hich is also a kind of point nil contact of two btanches) in this, that in this later case the two branches ternimate, and pass no farther, but in the former the two branchesexist on beth sides of the point of osculation. Thus, in the meond figure above, the point B is the osculation of the two branches $A B D$, EnF ; but A, though it is also a tangent point, is a cusp or the point of retrocession, of AC and AB, the branches nut passiag bejond the point A.

USCULITORY Circle, is the same as the circle of curvature; that is, the circle having the same çurvature with any curse at a given puint. Siee the forcgeing article, Osculation, where eso, in the last figure but one, is the osculatory circle of the curve AEF at the point E ; and CE the osculatory radius, or the radius of curvature.

This circle is called osculatory, because that, of all the circles that can touch the curve in the sume point, that one touches it the closest, or in such manner that no other tangent circle can be drawn between it and the curve; so that, in tonching the curve, it embraces it as it were, both touching and cutting it at the same time, being on one
side at the convex part of the curve, and on the other at the concave part of it.

In a circle, all the osculatory radii are rqual, being the common radius of the circle; the evolute of a circle being only a point, which is its centre. Sce some properties of the oseulatory circle in Maclaurin's Algebra, Appendix De Linearum Geometricarum Proprietatibus generalibus Tractatus, 'Theor. 2, § $15, \& \mathrm{c}$, treated in a pure geometrical manner.

Osculatory Parabola. See Parabola.
Osculatory Point, the osculation, or point of contact between a curve and its osculatory circle.

OSTENSIVE: Demonstrations, such as plainly and directly demonstrate the truth of any proposition. In which they stand distinguished from apagogical ones, or reductions ad absurdum, or al impossibile, which prove the truth proposed by demonstrating the absurdity or impossibility of the contrary.

OTACOUSTIC, an instrument that aids or improves the sense of hearing. See Acoustics.

OVAL, ant oblong curvilinear figure, having two unequal diumeters, and bounded by a curve line returning into itself. Or a figure contained by a single curve line, imperfectly round, its length being greater than its breadth, like an egg: whence its name. The proper oval, or eggshape, is an irregular figure, being narrower at one end than at the other; in which it differs from the ellipse, which is the mathematical oval, and is equally broad at both ends. The common people confound the two together: but geometricians call the oval a false ellipse.

The metbod of describing an oval chiefly used among artificers, is by a cord or string, as $\mathrm{v} \mathrm{H} f$, whose length is equal to the greater diameter of the intended oval, and which is fastened by its extremes to two points or pins, v and f, planted in its longer diemeter ; then, holding it always stretched out as at n, with a pin or pencil carried round the inside, the oval is deseribed: which will be so much the longer and narrower as the two fixed points are farther apart. This oval so described is the true mathematical ellipse, the points s and f being the two foci. But, in architectural desigus, wbere great accuracy is required, the elliptic compasses are better employed. See Сомpasses Elliprical.

Another popular way to describe an oval of a given length and breadth, is thus:-Set the given length and breadth, AB and CD, to bisect each other perpenticularly at E; with the centre C, and radius AE, describe ab arc to cross $A B$ in Y and θ; then with these centres, F and g, and radii A8 and sG, describe two little arcs itt and x . for the smaller ends of the oval; and lastly, with the centres C and n, and radius $C D$, describe the ares 1 K and 1 L , for the flatter or longer sides of the oval. But this, it is evident, does not forma a true ellipse. Sometimes other points, instead of \mathbf{c} and D , are to be taken by trial, as centres in the line CD, produced if necessary, so as to make the two last ares join best with the two former ones.

Oval denotes also certain roundisi fagures, of various
and pleasant shapes, among curve lines of the higher kinds. These figures are expressed by equations of all dimensions above the 2d, and more especially the even dimensions, as the 4th, 6ili, \&c. Of this kind is the equation $a^{3} y^{2}=$ $-x^{4}+a x^{3}$, which denotes the oval B , in shape of the

section of a pear through the middle, and is easily described by means of points. For, if a circle be described whose diameter AC is $=a$, and $A D$ be perpendicular and equal to AC ; then, taking any point P in AC, joining $D P$, and drawing PN parallel to AD, and so parallel to AC; and lastly taking $r M=N o$, the point m will be one point of the oval sought.-In like manner the equation

$$
y^{4}-4 y^{2}=-a x^{4}+b x^{3}+c x^{2}+d x+c
$$

expresses several very pretty ovals, arnong which the following 12 are sume of the inost remarkable. For when the equation $a x^{4}=b r^{2}+c x^{2}+d x+c$ has four real unequal roots, the given equation denotes the three folluwing species, in fig. 1, 2, 3 :

Fig. 1.
Fig. 2.
Fig. 3.

When the two less roots are equal, the three species will be expressed as in fig. $4,5,6$, thus :

Fig. 4.
Fig. 5.
Fig. 6.

When the two less roots become imaginary, it will denote the three species exhibited in fig. 7, 8, 9 :

Fig. 7.

Fig. 8.

Fig. 9.

When the two middle roots are equal, the species will be as appears in fig. 10: when two pair of roots are equat, the species will be as in fig. 11: and when the two middle roots become imagiuary, the specics will be as appears in fig. 12 :

Fig. 10.
Fig. 11.
Fig. 12.

OUGIITRED (WILLIAM), an eminent English mathe-
inatician and divine, was born at Eton in Buckinghamshire, 1573, and educated in the school there; whence he was elected to King's collige in Cambridge in 1599, where be continued about 12 years, and became a fellow ; employing his time in close application to useful studies, particularly the mathematical sciences, which he contributed greatly, by his example and exhortation, to bring into vogue among his acquaintances there.

About 1603 be quilted the university, and was presented to the rectory of Aldbury, near Guiletford in Surrey, where be lived a long retired and studious life, seldom travelling so far as London ouce a year ; his recreation being a diversity of studies. "As often," says he, " as I was tired with the labours of iny own profession, I bave allayed that tediousness by walking in the pleasant, and more than Elysian Fields of the diverse and various parts of human learning, and not of the mathematics only." About the year 1628 he was appointed by the carl of Arundel tutor to his son lord William Howard, in the mathematics, and his Clavis was drawn up for the use of that young nobleman. He always held a correspondence by letters with many of the most eminent scholars of his time, on mathematical subjecis: the originals of which were preserved, and communicated to the Royal Society, by Witliam Jones, esq. The chief mathematicians of that age owed much of their skill to him; and his house was always full of young gentlemen who came from all parts to receive his instruction: nor was le without invitations to settle in France, Italy, and Holland. "He was as facethous," says Mr. David Lloyd, " in Greek and Latin, as solid in arithmetic, geometry, and the sphere, of all measures, music, \&c; exact in his style as in his judgment; handling his tube and other instruments at 80 as steadily as others did at 30 ; owing this, as he said, to temperanee and exercise; principling his people with plain and solid truths, as be did the world with great and useful arts; advancing new inventions in all things but religion, which he endeavoured io promote in its primitive puity, maintaining that prudence, meekness, and simplicity were the great ornaments of his life."

Notwithstanding Oughtred's great merit, being a strong soyalist, be was in danger, in 1646 , of a sequestration by the committes for plundering ministers; several articles being deposed and sworn against him: but, on his day of hearing, William Lilly, the fanous astrologer, applied to sir Bulstrode Whitlocke and all his old friends; who appeared so numerous in his behalf, that though the chairman and manly other presbyerian members were active against him, yet he was cleared by the inajoring. This is told us by Lilly himself, in the History of his own Lifc, where lie styles Oughtred the most fanous mathematician then of Eurnpe.- He died in 1660, at 86 years of age, and was buried at Aldbury. It is said he died of a suiden ecstasy of joy, about the beginning of May, on luearing the news of the vote at Westuinster, which passed for the restotation of Cbarles the 2d.- Ile left one son, whom he put apprentice to a watch-maker, and wrote a book of instructions in that art for his use.

He published several works in his life-time; the principal of which are the following:

1. Arithmetica in Numero et Speciebus Institutio, in $8 \mathrm{vo}, 1631$. This treatise he intended should serve as a general key to the mathematics. It was afterwards reprinted, with considerable alterations and additions, in 1648 , under the title of A Key to the Mathematics. It
was also published in English, with several additional tracts ; vix, one on the Resolution of all kinds of Affected Equations in Numbers ; a second on Compound Interest ; a third on the easy Art of Delineating all inamer of Plaio Sun-dials; also a Demonstration of the Rule of FalsePosition. A 3d edition of the same work was printed in 1652, in Latin, with the same additional tracts, logether with same others, vix, Un the Use of Logarithms ; A Declaration of the 10th book of Euclid's Elements; a treatise on Regular Solids; and the Theorems contained in the books of Archimedes.
2. The Circles of Proportion, and a Horizontal Instrument; in 1033 , 4to ; publishet by his schelar Mr. William Fuster,-3. Description and Use of the Duble Horiximital Dial; 1636, 8vo-4. Trigonometria: his ireatise on Trigonometry, in Latin, in 4to, 1657 : and nnother edivion in English, together with Tables of Sines, Tangents, and Secants.

He left behind him a great number of papers on mathematical subjects; and in most of his Greek anal Latin mathematical books, there were found notes in his own hand-writing, with an abijgment of almost every proposition and demonstration in the margin, which cane into the museum of the late William Jones, csq. These borohs and manuscripts then passed into the hands of his friend sir Charles Scarborough the physician; the latter of which were carefully looked over, and all that were found fit for the press, printed at Oxford in $\mathbf{1 6 7 6}$, in 8 vo , under the title of
5. Opuscula Mathematica hactenus inedita. This collection contains the following pieces: (1) Institutiones Mechanicae: (2) De Variis Corporum Generibus Gravitate et Magnitudine comparatis: (3) Automata: (4) Quastiones Disphanti Alexandrini, libri tres: (5) DrTriangulis Planis Rectangulis: (6) De Divisione Superficicrum: (7) Musicie Elementa: (8) De Propugnaculorum Munitionibus: (9) Sectiones Angulares.
6. In 1660 , sir Jonas Moore annexed to bis Arithmetic a treatise entitled, "Conical Sections; or, The several Sections of a Cone; beiug an Analysis or Methodical Contraction of the two first books of Mydurgius, and whereby the nature of the Parabola, Hypeibola, and Ellipsis, is very clearly laid down. Translated from the papers of the learned Wiliiam Oughtred."

Oughtred, though undoubtedily a very great mathematician, was yet far from baving the happiest method of treating the subjects he wrote upon. His style and manner were very concise, obscure, and dry ; and his ruies and precepts so involved in symbols and abbresiations, as rendered his inathematical writings very troublesome to read, and difficult to be understnod. Besides the characters and abbreviations before made use of in algebra, he introduced seseral others; as
\times to denote multiplication ;
:: for proporition or similitude of ratios;
$\stackrel{.}{*}$ for comntaued proportion ;
3 3 for greater and less;
OUNCE, a small weight, being the $16 i l$ part of a pound avirdupois; and the 12 th part of a pruand troy.-The avoirdupois ounce is divided into 16 drachns or drams; also the ounce troy iuto $2+$ pennyweights, and the pennyweight into 24 grrains.

OVOLO, in Architecture, a round moulding, whose profile or sweep, in the lonic and composite capital, is
usually a quadrant of a circle; whence it is also popularly called the quarter round.

OUTWARD Flanking Angle, or the Aagle of the Teraille, is that comprehended by the two flanking lines of ilefence.

OUTWORKS, "in Fortification, all those wurks made on the outside of the ditch of a fortified place, to cover and defend it.-Outworks, called also advaneed and detached works, are those which not only serve to cover the body of tice place, but also to keop the cuemy at a distance, and provent them from taking advatitage of the cavities and slevations usuully found in the places about the counterscarp; which might serve them cither as lodgments, or as ridraux, to facilitate the carrying on their trenches, and planting their tatterics against the place. Such are ravelins, temailles, hornworhs, queue d'arondes, envelopes, and crownworks. Oi these, the most usual are ravelins, or halfnoons, formed between the two bastions, on the flanking angle of the counterscarp, and before the curtain, to coner the gates and bridges.

It is a general rule in all outworks, that if there be several of then,t one before another, to cover one and the same tenaille of a place, the nearer ones must gradually, and one after anuther, commund those which are farthest advanced out into the campagne; that is, must have higher rumparts, that so they may ovi rlook and fire upon the besiegers, when they are masters of the more outward works. The gorges also of all outworks should be plain, and without parapets ; lest, when taken, they should serve to secure the besiegers against the fire of the retiring loesieged; whence the gorges of outworks are only palisadoed, to prewent a surprise.

OX-EYE, in Optics. Sce Scioptic, and Camera Obscura

OXGANG, or OxGate, of land, is usually taken for 15 acres; being as much land us it is supposed one ox can plow in a year. In Lincolnshire they still corruptly call it oskin of lanil.- In Scotland, the term is used for a portion of arable land, containing 13 acres.

OXYDS, a compound of oxygen and some other body, in such proportion as not to produce an ucid.

OXYGEN, a certain simple substance that enters into the composition of water and air; being that which generates or produces acids.

This, one of the most characteristic pmperties of this body, was discovered by Dr. Priestley in 1774. It was at first called dephlogisticuted air, aud afterwards successively known by the names of cminently respirable air, pure air, vital air, as long as it was nut known that this aerial form is merely one of its states of combination. As soon as this truth was well proved, and clearly explained by Lavoisier, it appeared necessary to give it a new name, which might be applicable to all the states in which it could exist, as well that of gas as of the liquid or solid form; and it finally received the name of Oxygen.

Oxygen, like many other natural bodies, is found in three states, but in none of them is it alone or insulated. In the gasrous form it is dissolved in caloric; in the liquid and solid form it is combined wath different substances. As oxygen is often contained, in a more or less solid form, in several nutural fussils, which have uudergune cuinbustion, and as it has much attraction for caloric, it is only requisite that some one of those fosssils should be heated more or less, in order to disengage this principle, and obtain it in the form of gas or air. Thus, the chemists expose certain substances, particulurly metals
burned by nature or art, to an active fire in close vessels, so disposed as to conduct and receive, under inverted jars, the gas or elastic fluid to be collected; which is thus the product of a true conibustion.

The two chief sources from which oxygen is derived, (cach of them immense in extent,) are water and air. In the former it is condensed into a liquid form, and combined with about a third of its weight of hydrogen; in the latter it is united with azot, and forms rather nore than $\frac{f}{5}$ part of the atmosphere. - There are various other smaller sources of oxygen, such as many parts of the organized world, vegetable or animal (indeperidently of the water they contain so abundantly), mineral acids, and metallic oxyds, \&c; but the quantities from these last sources are exceedingly small, in comparison with the precedingMost of the green parts of vegetables, while living, yield oxygen gus when exposed to the sun's rays. - The purest possible oxygen gas is nbtained by a higher degree of voltaic elcetricity, from such substances as it is capable of completely decomposing. One of the next purest oxygen gases is obtained by distilling, per se, the dry oxymuriat of potash.

The black oxyd of manganese contains a great quantity of oxygen so luosely combined, as to be expelled by a moderate red heat; and this is the method usually pursued: an earthen or iron retort is filled with the black oxyd of manganesc in powder, and heated in a brisk fire. The first product of gas comes over when the manganese is faintly red, and consists chiefly of carbonic acid, so that a taper is immediately extinguished. After this, if small samples of the gas be examined as it comes over, by dipping a bit of kindled wood in it, the fire will soon be found to burn with increased flame and brightness, a sign of the presence of oxygen; soon after which it may be collected for use. If the manganese be very good, one pound of it will yield 1400 cubic inches of great purity; that is, containing no more than if of carbonic acid or any other gas.-Manganese, if moistened with sulphuric acid, will also give out much oxygen, on applying no greater heat than that of a tuper; and it may thus be obtained very expeditiously, with the simplest apparatus possible.

All the oxyds of mercury, when heated red hot, are decomposed, the metals return to the state of running mercury (which is driven up in vapour and sonn condenses), and the oxygen which it contained appears in the gascous form, mixed with any acid which may have existed in the oxyd.-Oxygen gas may also be ubtained very cheap, and cossiderably pure, by the destructive distillation of nitre in a tnoderate red heat.-The burning of the several combustible bodies in oxygen gas, forms a number of moxt beautiful and instructive experiments, and has contributed more than any thing else to give accurate jdeas on the nature of contustion in general.

The characters that peculiurly distinguish exygen gas, are the eminent degree in which it supports combustion and respiration; it being provel that nethlier of these can continue without oxygen, and that it is solely owing to ita presence that atmospheric air, and the other compound gasses, are fitted for maintaining those grand processes of the muterial world. If a small animal be immersed in oxygen gas, it will live much longer than in the same quantity of common air; and if the carbonic acid, generated in the process, be occasionally removed by alhulies, the animal will remain in the gas uninjured for a much longer
tume. In this, and in many other respects, the process of respiration and combustion agree; but still there are some circumstances which render it probable that the diluted state of oxygen (such as it exisis in common air) is altogether fitter for animal respiration, than a purer oxygen.

OXYGONE., in Genmetry, is acute-augled, meaning a figure romsisting wholly of acute angles, or such as are less than 90 degrees each. - The term is chiclly applied to triangles, where the three angles are all acute.

OXYGONIAL, is acute-angular.
OXYMURIATIC AcıD, is the same as dephlogisticated muriatic acill, nr chlorine.

OZANAM (Jasess), an eminent Freach mathematician, was descended from a family of Jewish extractinn, but which had long been conserts to the Romish faith; and some of whom had held considerable places in the parliaments of Provence. He was born at Boligneux in Bressia, in the year 1640; and being a younger son, though his father had a good estate, it was thought proper to educate him for the church, that he might enjoy some small benefices which belonged to the family, to serve as a provision for him. Accordingly he studied divinity four years; but then, on the death of his father, he devoted hinself entirely to the mathematics, to which he had always been strongly attached. Some matbematical broks, which fell into his hands, first excited his curiosity; and by bis extraordinary genius, without the aid of a master, he made so great a progress, that at the age of 15 he wrote a treatise on that subject.

For a maintenance he first went to Lyons to teach the mathematics, which answered very well; but his generous disposition procured him still better success elsewhere. Among his scholars were two foreigners, who expressing their uneasiness to him, at being disappointed of some bills of exchange for a journey to Paris; he asked them how much would do, and being told 50 pistoles, he lent them the thoney immediately, even without their note for it. On their arrival at Paris, mentioning this generous action to M. Daguesseau, father of the chancellor, this magistrate was so pleased with it, that he engaged them to iuvite Ozanam to Paris, with a promise of his favour. The opportunity was eagerly embraced; and the business of teaching the inathematics here soon brought him in a considerable income : but he wanted prudence for some time to make the best use of it. He was young, handsome, and sprightly; and much addicted buth to gaming and gallantry, which continually drained his purse. However, this experuse in time led him to think of matrimony, and he soon after married a young woman whout a fortune. She marle amends for this defect boweser by tier modesty, virtue, and sweet temper; su, that though the state of his purse was not amended, yet he had more real enjoyment than before, being indeed cumpletely happy in ber, as long as she lived. He had welve children by this lady, though most of them died young; and lie was lastly rendered quite unhappy by the death of his wife also, which bappened in 1701. Neither did this misfortune come single: for the war breaking out about the same time, on account of the Spanish succession, it swept
away all his scholars, who being foreigners, were obliged to leave Paris. Thus be suak into a very melancholy state; undor which however he received some relief, and amusement, from the honour of being admitted this same year an clève of the Royal Academy of sciences. But he never recovered his wonted healh ind spirits; so that, though he lingered through a few dull years, with a strong presentiment of his approaching dissolution, he might rather be said to exist than to live, until the year 1717, when be was seized with an apoplexy, which terminated has existence on the 3d of April, at 77 years of age.

Ozanam possessed a mild and calm dioposition, a cheerful and pleasant temper, an inventive genus, and a generosity almost unparalleled. After marriage his conduet was irreproachable; and at the same time that he was sincerely pious, he had a great aversion to disputes about theology. On this subject he used to say, that it was the business of the Sorbonne doctors to discuss, of the pope to decide, 'and of a mathematician to go straight to heaven in a pespendicular line.- He wrote a great number of useful books; a list of which is as follows:

1. A treatise of Practical Geometry; 12mo, 1684.-9. Tables of Sines, Tangents, and Secants; whith a treatise on Trigonometry; 8vo, 1685.-3. Atreatise of Lines of the First Urder ; of the Construction of Lquations ; and of (ieometric Lines, \&cc ; 4to, 1687.-4. The Use of the Compasses of Proportion, \&c ; with a treatise on the Division of Lands: 8vo, 1688.-5. An Universal Instrument for radily resolsing Gcometrical Problems without calculation; 12mo, 168s.-6. A Mathematical Dictionary; 4to, 1690.-7. A General Method for drawing Dials, ake, $12 \mathrm{mo}, 1693$. -8. A Course of Mathematics, in 5 volumes, 8 vo, 1693. -9. A treatise on Fortification, Ancient and Modern; 4to, 1693.-10. Mathematical and Philusophical Recreations; 2 vols $8 \mathrm{vo}, 1694$; and again with additions in 4 vols, 1724.-11. New Treatise on Trigonometry; 12ino, 1699-12. Surveying and Measuring all Sorts of Attificers' Works; $12 \mathrm{mo}, 1699-13$. New Elements of Algebra; 2 vols 8 vo, 1702.-14. Theory and Practice of Perspective; 8vo, 1711.-15. Treatise of Cosmugraphy and Geography; 8vo, 1711.-16. Euchd's Elements, by Dechales, corrected and enlarged; $12 \mathrm{mo}, 1709 .-17$. Boulanger's Practical Geometry enlarged, \&e; 12 nio , 1691-18. Boulanger's treatise on the Sphere corrected and enlarged; 12 mo .

Ozanam has also the following pieces in the Journal des Sçavans: viz, (1) Demonstration of this theorem, that nentier the Suin nor the Difierence of two Fourth Powers, can be a Fourth Power; journal of May 1680-(2) Answer to a l'roblem proposed by M. Coniers ; journal of Nov. 17, 1681.-(3) Demonstration of a Problem concerning False and Imaginary llowts; journal of April 2 and 9, $1685 .-(4)$ Method of finding in Numbers the Cubic and Sursolid Rools of a Bunomial, when it has one ; journal of April 19, 1691.

Also in the Memoires de Trevoun, of December 1703, he las this piece, viz, Answer to certain articles of Objection to the first part of lis Algebra. And lastly, in the Memoirs of the Academy of Sciences, of 1707, he has Observations on a Problem of Spherical Trigonometry.

PACE, or Geonsetrical Pace, an uncertain lincal measure, by sume supposed to be equal to 5 feet, by others 44, \&s.

Pagan (Bla ber François Comte de), an cuninent French mathematician und engineer, was burn at Avignon in Provence, 1604 ; and entered on the profession of a soldier at 14 years of age. In 1620 be was employed at the siege of Cacn, in the batte of lont de C'́, with the reduction of the Navareins, and the rest of Béarn; where lie signalized thimself, and acquired a reputation far above his years. He was present, in 1621, at the siege of St. John d'Angeli, as also that of Clarac and Montauban, where he lost an cye by a musket-shot. After this time, there happened neither siege, battle, nor any other occasion, in which he did not signalize hinself by some effort of courage and conduct. At the passage of the Alps, and the barricade of Suza, be put himself at the head of the forlorn bope, composed of the bravest youths among the guards; and undertook to arrive the first at the attack, by a private way which was extremely dangerous; when, having gained the top of a very steep mountain, he cried out to his followers, "There lics the way to glory!" On which, sliding along this mountais, they came first to the attack; whin inmediately commencing a furious onset, and the army conning to their assistance, they forced the barricades. When the king laid siege to Nancy in 1693, Pagan attended him, in drawing the lines and forts of circumvallation.-In 1642 he was sent to the service in Portugal, as field-marshal; and the same year he unfortunately lost the sight of his other eve by a distemper, and thus became totally blind.

But though he was thus prevented from serving his country with his conduct and courage in the field, he resumed the vigorous study of fortification and the mathematics; and in 1645 he gave the public a treatise on the former subject, which was esteemed the best extant.-In 3631 he published his Geometrical Theorems, which showed an extensive and critical knowledge of bis subject. -In 1655 he printed a Paraphrase of the Account of the River of Amazons, by father de Rennes; and, though blind, it is said he drew the chart of the river and the adjacent parts of the country, as in that work.-In 1657 he published The Theory of the Planets, cleared from that multiplicity of excentric cycles and epicycles, which the astronomers had invented to explain their motions. This work distinguished him among astronomers, as much as that of Fortification had among engineers, And in 1658 he printed his Astronomical Tables, which are plain and succinct.

Few great men are without some foible: Pagan's was that of a prejudice in favour of jydicial astrology; and though he is more reserved iban most others on that head, yet we cannot place what he did on that subject among those productions which do hnnour to his understanding. He was beloved and respected by all persons illustrious for rank as well as science; and his house was the rendezvous of all the pulite and learned both in city a and court. -He died at Paris, universally regretted, Nov. 18, 1665, at 61 years of age.

Vot. 11 .

Pagan had a universal genius; and, having turned bis attention chicfly to the art of war, and particularly to the branch of tortification, he made extraordinary jrogress and improvemens in it. He understeod mathenatics not ouly better than is usual for a gemleman whose view is to phish his fortune in the army, hut even to a degree superior to that of the ordinary masters who teach thal science. He had so particular a genius for this hind of learning, that he acquired it more readily by meditation than by reading authors upon it; and accordingly he spent less time in such books than be did in those of history and geography. He had also made morality and politics his particular study; so that he may be said to have drawn his own character in his Homme Heroiqque, and to have been one of the completest gentlemen of bis time. Having never married, that branch of his family, which removed from Naphes to France in 1552, became extinct in his person.

PALILICUM, the same as Aldebaran, a fixed star of the first magnitude, in the cye of Taurus, the Bull.

PALISADES, or Palisadoes, in Fortitication, stakes or small piles driven into the ground, in sarions situations, as some defence against the surprise of an enemy. They are usually about 6 or 7 incless square, and 9 or 10 feet long, driven about 3 feet into the ground, and 6 inches apart from each other, being braced together by pieces nailed acruss them near the tops; and secured by thick posts at the distance of every 4 or 5 yards.

Palisides are placed in the covert-way, parallel to andat 3 feet distance from the parapet or ridge of the glacis, to secure it against a surprise. They are also used to fortify the avenues of open forts, gorges, half-moons, the bottoms of ditches, the parapets of covert-ways; and in general all places lin ble to surprise, and easy of access.
Palisadoes are usually planted perpendicularly; though some make an angle inclining out towarls the enemy, that the repes cast uver them, to tear them up, may slip.

PALLADIO (Andrew), a celebrated Italian architect in the 16 th century, was a native of Vicenza in Lombardy, and the disciple of Triffin, a learned Patrician, or Roman nobleman of that town. Palladio was one of those who laboured particularly to restore the ancient beaulics of architecture, and contributed greatly to revise a true taste in that art. Having learned the principles of it, he went to Rome; where, applying himself with great diligence to study the ancient monuments, he entered into the spirit of their architects, and possessed himself of all their beauliful ideas. This enabled him to restore their rules, which had been corrupted by the barbarous Goths. He made exact drawings of the principal works of antiquity which were to be met with at Rome; to which he added Commentaries, which went through several impressions, with the figures. This, though a very useful work, is greatly exceeded by the 4 books of architecture which he published in $\mathbf{1 5 7 0}$. The last book treats of the Roninn temples, and is executed in such a manner, as gives him the preference to all his predecessors on that subject. It was tranlated into Freuch by Roland Friatt, and into U

English by several authors. Inigo Jones wrote some excellent remarks upon $i t$, which we re published in an edition of Palladio by Leoni, 1742 , in 2 volunes folio. Palladio died in 1550 .

PALLAS, is the name given by Dr. Olbers to a new planet discovered by him at Bremen, March 28, 1802, being now the 7 th in order from the sun, und distant fiom him about 8 (i3 miltion miles: it perioms its periodic revolunon in 1682 days, or 4 ycars 7 months 11 duys; but it is too smatl to be perceised by the naked eye, or even with the assistance of a telescope of an inferior hind. Its efencats, us far as they have been at present ascertained, are stated below, but it is probable thas future obervations may show them to stand in need of some corrcctions.

Revolution in its orbit 4 years 7 months 11 thays.

PALLETS, in Clock and Watch Woik, are thase pieces or levers which are connected with the pendulum or balance, and receive the immediate impulse of the swingwheel, or balance-wheel, s.) as to maintain the vibrations of the pendulum in clocks, and of the balance in watches. -The pallets in all the ordinary constructions of clocks and watches, are formed on the verge or axis of the pendulum or balance, and are of various lengths and shapes, according to the construction of the piece, or the fancy of the artist.

PALLIFICATION, or Pilisg, in Architecture, denotes the piling of the ground-work, or the strengtheniug it with piles, or timber driven into the ground; which is practised when buildings are erected on a moist or marshy soil.

Pallisades. See Palisades.
PALM, an ancient long-meanure, taken from the extent of the hand.-The Roman palm was of two hinds: the great palm, taken from the length of the hand, answered td our span, and contained 12 fingers, digits, or fingers breadths, or 9 Roman inches, equal to about $8 \frac{1}{2}$ English inches. The small palm, taken from the breadth of the hand, contained 4 digits or fingers, equal to about 3 English inches.-The Greek palm, or doron, was also of two kinds. The small contained 4 fingers, equal to litte more than 3 inches. The great palm contained 5 fiugers. The Greck double palm, called dichas, contained also in proportion.

The modern palm is different in different places where it is used. It contains,

PALM-SUNDAY, the last sunday in lent, or the sunday next before caster day. So called, from the priminive days, on account of a pious ceremony then in use, of bearing palms, in memory of the triumphant entry of Jesus Christ into Jerusulem, 8 days before the feast of the passover.

PAPPUS, a very eminent Greck mathematician of Alexandria towards the latter part of the 4th century, particu-
larly mentioned by Suidas, who says he flourished under the emperor 'I'heotonius the Great, who reigned from the year 379 to 393 of Christ. His writings indicute bin to have bern a consummate mathematucinn. Many of bis works are lost, "r at least have not yet been discovered. Suidas mentions several of his works, as also Vossius De Scicutiis Mathematiciso The principal of these are, his Mathernatical Collections, in 8 books, the first and part of the second being lost, He wrote also a Commentary on Polemy's Almagest; a Universal Chorography; A Description of the Rlivers of Libya; A Treatise of Milatary Engines; Commentatics on Aristarchus of Samos, concerning the Magnitude and Distance of the Suasad Moon; . \&c. Of these, there have been published, The Mathematical Cullections, in a Latin translation, with a large Commentury, by Commandine, in folio, 1588; and a second edition of the same in 1660 , In 1644, Mersenne exhibited a kind of abridgment of then in his Synopsis Mathematica, in $410:$ but this contains only such propositions as could be understood without figures. In 1655, Meibomius gave some of the Lemenata of the 7 th book, in bis Dialogue on Propertions. In 1688, Dr. Wallis printed the last 12 propositions of the 2 d book, at the end of his Aristarchus Samius. In 1703, Dr. David Gregory gave part of the preface of the $7 / \mathrm{h}_{\mathrm{h}}$ Look, in the Prolegomena to his Euclit. In 1706, Dr. Halley gave that Preface entire, in the begiuning of his Apollonius. And lastly, the reverend and learned Dr. Trail (in an appendix to his Account of the Life and Writings of Rob. Simsom, 20, D.) has added a critical account of the Mathematical Cullections of this author.

As the contents of the principal work, the Mathematical Collections, are exceedingly curious, and no account of them having ever apprared in Einglish when this was written, I sball here give a very brief analysis of those books, extracted from my notes on this author.

Of the Third Book - The subjects of the third book consist chiefly of three principal problems; for the solution of which, a great many other problems are resolved, and theorems demonstrated. The first of these three problems is, To tind Two Mran Proportionals between iwo given lines-The 2 d problem is, To find, what are called, three Medietates in a semicircle; where, by a Medictas is meant a set of three lites in continued proportion, whether arithmetical, or geometrical, or harmonical; so that to find three medietates, is to find an arithmetical, a geometrical, and an harmonical set of threcterms each. And the third problem is, From some points in the base of a triangle, to draw two limes to meet in a point within the triangle, so that their sum shall be greater than the sum of the other two sides that are without them. A great many curious properties ure premised to each of these problems; then their solutions are given according to the methods of several ancient mathematicians, with an historical account of them, and his own demonstrations; and lastly, their applications to various matters of great imprortance. In his historical ancedotes, many curious things are preserved concerning mathematicians that were ancient even in his time, which we should otherwise have known nothing at all about.

In order to the solution of the first of the three problems above mentioned, be begins by premising four general theorems concerning praportions. Then fullows a dissertation on the nature and division of problems by the ancients, iuto Plane, Solid, and Linear, with examples

PAP
[1
147 J
culars $A a, \Delta b, c c, \& c$, will be $1,3,5,7, \& c$, times the radii of the circles A, B, C, D, \&C ; viz, according to the

series of odd nutabers; the former procecding by the series of 'ven numbers.

Pappus next treats of the Helix, or Spiral, proposed by Conon, and resolved by Archimedes, demonstrating its principal properties : in the demonstration of sume of which, he makes use of the same principles as Cavallerius did lately, adding together an infinite number of infinitely short parallelograms and cylinders, which be imagines a triangle and cone to be composed of. - He next treats of the properties of the Conchoid, which Nicomedies invented for doubling the cube; applying it to the solution of certain problems concerning Inclinations, with the finding of two mean proportionals, and cubes in any proportion
 so called from its use in squaring the circle, for which purpose it was invented and employed by Dinostratus, Nicomedes, and others: the use of which however he disapproves, as it requires postulates equally hard to be granted, as the problem itself to be demonstrated by it, -Next be treats of Spirals, described on planes, and on the convex surfaces of various bodies.-From another problem, concerning laclinations, be shows, how to trisect a given angle; to describe an hyperbola, to two given asymptotes, and passing through a given point ; to divide a given arc or angle in any given ratio; to cut off arcs of equal lengths from unequal circles; to take arcs and angles i:s any proportion, and ares equal to right lines ; with parabolic and hyperbolic loci, which last is one of the inclinations of Archimedes.

Of the 5th Book of Pappus.-This book opens with reflections on the different natures of men and brutes, the former acting by reason and demonstration, the latter by instinct, yet some of them with a certain portion of reason or foresight, as bees, in the curious structure of their cells, which he observes are of such a form as to complete the space quite around a point, and yet require the least inaterials to build them, to contain the same quantity of honey. He shows that the triangle, square, and hexagon, are the only regular polygons capable of filling the whole space round a point; and remarks that the bees have chosert the fittest of these; proving afterwards, in the propositions, that of all regular figures of the same perimeter, that is of the largest capacity which has the greatest number of sides or angles, and consequently that the circle is the most capacious of all figures whatever.

And thus he finishes this curious book on Isoperimetrical figures, both plane and solid; in which many curious and important properties are strictly demonsirated, both of planes and solids, some of them being old in his time, and many new ones of his own. In fact, it scems he has bere brought together into this book, all the propertued soo U 2
lating to isoperimetrical figares then known, and their different degrees of capacity. In the last theorem of the book, he has a dissertation to show, that there can be no more regular bodies besides the five Platonic ones, or, that only the regular triangles, squares, and pentagons, will form regular solid angles.

Of the $6 t h$ Book of Pappus.-In this book he treats of certain spherical propertits, which had been either neglected, or improperly and imperfectly treated by some celebrated author before his time.- Such are some things in the Sd book of Theodosius's Splierics, and in his book on Days and Nights, as also some in Euclid's Phenomena. For the sake of these, Pappus premises and intermixes many curious geometrical propertics, especially of circles of the sphere, and spherical triarigles. He adverts to some curious cases of variable quantities; showing how some increase and decrense both ways to infinity; while others proceed only one way by increase or decrease, to infinity, and the other way to a certain magnitude; and others again both ways to a certain magnitude, piving a maximum and minimum.-Here are also some curious properties concerning the perspective of the circles of the sphere, and of other lines. Also the locus is determined of all the points from whence a circle may be viewed, so as to appear an ellipse, whose centre is a given point within the circle; which locus is shown to be a semicircle passing through that point.

Of the 7 th Book of Pappus.-In the introduction to this book, he describes very particularly the nature of the mathematical composition and resolution of the ancients, distinguishing the particular process and uses of them, in the demonstration of theorems and solution of problems. He then enumerates all the analytical books of the ancients, or those proceeding by resolution, which he does in the following order, viz, 1st, Euclid's Data, in one book : 2d, Apollonius's Section of a Ratio, 2 books: 3d, his Section of a Space, 2 books: 4th, his Tangencies, 2 books: 5th, Euclid's Porisms, 3 books: 6th, Apollonius's Inclinations, 2 books: 7 th, his Plane Loci, 2 books: 8 th, his Conics, 8 books: 9th, Aristews's Sulid Loci, 5 books: 10th, Euclid's Loci in Superficies, 2 books; and 11th, Eratoathenes's Medietates, 2 books. So that all the books are 31, the arguments or contents of which he exhibits, with the number of the loci, determibations, and cases, \&CC; with a multitude of lemmas and propositions laid down and demonstrated; the whole making 238 propositions, of the most curious geometrical principles and propertics, relating to those books.

Of the 8th Book of Pappus.-The 8th book is altogether on Mechanics. It opens with a general oration on the subject of mechanics; defining the science, enumerating the different kinds and branches of i, and giving an account of the chief authors and writings on it. After an account of the centre of gravity, on which the science of mechanics so greatly depends, he shows, in the first proposition, that buch a point really exists in all bodies. Some of the following propositions are also concerning the properties of the centre of gravity. He next comes to the inclined plane, and in prop. 9, shows what power will draw a given weight up a given inclined plane, whett the power is given which can draw the weight along a horizontal plane. In the toth prop. concerning the moving a given weight with a given power, be treats of what the ancients called a (ilossocomum, which is nothing more than a series of wheels-and-axles, in any pruportions, turning each other,
till we arrive at the given power. In this proposition, as well as in several other places, he refers to some books that are nuw lost; as Archimedes on the Balance, and the Mechanics of Hero and of Philo. Then, from prop. 11 to prop. 19, he treats on various miscellaneous subjects, as, the organical construction of solid problems ; the diminution of an architectural columa; to describe an ellipse through five given points; to find the axis of an ellipse organically ; to find also organically, the inclination of one plane to unother, the nearest point of a sphere to a plane, the points in a spherical surface cut by lines joining cortain points, and to inscribe seven bexagons in a givell circle. Prop. 20, 21, 22, 23, teach how to construci and adapt the Tympani, or wheels of the glossocomum, to one another, showing the proportions of their duameters, the number of their teeth, \&c. And prop. 24 shows how to construct the spiral threads of a screw.

He comes then to the five mechanical powers, by which a given weight is moved by a givets power. He here proposes briefly to show what has been said of these powers by Hero and Philo, adding also some things of his own. Their names are, the axis-in-peritrochio, the lever, pulley, wedge, and screw; and he obscrves, thosc authors showed how they are all reduced to one principle, though their figures be very differeut. He then treats of tach of these powers separately, giving their figures and properties, their construction and uses.

He next describes the mamier of drawing very heavy weights along the ground, by the machine termed Chelone, which is a kind of sledge placed upon two loose rollers, and drawn forward by any power whatever, a third roller being always laid under the fore part of the chelons, as one of the other two is quitted and left behind by the motion of the machine. In fact, this is the same muchine as has always been employed on many occasions, in moving very great weights to moderate distances.

Finally, Pappus describes the manner of raising great weights to any proposed height by the combination of mechanic powers, as, by cranes and other machines; illustrating this, and the former parts, by drawings of the machines that are described.

PARABOLA, in Gcometry, a figure arising from the section of a cone, when cut by a plane parallel to one of its sides, as the sertion ADE parallel to the side vB of the conc. See Conic Sections, where some general propertics are given.

Some other Properries of the Parabola,-1. From the same point of a cone only one parabola can be drawn; all the uther sections between the parabola and the paralIel side of the cone berng ellipses, and all without them hyperbolas. The parabola has but one focus, through which the axis AC passes; all the other diameters being parallet to this, and also infinite in length.
2. The parameter of the axis is a third proportional to any absciss and its ordinate; viz, $A C ; C D:: C D: P$
the parameter. And therefore if x denote any absciss $A C$, and y the ordinate $C D$, it will be $x: y:: y: p=\frac{y^{2}}{x}$ the parameter; or, by multiplying extremes and means $p r=y$ ', which is the equation of the parabela.
3. The focus \bar{y} is the point in the axis where the double ordinate G ul is equal to the parameter. Thercfore, in the equation of the curve $p r=y^{2}$, taking $p=8 y$, it becomes $2 y \mathrm{r}=y^{2}$, or $2 x=y$, that is $2 \mathrm{Ar}=\mathrm{rII}$, or $A \mathrm{AF}=\frac{1}{2} \mathrm{yH}$, or the focal distance from a vertex Ay is equal to half the ordinate there, or $=\$ p$, one-fourth of the parameter.
4. The abscisses of a parab la are to one another, as the squares of their corresponding ordinates. This is evident from the general equation of the curve $p x=y^{3}$, where, p being constant, x is as y^{7}.
5. The line Fie (fig. 2 abuve) drawn from the focus to any point of the curve, is equal to the sum of the focal distance and the absciss of the ordinate to that point; that is $\mathrm{FE}=\mathrm{FA}+A \mathrm{D}=G \mathrm{D}$, taking $\mathrm{AO}=A \mathrm{~F}=\frac{1}{\mathrm{i}} \mathrm{P}$. ${ }^{\circ}$ Or EF is always $=$ eo, drawn parallel to do, to meet the perpendicular 60 , called the directrix.
6. If a line tac cut the curve of a parabola in two points, and the axis produced in T , and BIt and cr be ordinatus at those two points; then in at a mean proportional between the abscisses AH and At, or AT ${ }^{2}=A H$. AI -And if TE touch the curve in E , then is $\mathrm{AT}=A \mathrm{D}=$ the mpan between all and al.
7. If ie be drawn from the focus to the point of contact of the tangent TE, and EK perpendicular to the same tangent; then Is $\mathrm{FT}=\boldsymbol{P}=V \mathrm{~F}$; and the subnormal DK equal to the constant quantity $2 A Y$ or $\$ p$.
8. The diameter el being parallel the axis ΔK, the perpendicularex, to the curve or tangent at s , bisects the angle Lef. And thercfore all rays of light le, min $\& \mathrm{c}$, couning parallel to the axis, will be reflected into the point \mathbf{F}, which is therefore called the focus, or buraing point ; for the angle of incidence LEK is = the angle of reflection KEP.
9. If ick (next fig, below) be any line parallel to the axis, linuted by the tangent TC and ordinate CRL to the point of contact; then shall iE: EK: CK: KL. And the same thing holds true when CL is also in any oblique position.
-

10. The external parts of the parallels iE, TA, on, PL, \&ce, arealways proportional to the squares of their intercepted parts of the tangent; that is,
the external parts IE, TA, UX, PL,
' are proportional to $\mathrm{Ct}^{2}, \quad \mathrm{Cr}^{\prime}, \quad \mathrm{Co}^{2}, \quad \mathrm{CP}^{2}$, or to the squares $\mathrm{CK}^{2}, \mathrm{CD}^{2}, \mathrm{CM}^{2}, \mathrm{CL}^{2}$.
A property from which is immediately derived the common theory of projectiles.

And as this property is common to every position of the tang nt, if the lines is, TA, ox, \&cc, be appended to the points $1, \mathrm{~T}, \mathrm{o}, \& \mathrm{c}$, of the tangent, and movesble about them, and of such lengths as that their extremities a, A, n, dc, \&c, be in the curve of a parabola in any one positien of the tangent; then making the tangent revolve about the point C , the extremities $\mathrm{E}, \mathrm{A}, \mathrm{N}, \mathrm{Nc}$, will always form the curve of some parabola, in every position of the tangent.

The same properties too that have been shown of the axis and its abscisses and ordinates, \&c, are true of those of any other diameter. All which, besides inany other curious properties of the parabola. may be seen demonstrated in my Treatise on Conic Sections, and in the Course of Mathematics.
11. To Construct a Parabola by Points.-In the axis produced take $A G=A F$ (last fig. abovi) the focal distance, and draw a number of lines ef, EE, \&c, perpendicular to the axis AD ; then with the distances GD, GD, \&c, as radii, and the centre F, describe arcs crossing the parallel ordinates in E, e, \&cc. Then with a steady hand, or by the side of a slip of bent whale-bole, draw the curve through all the points $\mathrm{E}, \mathrm{E}, \mathrm{E}, \& \mathrm{c}$.
12. To describe a Parabola by a continued Mosion.-If the rule or the directrix ac be laid upon a plane, (first fig. below) with the square GDO, in such manner that one of itm sides do lies along the edge of that rule; and if the thread ryo equal in length to do, the other side of the square, have one cind fixed in the extremity of the rule at o, and the other end in sume point F: then slide the side of the square dG along the rule ać, and at the same time keep the thread continually tight by means of the pin m, witlsits part no close to the side of the square Do; so shall the curve $A M x$, which she pin describen by this motion, be one part of a parabola.- And if the square be turned over, and noved on the other side of the fixed point \mathbf{p}, the other part of the same parabola amz will be described.

13. To draw Tangents to the Parabola.-If the point of contact c be given : (last fig. above) draw the ordinate c B , and produce the axis till $A T$ be $=A B$; then join $T C$, which will be the tangent.
14. Or if the point be given in the axis produced: take $A B=A T$, and draw the ordinate $A C$, which will give c the point of contact ; to which draw the line TC as beforc.
15. If D be any other point, neither in the curve nor in the axis produced, through which the tangent is to pass: draw peg perpendicular to the axis, and tahe DH a mean proportional between DE and Da, and draw 21 C parallel to the axis; so shall c be the point of contact, through which and the given point d the tangent dCT is to be drawn.
16. When the tangent is to make a given angle with the ordinate at the point of contact: take the absciss Al equal to half the paransuter, or to double the focal distance, and draw the ordinate IF: also draw An to make with at the angle teat equal to the given angle ; then draw ne parallel to the axis, and it will cut the curve in c the pome of contact, where a lime drawn to make the given angle with cE will be the tangent required.
17. To find the Area of n Parabala, Multiply the base Ea by the perpendicular height As , and $\frac{2}{5}$ of the product will be the area of the space a ega; because the parabolic space is $\frac{2}{4}$ of its circumecrbing partllelogram.
18. To find the Length of the Curve ac, commencing at
the vertex.-Let $y=$ the ofdinate $s c, p=$ the parameter, $q=\frac{2 g}{p}$, and $s=\sqrt{ }\left(1+q^{2}\right)$; then shall $!p \times\left(q q^{3}+\right.$ hyp. \log, of $q+s$) be the length of the curve $A C$.

See various other rules for the areas, and lengths of the curve, \&s, in my 'freatise on Mensuration, sec 6, pa. 27 I, \& c, 4th cdition.
parabolas of the Higher Kinds, are algebraic curves, defined by the general equation $a^{\prime \prime}{ }^{\prime} x=y^{\prime \prime}$; that is, either $a^{7} x=y^{3}$, or $a^{3} x=y^{4}$, or $a^{4} x=y^{3}$, \&c.

Some call these by the name of paraboloids: and in particular, if $a^{2} x=y^{3}$, it is called a cubical paraboloid; if $a^{3} x=y^{4}$, it is a biquadratical paraboloid, or a sursolid paraboloid. In respect of these, the parabola of the first kind, above explained, is called the Apollonian, or quadratic parabola.

Thuse curves are also to be referred to parabolas, that are expressed by the general equation $a x^{0}-{ }^{4}=y^{n}$, where the indices of the quantities on each side are equal, as before; and these are called semi-parabolas: as $a x^{2}=y^{3}$ the semi-cubical parabola; or $a x^{3}=y^{4}$ the semi-biquadratical parabola; \&c.
'libey are all comprehended under the more general equation $a^{-\infty} x^{\prime \prime}=y^{m}+{ }^{\text {a }}$, where the two indices on one side are still equal to the index on the other side of the equation; which include both the former kinds of equations, as well as such as these following ones, viz, $a^{2} x^{4}=y^{4}$, or $a^{2} x^{3}=y^{3}$, or $a^{4} x^{3}=y^{7}, \& c$.

Cartetion Paranola, is a curve of the 2d order expressed by the equation, $x y=a x^{3}+b x^{2}+c x+d$, containing four infinite legs, viz, two byperbolic ones, $m m$ and Bm , to the common asymptote $\Delta \mathrm{g}$, tending contrary ways, and two parabolic legs $x N$ and $D N$ joining them, being Newton's 66th species of lines of the 3d order, and called by him a Trident. It is
 used by Descartes, in the Sd book of his Geometry, for finding the roots of equations of 6 dimensions, by means of its intersections with a circle. Its most simple equation is $x y=s^{3}+g^{3}$. And points through which it is to pass may be casily found by means of a common parabola whose absciss is $a x^{2}+b x+c$, and an hyperbola whose absciss is $\frac{d}{x}$; for y will be equal to the sum or difference of the corresponding ordinates of this parabola and hyperbola.

Descartes, in the place abovementioned, shows how to describe this curve by a continued motion. And Maclaurin does the same thing in a different way, in his Organica Geometria.

Diverging Paranola, is a name given by Newton to a species of five different lines of the third order, expressed by the equation $y^{2}=a x^{3}+b x^{2}+c x+d$.

The first is a bell-form parabola, with an oval at its head (Gig. 1) ; which is the case when the equation $0=$ $a r^{3}+b x^{2}+c r+d$, has thrie real and unequal roots; so that one of the inost situple equations of a curve of this kind is $p y^{2}=x^{2}+a x^{2}+a^{2} x$.

Fig. 1.

Fig. 3.

Fig. 2

Fig. 4.

The 2 d is also a bell-form parabola, with a conjugate point, or infinitely small oval, at the head (fig. 1); beung the case when the equation $0=a x^{1}+b x^{2}+c x+d$ has its zwo less roots equal ; the most simple equation of which is $p y^{2}=x^{3}+a x^{2}$.

The 3d is a parabola, with two diverging legs, orossing one another like a knot (fig. 2); which happens when the equation $0=a x^{3}+b x^{8}+c x+d$ has its two greater roots equal ; the more simple equation being $p y^{2}=x^{3}$ $+a x^{6}$.
The 4 th is a pure bell-form parabola (fig. 3); being the case when $0=a x^{3}+b x^{2}+c x+d$ has two imaginary roots ; and its most simple equation is $p y^{8}=x^{3}+a^{3}$, or $p y^{2}=x^{3}+a^{2} x$.

The 5th a parabola with two diverging legs, forming at their meeting a cusp or double point (fig. 4); being the case when the equation $0=a x^{3}+b x^{2}+c x+d$ has three equal roots ; so that $p y^{2}=x^{3}$ is the most simple equation of this curve, which indeed is the semi-cubical, or Neilian parabola.

If a solid generated by the rotation of a semi-cubical parabola, about its axis, be cut by a plane, each of these five parabolas will be exhibited by its sections. Fur, when the cutting plane is oblique to the exis, but falls below it, the section is a diverging parabola, with an oval at its head. When it is oblique to the axis, but passes through the vertex, the section is a diverging parabola, having an infinitely small oval at its head. When the cutting plane is oblique to the axis, it falls below it, and at the sanue time touches the curve surface of the solid, as well us cuts it, the section is a diverging parabola, wish a nodus or knot. When the cutting plane falls above the vertex, either parallel or oblique to the axis, the section is a pure diverging parabola. And lastly, when the curting plane passes through the axis, the section is the semi-cubical parabola from which the solid was generated.

PARABOLIC Asymptote, is used for a parabolic line approaching to a curve, so that they never meet; yet by producing toth indefinitely, their distance from each other becomes less than any given line.

There may be as many different kinds of these asymptotes as there are parabolas of different orders. When a curve has a common parabola for its asymptote, the ratio of the subtangent to the absciss approaches continually to the ratio of 2 to 1 , when the avis of the parabola coincides with the base; but this ratio of the subtangent to the absciss approaches to that of 1 to 2 , when the axis is perpendicular to the basc. And by observing the limit to which the ratio of the subtangent and absciss approaches, parabolic esymptotes of various kinds may be discovered. See Maclaurin's Fluxions, art. 337.

PAR
Parabolic Conoid, is a solid generated by the rotation of a parabola about its axis. - Thas solid is equal to hanf its circuinscribed cylinder; and therefore if the base be multiplied by the height, half the product will be the sohd content.

To find the Curve Surface of a Paraboloid.

Let $B A D$ be the grneraling parabola, $\mathrm{AC}=\mathrm{AT}$, and Br a tangent at B. I'ut $p=3 \cdot 1+16, y=\mathrm{BC}, x=\mathrm{AC}$ $=A T$, and $t=\mathrm{BT}=\sqrt{ }\left(4 x^{2}+y^{2}\right)$; then is the curve surface $=\frac{2}{3}$ cy x $\left(y+\frac{t}{t-y}\right)$.

See various other rules and geome-
 trical constructions for the surfaces and solidities of parabolic conoids, in my Mensuration, part 3, sec. 6, 4th edition.
Pababolic Pyramidoid, is a solid fieule thus named by Dr. Wallis, from its grnesis, or formation, which is thus: Let all the squares of the ordinates of a parabola be conceived to be so placed, that the axis shall pass perpendicularly through all their centres; then the aggregate of all these planes uill form the parabolic pyramidotd,-This figure is equal to half its circumscribed parallelopipedon. And therefore the solit content is found by multiplying the base by the altitude, and taking half the product; or the one of these by half the other.
Parabolic Space, is the space or arca included by the curve line and base or double ordinate of the parabola. The area of this space, it has been shown under the article Parabola, is $\frac{3}{3}$ of its circumscribed parallelogram; which is its quadrature, and which was first found out by Arcbimedes, though some say by Pythagoras.
Parabolic Spindle, is a solid figure conceived to be formed by the rotation of a parabola abuut its base or double ordinate. -This solid is equal to ${ }^{3}$'s of its circumscribed cylinder. See my Mensuration, prob. 15, pa. 296, \&c, 4th edition.

Parabolic Spiral. Sue Helicoid Parobola.
Parabulifurm Curces, a name sometimes given to the parabolas of the higher orders.
PARABOLOIDES, parabolas of the higher orders.The equation for all curves of this kind being $a^{m}{ }^{-n} x^{n}$ $=y^{m}$, the proportion of the area of any onse, to the complement of it to the circumscribing parallelogram, will be as m to n.
PARACENTRIC Motion, denotes the space by which a revolving planet approaches neater to, or recedes farther from, the sun, or centie of attraction.
Thus, if a planet in a move towards a ; then is sB$\mathrm{SA}_{\mathrm{A}}=\mathrm{C}_{\mathrm{B}}$ the paracentric motion of that planet: where s denotes the place of the sun.

Paracentmic Solicitation of Gravity, is the same as
the Vis Centripeta; and is expressed by the line AL drawn from the point A, parallel to the ray 5 B (infinitely near sa), till il iutersact the tangent sh.
PARACHUTE, or Full-brcakcr, an instrument in form of a large umbrella, by menn ot which a person may safely descend to the ground with a small velocity, from a balloon, or from any great height in the air.-This is efticted by the great resistance of the air against the descending macbine; which, being resisted by a force increasing as the syluare of the velocily, soon comes to descend with a wailorm motion. And, to determine what size it is necessary the parachete ought to have, in order that the velocity ning be at any given moderate rate, see the solution of prob. 1, tract 58 , vol. 3, of iny Mathematical and Philostiphical Tracts.
parallactic angle, called also simply Parallax, is the angle est (last fig. above) inade at the centre of a star. \&c, by two lines, drawn, the one from the contre of the earth at T , and the other from its surface at E .Or, which amounts to the same thing, the parallactic angle is the difference of the two angles CEA and BTA, under which the real and apparent distances from the zenith are seell.-The sines of the paraltactic angles ext, Est, at the same or equal distances ds from the zenith, are in the reciprocal ratio of the distances, 7 L , and 7 s , from the centre of the earth.

PAILALLAX, is an arch of the heavens intercepted between the true place of a star, and its apparent place. The true place of a star s , is that point of the beavens n , in which it would be seen by an eye placed in the centre of the earth at τ. And the apparent place, is that point of the heavens c, where a star appears to an eye on the surface of the earth at z . This ditference of places, is what is called absolutely the parallax, or the parallax of altitude ; which Copernicus calls the commutation; and which therefore is an angle formed by two visual rays, drawn, the one from the centre, the other from the circumference of the earth, and traversing the borly of the star; being measured by an arch of a great circle intercepted between the two peints of true and apparent places, B and C.

The Parallax of Altiude ca is properly the difference between the true distaince from the zenith $A \mathrm{~B}$, and the apparent distance ac. Hence the parallax diminishes the altitude of a star, or increases its distance from the zenith ; and it has theretore a contrary cffect to the refrac-tion.-The parallax is greatest in the horizon, called the horizontal parallax ert. From hence it decrenses all the way to the zetlith por A, where it is nothing; the real and apparent places there coinciding.

The horizontal parallax is the same, whether the star be in the true or apparent horizon.-The fixed stars have no sensible parallax, on account of their immense distance, to which the semidiameter of the earth is but a mere point: and therefore lines drawn from any two parts of the earth, to the stars, may be considered as parallel. Hence also, the nearer a star is to the earth, the greater is its parallax; and on the contrary, the farther it is off, the less is the parallax, at an equal elevation above the horizon. So the star at is has a less paraliax than the star at I. Saturn is so high, that it is difficult to observe in him any parallax at all.

Parallax increases the right and oblique asecnsion, and diminishes the descension; it diminisbes the northern declination and latitude in the eastern part, and increases
them in the western; but it increases the southern declinatoon in the castern and western part; it diminishes the fongotude in the western part, and increases it in the castern. Parallax therefore has just opposite effects to refraction.

The doctrine of parallaxes is of the greatest importance in ustronomy, for determining the distances of the planets, conets, and other phenomena of the hewvens ; for the calculation of eclipses, and for finding the lougitude.

Paraliax of Right Ascensiom and Descension, is an arch of the equinoctial pd , by which the parallax of altitude increases the ascension, and diminishes the descension.

Paraliax of Declination, is an arch of a circle of declination s1, by which the parallax of altitude increases
 or diminishes the declination of a star.

Parafibax of Latitude, is an arch of a circle of Iatitutest, by which the parallax of alutude increases or diminishes the latitude.

Menstrual Paraleax of the Sua, is an angle formed by two right lines; one drawn from the earth to the sun, and another from the sun to the moon, at either of their quadratures.

Parallax of the Annual Orbit of the Earth, is the difference between the beliocentric and geocentric place of a planet, or the angle at any planet, subtended by the distance between the earth and sun. There are various methods for finding the parallaxes of the celestial bodies; some of the proncipal and easier of which are as follow :

To observe the Parshax of a Celestial Body.-Observe when the body is in the same vertical with a fixed star whicl: is near it, und in that position measure its apparent distance frum the star. Observe again when the body and star are at equal altitudes from the horixam; and there measure their distance again. 'Then the difference of these distances will be the parallax very nearly.

To obserte the Moon's Pabaliax.-Observe very accurately the moon's meridian attitude, and note the moment of time. To this time, equated, compute ber true latitude and longitude, and from these find her declination; also from her declination, and the elevation of the equator, find her true neridian altitude. Subtract the refraction from the observed altitude: then the difference between the rerasinder and the true altitude, will be the parallax sought. If the observed altutude be not meridionsl, reduce it to the true altitude for the time of observation. By this meaus, in 1583, Oct. 12 day $5 \mathrm{~h}, \mathrm{t} 9 \mathrm{~m}$. from the moon's meridian altitude observed at $13^{\circ} 38^{\prime}$, Tycho found her parallax to be 54 minutes.

To observe the Moon's Parallax in an Eclipsc.-In an eclipse of the moon observe when both horns are in the same vertical circle, and at that poment take the altisudes of both horns; then half their sum will be nearly the apparent altitude of the moon's centre; from which subtract the refraction, which gives the apparent altitude freed from refraction. But the true altitude is nearly equal to the altituile of the centre of the shadow at that time : now the altitude of the centre of the shadow is
known, because we know the sun's julace in the ecliptic, and this depression below the horizon, which is equal to the altitude of the opposite point of the ecliptic, in which the centre of the shadow is. Having thus the true and apparent altitudes, their difference is the parallax sought. Lahire makes the greatest horizontal parallax $1^{\circ} 1^{\prime} 25^{\prime \prime}$, and the least $54^{\prime} 5^{\prime \prime}$. M. le Monnier determined the mean parallax of the moon to be $57^{\prime} 12^{\prime \prime}$. Others have made it $57^{\prime} 18^{\prime \prime}$.

From the Moon's Parallaxist, and altitude sf (last fig. but one); to find her distance from the Eavth.-From her pjparent altitude given, there is given her apparent zenith distance, i. e. the angle AEs; or by her true altitude, the complenent angle ATs. Thercfore, since at the same time, the parallactic angles is known, the 3d or supplemental angle tes is also known. Then, considering the earth's semidiameter TE as 1 , in the triangle eres are given all the angles and the side TE, to find ES the moon's distance from the surface of the earth, or Ts her distance from the centre.

Thus Tycho, by the observation above mentioned, found the moon's distance at that time from the carth, was 62 of the earth's semidiameters. According to Lahire's de ternination, ler distance when in the jerigee is near 36 semidianneters, but in ber apogee near 6s $\frac{1}{2}$; and therefore the mean uearly $59 \frac{1}{4}$, or in round numbers 60 semidiameters.

Hunce also, since, from the moon's theory, there is given the ratio of her distances from the earth in the several degrees of her anomaly; those distances being found, by the rulc of three, in semidiameters of the earth. the parallax is theuce determined to the several degrets of the true anomaly.

To observe the Paraliax of Mars,-1. Suppose Mars to be in the merieliun and equator at n : and that the observer, under the equator in A, observes thim cuiminating with some fixed star. 2. If now the observer were in the centre of the earth, he would sce Mars constantly in the same point of the heavens with the star; and therefore, together with it, in the plane of the horizon, or of the 6th horary: but since Mans bere has some sensible parallax, and the fixed star bas none, Mars will be scen in the horizon, when in P , the plane of the sensible horizon; and the star, whon in R, the plane of the true horizon: therefore chacerve the time betwren the transit of Mars and of the star through the plane of the 6th hour.-3. Convert this time into minutes of the equator, af the rate of 15 degrees to the hour; by which means there will be obtained the arch Pa, to which the angle PAM, and consequently the angle $A M D$, is nearly equal; which is the horizontal parallay of Mars.

If the observer be not under the equator, but in a paraliel 1 e , that difference will be a less arch Qx; thercfore, since the small anches $Q \times$ and $P M$ are nearly as their sines
 AD and 10 ; and since $A D G$ is equal to the distance of the place from the cquatur, i. e. to the elevation of the pole, or the latitude; therefore $A D$ is to $t D_{4}$, as radius to the cosine of the latitude; bence we have this proportion, as the cosine of the latitude 1 D is to radius, so is the parallax observed in 1, to the parallex under the equator.

Since Mars and the fixed star cannot be commodiously observed in the liorizon; let them be observed in the circle of the Sd hour: and since the parallax observed there To, is to the horizontal one PM , as ts to 1 D ; say, as the sine of the angle 1 Ds , or 45° (since the plane po is in the middle between the meridian dis and the true horizon Dm), is to radius, so is the parallax to to the horizontal parallax PM.

If Mars be likewise out of the plane of the equator, the parallax found will be an arch of a parallel; which must therefore be reduced, as above, to an arch of the equator.-Lastly, if Mars be not stationary, but either direct or retrograde, by observations for several days find out what his motion is every hour, that his true place from the centre may be assigned for any given time.

By this method Cassini, who was the author of it, observer the greatest horizontal parallax of Mars to be 25"; but Mr. Flamsieed found it near $30^{\prime \prime}$. Cassini observed also the parallax of Venus by the same method.

To find the Sun's Paraliax.-The great distance of the sun renders his parallax too small to fall under even the nicest inmediate observation. Many attempts have indeed been made, both by the ancients and moderns, and many methods invented for that purpose. The first was that of Hipparchus, which was followed by Ptolemy, \&c, and was founded on the observation of lunar eclipses. The second was thet of Aristarchus, in which the angle subtended by the semidiameter of the moon's orbit, seen from the sun, was sought from the lunar phases. But these both proving deficient, astronomers now have recourse to the parallaxes of the nearer planets, Mars aud Venus. Now from the theory of the motions of the earth and planets, there is known at any time the propurtion of the distances of the sun and planets from us; and the horizontal parallaxes oeing reciprocally proportiunal to those distances; by knowing the parallax of a planet, that of the sun may be thence found.

Thus Mars, when opposite to the sun, is only half the distance of the sun from us, and therefore his parallax will be twice as great as that of the sun. And Venus, when in her inferior conjunction with the sun, is sometimes nearer us than be is; and therefore her parallax is greater in the same proportion. Thus, from the parallaxes of Mart and Venus, Cassimi found the sun's parallax to be $10^{\prime \prime}$; whence his distance comes out 22000 semidiameters of the earth.

But the most accurate method of determining the parallaxes of these planets, and thenee the parallax of the sun, is that of observing their tramsit. However, Mercury, though frequently to be seen on the sun, is not fit for this purpose; because he is so near that luminary, that the difference of their parallaxes is always less than the solar parallax required. But the parallax of Venus, being almost 4 times as great as the solar parallax, will cause very sensible ditferences between the times in which she will seem to be passing over the sun at different parts of the earth. This method determining the sun's parallax appears to have been first proposed by Mr.James Gregory, viz, in his Optica Promota, Schol. pa, 130, publighed in 1663.
With the vietw of engaging the attention of astronomers to this method of determining the sun's parallax, Dr. Halley communicated to the Royal Society, in 1691, a paper, containing an account of the several years in which such a transit may happen, computed from the tables which were then in use : those at the ascending node occur in the
month of November o.s. in the years 918, 1161, 1396, $1631,1639,1874,2109,2117$; and at the descending node in May o.s. in the years 1048, 1283, 1291, 1518, 1526, 1761, 1769, 1996, 2004. Philos. Trans. Abr. vol. 3, pa. 448, \&c.

Dr. Halley even then concluded, that if the interval of time between the two interior contacts of Venus with the sun, could be measured to the exactness of a second, in two plaees properly situated, the sun's parallax might be determined within is 500 th part. And this conclusion was more fully explained in a subsequent paper, concerning the transit of Venus in the year 1761, in the Philos. Trans. No. 348, or Abr, vol. 11, pa. 553.

It does not appear that any of the preceding trausits had been observed; except that of 1639 , by our ingenious countryman Mr. Horrox, and his friend Mr. Crabtree, of Manchester. But Mr. Horrox died on the Sd of January, 1641, at the age of 25 , just after he had finished his treatise, Venus in Sole visa, in which he discovers a more accurate knowledge of the dimensions of the solar system, than his learned commentator Hevelus.

To give a general idea of this method of determining the horizontal parallex of Venus, and thence, by analogy, the parallax and distance of the sun, and of all the planets from him ; let dasa be the earth, v Venus, and rsit the eastern limb of the sun. Now, to an observer at a , the point t of that limb will be on the meridian, und its place as referred to the heavens will be at e, and Venus will appear just within itat s. But to an ubserver at A, at the same instant, Venus is east of the sun, in the right line Avy; the point t of the sun's Jimb appears at c in the heavens, and if Venus were then visible she would appear at r. The angle cva is the horizontal parallax of Venus; which is equal to the opposite angle PVZ , measured by the arc PR. ASC is the sun's horizontal parallax, equal to the opposite angle esz, measured by the arces; and fae or vae is Venus's horizontal parallax from the sun, which may be found by observing how much later in absolute time her total ingress on the sun, is, as seen from A, than as seen from n, which is the time she takes to meve from v to v, in her orbit ove.

If Venus were nearer the earth, as at v, ber horizontal parallax from the sun would be the are $f e$, which measures the angle rac; and this angle is greater than the engle yae, by the difference of their measures $\mathbf{y f}$. So that, as the distance of the celestial object from the earth is less, its parallax is the greater.
Vol. 11.

Now it has been already observed, that the horizontal parallaxes of the planets are inversely as their distances from the carth's centre; and consequently, as the sun's distance at the time of the transit, is to Venus's diatance, so is the parallax of Venus to that of the sun: and as the sun's mean distance from the earth's centre, is to his distance on the day of the transit, so is his horizontal parallax on that day, to bis horizontal parallax at the time of his mean distance from the earth's centre. Hence his true distance in semidiameters of the earth may be obtained by the following analogy, viz, as the sine of the sun's parallax is to radius, so is unity or the earth's semidiameter, to the number of semidiameters of the earth in the sun's distance from the centre; which number multiplitd by the number of miles in the earth's $s=$ midiameter, will give the number of miles in the sun's distance. 'Then from the proportional distances of the planets, tetermined by the theory of gravity, their true distances may be found. And from their apparent diameters at these known distances, their real diameters and bulks may be found.

Mr. Short, with great labour, dednced the quantity of the sun's purallax from the best observations that were made of the transit of Venus, on the 6th of Junc, 1761 (for which sce Philos. Trans. vol. 51 and 52) both in Britain and in foreign parts, and found it to bave been $8^{\circ} \cdot 52$ on the day of the transit, when the sun was sery nearly at his greatest distance from the earth; and consequently 8.65 when the sun is at his mean distance from the earth. See Pbilos. Trans, vol. 52, pa.61t, \&ce. Whence,
As sim. $8^{\prime 4} 65 \quad=\quad$ log. 3.6219140 to radius - - - 10.0000000 So is 1 semidiameter - - 00000000 to 23822.84 semidiameters - . 4.3780860 that is, $238322^{\frac{1}{10} 0}$ is the number of the carth's semidiameters contained in its distance from the sun; and this number of semidiameters being multiplied by 3985 , the number of English miles contained in the earth's semidiameter (thnugh later observations make this semidiameter only 395.7 miles), there is obtained $95,173,127$ miles for the arth's mean distance from the sun. And hencr, from the analogics under the article Distancf, the mean distanees of all the rest of the planets from the sun, in miles, are found as follow, viz,

Mercury's distance	-	-	$36,841,468$
Vcnu's distance	-	-	$68,891,486$
Mars's distance	-	-	$145,014,148$
Vesta's distance	-	-	$224,145,086$
Juno's distance	-	-	$253,541,210$
Pallas' distance	-	-	$263,153,691$
Ceres' distance	-	-	$263,344,042$
Jupiter's distance	-	-	$494,990,976$
Saturn's distance	-	-	$907,956,130$
Uranus' distance	-	-	$1,816,074,574$

In another paper (Philos. Trans. vol. 33, pa. 169), Mr. Short states the mean horizontal parallax of the sun at $8^{\prime \prime} \cdot 69$. And Mr. Hornsby, from several observations of the transit of June 3, 1769 (for which see the Philos. Trans. vol. 59), deduces the sun's parallax for that day equal to $8^{\prime \prime} .65$, and the mean parallax $8^{\prime \prime} \cdot 78$; whenee he makes the mean distance of the earth from the sun to be 93,7 26,900 Englisb miles, and the distances of the other planets will be

Mercury's distance	-	-	$36,281,700$
Venus's distance	-	-	$67,795,500$
Mars's distunce	-	-	$142,818,000$

Vesta's distance
Juno's distance
Pallas' distance
Ceres' distance
Jupiter's distance
Saturn's distance
Uranus' distance

$\mathbf{P A R}$	-
-	280,739,053
- -	249,688,461
**	259,154,878
*	- 259,342,332
-	487,472,000
-	894,162,000
-	- 1,788,477,960

See the Philos. Trans, vol. 61, pa. 572.
But others, by taking the results of those observations that are most to be depended on, have made the sun's parallax at his mean distance from the earth to be $8^{p} 6045$; and some make it only $8^{1 / 54}$. According to the fornier of these, the sun's mean distance from the earth is $95,109,736$ miles; and according to the latter it is $95,834,742$ miles. On the whole there seems reason to conclude that the sun's horizontal parallax may be sated at $8^{\prime \prime} \cdot 6$, and his distance near 95 millions of miles. Hence, the following horizontal parallaxes:

Mean parallax of the sun	-	0^{\prime}	$8^{p} \cdot 6$	
Moon's greatest	-	-	61	32
Muon's least	-	-	54	4
Moon's mean	-	-	57	48
Mary's	-	-	0	25

Of the Paraitax of the Fired Stars. As to the fixed stars, their distance is so great, that $i t$ has never been found that they have any semible parallax, either with respect to the earth's diameter, or even with regard to the diameter of the earth's annual orbit round the sun, though this diameter is about 190 milhons of miles. For, any of those stars being observed from opposite ends of this diameter, or at the interval of half a gonr between the observations, when the earth is in opposite points of her orbit, yet stitl the star appoars in ti.e same place and situation in the heavens, without any change that is sensible, or measurable with the very best instruments, not amounting to a single second of a degree. That is, the diameter of the earth's annuul orbit, at the nearest of the fixed stars, does not subtend an angle of a single second ; or, in comparizon of the distance of the fised star, the extent of 190 nillions of millions is but as a point!

The parallax of the fixed stars is a subject which has engaged the attention of many able astronomers, but hitherto their labours have been unsuccessiul. Dr. Herschel, to whom astronomy is to much indebted for his ingenious labours and accurate observation, has proposed, in tbe Philosophical Transactions, a methoul for determining the annual parallax by means of double stars, by which it would become sensible, and might be aucortained at least to a greater degree of accuracy than could be effected by any other methid, though it should not exceed the 10th part of a sccond. See Stall. 'Ihis proe blem is highly interesting, as it seems in offer the only rational data for determining the distances of the fised stars; and if this conld be ascertained with any tulerable degree of probability, it could nut fail of being very grathfying to astronomers, and all thuse who contemplate with admiration the magnificent worhs of the Deity.

Paraleax is also used, in Levetling, for the angle contained between the line of true level, and that of apparent level. And, in other branches of science, for the difference between the true and apparent places.

PARALLEL, in Geometry, is applied to lines, figures, and bodies, which are every-where equidistant from each other; or which, though infinitely produced, would never cither approach nearer, or recede farther from, each other;
their distance being every-where measured by a perpendicular line between them. Hence,

Parallel right lines are those which, though infinitely produced, would never meet : which is Euclid's definition of them.-Newton, in lemma 22, book 1, of his Principia, defines parallels to be such lines as tend to a point infinitely distant-Parallel lines stand opposed to lines converging, and diverging.

Some define an inclining or converging line, to be that which will meet another at a finite distance, and a parallel line, that which will only meet at an infinite distance.

As a perpendicular is by some said to be the shortest of all lines that eun be drawn to another; so a parallel is said to be the longest.

It is demonstrated by geometricians, that two lines, $A B$ and CD, that are each parallel to one and the same right line EP, are also parallel to each other. And that if two parallel lines $A B$ and $E F$ be cut by any other line $G 11$; then 1st, the alternate angles are equal ; viz the angle $a=\angle b$, and $\angle c=\angle d$. 2d, The external angle is equal to the internal one on the same side of the cuttiug line; viz, the $\angle e=\angle d$, and the $\angle f=\angle b$. 3d, That the two internal angles on the same side are, taken together, equal to two right angles ; viz, $\angle a+\angle d=180^{\circ}$, or $\angle c+\angle 6$ $=180^{\circ}$.

To draw a Paraliel Line.-If the line to be parallel to AB must pass through a given point P: Take the nearest distance between the point P and the given line $A B$, by setting one foot of the complisses in \mathbf{P}, and with the other describe an are just to touch the line in A; then with that distance as aradius, and a centre a taken any where in the line, describe another arc c ; lastly, through P draw a line PC to touch the arc c , and that will be the parallel sought.

Othersise.-With the centre P, and a convenient radius, deacribe an are bc, cutting the given line in b. Next, with the same radius, and centre B , describe another arc PA, cutting also the given line in A. Lastly, take AP between the compasses, and apply it from a to c; and through Pand cdraw the parallel PC required. Or, draw the line with the parallel ruler, described below, by laying one edge of the ruler along AB, and extending the other to the given puint or distance. When the one line is to be at a given distance from the other; take that distance between the compasses as a radius, and with two centres, taken any where in the given line, describe two ares; theu lay a ruler just to touch the ares, and by it draw the parallel.

Parallel Plancs, are every-where equidistant, or have nll the perpendiculars that are drawn between them, everywhere equal.

Paralefl Rays, in Optics, are those which keep
always at an equal distance in respect to each other, from the visual object to the eye, from which the object is supposed to be infinitely distant.

Paraleel Rulet, is a mathematical instrument, consisting of two equal rulers, AB and CD, either of wood or metal, connected together by two slender cross bars or blades AC and BD, moveable about the points or joints A, B, C, D.-There are other forms of this instrument, a little varied from the above; some having the two blades crossing in the middle, and fixed only at one end of them, the other two ends sliding in grooves along the two rulers; \& c .

The use of this instrument is ohvious. For the edge of one of the rulerb being applied to any line, the other opened to any extent will be always parallel to the former; and consequently any parallels to this may be drawn by the edge of the ruler, opened to any extent.

Pabalege Sailing, in Navigation, is the sailing on or under a parallel of latitude, or parallel to the equator.Of this there are three cases.

1. Given the Distance and Difference of Longitude ; to find the Latitude.-Rulc. As the diff. of longitude is to the distance, so is radius to the cosine of the latitude. 2. Given the Lat. and Diff. of Longitude; to find the Dis-tance,-llule. As radius is to the cosine of the lat. so is the diff. of longitude to the distance. 3. Given the Latitude and Distance; to find the difference of longitude.Rule. As the cosine of lat. is to radius, so is the distance to the diff. of longitude.

Paraleel Sphere, is that situation of the sphere where the equator coiucides with the horizon, and the poles with the zenith and nadir.-In this sphere, all the parallels of the equator become parallels of the horizon; consequently no stars ever rise or set, but all turn round in circles parallel to the horizon, as well as the sun himself, which when in the equinoctial wheels round the horizon the whole day. Also, After the sun rises to the elevated pole, he never sets for 6 months ; and after his entering again on the other side of the line, he never rises for 6 months longer.

This position of the sphere can only happen to those who live at the poles of the earth, if any such there be. The greatest height the sun can rise to them, is $23 \frac{1}{2}$ degrees. They have but one day and one night, each being balf a year long. Sce Sphere.

Parallels, or Places of Arms, in a Siege, are decp trenches, 15 or 18 feet wide, joining the several attacks together; and serving to place the guard of the trenches in , to be at hand to support the workmen when attacked. -There are usually three in an attack : the first is about 600 yards from the covert-way, the secend between 3 and 400, and the third near or on the glacis.-It is said they were first invented or used by Vauban.

Parallels of Altíhude, or Almacantars, are circles parallel to the horizon, conceivel to pass through every degree and minute of the meridian between the horizon and zenith; having their poles in the zenith.

Parallels, or Paralegl Cícles, called also Parallels of Latitude, and Circles of Lat. are lesser circles of the sphere, parallel to the equinoctial or equator.

Paralells of Declination, are lesser circles parallel to the equinoctial.

Paballels of Latitude, in Geography, are lesser circles parallel to the equator. But in Astronomy they are parallel to the ecliptic.

PARALLELISM, the quality of a parallel, or that which denominates it such. Or it is that by which two things, as lines, rays, or the like, become equidistant from each other.

Parallelism of the Earth's Axis, is that invariable situation of the nxis, in the progress of the earth through the anuual orbit, by which it always keeps parallel to jtself; so that if a line be drawn parallel to tts axis, while in any one position; the axis, in all other positions or parts of the orbit, will always be parallel to the same line.

In consequence of this parallelism, the axis of the earth points always, as to sense, to the same place or point in the heavens, viz, to the poles. Because, though really the axis, in the annual motion, describes the surface of n cylinder, whose base is the circle of tle carth's annual orbit, yet this whole circle is but as a point in comparison with the distance of the fixed stars ; and therefore all the sides of the cylinder seem to tend to the same point, which is the celestial pole.-To this parallelism is owing the change and variety of seasons, with the inequality of days and nights.

This parallelism is the neecssary consequence of the earth's double motion ; the one round the sun, the other round its own axis. Nor is there any necessity to itnagine a third motion, as some have done, to account for this parallelism.

Parallelism of Rows of Trees. The cye placed at the end of an alley bounded by two rows of trees, planted in parallel lines, never sees theun parallel, but always inclining to each other, towards the farther end.
Hence mathematicians have taken occasion to inquire, in what lines the trees must be disposed, to correct this effect of the perspective, and make the rows still appear parallel. And, to produce this effect, it is evident that the unequal intervals of any two opposite or corresponding trees may be seen uniler equal visual angles. For this purpose, M. Fabry', Tacquet, and Varignon observe, that the sows must be opposite semi-hyperbolas. See the Mem. Acad. Sciences, an. 1717. But notwithstanding the ingenuity of their -peculations, it has been proved by Dalembert, and Bouguer, that to produce the effect proposed, the trees are to be ranged merely in iwo diverging right lines.

PARALLELOGRAM, in Gcometry, is a quadrilateral right-lined figure, whose opposite sides are parallel to each other.-A parallologram may be conceived as geucrated by the motion of a right line, along a plane, always parallel to itseli- Purallelograms have several particular denominations, and are of several species, according to certain paricular circumetances, as follow:

When the angles of the parallelogram are right ones, it is called a rectangle. - When the angles are right, and all its sides equal, it is a square. - When the sides are equal, but the angles oblique ones, the figure is a rhombus ot lozenge. And when both the sides and angles are unequal, it is a rhomboides. Every other quadrilateral whose opposite sides are neither parallel nur equal, is called a trapexinm.

Propertics of the Parallelogaam,-1. In every parallelogram annc, the diagonal divides the figure into two equal triangles, $A B n, A C b$. Also the opposite angles and sides are equal, viz, the side $A B=C D$, and $A C=\mathrm{Bn}$, also the angle' $\mathrm{A}=\mathrm{C}$ b , and the $\angle \mathrm{c}=\angle \mathrm{c}$. And

the sum of any two succeeding angles, or next the same side, is equal to two right angles, or 180 degrees, as $\angle A$ $+\angle \mathrm{c}=\angle \mathrm{C}+\angle \mathrm{D}=\angle \mathrm{D}+\angle \mathrm{B}=\angle \mathrm{B}+\angle \mathrm{A}$ $=\mathrm{two}$ right-angles.
2. All parallelograms, as $A B D C$ and $a b D C$, are equal, that are on the same base $\mathbf{C D}$, and betiven the same parallels $A b, C D$; or that have cither ihe same or equal bases and sltitudes; and each is double a triangle of the same or equal base and altitude.
S. The areas of parallelograms are to one another in the compound ratio of their bases and altitudes. If their bases be equal, the areas are as their altitudes ; and if the altitudes be equal, the areas are as the bases. "And when the angles of the one parallelogram are equal to thuse of another, the areas are as the rectangles of the sides about the equal angles.
4. In every parallelogram, the sum of the squares of the two diagonals, is equal to the sum of the squares of all the four sides of the figure, viz,
$A D^{2}+B C^{2}=A B^{2}+B D^{2}+D C^{2}+C A^{2}$. Also the two diagonals bisect each other; so that $A E=E D$, and $\mathrm{BE}=\mathrm{Ec}$.
5. To find the Area of a Paralielogram.-Multiply any one side, as a base, by the height, or perpendicular let fall upon it from the opposite side. Or, multiply any two adjacent sides together, and the product by the sine of their contained angle, the radius be:ing $t: v i z$,
The area is $=C D \times A P=A C \times C D \times \sin . \angle C$.
Complement of a Parailelocram. Sce Complemeyt.
Cenite of Grazity of a Paralleloora m. Sce Centre of Gravity, and Cintrobaric Method.

Parallelogata, or Parallelism, or Pentaorapir, also denotes a machine used for the ready and exact reduction or cupying of designs, schemes; plans, prints, \&ec, ill any proportion. See Iestagrapil.

Paballelogram of Forces. See Fonces, Parallelogram of.

Parallelogram of the Hyperbolc, is the pafallelogram formed by the two asymptotes of an hy perbola, and the parallels to them, drawit fintm any point of the curve. This term was first used by Huygens, at the end of his Dissertalio de Causa Gravitatis, This paralleliggram, so formed, is of an invariable magnitude in the same hyperbola; ard the rectangle of its sides'is equal to the pouser of the hyperbola.

This parallelogram is also the modulus of the logaritilmic system; and if it be taken as unity or 1 , the hyperbolic sectors and segments will correspond to Nupier's or the natural logarithms; for which reason these have been called the hyperbolic logaritbms. If the parallelogrami be taken $=\mathbf{4 3 4 2 9 4 4 8 1 9 0 ~ d c}$, these vectors atd segmente will represent Brigg's logaritimis; in which case the two asymptotes of the byperinola make between thetn ant angla of $95^{\circ} 44^{\prime}-35^{\prime \prime} \frac{7}{5}$.

Newtonian or Analytic Parallelogras, a term need for an invention of Sir Isaac Newton, to find the first term of an infinite converging series. It is sometimes called the Method of the Parallelogram and Ruler; because a ruler or right line is also used in it. This analytical parallelogram is formed by dividing eny geometrical parallelogram into equal small squares or parallelograms, by lines drawn horizonally and perpendicularly through the equal divisions of the sides of the parallelogram. The small cells, thus formed, are filled with the dimensious or powers of the species x and y, and their products.

PAR

For instance, the powers of y, as y° or $1, y, y^{3}, y^{3}, y^{4}, \& c$, being placed in the lowest horizontal range of cells; and the powers of x, is $x^{\circ}=1, x, x^{8}, x^{3}, \& \mathrm{c}$, in the vertical columu to the left; or vice versa; these potwers and their products will stand as in this tigure:

Now when any literal equation is proposed, involving va-
 rious powers of the two unknown quantities x and y, to find the value of one of these in an infinite series of the powers of the other; mark such of the cells as correspond to all its.terms, or that contain the same powers and products of x and y; then let a ruler be applied to two, or perhaps more, of the parallelograms so marked, of which let one be the lowest iu the left-hand column at AB, the wher touching the ruler towards the right hand; and let all the rest, not touching the ruler, lie above it. Then select those term; of the equation which are represented by the cells that touch the ruler, and from them find the first term or quantity to be put in the quotient.

Ot the application of this rule, Newton has given several examples in his Method of Fluxions and Infinite Series, pa. 9 and 10, but without demonstration; which has been supplied by others. Sec Culson's Comment on that trentise, pa. 192 et seg. Also Newton's Letter to Oldenburg, Oct. 24, 1676. Maclaurin's Algebra, pa. 251. And especially Cramer's Analyses des Lignes Courbes, pa. 148. - This author observes, that this invention, which is the true foundation of the method of series, was but imperfectly understood, and not valued as it deserved, for a long time. He thinks it however more conrenient in practice to use the Analytical Triangle of the abbé de Gua, which takes in no more than the diagonal cells lying between A and c , and those which lie between them and B .

Pailallelogram Protractor, a mathematical instrument, consisting of a semicircle of brass, with four rulers in form of a parallelogram, made to move to any angle. One of these rulers is an index, which shows on the semicircle the quantity of any inward and outward angle.
paralidilopiped, or Paralielopipedox, is a solid figure contained under six parallelograms, the opposites of which are equal and parallel. Or, it is a prism whose base is a paralielogram.

Propertica of the Paralleloptpedon.-All paraliclopipedons, whether right or oblique, that have their bases und altitudes equal, are equal ; and each equal to triple a pyramid of an equal base and altitude.-A diagonal plane divides the parallelopipedon into two equal triangular prisms.-See other properties under the general term Paism, of which this is only a particular species.

To measure the Surface und Solidity of a Paraliee-
lopipedon.-Final the areas of the three parallelograms AD, EE, and ag, which add into one sum; and double that sum will be the whole surface of the parallelopipedon. Or,

For the solidity; multiply the base by the altitude; that is, any one faceor side by its distance from the opposite aide; as $A D \times D E$, or $A B \times \mathrm{BE}$, or $\mathbf{B C} \times \mathrm{B}$ 。

the three conic sections; otherw ise called nisolatus rectum. -This line is called parameter, or equal measurer, because it measures the conjugate axis by the same ratio which is Letween the two axes themselves; being indeed a third proportional to them; viz, a third proportional to the transterse and conjugate axes, in the ellipse and hyperbola; and, which is the same thing, a third proportional to any absciss and its ordinate in the parabula. So if t and c be the two axes in the ellipse and hyperbola, and x and y an absciss and its ordinate in the parabola;
then $t: c:: c: p=\frac{f}{t}$ the param. in the former,
and $x: y:: y: p=\frac{y^{z}}{x}$ the param. in the last.
The parameter is equal to the double ordinate drawn through the focus of uny of the three conic sections.
PARAPET, or Breasticork, in Fortificatioll, is a defence or screen, on the extrume edge of a rampart, or uther work, serving to cover the soldiers and the cantion from the cueny's tire. - The thichpess of the parapet is 18 or 20 feet, commonly lined with masonry; and 7 or 8 feet bigh, when the enemy has no comtnand above the battery ; otherwise, it should be raised higher, to cover the men while they load the guns. There are certain openings, called E:imbrasures, cut in the parapet, from the top downwards, to within about $2 \frac{1}{2}$ or 3 feet of the bottom of it, for the cannon to fire through ; the solid pieces of it between one embrasure and another, being called Merlons.

Para pet is also a litule breast-wall, raised on the brinks of bridges, quays, or high buildings; to serve as a stay, and prevent people from falling over.

Pardies (lgatius Gaston), an ingenious French mathematician and philosopher, was born at Pau, in the province of Gascony, in 1636, his father being a counsellor of the parliament of that city.-At the age of 16 he entered into the orter of Jesuits, and made so great a proficiency in hisstudies, that he taught polite literature, and composed many piecrs in prose and verse with a distinguished delicacy of thought and style, before he was well arrived at the age of manhood. P'ropriety and elegance of language appear to have lecn his first pursuits; for which purpose he atudied the Belles Lettres, and other learned productions But afterwards he devoted himself to mathematical and philosophical studies, and read, with due attention, the most valuable authors, ancient and modern, in those sciences: so that, in a short time he made himself master of the Peripatetic and Cartesian philosophy, and taught them both with great reputation. Notwithstanding he embraced Cartesianism, yet he affected to be rather an inventor in philusophy bimself. In this spirit he sometimes advanced very bold opinions, which met with opposers, who charget him with starting absurdities: but he was ingenious enough to give his notions a plausible turn, so as to clear thetn seemingly from contradictions. Ilis reputation procured him a call to Paris, as professor of rhetoric in the college of Lewis the Great. He also taught the mathematics in that city, as he had before done . in other places. He lad from his youth a happy genius. for that science, and made a great progress in it; and the glory which his writings acquired him, raised the highest expectations from his future labours; but these were all blasted by his early death, in 1673 , at 37 years of age; falling a victim to his zeal, he baving caught a coutagious disorder by preaching to the prisoners in the Bicetre.

Pardies wrote with great ncatness and elegance. His principal works are as follow :

1. Horologium Thaumaticum duplex ; 1662, in 4to.2. Dissertatio de Motu et Natura Cometaruin ; 1605, 8 vo. -3. Discours du Mouvement Iocal ; 1670, 12mo-4. Elemens de Geometric; $1670,12 \mathrm{mo}$.-This has been translated into several hanguages; in linglish by Dr. Harris, in 1711.-5. Discours de la Connoissance des lếtes; $1672,12 \mathrm{mo}$.-6. Lettre d'un Philosophe ia un Cartesien de ses amis; $1672,12 \mathrm{mo}-7$. La Statique ou la Seience des Forces Mouvantes; $1673,12 \mathrm{mo}$ - 8 . Description et Explication de deux Machines propres à faire des Cadrans avec une grande facilite ; $1673,12 \mathrm{mo},-9$. Remarques du Mouvement de la Lumiere.-10. Globi Colestis in tabula plana redacti descriptio; 1675 , folio.

Part of his works were printed tugether, at the Ilague, 1691, in 12mo; ant again at Ĺyons, 1725.-Pardes had a dispute also with Sir Isaac Newton, about his new iheory of light and colours, in 1672 . His Letters are inserted in the Philosophical 'Transactions for that year.

PARENT (Antuons), a respectalile French mathematician, was born at Paris in 1666 . Heshowed an early propensity to the mathematics, cagerly perusing such beoks in that science as fell in his way. His custom was to write remarks in the margins of the books he read; and in this way be had filled a nuinber of books with a kind of commentary by the time he was is years of uge ; and not many years after a treatise ungnomonics, and auotherongeometry.

His friends then sent far him to Paris to study the law; and in obedience to them he went through a course in that faculty: which was no sooner finished than, urged by his passion for mathematics, he shut himself up in the college of Dormans, that no avocation might take him from his beloved atudy: and, with an allowance of less than 200 livres a-year, he lived content in this retreat, from which be never stirred but to the Royal College, to hear the lectures of M. Lahire or M. de Sauveur; adding to his small income by teaching some pupils. M. Parent made two campaigns with the marquis d'Aligre, by which lie inatructed himself sufficiently in viewing lortified places; of which he drew a number of plans, though he had never learned the art of drawing.

From this period lie spent his time in a continual application to the study of natural philosophy, and mathematics in all its branches, both speculative and practical; to which he also added anatomy, botany, and chemistry' : this genius and indefatigable application overcoming every obstacle to these pursuits.
M. de Billettes being admitted intos the Academy of Sciences at Paris in 1699, with the title of their mecha. nician, be named M. Parent for his elève or llisciple, a branch of mathematics in which he chielly excelled, It was soon discovered ill this socirty, that he engaged in ull the different subjects which were brought before them ; and indeed that hehat a haod inevery thing. In his productions be was charged with obscunty; a fault for which he was indeed justly blamed.

By a regulation of the academy in 1716, the class of cleves was suppressed, as that distinction seemed to put too great an inequality between the members. M. Parent was made an adjunct or assistant inember for the class of geometry: though he enjoyed this promotion but a very short time; being cut off by the small-pox the same year, at 50 years of age.
M. Parent, besides leaving many pieces in manuscript, published the following works:

1. Elemens de Mecanique et de Physique, $12 \mathrm{mo}, 1700$. 2. Recherches de Matbematiques et de Physique: 3 vols $410,1714$.
2. Ahthmetique theorico-pratique; in $8 \mathrm{vo}, 1714$.
3. A great many papers in the volumes of the Memoirs of the Academy of Sciunces, from the year 1700 to 1714 , several papers in almost every volunie, on a variety of branches in the mathematics.

PARGETING, in Building, is used for the plastering of walls; sometimes for plaster itself.

PaRIHLLION, or Parinetem, denotes a mork-sun, or meteor, apparing as a very bright light by the side of the sun; being formed by the reflection of his beams in a cloud properly situated.

Parhclia usually accompany the corona, or luminous circles, and are placed in the same circumference, and at the same height. Their colours resemble those of the rainbow; the red and yellow are on that sinle towards the sun, and the Llue and volet on the other. Though corolia are sometimes seen entire, without any parhelia; and sometimes parieclia without coronx.

The apparent size of parhclia is the same as that of the true sun; but they are not always round, nor so bright as the sun; and when several appear, some are brighter than others. Tbey are tinged externally with colours like the rainhow, and many of them have a long fiery tall opposite to the sun, hut paler towards the extremity. Sone parhelia have bern observed with two tails and others with threc. These tals mostiy appear in a white horizontal circle, commonly passing through all the parhelia, and would go through the centre of the sun if it wercentire. Sometimes there are arcs of lesser circles, concentric to this, tcuching those colvured circles which surround the sun: thesc are also tinged with colours, and contain other parhelia.

Parhelia are geserally situeted in the intersections of circles; but Cassini says, those which he saw in 168s, were on the outside of the coloured circle, though the talls were in the circle that was parallel to the horizon. M. Aepinus apprehends, that parhelia with elliptical corons are more frequent in the nothern regions, and thase with circular ores in the southern. They have been visible for one, two, three, or four hours together; and it is said that in North America they continue screral days, and are visible from sun-rise to sun-set. When the parhelin disappear, it sometimes rains, or there falls snow in the form ol oblong spiculiw. And Mariotte accounts for the appearance of parhelia from an intinity of small particles of ice floating in the air, which multiply the image of the sun, either by refracting or breaking lis rays, and thus making him appea: where he is not ; or by reflecting them, and serving as mirrors.

Many philosoplaers have written on parhclia; as Aristotle, Pliny, Scheiner, Gassctidi, Descartes, Huygens, Hevelius, Lathire, Cassini, Grey, Halley, Maraldi, Musschenbroek, \&c. See Sinith's Optic:, book 1, chap. 11 ; Priestley's Hist. ef Light, \&cc, pa. 613; Musschenbroek's Introduction, dec, vol. 2, pa. 1038, 4to; and Dr. Thomas Young' ${ }^{\prime}$ Ihilosuphy.

PARODICAL Degrecs, in'an equation, a term that has been sometimes used to denote the several regular terms, or lower powers of the unknown quantity x, in an equation, when the indices of the powers ascend or descend orderly in an arithmetical progression. Thus $x^{3}+m x^{2}+$ $n x=p$ is a cubic equation where no term is wanting, hut
having all its parodic degrees; the indices of the terms regularly descending thus, 3, 2, 1, 0 .

PART, Aliguant, Aliguot, Circular, Propartional, Similar, \&c. See the respective adjectives.

PARTICLE, the minute part of a body, or an assconblage of several of the atoms of which natural bodics are composel. Particle is sumetimes considered as synonymous with atom, and corpuscle; and sometimes they are distinguished. Purticles are, as it were, the elements of bodies; by the various arrangernent and texture of which, with the difference of the colsesion, \& c , are constituted the seceral kinds of bodies, hard, soft, liquid, dry, heavy, light, \&c. The smallest particles or corpuscles cethere with the strongest attractions, and always compose larger particles of weaker cohesion: and many of thesc, cohering, compose still larger partickes, whose vigour is still weaher; and so on for divers sucerssions, till the prugression end in the largest paticlex, upon which the operations in chennistry, and the colours of natural bodies, depend; and thich, by cohering, compose bodics of setusible thag. nitude.

PARTY Arches, in Architecture, are archers built between separate tenures, where the property is intermived, und apartments over each other do not belong to the same estate.
Party Wall, are partitions of brick inade between buildings in separate coccupations, for preventing the spread of fire. These are made thicker than the exiernal walls; and their thickness in L.ondon is regulated by act of parliament of the 14 th of George the Third.

PASCAL (Blaise), a respeciable French mathematician and philusupher. He was born at Clermont, in Auvergne, in the year 1623 . Ilis father, Steptien Pascal, was jresident of the Court of Aids in his province: he was also a very learned man, an able mathematician, and a friend of Detcartes. Having an extraurdinary tenderness for this child, his only sim, lie quitted his office in his province, and settled at I'aris in 16,31 , that he might be quite at leisure to attend his son's cllucution, which be conducted himself, and joung Pascal never had wiy other master.
From his infancy Blaise gave proofs of a very extruordiuary capacity. He was extremely inquisitive; desiring to know the reason of every thing; and when good reasons were not given him, be would seek for belter; nòr would be ever yield his assent but on such as appeared to him well grounded. What is told of his mamer of learning the mathematics, as well as the progress he quickly made in that science, seems alonost miraculous. From a simple inathematical definition, he discuvered by degrees, and by the unaided force of his mind, that the three angles of every triangle are together cqual to two right angles, as weil us sceveral of the other theorems of Euclid. At 16 years of age Pascal composed a tract on the Conic Scctions, which was considered as a prodigy of sagacity. Scascely had be attained bis 19th year, when he invented the famous arithmetical machine which bears his tame, and by which all kinds of operations in numbers may be performed, by the use of the cyes and hands only. Swon afterwards his experiments decided the opiniens of philasophers respecting the weight of the air. He invented the arithruetical triangle, and the elements of the arithmetic of probabilities.

All these labours ruined the health of Pascal. Bodily weakness obliged him to suspend all mental exertions, and
to commence a course of moderate exercise. One day in 16.54 , as he was riding to the bridge of Neuilly, in a chariot-and-four, the two foremost horses ran away close to a precipice, where there was no parapet, down which they rushed into the Seine. Fortunately they broke the traces by their first effort, and left the chariot standing on the very brink of the precipice. This accident so much disturbed the Urain of Pascal, that ever after he imagined there was an abyss on his left hand. He afterwards wholly renounced the world, und retired to the abbey of Port-Royal, where the regular life which he led, procured him very long intervals of health, during which he wrote the celebrated Provincial Lellurs, one of the most perfett works in the French language. For many, years P'aseal reliaquished all purely buman sciences. But having been tormented by a most severe touth-ache, which ulmost whully deprived him of rest, he sought by intense application the means of mitigating bis pain; and the discoveries which be then mate on the cycloidal curve are, even at the present day, reckoned among the greatest eflorts of the humen mind. The first idea of that remarkable curve semed to have occurred to Galileo, and several other mathematicians hud successively developed its propertics. Pascal, having attentively considered that curve, wished to muke a traal of the talents of his cotemporary geometriciatis. With this view he proposed to them sorue new problems on the cycloid, promising 40 pistoles to the first person, and yo to the second, who should solve these problems. The only person who returned answers to all the problems, and claimed the prizes, were Dr. Walis and tather Ialuobere the Jesnit. Huygens squared the segment comprehended between the vertex of the cycloid and that of the diameter of the generating circle. Slusius measured the arc of that curve in a very elegant thanner; and Wren found its rectification. But all these researches did not entirely answer the questions in the programina circulated by Fascal, under the nume of A. Detonville. He affirmed that Wallis and Intoubere were mistahen in several particulars, and therefore he withheld the promised rewards. He himself however gave perfect solations of all the problems which he had proposed, and of several others, which were arcessary to complete the theory of the cycloid. After languishing for several years in a very imbecile state of body and mind, M. Pascal died at l'aris the 19th of August 1662, at 39 years of age.

Towards the clowe of his life, he employed himself wholly in devout and moral refiections, writing down those which he decmed worthy of being preserved. The first bit of paper be could find was employed for this purpese: and he commanly set down only a few words of each sentence, as he wrote them merely for his own usc. The scraps of paper on which be had written these thoughts, were found after his death filed upon different picers of string, without any order or connection; and being copied exactly as they were written, they were afterwards arranged and published, under the title of Pensées, \&cr, or 'Thoughts upon Keligion and other Subjects; being parts of a work he had intended against atbeists and infidels, which hay been much adinited. After his death appeared also two uther litsle tracts; the one entitled, The Equilibrium of Fluids; and the other, The Weight of the Mass of Air. The works of Pascal were collected in 5 volumes, 8vo, and publisbed at the Hague, and at Paris, in 1779. This edition of Pascal's works may be consi-

Pedestals of Statues, are those serving to support
dered as the first published; at least the greater part of them were not before collected into one body, and some of them had remained only in menuscript. For this collection, the public were indebted to the abbé Bossu, and Pascal was deserving of such an editor.

PATE, in Fortification, a kind of platform, like what is called a horse-shoe; not always regular, but comononly aval, encompassed only with a parapet, and having nothing to flank it. It is usually erected in marshy grounds, to cover a gate of a town, or the like.

PATII of the Verter, a term frequently used by Mr. Flamsteed, in his Doctrine of the Sphere, denoting a circle, described by any point of the eartb's surface, as the earth turns round its axis. This puint is considered as vertical to the earth's centre; and is the same with what is called the vertex or zenith in the Ptolemaic projection. The semidiameter of this path of the vertex, is always equal to the complement of the latitude of the point or place that describes it; that is, to the place's distance from the pole of the world.

PAVILION, in Arcbitecture, is a kind of turret, or buitding usually insulated, and contained under a single. roof; sometimes square and sometimes in form of a dome: thus called from the resemblance of its roof to a tent.

PAVO, Peacock, a new constellation, in the southern hemisphere, added by the mudern astrononers. It cuntains 14 stars.

PAUSE, or Resw, in Music, a character of silence and rest; called also by some a mute figure; because it shows that some part or person is to be silent, white the others continue the song.

PECK, a measure or vessel uscd in measuring grain, pulse, and the like dry substances. It contains 2 gallons, or the 4 th part of a bushel.

PEDESTAL, in Architecture, the lowest part of an order of columns; being that which sustains the column, and serves it as a foot to stand upon. It is a square body or die, with a cornice and base. The proportions and ornaments of the pedestal are different in the different orders. Vignola indeed, and most of the moderns, make the pedestal, and its oramments, in all the orders, one third of the height of the column, including the base and capital. But some deviate from this rule.

Perrault makes the proportions of the three constituent parts of pedestals, the same in all the orders; viz, the base onc fourth of the pedestal; the cornice an eighth part; and the socle or plinth of the base, two thirds of the base itself. The beight of the die is what remains of the whole beight of the pedestal.

The Tuscan Pedestal is the simplest and lowest of all; from 3 to 5 modules high. It has only a plinth for its base, and an astragal crowned for its coruice.

The Doric Pedestal is made 4 or 5 modules in beight, by the moderns; for no ancient colunns, of this order, are found with any pedestal, or even with any base.

The Ionic Pedestal. is from 5 to 7 modules high.
The Corinthian Pedestal is the richest and most delicete of alf, and is from 4 to 7 modules high.

The Componice Pedestal is of 6 or 7 modules in height.
Square Pedestal has its breadth and height equal.
Double Penestal, is that which supports two columas, being broader than it is high.

Continued Pedestal, is that which supports a row of culumns without any break or interruption.
gures or statues.
PEDIMENT, in Architecture, a kind of low pinnacle : serving to crown porticos, or finish a frontisplece; and placed as an ornament over gates, doors, windows, niches, altars, dc; being unually of a triangular form, but sometimes an arch of a circle. Its height is various, but it is thought most beautiful when the height is one fitth of the Ingth of its base.

PEDOMETER, or Podometfin, foot-measurer, or waywiscr; a mechanical instrument, in form of a watch, and consisting of various wheels and tecth; which, by means of a cluini, or string, fastened to a man's foot, or to the wheel of a chariot, advance a notch each step, or each. revolution of the wheel: by which it numbers the paces or revolutions, and so the distance from one place to another.

Pedometrer is also sometimes used for the common surveying wheel, an instrument chiefly used in measuring roads ; popularly called the way-wiser. Sec Perambetatok.

PEGASUS, the Horse, a constellation of the northern hernisphere, figured in the form of a flying horse; being one of the 48 ancient constellations. It is fabled, by the Grecks, to have been the offspring of an amour between Neptune and the Gurgon Medusa; and to have been that on which Bellerophon rode when he overcame the Chimein; and that flying from mount Helicon to heaven, be there bicame a constellation; having thrown his rider in the tlight; and that the stroke of his hoof on the mount opened the sacred fountain Hippocrene.-The stars in this constellation, in Ptolemy's catalogue, are 20, in Tycho's 19, in Hevelius's 38, and in the Britannic catalogue $\mathbf{8 9}$.

PDELECOIDES, or Haschet-form, in Geometry, a figure in form of a hatchet. As the figure ABCDA, contained under the semicircle BCD and the two quadrantal arcs $A B$ and $A D$. The grea of the pelecoides is equal to the square AC, and this again is equal to the rectangle BF., It is equal to the square, because the two segments A it and
 $A D$, which it wants of the square on the lower part, are compensated by the two equal segments ac and cD, by which it exceeds on the upper part. And the square is equal to the rectangle as, because the triangle ABD, which is half the square, is also balf the rectengle BE of the same base and height with it.

PELL (Dr. Joun), an eminent English mathematician, discended from an ancient family in Lincolnshire, was born at Southwick in Sussex, March 1, 1610, where his father was minister. He recived his grammar educaton at the free-school at Stenning in that county. At the age of 13 he was sent to Trinity-cullege in Cambridge, though at that time as good a scholar as most masters of arts in that university; but though he was eminently skilled in the Greek and IIebrew languages, he never offered himself a candidate at the election of scholars or fellows of his college.

In 1629 he drew up the "Description and Use of the Quadrant, written for the Use of a Friend," in two beokss; the original inanuscript of which is still extant among lis papers in the Royal Socicty. And the same year be beld a correspondence with Mr. Briggs on the subject of logitrithms.

PEL.
[
161]
provement in the philosophical and mathematical sciences In 1630 he wrote, "Modus supputandi Ephemerid Astronomicas, \&e, ad an. 1630 accommodatus ;" and, "A Key to unlock the meaning of Johnnnes Trithemius, in his Discourse of Steganegraphy," which Key he imparted to Mr. Samuel Hartib and Mr. Jacob Homedæ. The same year be took the degree of master of arts at Cambridge. And the year following he was incorporated in the university of Oxford. June the 7 th, he wrote "A Letter to Mr. Edmund Wingate, on Logarithms," and Oct. 5, 1631, "Commentationes in Cosmographiam Alstedii."

March 6, 1634, he finished his "Astronomical History of Obecrvations of Heavenly Motions and Appearances;" and April the 10th, his 4' Eeliptica Proguentica, or Foreknower of the Eclipses, \&c."-In 1634 he translated "The Everlasting Tables of Ileavenly Motions," grounded on the Observations of all Times, and agreeing with them all, by Philip Lansberg, of Ghent in Flanders. Aut June the 1 ?th, "the same year, be committed to writing, "The Manuer of deducing his Astrenomical "lables out of the Tables and Axions of Philip Lansberg."-March the 9:h, 1635, he wrote " A Letter of Remarks on Gellibrand's Mathematical Discourse on the Variation of the Magnetic Ncedle." And the 3d of June following, another on the same subject.

His conimence in mathematical knowledge was now so great, that be was thought worthy of a professor's chair in that science; and, on the vacancy of one at Amsterdam in 1639, Sir William Boswell, the English resident with the Stater-General, used his interest, that he might succeed in that professorship: it was not filled however ull 1643, when Pell was chosen to it; and he read with great applaase public lectures on Diophantus.-In 164-4 he printed at Amsterdam, in two pages 4to, "A Refutation of Longomontanus's Discourse, De Vera Circuli Mensura."

In 1646, on the invitation of the Prince of Orange, he removed to the new college at Breda, as professor of mathematics, with a sitary of 1000 guilders a year.-His "Idea Mathescos," which he had addressed to Mr. Hartlib, who in 1639 had sent it to Descattes and Mersenne, was printed 1650 at London, in 12noo, in English, with the title of "An Idea of Mathematics," at the end of Mr. John Durie's Reformed Library-keeper. It is also printed by Mr. Hooke, in his Philosuphical Collections, No. 5 , pa. 127 ; and is esteemed our author's principal work.

In 1652 Pell returned to England: and in 1654 he was sent by the protector Cromwell agent to the protestant cantons in Switzerland; where he continued till June 23, 1658, when he set out for England, where he srrived about the time of Cromwell's death. His negociations abroad gave afterwards a general satisfaction, as it appeared the had done no small service to the interest of king Charles the 2d, and of we church of England; so that he was encouraged to enter into holy orders; and in the year 166 t he was instituted to the rectory of Fobbing in Essex, given him by the king. In December that year he brought into the upper liouse of convocation the calendar reformed by hion, assisted by Sancroft, afterwards archbishop of Canterbury.-In 167 S he was presented by Sheldon, bishop of London, to the rectory of Laingdon in Essex ; and, on the promotion of that bishop to the see of Canterbury soon after, became one of his domestic chaplains. He was then doctor of divinity, and expected to he made a dean; but he attended so much to his im-

Vol. II.
that he lost sight of his private advantage. The truth is, he was a helpless man, as to worldly affairs, and his tenants and relations imposed on him, cozened him of the protits of his parsonage, and kept him so indigent, that he wanted necessaries, even ink and paper, to bis dying day. He was for some time confined to the King's-bench prison for debt; but, in March 1682, was invited by Dr. Whitler to live in the college of physicians. Here he continued till Junc following; when he was obliged, by his ill state of health, to remove to the huuse of a grandehild of his in St. Margaret's Church-yarl, Westminster. But he died at the house of Mr. Cothorne, reader of the church of St. Giles's in the Fields, December the 12th, 1685 , in the 74th year of his age, and was iuterred at the expense of Dr. Busby, master of Westuninster-school, and Mr. Sharp, rector of St. Giles's, in the rector's vault under that church--Dr, Pell published some other things not yet mentioned, a list of which is as follows: viz,

1. Au Exercitation concerning Easter; 1644, in 4 to.
2. A Table of 10,000 squąre numbers, \&c ; 1672, folio.
3. An Inaugural Oration at his'entering on the Professorship at Rreda.
4. He made great alterations and additions to Rhonius's Algebra, printed at London 1668, 4to, under the title of, An Introduction to Algebra; translated out of the High Dutch into English by Thomas Branker, much altered and auguented by D. P. (Dr. Pell.) Also a Table of Odd Numbers, less than 100,000 , showing thuse that are incompositc, \&c, supputated by the same Thomas Branker. Sec this table under the article Prime Numbers.
5. His Controversy with Longomontanas enncerning the Quadrature of the Circle ; Amsterdam, 1646, 4to.
He also wrote a Demonstration of the 2d, and 10th books of Euclid; which piece was in ms. in the library of lord Brereton in Cheshire: as also Archimedes's Arenarius, and the greatest part of Diophantus's 6 books of Arithmetic; of which author he was preparing a new edition, in which he intended to have corrected the translation, and made new illustrations. He designed also to publish an edition of Apollonius, but laid it aside, in May 1645, at the desire of Golius, who was engaged in an edition of that author from an Arabic manuscript given him at Aleppo 18 yuars before. Letters of Dr. Pell to Sir Charles Cavendish, in the Royal Society.
Some of his manuscripts be left at Brereton in Cheshire, where he resided some ycars, being the seat of William lord Brereton, who had loen bis pupil at Breda. A great many others came into the hands of Dr. Busby; which Mr. Hooke was desired to use bis endeavours to obtain for the Royal Society. But they continued buried under dust, and mixed with the papers and pamphlets of Dr. Busby, in 4 large boxes, till 1755 ; when Dr. Birch, sccretary to the Royal Society, procured them for that boily, from the trustecs of Dr. Busby. The collection contains not only Pell's mathematical papers, letters to him, and copies of those from him, \&c, but also several manuscripts of Walter Warner, the mathematician and philosopher, who lived in the reigns of James the liirst and Charles the First.

Dr. Pell invented the method of ranging the several steps of an algehraical-calculus, in a proper order, in so many distinct lines, with the number affixed to eactr step, and a short description of the operation or process
in the line. He also invented the character \div for division, e- for involution, and $\boldsymbol{l u}$ for evolution.

He was ulso the first who discovered the method of solving the equation $a x^{4}-y^{8}=1$, being the same as that given by Euler in the second volume of his algebra. This problera was proposed by Fermat as a challenge to all the Eaglish mathematicians, though it is probable (as he never gave a solution to it himself) that he was unacquainted with the true mode of operation at the time he proposed it.

PEMBERTON (HENRy), m. D. \& v.R. s, born at London in 1694, was a learned physician and mathematician ; as well as an expert mechanist, readily performing with his own hand several mechanical operations. After stndying grammar at a school, and the higher classics under Mr. John Ward, afterwards professor of rhetoric at Gresham-college, he went to Leyden, to attend the lectures of the celebrated Boerhave, to qualify himself for the profession of medicine. Here also, as well as in England, he constautly mixed, with his professional studies, those of the best mathematical authors, whom he contemplated with great effect. From hence he went to Paris, to perfect himself in the practice of anstomy, to which he readily attained, being naturally dextrousinall manual operations. Having obtained his main object, he returned to London, eariched also with other branches of scientific knowledge, and a choice collection of mathenatical books, both ancient and modern, from the sale of the valuable library of the abbe Gallois, which took place during his stay in Paris. After his return he assiduously attended St. Thomas's Ilospital, to acquire the London practice of physic, though he seldom afterwards practised, owing to his delicate state of health. In 1719 he returned to Leyden, to take his degree of m. D. where he was kindly entertained by his friend Dr. Boerhaave. After his return to London, he became more intimately acquainted with Dr. Mead, Sir I. Newton, and other eminent men, with whom he afterwards cultivated the most friendly connexions. Hence be was useful in assisting Sir I. Newton in preparing a new edition of his Principia, in writing an account of his philosophical discoveries, in bringing forward Mr. Robins, and writing some pieces printed in the 2 d volume of that gentleman's collection of tracts, in Dr. Mead's'Treatisc on the Plague, and in his edition of Cowper on the Muscles, \& cc. Being choseth professor of physic in Gresham-college, he undertook to give a course of lectures on chemistry, which was improved every time be exhibited it, and was published in 1771, by his friend Dr. James Wilson. In this situation too, at the request of the college of physicians, he revised and reformed their Pharmacopeia, in a new and much improved edition. After a long and laborious life spent in improving science, and assisting its cultivators, Dr. Pemberton died in 1771, at 77 years of age.

Besides the doctor's writings nbove-mentioned, he wroto numerous other pieces; as, 1. Epistola ad Amicum de Cotesii inventis; demonstrating Cotes's celebrated theorem, and showing how his theorems by ratios and lagarithms may be done by the circle and hyperbola.-2. Observations on Poetry, especially the Epic, occasioned by Glover's Leonidas.-3. A Plan of a Free State, with a King at the Head; not published.-4. Account of the Ancient Ode; printed in the preface to West's Pindar. 5. On the Dispute about Fluxions, in the 2d vol, of Robins's works.-6. On the Alteration of the Style and

Calendar.-7. On reducing the Weights and Mcasures to one Standard.-8. A Dissertation on Eclipses.-9. On the Loci Plani, \&c. His numerous communications to the Royal Society, on a variety of interesting subjects, extend from the 32 d to the 62 d vol, of the Pbilos. Trans.

After his death many valuable pieces were found among his papers, viz. A short History of Trigonometry, from Menelaus to Napier. A comment on an English Translation of Newton's Principia. Demonstrations of the Spherics and spherical Projections, enough to compose a treatise on those subjects. A Dissertation on Archimedes's Screw. Improvements in Guaging. In a given latitude, to find the point of the ecliptic that ascends the slowest. To find when the oblique ascension differs most from the arch to which it belongs. On the principles of Mercator's and middle-latitude sailing. To find the heliacal rising of a star. To compute the moon's parallax. To determine the conrse of a comet in a parabolic orbit. And others, all neatly periormed. On the whole, Dr. Pemberton appears to have been a clear and industrious author, but his writings are too diffuse and laboured.

PENCIL of Rays, in Opuics, is a double cone, or pyramid of rays, joined together at the base; as agsc: the one cone having its vertex in some point of the object at B , and the crystalliue bumour, or the glass gis for
 its base; and the other having its base on the same glass, or crystalline, but its vertex in the point of convergence, as at c.

PENDULUM, in Mechanics, any heavy body, so suspended as that it may swing backwards and forwards, about some fixed point, by the force of grasity. These alternate ascents and descents of the pendulum, are called its oscillations, or vibrations; each complete oscillation being the descent from the highest point on one side, down to the lowest point of the arch, and so on up to the highest point on the other side. The point round which the pendulum moves, or vibrates, is called its centre of motion, or point of suspension; and a right line draw a through the centre of motion, parallel to the horizon, and perpendicular to the plane in which the pendulum moves, is called the axis of oscillation. There is also a certain point within every pendulum, intn which, if all the matter that composes the pendulum were collected, or condensed as into a point, the times in which the vibrations would be performed, would not be altered by such condensation; and this point is called centre of uscillation. The length of the pendulum is always estimated by the distance of this point below the centre of motion ; being usually near the bottom of the pendulum; but in a cylinder, or any outher uniform prism or rod, it is at the distance of one third from the bottom, or two-thirds from and below the centre of motion.

The length of a pendulum, so measured to its centre of oscillation, that it will perform each vibration in a second of time, thence called the seconds pendulum, bas, in the latitude of Londun, beell generally takerr at $391_{1}{ }^{2}$ or $39^{\frac{2}{5}}$ inches; but by some very ingenious and accurate experiments, the late celebrated Mr. Gcorge Graham found the true length to be $34 \frac{123}{1006}$, inches, or $39 \frac{1}{8}$ inches very nearly.

The length of the pendulum vibrating scconds at Paris, was found by Varin, Deshays, Deglos, and Godin, to be
$440 \frac{1}{9}$ lines; by Picard $440 \frac{1}{2}$ lines; and by Mairan $440 \frac{1}{5}$ lines.

Galileo was the first who made use of a beavy body annexed to a thread, and suspended by it, for ineasuring time, in his experiments and observations, Butaccording to Sturmius, it was Riccioli who first olserved the isoclironism of penduluras, and made use of them in measuring time. After him, Tycho, Langrene, Wendeline, Mersenne, Kircher, and others, observed the same thing; though, it is sad, without any intimation of what had been done by Riccioli. But it was the celebrated Huygens who first demonstrated the principles and properties of pendulums, and probably the first who applied them to clocks. He demonstrated, that if the centre of motion were perfectly fixed and immoveable, and all manner of friction, and resistance of the air, $\& c$, removed, that a pendulum, once set in motion, would for ever continue to vibrate without any decrease of motion, and that all jts vibrations would be perfectly isochronal, or performed in the same time, the are of vibration remaining constant. Hence the pendulum has universally been considered as the best chronometer or measurer of time. Aind as all pendulums of the same length perform their vibrations in the same time, the are of vibration being the same, without regard to their different weights, it has been suggested, by incans of them, to establish an universal standard for all countries. On this principle Mouton, canon of Lyons, has a treatise, De Mensura posteris transmittenda; and several others sinec, as Whitehurst, \&c. See Uainersal Measure.

Pendulums are either simple or compound, and each of these may be considered either in theory, or as in practical mechanics among artisans.

A Simple Pendulum, in Theory, consists of a single weight, as A, considered as a point, and an inflexible right line $\boldsymbol{A C}$, supposed void of gravity or weight, and suspended from a fixed point or centre \mathbf{c}, about which it moves.
A Compound Peydvelum, inTheory, is a pendulum consisting of several
 weights moveable about one common centre of motion, but connected togerher so as to retain the same distance both from none another, and from the centre about which they vibrate.
The Doctrine and Laves of Pendulums,-1. A pendulum raised to B, through the arc of the circle $A B$, will fall, and rise again, through an equat are, to a point equally bigh, as 1 ; and thence will fall to A, and again rise to B; and thus continue riving and falling perpetually, supposing neither friction nor resistance. For it is the same thing, whether the body fall down the inside of the curve BAD, hy the force of gravity, or be retained in it by the action of the string; as they will both have the same effect ; and it is ctherwise hnown, from the ublique descents of bodies, that the body will descend and ascend along the curve in the manner above described.

Experience also confirms this theory, in any finite number of oscillations. But if they be supposed infinitely continued, a difference will arise. For the resistance of the air, and the friction and rigidity of the string about the centre c , will take off part of the force acquired in falling : hence it happens that it does not rise precisely to the same point from whence it fell. Thus, the ascent continually diminishing the oscillation, this will be at last stopped, and
the pendulum will hang at rest in its natural direction, which is perpendicular to the horizon.

Now us to the real time of oscillation in a circular are BAD: it is demonstrated by mathematicians, that if' $p=3.1416$, denote the circuinference of a circle whose diameter is $1 ; g=16_{i}^{2}$ fect or 193 inches, the space a heavy body falts in the first second of time, in our latitude; and $r=$ ca the length of the pendulum; also $a=\operatorname{Az}$ the height of the arcli of vibration; then the time of each oscillation in the are bad will be equal to
 where $d=2 r$ is the diameter of the are described, or twice the length of the pendulum.

And here, when the are is a small one, as in the case of the vibrating pendulum of a clock, all the terms of this series after the 2d may be omitted, on account of their smallness ; and then the time of a whole vibration will be nearly equal to $p \sqrt{ } \frac{r}{2 g} \times\left(1+\frac{a}{5 r}\right)$.
So that the times of vibration of a pendulum in different small arcs of the same circle, are as $8 r+a$, or 8 times the radius, added to the versed sine of the semiarc.

And farther, if \mathbf{D} denote the number of degrees in the semiarc $\Delta \mathrm{B}$, whose versed sine is a, then the quantity last mentioned, for the time of a whole vibration, is changed to $p \sqrt{\frac{1}{2 g}} \times\left(1+\frac{n^{*}}{32 s 24}\right)$. And therefore the times of vibretion in different small arcs, are as $52524+\mathrm{D}^{3}$, or as the number 52524 added to the square of the number of degrees in the semiarc AB. See my Tracts, vol. S, prob. 15, pa. 338.
2. Let cB be a semicycloid, having its base ec parallel to the horizon, and its vertex a downwards; and let CD be the other half of the cycloid, in a similar position to the former. Now suppose a pendulum string, of the same length with the curve of
 each semicycloid BC , or Cb , having its end fixed in c , and the thread applied all the way close to the cycloidal curve BC , and consequently the body or peodulum weight coinciding with the point B . If now the body be let go from B, it will descend by its own gravity, and in descending it will unwiad the string from off the arch ac, as at the position can; and the ball n will describe a semicycloid BHA, equal and similar to boc, when it has arrived at the lowest point A ; after which, it will cuntinue its motion, and ascend, by anotber equal and similar semicycloid $A K D$, to the same height D, as it fell from at B, the string now wrapping itself upon the other arch cid. From D it will descend again, and pass along the whole cycloid daE, to the point a; and thus perform continual successive oscillations betwen B and $D_{\text {, in }}$ ine curve of a cycloid ; as it before oscillated in the curve of a circle, in the former case.

This contrivance, to make the pendulum oscillate in the curve of a cycloid, is the invention of the celebrated Huygens, to make the pendulum perform all its vibrations in equal times, whether the arch, or extent of the vibra-
tion be great or stall; which is not the case in a circle, where the larger ares take a longer time to run through them, than the smaller ones do, as is well known both from theory and practice.

- It should be observed however, that in speaking of the equal times of vibrations in cycloidal arcs, the string by which the body is suspended is considered void of gravity and resistance, and as this is not absolutely true, it follows that theory and practice will be a little at variance on this bead.

The chief properties of the cycloidal pendulum then, as demonstrated by Huygens, are the following. 1st, That the time of an oscillation in all ares, whether larger or smaller, is always the same quantity, viz, whether the body begin to descend from the point B , and describe the semiarc ba; or that it begins at in, and describes the are HA ; or that it sets out from any other point; as it will still descend to the lowest point A in exactly the same time. And it is farthur proved, that the time of a whole vibration through any double are bad, or inak, \&ce, is in proportion to the time in which a heavy body will fall freely, by the Force of gravity, through a space equal to $\frac{1}{4}$ ac, half the length of the pendulum, as the circumference of a circle is to its diameter. So that, if $g=16 \frac{1}{T y}$ feet denote the space a heavy body falls in the first second of time, $p=3.1416$ the circumference of a circle whose diameter is 1 , and $r=A C$ the length of the pendulum; then, because, by the nature of descents by gravity, $\sqrt{ } g: \sqrt{ } \frac{1 r}{}$ $:: 1^{\prime \prime}: \sqrt{ } \frac{r}{2 g}$, that is the time in which a body will fall through $\frac{4}{4}$, or half the length of the pendulum ; therefore, by the above proportion, as $1: p:: \sqrt{ } \frac{r}{2 g}: P \sqrt{\prime}^{\prime} \frac{r}{2 g}$, which is the time of an entire oscillation in the cycloid.

And this conclusion is confirmed by experience. For example, if it were required to find the length of the pendulum that will so oscillate in one second; this will give the equation $p \sqrt{ } \frac{t}{2 g}=1$; which reduced, gives $r=\frac{2 \pi}{p^{*}}=\frac{\text { an } 6}{3 \cdot 1416^{*}}$ inches $=39-11$ or $39!$ inches, for the length of the seconds pendulum; which the best experiments show to be aboui $39 \frac{1}{8}$ inclies.
3. Hence also, we have a method of determining, from the experimented length of a pendulum, the space a heavy body will fall perpendicularly through in a given time : for, since $p \sqrt{ } \frac{5}{2 g}=1$, therefore, by reduction, $g=\frac{3}{2} p^{2} r$ is the space a body will fall through in the first secend of time, when r denotes the length of the seconls pendulum ; and as coastant experience shows that this length is nearly $39!$ inches, in the latitude of London, in this case g or $4 p^{2}$ becomes $\frac{1}{2} \times 3.1416^{1} \times 39 \frac{1}{2}=193.07$ inches $=16_{\mathrm{T}^{\prime}}^{\prime}$ feet, very nearly, for the spuce a body will fall in the first second of time, in the latitude of London: a fact which has been abundanily confirmed by experiments made there. And in the same manner, Mr. Iluygens found the same space fallen through at Paris, to be 15 French feet.

The whole doctrine of pendulums, oscillating between two semicycloids, both in theory and practice, was delivered by thatauthor, in his liorologium Oscillatorium, sive Demonstrationes de Motu Pendulorum. And every thing that regards the motion of pendulums has since been desanstrated in different ways, and particularly by Newton,
who has given an admirable theory on the subject, in his Principia, where he has extended to epicyeloids the propertics demumstrated by lluygens of the cycluids.
4. As the cycloid may be considered as colnciding, in A, with any suall are of a circle described from the cemre c, passing through A, where it is known the two curves have the same radius and curvature; therefore the time in the small are of such a circle, will be nearly equal to the time in the cycloid; so that the times in wery small circular arcs are equal, because these smail arcs may beconsidered as portions of the cycloid, as well as of the circle. And this is one great reason why the pendulums of clocks are made to oscillate in as small ures as pussible, viz, that their oscillations may be the nearer to a constant equality.

This may also be deduced from a comparison of the times of vibration in the circle, and in the cycloid, as laid down in the foregoing articles. It has there been shown, that the times of vibration in the circle and cycloid are thus, via,
time in the circle nearly $p \sqrt{ } \frac{\pi}{2 g} \times\left(1+\frac{a}{s r}\right)$,

- time in the cycloidal arc $p \sqrt{2 g}$;
where it is evident, that the former always exceeds the latter in the ratio of $1+\frac{n}{8 r}$ to 1 ; but this ratio always approaches nearer to an eqonlity, as the arc, or as its versed sine a, is smaller; till at lengtb, when it is very small, the term $\frac{a}{\operatorname{or}}$ may be omitted, and then the times of vibration become both the same quantity, viz, $P \sqrt{ } \frac{r}{2 g}$.

Farther, by the same comparison, it appears, that the time lost in each sccond, or in each sibration of the seconds pendulums, by vibrating in a circle, instead of a cycloid, is $\frac{\mathrm{a}}{\mathrm{sr}}$, or $\frac{\mathrm{mf}}{52524}$; and consequently the time lost in a whole day of 24 hours, is $\$ 0^{2}$ nearly. In like manner, the seconds lost per day by vibrating in the are of d degrees, is j^{4}. Therefore if the produlum heep true time in one of these arcs, the seconds lost or gained per day, by vibrating in the other, will be $\frac{1}{3}\left(D^{2}-d^{2}\right)$. So, for example, it a pendulum measure true time in an are of 3 degrecs, on each side of the lowest point, it will lose $11 \frac{1}{3}$ meconds a day by vibrating 4 degrees; and $26 \frac{2}{3}$ seconds a day by vibrating 5 degrees; und so on.
5. The action of gravity is less in those parts of the earth where the oscillations of the same pendolum are slower, and greater where these are suifter; for the time of oscillation is reciprocally proportional to $\sqrt{ } g$. And it being found lay experiment, that the oscillutions of the same pendulum are slower near the equator, than in places farther from it; it follows that the force of gravity is less there; and consequently the parts about the equator are bigher or farther from the centre, than the other parts; and the shape of the earth is not a true sphere, but somewhat like an oblate sphervid, flatted at the poles, and raised gradually towards the equator. And bence also the times of the vibration of the same pendulum, in different latitudes, afford a method of determining the true figure of the earth, and the proportion between its axis and the equatorial diameter.

Thus, M. Richer found by an experiment made in the island of Cayenne, alout 4 degrees from the equator, where a pendulum 3 feet $8 \frac{2}{3}$ lines long, which at Paris vibrated
seconds, required to be shortened a line and a quarter to make it vibrate seconds. And many other observations bave confirmed the same principle. See Newton's Principia, lib.3, prop. 20. By comparing the ditferent observations of the French astronomers, Newton apprehends that It lines may be considered as the length a seconds penduluin ought to be decreased at the equator.

Fron sume obscrvations made by Mr. Campbell, in 1731 , in Black-river, in Jamaica, 15° north latitude, it is collected, that if the length of a simple pendulum that swings seconds in London, be 39.126 English inclese, the length of one at the equator would be $39^{\circ} \% 0$, uad at the poles $39 \cdot 206$. Philos. Trans. numb. 432.

And hence Mr. Limerson has computed the following Table, showing the lengh of a pendulum that swings seconds at every 5 th degree of latitude, as also the length of the degree of latitude there, in Einghsh miles.

Degrees of Lat.	Leught of Peadulum.	Length of the Degree.
	inclus.	miles.
0	39.027	$6 * 723$
5	39029	68.730
10	39.032	68.750
13	39.036	$68 \cdot 783$
20	39.044	68.830
25	39.057	68.882
30	39.070	68.950
35	39.084	69.020
40	39.097	69.097
45	39111	69.176
50	$39 \cdot 126$	69.256
55	$39 \cdot 142$	69.330
60	39.158	69401
63	31.168	$69 \cdot 467$
70	39.177	69.522
75	39.185	69.568
80	39-191	69-601
85	39.195	69-620
90	39.197	69628

Capt. John Warren has lately inade experiments on pendulums, at Madras, lavitude $13^{\circ} 4^{\prime} 12^{\prime \prime}$, for which "place be concludes the length of the seconds pendulum to be $39.026 i 27$ inches. He further deduces the length at the equator to be 35.987 or 39 nearly, and thnt at the pole $39^{\circ} 207_{7}$; hence he deduces the effect of gravity, in one second of time, to be at the equator 16.0328 feet, and at the poles 16.1233 feet; and hence also he deduces the elliptucity of the earth's figure to be ${ }_{\mathrm{y}} \mathrm{r} \mathrm{T}$ nearly. See the Asiatic Retearches, vol. xi, art. 5.
6. If two pendulums vibrate in similar ares, the times of vibration are in the sub-duplicate ratio of their lengths. And the lengths of pendulums vibrating in similar arcs, are in the duplicate ratio of the times of a vibration directly; or in the reciprocal duplicate ratio of the number of oscillations made in any one and the same time. For, the time of vibration t being as $p \sqrt{ } \frac{r}{2 g}$, where p and g are constant or given, therefore t is as $\sqrt{ } r$, and r as t. Heace therefore the length of a half-second pendulum will be $\frac{1}{8} r$ or $\frac{39}{4}=9.781$ inches ; and the length of the quartersecond pendulum will be $\frac{{ }^{\frac{1}{8}}{ }^{2} r=\frac{39}{36}=2.445 \text { inches; and }}{\text { so of others. }}$
7. The foregoing laws, $\& c$, of the motion of pendulums cannot strictly hold good, unless the thread that sustains the ball be void of weight, and the gravity of the whole ball be collected into a point. In practice therefore, a very fine thread, and a small ball, but of a very heavy matter, should be used. But a thick thread, and a bulky ball, disturb the motion very much; for in that case the simple piendulum becomes a compound one; it being nuch the same thing, as if several weights were applied to the same intlexible rod in several places.
8. M. Krafft, in the new Petersburg Memoirs, vols 6 and 7 , has given the result of many experiments on pelsdulums, made in different parts of Russia, with deductions from them, from which he derives this theurem: If x be the length of a pendulum that swings seconds in any given latitude l, and in a temperature of 10 degrees of Reaumur's thermumeter; then will the length ot that pendulusu, for that latifude, be thus expressed, viz,
$x=\left(4.39 \cdot 178+2 \cdot 321 \times\right.$ sin. $\left.{ }^{7} t\right)$ lines of a French fuot. And this exprestion agrees very nearly, not only with all the experiments made on the pendulum in Russia, but also with those of Mr. Grahan, and those of Mr. Lyons in $79^{\circ} 50^{\circ}$ nortb latitude, where he fiund its length to be 441.38 lines. See Obiateness.

Simple Pesdule a, in Mechanics, en expression commonly used among artists, to distinguish such pendulums as have no provision for correcting the effects of heat and cold, from those that have such provision. Also Simple Pendulunt, and Detached Pendulum, are terms sometimes used to denote such pendulums as are not connected with any clock, or clock-work.

Compound Pexdulex, in Mechanics, is a pendulum whose rod iy composed of two or more wires or bars of metal. These, by undergoing different degrees of expansion nnd contraction, when exposed to the same heat or cold, have the difference of expansion or contraction made to act in such inamer as to preserve constantly the same distance between the point of suspension, and centre of oscillation, though exposed to very different and various degress of heat or cold. There are a great variety of constructions for this purpose ; but they may be nll reduced to the Gridiron, the Mercurial, and the Lever Pendulum.

It may le just observed by the way, that the vulgar method of romerlying the inconvenience arising from the extension and contraction of the rods of common pendulums, is by applying the bob, or small ball, with a screw, at the lower end; by which means the pendulum is ut any time made longer or shorter, as the ball is screwed downwards or upwards, and thus the time of its vihration is kept contimually the same.

Angular Peydulum, is formerl of two pieces or legs, like a sector, and suspended by tl- angular point. This form has been inveuted to diminish the length of the common pendulum, and at the satue time to preserve, or even increase the time of vibration. In this pendulum, the time of vibration depends on the length of the legs, and on the angle contained between them conjointly, the duration of the time of vihration increasing with the angle. For, the wider the opening betwon the Iwo legs, the higher, it is evident, the centre of gravity ascends, as the shorter its distance below the point of suspension, and consequently the longer the distance of the centre of oscillation, or the slower the vibration, since the distance of the latter is reciprocally proportional to that of the former, by my Course of Mlathematics, vol, 2.
prop. 56. Hence, a pendulum of this construction may be unade to oscillate in any given time whatever; for the distance of the centre of oscillation may be computed by that prop. and the time of vibration by prop. 30, or by the preceding parts of this article.-It may be easily shown, that in this kind of pendulum, the squares of the times of vibration, are drectly as the secants of half the angles contained by the legs, or reciprocally as the cosines of the same. Hence, if a pendulum of this construction vibrates half seconds when its legs are close, it will vibrate whole seconds, when the legs are openel to an angle of $151^{\circ} 2 \frac{1}{1}^{\prime}$. If the two legs, for instance, be 15 inches long, and they make an angle of $150^{\circ} \mathrm{23}$, the time of vibration will be 1 second; if the angle be increased to $178^{\circ} 499^{\frac{1}{2}}$, the time of vibration would be 5 seconds. See Gregorys Mcchanics, vol. 1, pa. 269.

If an isosceles right-angled triangle be suspended at its vertex, the centre of oscillation will be in the midale of its base. And if a right-angled cone be suspended at its vertex, the centre of oscillation will be in the centre of its base. In either case therefore, the time of vibration will he the same as that of a simple pendulum whose length is equal to the altitude of the triangle or of the cone. Other pendulums, whose lengths shall be equal to the distance of the centre of oscillation, may be readily found from the known rules for the centre of oscillation. Thus, in a prarabola vibrating in its own plane, and suspended at its vertex, the distance of the centre of oscillation below the vertex, is $\frac{5}{5}$ axis $+\frac{1}{3}$ parameter: and when this quantity is equal to the axis, the base of the parabola is to its axis, as 1.85164 to 1 . For several other cases, see the part above quoted of Dr. Gregory's Mechanics.

The Conical or Circular Pendulum. This is so called from the figure described by the string of the pendulum. This kisd of pendulum was invented by M. Huygens, and is also claimed by Dr. Hooke. Its tine of vibration dependy both on the length of the string and on the magnitude of the circle described by the ball of the pendulum, or only on the altitude of the cone described, by the pendulum; for if a denote the altitude of the cone described, and $p=3 \cdot 1416$, also $g=16_{\mathrm{T}}^{2} \mathrm{f} \cdot \mathrm{el}$, the distance freely fallen by a heavy body in 1 second of time; then it is well known that the time of each revolution of the pendulum, is $t=p \sqrt{ } \frac{2 \pi}{g}=1 \cdot 108 \sqrt{ } a$ seconds nearly; and is therefore equal to double the time of vibration of a common simple penduluin, whose length is equal to the height of the cone.

Several other ingenious contrivances, by means of different rods and levers, as also hollow pendulums, \&.c, have been devised by several artists ; as, for instance, by a Mr_{r}. Chandler, by Mr. Troughton, and by Mr. Adam Reid, an ingenious mechanist at Woolwich. This last contrivance is by a long stecl rod, which passes easy through a hollow shorter rod of zine, only connected together at their bottoms; the pendulum ball or weight being coninected to the upper end of the zinc rod. As the long steel rod lengthens by beat, and lowers the ball, the zine does the same, and raises the ball as much, by which the pendulum is preserved, of the same length in all temperatures, when once the rods have been adjusted together of properlengths.

The Gridiron Pexdulum was the iurention of Mr. John Harrison, a very ingenious artist, and celebrated for his invention of the watch for finding the difference of longitude at sea, about the year 1725; and of several other time-keepers and watches since that time; for all_which
he received the parliamentary reward of between 20 and 30 thoussand pounds. It consists of 5 rods of steel, and 4 of brass, placed in an alternate order, the middle rod being of steel, by which the pendulum ball is su-pended; these rods of brass and steel, thus placed in an alternate order, and so connected with each other at their ends, that while the expansion of the steel rods has a tendetcy to lengthen the pendulum, the expansion of the brass rods, acting upwards, tends to shorten it. And thus, when the lengths of the brass and steel rods are duly proportioned, their expansions and contractions will exactly balance and correct each other, and so preserve the penduluminvariably of the same length. The simplicity of this ingenious contrivance is much in its favonr; and the difficulty of adjustment seems the only objection to it. Mr. Ilarrison in his first machine for measuring time at sea, applied this combination of wires of brass and steel, to prevent any alterations by heat or cold, and in the machines or clocks he has made for this purpose, a like method of guarding against the irregularities arising frona this cause is used.

The Mercurial Prandevm was the invention of the ingenious Mr. Graham, in consequence of several experiments relating to the materials of which pendulums might be formed, in 1715. Its md is made of biass, and branched towards its lower ead, so as to embrace a cylindric glass vessel 13 or 14 inches long, and about 2 inches diameter; which being filled about 12 inches deep with mercury, forms the weight or ball of the pendulum. If upontrial the expansion of the rod be found too great for that of the mercury, more mercury must be poured into, the vessel: if the expansion of the mercury exceeds that of the rod, so as to occasion the clock to go fast with heat, some mercury must be taken out of the ressel, so as to shorten the columo. And thus may the expansion and contraction of the quicksilver in the glass be made exactly to balance the expansion and contraction of the pendulum rod, so as to preserve the distance of the centre of oscillation from the point of suspension invariably the same. Mr. Grahem made a clock of this kind, and compared it with one of the best of the commion sort, for 3 years together; when be found the errors of his to be only about one-eighth part of those of the latter. Philos. Trans. No. 392.

The Lever Pentulum. From all that appears concerning this construction of a pendulum, we are inclined to believe that the idea of making the difference of the expansion of different metals operate by means of a lever, originated with Mr. Graham, who in the year 1737 constructed a pendulum, having is rod composed of one bar of steel between two of brass, which acted on the sloort end of a lever, to the other end of which, the ball or weight of the pendulum was suspended. This pendulum however was, upon trial, found to move by jerks; and therefore laid aside by the inventor, to make way for the mercurial pendulum, just mentioned.

Mr. Short informs us in the Philos. Trans. vol. 47, art. 88, that a Mr. Frotheringham, a quaker in Lincolnshire, caused a pendulum of this kind to be made: it consisted of two bars, one of brass, and the other of steel, fastened together by screws, with levers to raise or Ict down the bulb; above which these levers were placed. M. Cassini too, in the History of the Royal Academy of Sciences at Paris, for 1741, describes two kinds of pendulums for clocks, compounded of bars of brass and sterl,

PEN

and in which he applies a lever to raise or let down the bulb of the pendulum, by the expansion or contraction of the bar of brass.

Ar. John Ellicott also, in the year 1738, constructed a perdulum on the same prineiple, but ditfering from Mr. Grabam's in many particulars. The rod of Mr. Ellicotis pendulum was composed of two bars only; the one of brass, and the other of steel. It bad two levers, each sustaining its half of the ball or weight; with a spring under the lower part of the ball to relieve the levers from a considerable part of its weight, and so to render their motion more smooth and casy. The one lever in Mr. Graham's construction was alove the ball: whereas both the levers in Mr. Ellicott's were within the ball; and each lever had an adjusting screw, to lengthen or shortett the lever, so as to render the adjustment the more perfect. See the Philos. Trans. vol. 47, pa. 479; where Mir. Fillicott's methods of cotastruction are described, and illustrated by figures.

Notwithstanding the great ingenuity displayed by these very eminent artists on this construction, it must further le observed, in the history of improvements of this nature, that Mr. Cumming, another eminent artist, has given, in his Essays on the Principles of Clock and Watch-work, Lond. 1766, an ample descriptiou, with plates, of a construction of a pendulum with levers, in which it seems be las united the properties of Mr. Graham's and Mr. Ellicott's, without being liable to any of the defects of either. The rod of this pendulum is composed of one flat bar of brass, and two of steel; he uses three levers within the ball of the pendulum; and, among many other ingenious contrivances, for the more accurate adjusting of this pendulum to mean time, it is provided with a sraall ball and screw below the principal ball or weight, one entire revolution of which on its screw will only alter the rate of the clock's going one secund per day; and its circumference is divided into 30, one of which divisions will therefore alter its rate of going one second in a month.

Pendulum Clock, is a clock having its motion regulated by the vibration of a perdulum. It is controverted between Galileo and Huygens, which of the two first applied the pendulum to a clock. For the pretensions of each, see Clock. After Huygens had discovered, that the vibration made in arcs of a cycloid, however unequal they might be in extent, were all cqual in time; he soon perceived, that a pendulum applied to a clock, so as to make it describe ures of a cycloni, would rectify the otherwise unavoidable irregularities of the motion of the clock; since, though the several causes of those irregularities should uccasion the peudulum to make greater or smaller vibrations, yet, by virtue of the cycloid, it would still make them perfectly equal in point of time; and the motion of the clock governed by $i t$, would therefore be preserved perfectly equable. But the difficulty was, how to make the pendulum describe ares of a cycloid; for naturally the pendulum, being susperded by a fixed point, can only deneribe circular ares about it.

Here M. Iluygens contrived to fix the iton rod or wire, which bears the ball or weight, at the top to a silken thread, placed between two cycloidal cheeks, or two little arcs of a cycloid, made of metnl. Hence the motion of vibration, applying successively from one of those arcs to the other, the thread, which is extremely flexible, easily assumes the tigure of them, and by that means causes the ball or weight at the bottom to describe a just cycloidal arc.

PEN
This is doubtless one of the most ingenious and useful inventions many ages have produced: by means of which it has been asserted there have been clochs that would nut, vary a single second in several days: and the sume invention also gave rise to the whole doctrine of involute and evolute curves, with the radius and degree of curvature, \& © c.
It is true, the pendulum is still liable to its irregularities, how minute soever they may be. The silken thread by which it was suspended, shortens in moist weather, and lengtiseus in dry; by which means the length of the whole pendulum, and consequently the times of the vibrations, are somewhat varied.
To obviate this iuconvenience, M. Labire, instead of a silkrn thread, used a little fine spring; which was not indeed subject to shorten and lengthen from those causes; yet he found it grew stiffer in cold weather, and thee made its vibrations faster than in warm ; to which also we may add its expansion and comraction by beat and cold. He therefore had recourse to a stifl wire or rod, firm from one end to the other. Indeed by this means he renounced the advantages of the cycloid; but lie found, as he says, by experience, that the vibrations in circular arcs are performed in times as equal, provided they be not of too great extent, as those in cycloids. But the experiments of Sir Jonas Moore, and others, have demonstrated the contrary.
The ordinary causes of the irregularitics of pendulums Dr. Derban ascribes to the alterations in the gravity and temperature of the air, which increase and diminish the weight of the ball, and by that means make the vibrations greater and less; an accession of weight in the ball being found by experiment to accelerate the motion of the pendulum; for a weight of 6 pounds added to the ball, Dr. Derhain found made his clock gain 13 seconds every day.

A general remedy against the inconveniences of pendulums, is to make them long, the ball heavy, and to vibrate but in small arcs. These are the usual means employed in Fingland ; the cycloidal cheeks being generally neglected. See the forogoing article.

Pendulum clocks resting against the same rail have been found to influence each other's mution. See the Philos. Trans. No. 453, sect. 3 and 6, where Mr. Ellicott lus given a curious and exact account of this phenomenon.

Pendulves Royal, a nume used among us for a clock, whose pendulum swings seconds, and goes 8 days without winding up; showing the hour, minute, and second. The numbers in such a piece are thus calculated. Finst cast up the seconds in 12 hours, which are the berats in one turn of the great wheel; and they will be found to be $43200=$ $12 \times 60 \times 60$. The swing-wheel must be 30 , to swing 60 seconds in one of its revolutions; now let the half of 48200, viz 21600, be divided by 30 , and the quotient will be 720, which must be separated inte quotients. The first of these must be 12 , for 8) 96 (12 the great wheel, which moves round once in 12 hours. Now 720 divided by 12, gives 60, which may also be conveniently
8) $64(8$
8) $60\left(7 \frac{2}{2}\right.$ broken into two quotients, as to and 6, or 12 and 5 ,or 8 and $7 \frac{1}{1}$; which last is most couvenient: and if the pinions be all taken 8 , the work will stand as above.

According to this computation, the great wheel will go round once in 12 hours, to show the hour ; the next wheel once in an hour, to show the minutes; and the swing-
wheel once in a minute, to show the seconds. See Clockwork.

Ballistic Peydulum. See Bablistic Penduhum.
Level Pendutum. See Level.
Pendelum Watch. Sce Watch.
PENETRABILITY, capability of being penetrated. Sce Impenetrability.

PENETRATION, the act by which one thing enters another, or takes up the place already possessed by another. The schoolinen define penctration the co-existence of two or more bodies, so that one is present, or has its extension in the same place as the other. Most philosophers hold the penctration of bodies absurd, i. e. that two bodies should be at the same time in the same pluce; and accordingly impenetrability is laid down as one of the essential properties of matter.- What is popularly called penetration, only amounts to the matter of one body's being admitted into the vacuity or pores of another. Such is the penetration of water tbrough the substance of gold.

PENINSULA, in Gcography, is a portion or extent of land which is tieaily surrounded with water, being joined to the continent only by an isthmus, or narrow neek. Such is Africa, the greatest peninsula in the world, which is joined to Asia by an isthonus at the extremity of the Red Sea ; such also is Peloponnesus, or the Morea, joined to Greece: and Jutland, \&e. Peninsula is the same with what is otherwise called Chersonesus.

PENNY, a well-known copper coin, being the 12 th part of a shilling. "The penny was formerly a silver coin first struck in Eingland by our Saxon ancestory, being the 240th part of their pound, and its true weight was about $22 \frac{1}{2}$ grains troy.

In Etheldred's time, the penny was the 20th part of the troyounce, and equal in weight to our three pence; which value it retained till the time of Edward III.

Till the time of King Edward the first, the penny was struck with a cross so decply sunk in it, that it might, on occasion, be easily broken, and parted into two halves, thence called halfpennies ; or into four, thence called fourthingy, or farthings. But that prince coined it without the cross; instead of which be struck round halfpence and farthings. Though there are said to be instances of anch round halfpence having been made in the reign of Henry the first, if not also in that of the two Williams.

Edward the first also reduced the weight of the penny to a standard; ordering that it should weigh 32 grains of wheat, taken out of the midille of the ear. 'Jhis penny was called the penny sterling; and 20 of them were to weigh an ounce; whence the penoy became a weight as well as a coin.

By the 91h of Elward the 3d, it was diminished to the 26th part of the troy ounce; by the 2d of Henry the 6th it was the 32 d part; by the 5 th of Edward the 4 th, it became the 40th, and also by the 3 fith of Henry the 8th, and afterwards, the 45 th ; but by the $2 d$ of Elizabeth, 60 pence were coined out of the ounce, and during luer reiga 62, which last proportion is still observed in our times.

The French penny, of denier, is of two hinds; the Paris penny, called denier Parisis; and the peany of Tours, called denier Tournois.

The Dutch penny, called pennink, or pening, is a real money, worth about one-fifth more than the French penny Tournois. The pennink is ulso used as a money of account, in keeping books by pounds, florins, and pataris; 12 peaniaks make the patarl, and 20 patards the florin.

At Hamburg, Nuremberg, \&c, the penny, or prennig of account, is equal to the French penny Tournois. Of these, 8 make the krieuk; and 60 the florin of those cities; also 90 the French crown, or 4s. 6 d , sterling.

Penmy-Height, a troy weight, being the 20th part of an ounce, containing 24 grains; each grain weighing a grain of wheat gathered out of the middie of the car, well dried. The name took its rise from its being actually the weight of one of our ancient silver pennies. Sce the foregoing article.

PI.NTAGON, in Geometry, a plane figure consisting of five angles, and conscquently five sides also. If the angles be all equal, it is a regular pentagon. It is a remarkable property of the pentagion, that its side is equal in power to the sides of a lexaggon and a decagun inseribed in the samo circle; that is, the square of the side of the pentagon, is equal to both the squares taken together of the sides of the other two figures; and consequently those three sides will constitute aright-angleal triangle. Euclid, 1.13, prop. 10.-Pappus has also demonstrated, that 1% regular pentagons conation more than 20 triangles inscribed in the same circle; lib. 5, prop 45 . The dodecahedron, which is the fuurth reqular body or solid, is contained under 12 equal and regular pentagons.

To find the Area of a Regular Pextagon. Multiply the square of its side by 1.7904774 , or by $\frac{3}{4}$ of the tangent of $5 t^{\circ}$, or by $\frac{5}{x} \sqrt{ }\left(1+\frac{2}{3} \sqrt{ } 5\right)$. Ilence, it x deturte the side of the pentagon, its area will be $172047745^{2}=$ $\frac{4}{3} x^{2} \sqrt{ }\left(1+\frac{3}{4} \sqrt{3}\right)=\frac{5}{4} 5^{2} \times$ tung. 54°.

PENTAGRAP11, otherwise called a parallelogran, a mathematical instrument for copying designs, prints, plans, $\$ c$, in any proprortion. The common pentagraph (phate $2+$, fig. 2) consists of four rulers or bars, of netal or wood, two of them from 15 to 18 inches long, the utber two half that length. At the ends, and in the niddle, of the long rulers, as also at the ends of the shorter ones, are holes, on the exact fixing of which the perfection of the instrument chietly depends. Those ia the middle of the long rulers, are to beat the same distance from those at the end of the long ones, and those of the short ones; so that, when put tugether, they may always make a parallelograin.

The instrument is fitted tugetier for use, by sevenal little pieces, particularly a little pillar, No. 1, having at one end a nut and screw, joining the two long rulers together; and at the other end a small knot for the instrument to slide on. The piece No. 2 is a rivet with a screw and nut, by which each short ruler is fastened to the middle of each long one. The piece No. 3 is a pillar, one end of which, being hollowed into a screw, has a nut fitted to it; und at the other end is a worn to screw into the table; when the instrument is to be used, it joins the ends of the two short rulers. The piece No. 4 is a pen, or pencil, or portcrayon, bcrewed into a litte pillar. Lastly, the piece No. 5 is a buass point, moderately blunt, screwed likewise into a little pillar.
lise of the Pentagrapn.--1. To copy a design in the same size or scale as the oricinal. Screw the worm No. 3 into the table; lay a juper under the pescil No. t, and the design under the point No. 5. This done, couluct the point over the several linez and parts of the design, and the pencil will draw or repeat the same on the paper.
2. When the design is to be reduced, for example to half the scale; the worm must be placed at the end of the long ruler No. 4, and the paper and pencil in the middle. In this situation conduet the bruss proint over the several lines
of the design, as before; and the pencil at the same time will draw its copy in the propurtion required; the pencil bere only moving half the lengths that the point moves.
3. On the contrary, when the design is to be enlarged to a double size; the braws point, with the design, must be placed in the uidde at No.3, the pencil and paper at the end of the long ruler, and the worm at the other end.
4. To reduce or enlarge in other proportions, there are holes drilled at equal distanees on each ruler; viz, all along the short ones, and half way of the long ones, tor placing the brase point, pencel, and worm, in a right line in them; i. e. If the piece carrying the point be put in the third hole, the other two pieces must be put cach in its third hole; \&.c.

PENTANGLEE, a plane figure of five angles, or the ame us the Pestagon.

PENUMBRA, in Astronomy, a faint or partial shade, in an celipse, observed between the perfect shadow, and the full light. The penumbra arises from the magnatude of the sun's body: were he only a luminous point, the shadow would be all periect; but by reason of the diameter of the sun it happens, that a place which is not illuminated by the whole body of the sun, may yet reccive rays from some pert of i. Thus, suppose s the sun, and T the moon, and the shadow of the latter projected on a plane, as 61 (plate 2t, fig. 3). The true proper shadow of T, viz © $1 t$, will be encomprassed with an mperfect shadow, or penumbra, HL and Go, each portion of which is illujuinated by an entire hemisphere of the sun.
The degree of light or shade of the prounuma, will be more or less in different parts, as those parts lie open to the says of a greater or less part of the sun's body: thus, from 1 to H , and from e. to G , the light continually diminislies; in the coatines of a and m , the penumbra is darhest, and becomes lost and confounded with the totalshade ; as near E and L it is thin and confounded with the total hight.

A penumbra must be found in all eclipses, whether of the sun, the moon, or the other planets, primary or secondary; but it is most considerable with us in eclipses of the sun ; which is the cave here reforred to.

Tade termine how much of the surface of the earth can be involved in the penumbra, let the apparent semidiameter of the sun be supposed the greatist, or about $16^{\prime} 20^{\prime \prime}$, which is when the earth is in her periliclion; also let the moon be in her apogee, and therefore at her greatest distance from the carth, or about 64 of the carth's semidiamaters. Let kxe be the carth, \mathbf{t} the moon, and mкs the penumbia, iuvolving the part of the earth from κ to N , which it is required to find. Here then are given the angle
么 м $\mathrm{Ac}=16^{\prime} 20^{\prime \prime}, \tau \mathrm{c}=64, \mathrm{nc}=1$, and ot $=\frac{1}{46}$ of кс. Hence, in the right-angled triangle ofst, as sill. omr : radius : : or : $T \mathrm{M}=21010 \mathrm{~T}=58 \mathrm{Kc}$ searly. Therefore sc $=\mathrm{sr}+\mathrm{TC}=38+64=122$ semidiameters of the earth. Then, in the triangle кмㅇ, there are given $\mathrm{Kc}=1$, and $\mathrm{xc}=122$, also the ande кме $=16^{\prime} 20^{\prime \prime}$, to find the angle c ; thus, as
 from this take the angle $\angle \mathrm{ksc}-\quad \begin{array}{lll}0 & 16 & 20\end{array}$ kaves the $\angle \mathrm{c}$ - $\quad . \quad 35911$,

Vol. If.
the double of which is the are kn $\quad 70^{\circ} \quad 18^{\prime} \quad 22^{\prime \prime}$, or nearly a space of 4806 mites in dianeter.

PERAMBLLSTOR, an instrument for measuring distances; called also pedometer, way-wiser, and surveying wheel. This wheel is contrived to incasure out a pole, or $16 \frac{1}{2}$ feet, in making twu revolutions; consequently its circumference is $8 \frac{1}{8}$ feet, and its diameter 2.626 feet, or 2 feet
 forward by wo handles, by a person walking; or is drawn by a coach wheel, \&c, to which it is attached by a pole. It contains various movements, by wheels, or clock-work, with indices on its face, which is like that of a cluch, to point out the distance passcil over, in miles, furlongs, poles, yards, \&c. Its advantages are, its readiness and experlifien; being very useful for measuring roads and great distanees on lesed grouind. Sce the fig. plate 21, fig. 6 .
 part of a rood, or the $160 t h$ part of an acre; that is, the square of a pole or rod, of the length of $5 \frac{1}{1}$ yards, or $16 \frac{1}{3}$ fent.
lenen is by some also made to mean a measure of length; being the same as the rod or pole of 5 : yards or $16 \frac{1}{2}$ fect long. But it is better, for preventing confusion, to distinguish them.

PliftCUSSION, in Physics, the impression a body makes in falling or striking upon another; or the shock or collision of two bodies, which mecting alter each other's motion.- Percusbiutt is either direct or oblique. It is also either between elastic or nonelastic bodies, which have each their different laws. It is true, we knew of no bodics in nature that are either perfectly chastic or the contrary; but all partakiug of that property in different degrees; even the hardest and the soffest being not entirely disested of it. But, for the sake of perspicuity, it is usual, and proper, to treat of these under tno distinct heads.

Dircet Percussiox is that in which the impulse is mado in the direction of a tine perpendienlar at the place of inspact, and which also passes through the common centre of gravity of the two striking bodies. As is the case in two spheres, when the line of the direction of the stroke passes through the centres of both spheres; for then the same lime, joining their centres, passes perpendicularly through the point of impact. And

Oblique Percusston, is that in which the impulse is made in the direction of a line that dows not pass through the common centre of gravity of the striking bodies; whether that line of direction is perpendicular to the place of impact, or not. The force of percussion is the same as the momentum, or quantity of mution, and is tepresented by the product arisug from the mass or quantity of matter moved, multiplied by the velocity of its motion; and that without any regard to the time or duration of action; for its actiop is considered totally independent of time, or but as for an instant, or an infinitely small time.

This leads us to consider a question that has been greatly cansassed among philosophers and mahematicians, viz, what is the ralation between the force of percuision and mere pressare or weight ? Now let m denote any mass, body, or weight, having no motion or velocity, but simply its pressure ; then will that pressure or force be denoted by a itself, if it be considered as acting for mone certain finite assignable tinie; but, considercel as a fince of pore cussion, that is, as acting but for an infinitely small time, its selocity being 0 , or nothing, its percussive forec will be $0 \times m$, that is 0 , or nothing; and is therefore incompa-
sable with any percussive force whatever. But if we consider the two forces, viz, of percussion and pressure, with respect to theeffects they produce: we shall find that there are instances in which they appear to resemble each other. Those who argue that the two forces are totally incomparable both in their nature and effects, support their hypothesis in the following manner. The intensity of any force is very properly estimated by the effect it produces in a given time: but the effect of the pressure 3 , in 0 time, or an infinitely small time, is nothing st all; that is, it will not, in an infimitely small time, produce, for example, any motion, either in itself, or in any other body: its intensity therefore, as its effect, is infinitely less than any the smallest force of percussion. It is truc, indeed, that we sec motion and other considerable effects produced by mere pressure, and to counteract which requires the opposition of some considerable percussive force: but then it must be observed, that the former has been an infinitely louger time than the latter in producingits effect; and it is no wonder in mathematics that an infinite number of infinitely small quantities makes up a finite one. It has therefore only been for want of considering the circumstance of time, that any question could have arisen on this head. Ilence it is anid that these two forces are related to each other, only as a surface is to a solid or body: by the motion of the surface through an intinite number of points, or through a finite right liue, a solid or body is generated : and by the action of the pressure for an intinite number of moments, or for some finite time; a quantity equal to a given percussive force is generated: but the surface itself is intinitely less than any solid, and the pressure infiaitely less than any percussive force. This point, say they, may be casily illustrated by some familiar instances, which prove at least the enormous disproportion between the two forces, if not also their absolute incomparability. And first, the blow of a small hammer, upon the head of a nail, will drive the nail into a board; when it is hard to conceive any weight so great as will produce a like effect, i.e. that will sink the nail as far intu the board, at least unless it is left to act for a very considerable time: and even afier the greatest weight has been laid as a pressure on the bead of the nail, and has sunk it as far as it can as to sense, by remaining for a long time there without producing any farther sensible effect; let the weight be removed from the head of the nail, and instead of it, let it be struck a small blow with a hammer, and the nail will immediately sink farther into the wood. Again, it is also well known, that a shipcarpenter, with a blow of his mallet, will drive a wedge in below the greatest ship, lying aground, and so overcome her wcight, and lift ber up. Lastly, let us consider a man with a club to strike a small ball, upwards or in any other direction ; it is evident that the ball will acruire a certain determinate velocity by the blow, suppose that of 10 feet per second, or minute, or any other time whatever: now it is a law, universally allowed in the communication of motion, that when different borlies are struck with equal forces, the velocities communicated are reciprocally as the weights of the bodies that are struck ; that is, that a double body, or weight, will acquire half the velocity from an equal blow; a body 10 times as great, one 10th of the velocity; a body 100 times as great, the 100 h part of the velocity; a body a million times as great, the millionth part of the velocity; and so on without end : whence it follows, that there is no body or weight, how great soever, but will acquire some finite degree of velocity, and be overcome, by any given mall finite llow, or percussion.

Those however that take the contrary side of the question ; in answer to what is above stated, make the following reply. We do not, say they, contend for the absolute comparability of percussion and pressure; all we assert is, that there are inslances in which they producesimilar effects, and as forces can only be compared by their effects, it is improper to consider them as absolutely incongruous: it is true that percussion is a momentary cause, but the effect it produces is not instantancous; thus the blow of a bammer may be considered as acting for an indetinitely small portion of time, bui the effect it produces can only be complete after a certain finite time; and if, in this time, a certaill quantity of pressure will produce the same motion in any body, then it fullows that there may le instances in which the effects of these two forces are equal, and consequently that they are comparable with each other: and to this it may be farther added, that though we allow percussion to be an instantaneous force, yet, must that body by which it is communicated have been in motion for a certain time, in order to have attained the velocity with which it strikes, and to which alone we attribute its superior force; there seems therefure no ieason why pressure should not be ailowed to act for the same timein any casco when we are comparing the effect of the two forces with each otber. In fact, the difference between percussion and pressure seems to consist in this, thant, in the lutter force, the whole mass of the body is acting by continual and successive impulses, whereas in the former, these efforts, as it were, are all collected ino one sum, and then instantancously applied. And the reason why they do not produce the same effect is, that when any resistance to motion is made, either by friction or otherwise, a certain force is necessary to overcome the opposing force, before any absolute motion can ensue, and no force slint if that by which the body is opposed will produce any tffict whatever, however ofien it may be repeated; and therefore, when the opposing force is greater'than the pressing furce, no motion can ensue; bul the momentum of the maving body, or the percussion, being as it were the accumulated sum of all the successive effiorts of the pressing body, there is a sufficient quantity of action, first to overcome the opposing force, and the overplus is then employed in the generation of motion. It is therefore to this circumstance that we must attribute the apparent incongruity of percussion and pressure, and not to any existing difference in the nature of the two foress; for the sery same cause will also prevent the comparison of a greater and less percussive force. Fur example, after a pile-cogine has been employed for a certain time in driviug a pile, until its action upon is is very trifling, it would be in vain for a man with a mallet, to endeavour to drive the pile an inch lower, because be could not produce such a moneentum as is equivalent to the resisting force acting against the pile, and consequensly it would remain in its place, however long bis efforts inay continuc, for the effect of each blow ceases with it, and none of these, taken singly, having any motion, the same is true whatever may be the number of times that they are repented; but if the ram of the pile-engine be again employed, the desired effect may be produced : the effect of this last then, in this case, is infinitely greater than the former, yet no one will be bold enough to assert that these two percussive forces are absolutely incomparable on this account.

Much more raight be advanced in support of the bypothesis, that pressury and percussion are not incongrueus
in their nature, and that we are only prevented from compariog them, or their effects, by certain circumstances that arise in the application of the two forces to practical purposer.

The nature and lays of percussion have been investigated by Aristotle, Galileo, Descartes, Huygens, and others. Aristutle started the idea that percussion and weight are not comparable; and most moderns have acquiesced in that opinion,
It appears that Descartes had some ideas of the laws of percussion ; though it must be acknowledged, in some cases perhaps wide of the truth. The first who gave the true laws of motion in non-clastic bodies, was Doctor Wallis, in the Philos. Trans. numb. 43, where he ulso shows the true cause of reflections in other bodies, and proves that they proceed from their elasticity. Not long after, the celebrated sir Christopher Wrenl and Mr. Huygens imparted to the Royal Society the laws that are obsersed by perfectly elastic bodics, and gave exactly the same construction, though each was ignorant of what the other had done. And all those laws, thus published in the Philos. Trans. withnut demonstration, were afterwards demonstrated by Dr. Keill, in his Philos. Lect. in 1700; and they have since been followed by a number of other authors.

We have before observed that in percussion, we distinguish at least three several kinds of bodies; the perfectly bard, the perfectly soft, and the perfectly elastic. The two former are considered as utterly void of clasticity; baving no force to separate them, or throw them off from each other again, after collision; and therefure cither remaining at rest, or eise proceeding uniformly forward together as one body or mass of matter. The laws of percussion therefore to be considered, are of two kinds: those fur elastic, and those for non-lastic bodies.
The one only general principle, for determining the motions of bodies from percussion, and which belongs equally to both the kinds of bodies, i. e. both the elastic and nonelastic, is this: viz, that there exists in the bodies the same momentum, or quantity of motion, estimated in any one and the same direction, both before the stroke and after it. And this principle is the immediate result of the third law of nature or motion, that reaction is equal to action, and in a contrary direction ; whence it happens that whatever motion is communicated to one body by the action of another, exactly the same motion doth this latter lose in the same direction, or exactly the same does the former communicate to the latter in the contrary direction.From this general principle too it results, that no alteration takes place in the common centre of gravity of bodies by their actions on one another; but that the said common centre of gravity perseveres in the same state, whether of rest or of uniform motion, both before and after the shock of the bodies.

Now, from either of these two laws, viz, that of the preb servation of the same quantity of motion, in one and the same direction, and that of the preservation of the same state of the centre of gravity, both before and after the shock, all the circumstances of the motions of both the kinds of bodies after collision may be estimated; in conjunction with their own peculiar and separate constitutions, namely, that of the one sort being elastic, and the other nonelastic.

The effects of these different constitutions, here alluded in, are these; that nonelastic bodies, on their shock, will
adhere together, and cither remain at rest, or else move together as one mass with a common velocity; or if elastic, they will separate after the shock with the very same relative velocity with which they met each other. The former of these consequences is evident, viz, that nonelastic bodies kerp together as one mass after they meet ; because there exists no power to separate them; and without a cause there can be no effect. Aad the latter consequence results immediately from the very definition and essence of elasticity inself, being a power always equal to the force of compression, or shuck; and which restoring force therefore, acting the contrary way, will generate the same relative velocity between the bodies, or the same quantity of motion, as before the shock, and the same motion also of their common centre of gravity.

To apply now the general principle to the determination of the motions of bodies after their shock; let B and b be any two bodies, and v and v their respective velocities, estimated in the direction AD; which quantities v and \boldsymbol{v} will be both positive if the bodies both move towards D , but one of them as D will be negative if the body b move towards A, and v will be $=0$ if the body b be at rest. Hence then BV is the momentuni of B towards D , and $b v$ is the momentum of b towards D , whose sum is $\mathrm{Bv}+$ $b v$, which is the whole quantity of motion in the direction AD, and which momentum must also be preserved after the impact.

Now if the bodies have no elasticity, they will move together as one mass s $+\boldsymbol{b}$ after they meet, with some common velocity, which call y, in the direction $A D$; therefore the momentum in that direction after the shock, being the product of the mass and velocity, will be $(s+b)$ $x y$. But the momenta, in the same direction, before and after the impact, are equal, that is $\mathrm{av}+b v=(\mathrm{B}+b) y$; from which equation any one of the quantities may be determined, when the rest are given. So, if we would find the common velocity after the stroke, it will be $y=\frac{a v+b v}{a+b}$, equal to the sum of the momenta divided by the sum of the bodies; which is also equal to the velocity of the common centre of gravity of the two bodies, both before and after the collision. The signs of the terms, in this value of y, will beall positive, as observed above, when the bodies move both the same way AD; but one term bo must be made negative when the motion of b is in the contrary direction; and that term will be absent or nothing, when b is at rest, before the shock.

Again, for the case of clastic bodies, which will separate after the stroke, with certain velocitics, x and $\varepsilon, v i z, x$ the velocity of B_{1} and z the velocity of b after the collision, both estimated in the direction AD, which quantities will be either positive, or negative, or nothing, according to the circumstances of the masses s and b, with those of their celerities before the siroke. Hence then $B x$ and $b z$ are the separate momenta after the shock, and $3 x+b z$ their sum, which must be equal to the sum $B v+b v$ in the same direction before the stroke: also $z-x$ is the relative velocity with which the bodies separate after the blow, and which must be equal to $\nabla-v$ the same with which they meet; or, which is the same thing, that $v+x$ $=0+2$; that is, the sum of the two velocities of the one body, is equal to the sum of the velocities of the other,

Z 2
taken before and after the stroke; which is another remarkable theorem. Hence then, for determining the two unknown quantities x and z, there are these two equations,

$$
\begin{aligned}
& \mathrm{vz}, \mathrm{vv}+b v=\mathrm{BX}+b z \\
& \text { and } v-v=z-x ; \\
& \text { or } v+x=v+z ;
\end{aligned}
$$

the resolution of which equations gives those two velocities, as below,

$$
\begin{aligned}
& \text { viz, } x=\frac{2 k v+\{\mathrm{h}-t \mathrm{v}}{\mathrm{v}+\mathrm{b}}, \\
& \text { and } z=\frac{2 n v-(n-+1 v}{n+b} .
\end{aligned}
$$

From these general values of the velocities, which are to be understood in the direction a b , any particular cases may easily be drawn. As, if the two bodies B and b be equal, then $\mathrm{a}-b=0$, and $\mathrm{B}+b=2 \mathrm{~b}$, and the two velocities to that case become, after imputio, $x=\tau$, and $z=v$, the very same as they were before, but changed to the contrary bodies, i.e. the budies have taken each other's velocity that it had before, and with the same sign also. So that, if the equal bodies were befure both moving the same way, or towards D, they will do the same after, but with interchanged velocities. But if they before moved contrary ways, a towards D, and b towards A, they will rebound contrary ways, i back towards A, and b towards $D_{\text {, }}$ each with the other's velocity. And, lastly, if une body, as b, were at rest before the stroke, then the other a will be at rest after it, and b will go on with the motion that B had before. And thus may any other particular cascy be delluced from the first general values of x and z_{0}

We may now conclude this article with some remarks on these motions, and the mistakes of some authors concerning them. And first, we observe this striking difference between the motions that are commumcated by elastic and by nonelastic bolics, viz, that a nonelastic body, by strik. ing, communicates or continues exactly its whole momentum in the direction of its motion; as is crident. But the stroke of an elastic body may, either communicate its whole motion to the body it strikes, or it may communicate only a part of it, or it may eren communicate more than it had, so to spenk. - For, if the striking body remain at rest after the struke, it has just lost alt its mution, and therefore has commmicated all it had; and if it still move forward in the same direction, it has still some motion left in that direction, and theretore has only communicated a part of what motion it had; but it the striking body rebound back, and move in the contrary direction, the other body has received not only the whole of the motion that the first had, but also as much more as the first has acquired in the contrary direction.

It has been denied by some authors, and it the Encyclopédie, that the same quantity of motion remmins after the shock, as before it ; and hence they seize an opportunity to repreliend the Cartestans for making that assertion, which they do, not only with respect to the case of two bodies, but also of all the bodies in the whole universe. And yet nothing is more true, if the motion be consideren as cstimated always in one and the same direcion, accounting that us negative, which is in the contrary or opposite direction. For it is a general law of nature, that no mation, nur force, can be generated, nor destroyed, nor changed, but by some caose which must produce an equal quabtity in the opposite directoon. And this being the case in one tody, or two bodies, it must necessanily be the case in all bodies, and in the whole solar system,
siace all bodies act upun one another. And hence also it is manifest, that the cominon centre of gravity of the whole solar system must always preserve its original condition, whether it be of rest or of uniform motion ; since the state of that centre is not changed by the mutuabactions of bodies on each other, any more than their quantity of notion, in onfe and the same dirrction.

Wbat may have led authors into the mistake above alluded to, which they bring no proof of, seems to be the discovery of M. Huygens, that the sums of the two products are equal, both before and atter the shock, that are made by muluplying each body by the square of its velocity, viz, that $\mathrm{Hv}^{2}+b v^{2}=\mu \mu^{2}+b z^{2}$, where v and v are the velucities befon the shock, and x and z the velocitnes after it. Such an expression, namely the product of the mass by the square of the velucity, is called the vis viva, or living force; and beuce it has been itferred that the whole vis visa before the shock, or a $v^{2}+b v^{2}$, is equal to that ufter the stroke, or $1 s^{2}+b z^{4}$; which is isdeed wery true, us will be shown presently. But when they bence inicr, that therefore the forces of bodies in nootion, are as the squares of the velocites, and that there is not the same quantity of motion between the twu strihing bodies, both befure and afur the shock, they are grossly mistaken, and thereby show that they are ignorant of the true decivation of the equation $n v^{2}+b 0^{2}=n_{s^{2}}+b z^{2}$. For this equation is only a consequence of the very principle above laid down, and which is not acecded to by thase autbors, viz, that the quantity of motion is the same before and after the slock, or that $\mathrm{Br}+\boldsymbol{b v}=\mathrm{B}=+b z$, the truth of which last equation they deay, beceuse they think the former one is true, never considering that they may be both true, and nuch less that the one is a consequence of the other, and derived from it; which however is now found to be the case, as is proved in this manner:

It has been shown that the sum of the two momenta, in the same direction, before and ufter the stroke, are equal, or that $B v+b v=B x+b z ;$ and also that the sum of the two velocities of the one body, is equal to the sum of those of the other, or that $v+x=v+z$; and it is now proposed to show that from these two equations there results the third equation $s s^{2}+b v^{1}=a 5^{2}+b z^{2}$, or the equation of the living furces.

Now because By $+b v=B x+b z$, by transposition it is - $\quad \mathrm{nv}-\mathrm{Bx}=b_{e}-b_{0}$; which shows that the difference between the two monenta of the one body, before and atter the stroke, is equal to the ditiferetace between those of the other body; which is another important theorem. But now, to terive the equation of the vis viva, set down the two foregoing equations, and multiply 'them together, so shall the products give the sand cquation required; thus,
Mult. av $-u_{x}=b_{z}-b v$, the equtat. of the momenta, by $\quad v+x=z+v$, the equat. of the velocitics, produc. $\mathrm{By}^{2}-\mathrm{Bx}=62^{2}-6 \mathrm{v}^{2}$,
or $B \mathrm{~V}^{2}+b \nabla^{2}=\mathrm{B} \mathrm{X}^{2}+b z^{2}$,
the very equation of the vis viva required. See Keill's Lect. Philos, seet. 14, theor. 29, at the end. And for the geometrical determinations after impact, see the article Collision.

When the elasticity of the bodies is nat perfect, but only partully so, as ts the case with all the bodies we know of, the determination of the motions nfter collision any be deternuited in a stimitar manner. In this case also
the sum of the momenta will still be the same, both befire and efter collision, but the velocities after will be less than in the case of perfect elasticity, in the ratio of the imperfection. Hence, with the same nutation as before, the two equations will now be $\mathrm{Bv}+\mathrm{bv}_{\mathrm{o}}=\mathrm{nx}+b y$, and $v-p=\frac{m}{n}(y-x)$, where m to n denotes the ratio of perfect to imperfect clasticity. And the resolution of these two cquations, give the following values of x and y, viz, $x=\mathrm{v}-\frac{m+n}{m} \cdot \frac{b}{b+b}(v-v), y=v+\frac{m+n}{m}$. $\frac{n}{a+b}(v-r)$, for the velocitics of the two bodies after impact, in the case of imperfect elasticity; which would become the sume as the former if n were $=m$.
Hence, if the two bodies B and b be equal, then $\mathrm{x}=\mathrm{v}-\frac{m+n}{2 m}(\mathrm{v}-\mathrm{v})$, and $\mathrm{y}=\mathrm{v}+\frac{m+n}{2 m}(\mathrm{v}-v)$, where the velucity lost by a is just equal to that gained by b. And if in this case b was at rest before the impact, viz $t=0$, then the resulting molions would be $x=\frac{m-n}{2 m} \mathrm{v}$, and $y=\frac{m+n}{2 m} \mathrm{v}$, which are in the ratio of $n-n$ to $m+n$.
Also, if $m=n$, or the bodies perfectly clastic, then $x=0$, nnd $y=v$; that is, s would be at rest, and b go on with the first motion of a.-Further, in this case also, the velucity of n belore the impact, is to that of b after it, fas $\mathbf{V} 10 \frac{m+n}{2 m} \mathbf{v}$, or as $2 m$ to $m+n$. But if the bodies be now supposed to vibrate in circles, as pendulums, in which case the chords (c and c) of the arcs described, are known to be proportional to the velocities; then it witl be $2 m: m+n:: c: c$; licuce $m: n:: c: 2 c-c$. So that, by measuring these chords, of the ares thus experimentalily described, the ratio of m to n, or the degree of elasticity in the bodies, may be determined.

Centre of Percusstow, is the point in which the shock or impulse of a body which strikes another is the greatest that it can be. See Cextul.-The centre of pereussion es the same as the centre of oscillation, when the striking body moves round a fixed axis. See Oscillation.-But if all the parts of the striking body move with a parallel inotion, and with the same velocity, then the centre of percussion is the same as tie centre of gravity.

PERFECT Number, is one that is equal to the sum of all its aliquot parts, when added together. Eucl. lib. 7 , def. 22. As the number 6 , which is $=1+2+9$, the sum of all its aliquot parts; also 28, for $28=1+2+4+7+14$, the sum of allits aliquot parts. -It is proved by Euclid, in the last prop. of book the 9 th, ibat if the common geometrical series of numbers $1,2,4$, 8, 16, 32, \&e, be coutinued to such a number of terms, as that the sum of the said serics nf terms shall be a prille number, thet the product oi' this sum by the last term of the series will be a perfect number. The same rule may be otherwise expressed thus: If n denote the number if terms in the given saries $1,2,4,8, \& \in$; then it is well known that the sum of all the terms of the series is $2^{n}-1$, and it is evident that the last term is 2^{n+2} : consequently the rule becomes thus, viz, $2^{-2-1} \times\left(2^{2}-1\right)=$ a pericet number, whenever $2^{n}-1$ is a prime number.

Now the sums of one, two, three, four, \&c, terms of the series $1,2,4,8, \& c$, form the series $1,3,7,15,31, \& c$; so that the number will be found periect whenever the
corrcsponding tern of this series is a prime, as $1,3,7,31$ sic. Whence the table of perfect numbers may be foun 1 and eahibited as follows; where the lot colnmu shows the number of terms, or the value of n; the 2 d column is the last term of the series $1,2,4,8,8 . c$, and is expressed by $2^{-\infty}$; the 3 d column contains the correspunding sums of the said series, or the values of the quantity $2^{n}-1$; which numbers in this 34 column are casily constructed by adding always the last number in this column to the next following number in the $2 d$ column: and lastly, the 4th column shotrs the correspondent perfect numbers, or the values of $2^{-1} \times\left(2^{2}-1\right)$, the prodiuct of the numbers in the 24 and $3 d$ columas, when $2^{n}-1$, or the number in the 3 d columin, is a prime number; the products in the other cases being omitted, as nol perfect numbers.

Values of n	Values of 2^{n-1}	Values of $2^{2}-1$	Perf. Numbers, or 2^{*-1} $\times\left(2^{4}-1\right)$
1	1	1	1
2	2	3	6
3	4	7	28
4	8	15	-496
5	16	31	
6	32	63	8128
7	64	127	

tlence the first four perfect numbers are found to be 6 , $28,496,5128 ;$ and thus the fable might be continued to find others; but the trouble would be very great, for want of a general method to distinguish which numbers are primes, as the case requires. Several learned inuthematicians have endeavoured to facilitate this business, but bitherto with only a snall degree of effect. After the foregoing four perlect numbers, there is a long interval before any more occur. The first eight are as follow, with the factors and products which produce them; being all slie primes that are yet kuown.

The first periect numbers.						Their ralues.		
6	-	.	-	-	-	$=\left(2^{2}\right.$	-1)	
28	-	-	-	-		$=\left(2^{3}\right.$	-1)	
496	-	-	-	-	-	$=\left(2^{5}\right.$	-1)	2^{4}
8128		-	-	-	*	$=\left\langle 2^{7}\right.$	-1)) 2^{6}
33550	2336	-	-	-	-	$=12^{r}$	-1)) 2^{18}
85898	86905	6	-	-		$=\left(3^{1}\right.$	- 1)) 2^{16}
$137+3$	88691	328	-	-		$=\left(2^{\prime}\right.$	-1)	1) 2^{18}
23058	8.43V0	8139	9:2		-	$=\left(2^{3}\right.$	-1)	1) 2^{30}

See several considerable tracts on the subject of perfect numbers in the Menoirs of the Petersburg Academy, vol. 2 of the new vols, and in several other volumes.

PERIIECI. See Pentoct.
PERIG.EUM, or Pratgee, is that point of the orbit of the sun or moon, which is the marest to the earth. In which sense it stands oppresed to apogere, which is the must distant point from the earth.

Pericel, in the Ancient Astronomy, denotes a point in a platiet's orlit, where the centre of its epicycle is at the least distance from the earth.

PERIHELION, Peahelien, that point in the orbit of a planet or comet which is nearest to the sun. In which sense it stands opposed to aphelion, or aphetium,
which is the highest or most distant point from the sun. Instead of this term, the ancients used perigeum; because they placed the earth in the centre.

PERIMETER, in Geometry, the ambit, limit, or outer bounds of a plane figure; being the sum of all the lines by which it is inclosed or fonned. In circular figures, \&ic, instcad of this term, the word circumference or periphery is used.

IPERIOD, in Astronomy, the time in which a star or planet makes one revolution, or returns again to the same point in the heavens. 'The sun's, or properly the carth's tropical period, is 365 days 3 hours 48 minutes 45 seconds 30 thirds. That of the moon is 27 days 7 hours 43 minutes. That of the other plenets as below.- There is a remarkable harmony between the distances of the planets from the sun, and their periods round him; the great law of which is, that the squares of the periodic times are always proportional to the cubes of their mean distances from the sun.

Tbe periods, both tropical and sidereal, with the proportions of the mean distances of the several planets, are as follow:

Planes.	Tropical Perioda.	Sidereal Periode.	mport. Dists.
Mercury	$87{ }^{4} 23^{\text {b }} 14^{4}$	$87^{\text {d }} 23^{\text {h }} 16^{\text {d }}$	6710
Venus	2241642	2241649	72333
Earth	$\begin{array}{lll}365 & 5 & 49\end{array}$	$\begin{array}{lll}365 & 6 & 9\end{array}$	100000
Mars	6862218	6862331	152369
Vesta	- - .	- -	235513
Juno	**- -	- -	266400
Pallas	1682	- - -	276.500
Ceres	1681	- " -	276700
Jupiter	$\begin{array}{llll}4330 & 8 & 58\end{array}$	$4332 \quad 8 \quad 51$	520110
Saturn	1074978	$1076114 \begin{array}{lll}37\end{array}$	953800
Uranus -	$\begin{array}{lll}30456 & 1 & 41\end{array}$	- - -	19081

As to the comets, the periods of very few of them are known. There is one however of between 75 and 76 years, which appeared for the last time in 1759; another was supposed to have its period of 129 years, which wes expected to appear in 1789 or 1790 , but in did not; and the comet which appeared in 1680 it is thought has its period of 575 years.

Period, in Chronology, denotes an epoch, or interval of time, by which the years are reckoned; or a series of years by which time is measured, in different nations. Such are the Calippic and Metonic Periods, two different corrections of the Greek calendar, the Julian Period, invented by Joseph Scaliger ; the Victorian Petiod, \&c.

Calippic Period. See Calippic Period.
Cunstanimopolitan Period, is that used by the Greeks, and is the same as the Julian Peaiod, which see.

Chalduic Pertod. Sce Saros.
Dionysian Period. Sec Victorian Period.
Hipparchus's Pentod, is a scries or cycle of 304 solar years, returning in a constant round, and restoring the new and full moons to the same day of the solar year; as Hipparchus thought.-This period arises by multiplying the Calippic period by 4. Hipparchus assumed the quantity of the solar year to be $365^{t^{\prime}} 5^{1 /} 53^{\prime \prime} 12^{\prime}$; and lience he concluded, that in 304 years Calippus's period would err a whole day. He therefore multiplied the period by 4, and from the product cast away an entire day. But even
this does not restore the new and full moons to the same day throughout the whole period: thry are sometimes anticipated $1^{4} 8^{\mathrm{m}} 23^{\mathrm{m}} 29^{6} 20$ thirds.
Julian Period, so called as bejug adapted to the Julian year, is a scries of 7980 Julian ycars; arising from the multiplications of the cycles of the sun, moon, and indiction together, or the numbers $28,19,15$; commencing on the Ist day of January in the 76 th Jultan year brfore the creation, and therefore is not yet completed. This compreliends all other cycles, periods, and epochs, with the times of all memorable actions and histories; and therefore it is not only the most general, but the most useful of all periods in chronology.
As every year of the Julinn period has its particular solar, lunar, and indiction cycles, and no two ycars in is can have all these three cycles the same, every yoar of this period becomes accurately distinguished from anohher.This period was invented by Joseph Scaliger, as comaining all the other epcehs, to facilitaie the reduction of the years of one given epoch to those of asother. It agrees with the Constantimopolitan perioll, used hy the Grecks, except in this, that the cycles of the sun, moon, and indiction, are reckoned differently; and that the first year of the Constanfinopolitan period differs from that of the Julian period. Th find the year answering to any given year of the Julian period, and vice versa; see Epoch.

Melonic Periun. See Cycle of the Moon.

S'ictarian Prannd, an interval of 532 Julian years; at the end of which, the new and full mouns returnagain on the same day of the Julian year, according to the upinion of the inventor Vietorinus, or Victorius, who lived in the time of pope 1 Iilary. Some ascribe this period to Dionysjus Fxiguus, and bence they call it the Dionysian period: others again call it the Great Paschal Cycle, because it was invented for computing the cime of Enster.

The Victorian period is produced by multiplying the solar cycle 28 by the lunur cycle 19, the product being 532. But neither does this resture the new and full moons to the same day througbout its whole duration, by $1^{\alpha} 16^{\mathbf{*}}$ $58^{\mathrm{m}} 59^{\circ} 40$ thirds.

Period, in Arithmetic, is a distinction made by a point, or a comma, after every 6th place, or figure; and is used in numeration, for the readier distinguishing and naming the acveral figures or places, which are thus distinguished inio periods of six figures each. See NumeRation.

Period is also used in arithmetic, in the extraction of roots, to point off, or separate the figures of the given number into periods, or parcels, of as tnany figures each as are expressed by the degrec of the root to be extracted, viz, of two places each for the square root, three fur the cube root, and so on.

PERIOIDIC, or Periodicat, appertaining to period, or going by periods. Thus, the periodical motion of the moon, is that of lier monthly period or course about the earth, called her periodical month, containing 27 days 7 hourn 45 ininutes.

Periodical. Month. See Montu.
PERIGECI, or Perigcians, in Geography, are such as live in opposite points of the same parallel ot latitude. Hence they have the same seasons at the same time, with the same phenomena of the heavenly bodies; but their times of the day are opposite, or differ by 12 hours, being noon with the one when it is midnight with the other.

PERIPATETIC Philosophy, the system of philosophy
taught and established by Aristotle, and maintained by his followers, the Peripatetics. See Abistot laf.

PERIPATETICS, the followers of Aistotc. Though some derive their establishment from Plato himself, the master of both Xenocrates and Aristotle.

PERIPIIERY, in Geometry, is the circumference, or bounding line, of a circle, cllipse, or otber regular curvilineal figure. Sie Cincumperence, and Cluche.

PERISCII, or Periscians, those inhabitants of the earth, whose shadows do, in one and the same day, turn quite round to all the points of the compass, without dis-appearing.-Such are the inhabitants of the two fiozen zones, or who lise within the compass of the arctic and antaretic circles; for as the sun never sets to them, after he is once up, but moves quite round about, so do their shadows also.

PERISTYLE, in the ancient Architecture, a place or building encompassed with a row of columns on the inside; by which it is distinguished from the periptere, where the columns are disposed on the outside.

Penistyle is also used, by modern writers, for a range of columns, either within or without a building.

PERITROCHIU'M, in Mechanics, is a wheel or circle, concentric with the base of a cylinder, and moveable together with it, about an axis. The axis, with the wheel, and levers fixed is it to move it, inake that mechanical power, called Axis in Peritrochio.

PERMUTATIONS of 2uantities, in Algebra, denotes the different orders in which any quantities may be arranged; thus, the permutation of the three quantities, a, b, c, taken two and two tognther, arc six; as, $a b, b a$, $a c, c a, b c, c b$; being thus distinguished from combinations, whicb only relate to the different collection of quantities without regard to their order, so that the combinations of the above three quantities are only threr, as $a b, a c$, $l c$. Therefore, having found the number of combinations of any number of things, we must then find the number of permutations that any one combination will admit of, and the product of the two will be the number of permutation. Or the number of permutation (P) of any number (n) of things, taken any number (r) at a time, may be obtained from the following general formula, or theorem, $p=n \times(n-1) \times(n-2) \times(n-3) \cdots$ $(n-r-1)$, while the numbers of combinations (c) of the same things, taken the satue number at a time, will be represented by
$c=\frac{n \times(n-1) \times(n-2) \times(n-3) \cdots(n-r-1)}{1 \times \frac{3}{3} \times(}$,
From the foregoing theorem it appears, that the number of permutations or changes that can be made uponany number (n) of things taken together, that is, without considering them as taken a certain number at a time, as the number of changes that may be made on a given number of bells, \&c, will be expressed by the continued product $n \times(n-1) \times(n-2) \times(n-3) \& c . \cdots(n-$ $n+1)$; and thus, the number of changes that may be rung on 12 bells will be found to be expressed ly the number 479001600.

When there are a certain number of things of one sort, and a certain number of another, \&c, to find the number of changes that can be made out of them all.

Take the series $1 \times 2 \times 3 \times 4 \& \mathrm{k}$, up to the number of things given. Also the series $1 \times 2 \times 3 \& \mathrm{c}$, up to the number of things given of the first sort, and the same again for the number of the second sort, \&c ; then the
first product divided by the joint products of the last series will give the answer. Or calling n the whole number of things ; r, s, t, \&c, the number of each sort, and P the number of permutations required, we shall have
$\mathrm{P}=\frac{1 \times 2 \times 3 \times 4 \times 3 \times \cdots \cdot n}{(1 \times 2 \times 3 \ldots r) \times(1 \times 2 \times 3 \ldots 4 \times(1 \times 2 \times 4 \ldots 1)}$.
But if in this last problem, instead of supposing the perinutations to take place among the number of things taken collectively, it was required to find tbe number of permutations of the same things, taken any given number of things at a time, the operation is more tedious; and indeed the best rule that has yet been given for it, is little better than mere trial, being as follows:-lind all the different forms of combination of all the given things, taken as many at a time as in the question; then find the number of permutations in any form, and multiply it by the number of combinations in that form. Do the same for every distinct form, and the sum of all tbe products will give the whole number of permutations required.

But when only the number of combinutions are required as in the following question: To find the number of combinations that can be formed out of a given number of things, in which there are m things of one sort, n things of another sort, p things of another sort, \&c, by taken 1 at a time, 2 at a time, $\& c$, to any given number of thing* at a time. Then we have a very simple rule which was given in No. 103 of Nicholson's Philosophical Journal; as follows,

Place in a horizontal row $m+1$ units, annexing ciphers on the right hand, will the whole number of units and ciphers exceeds the greatest number of things to be taken at a time by unity.

Under each of these terms write the sum of the $n+1$ Ieft-land terins, including that as one of them, under which the number is placed; and under each of these write the sum of the $p+1$ left-hand terms of the last line: and under each of these last the $q+1$ left-hand termy, and so on through all the number of different things; then the last line will be the answer: that is, the second term shows the number of combinations taken I at a time, the third term the number of combinations taken 2 at a time, \&c.

PERPENDICULAR, in Gcometry, or Normal. One line is perpendicular to another, when the former meets the latier so as to make the angles on both sides of it equal to each other. And those augles are called right angles. And hence, to be perpendicular to, or to makerightangles with, means one and the same thing. So, when the angle $A B C$ is cqual to the augle $A B D$, the lime $A B$ is suid to be perpendicular, or normal, or at right angles to the line en.

A line is perpendicular to a curve, when it is perpendicular to the tangent of the curve at the point of contact.
A line is perpendicular to a plane, when it is perpendicular to every line
 drawn in the plane through the bottom of the perpendicular. And one plane is perpendicular to another, when every line in the une plane which is perpendicular to the line of their common section, is perpendicular' to the other plane.

From the very principle and notion of a perpendicular, it follows, 1. That the perpendicularity is mutual, that
is, if the first $A B$ is perpendicular to the second $C D$, then is the sceond perpendicular to the first.-2. That only one perpendicular can be drawo from one point in the same plane.-3. That if a perpendicular be consinued through the line it was drawn perpendicular tu; the continuation ne will also be perpendicular to the same.-4. That a lue which is perpeadicular wanoher hine, is also perpendicular to all the paraltelv of the other.-5. That a perpendicular is the shortest of alt those lines which ran be drawn fiom the same proint to the same right line. Hence the distance of a point fiom a line or phatae, is a lane drawn from the point propendicutar to the line or plane: and bence ulso the altitude of a tigure is a perpendicular let fall from the vertex to the base.

To Erect a Perpendicular from a given point in a line. -1. When the given point s is near the middle of the line; with any interval in the compasses take the two equal parts BC, BD: and fram the two centres C and b , with any ralius greater than BC or Bn, strike two ares jatersecting in F; then draw efa, which will be the perpendicular requited.
2. When the given point σ is at or near the end of the line; with any centre 1 and radius 16 describe an arc nek through 6 ; then a ruler laid by in and I will cut the are in the point k, through wheh the perpendicular ex must be drawn.

To let full a Perpendicular upon a given line sm from a given point s . Wish the ecotre N , and a consenient radius. describe an arc cutting the givea line in L and m; with these two centres, and any other convenient radius, strike two otherarcs intersecting in o, the point through which the perpendicular mop must be drawn.

Perpendiculars are best drawn, in practice, by means of a square, laying one side of it along the given line, and the other to pass through the given point.

Perpendicelsh, in Gunhery, is a small instrument used for finding the centre line of a piece, in the operation of pointing it to a givell object. See fointing of a Guv.

Perpetval Mofion. See Mothux.
Circle of Perpetval Oceultation and Apparition. Soe Circle.
l'mppetual, or Endless, Screv. Sce Screw.
PERPE:TUITY, in the Doctrine of Annuities, is the number of years in which the simple interest of any principal sum will amount to the same as the principal itself. Or it is the quotwent anising by dividing 100, or any other principal, by its interest for one year. Thns, the perpetuity, wat the rate of 5 per cent. interest, is $\frac{200}{5}=20$; at 4 per cent. $\frac{158}{4}=25$; \&c.

PERRY (Captain Jons), was a celcbrated English engineer. After acquiring great reputation for his skill it this country, he resided many years in Russia, having been recommended to the caar Peter while in England, as a person capable of serving him on a variety of occasions,
relating to bis new design of establishing a ficet, making his rivers navigable, \&. His sulary in this service was to be Sowl. per aunum, besides travelling expenses and subsiotence inoney on whatever service lie should te cmployed, with a further reward to his satiafaction at the conduston of any work he should tinish.

After same conversation with the czar himelf, partucularly respecting a communication betweea the rivers Volga and Don, he was tmployed on that work for three summers successisely; but not being weil supplied with men, pardy on account of the ill success of Peter's anmagainst the Swedes at the Lathe of Narva, and partly by the discouragement of the govertior of Astracan, be was ordered at the end of 1707 to step, and next gear wiss employed in rofitting the ship, at Virombs, and in 1709 in making the river of that name navigable. Hut after repeated disappointments, and fruiticss applications for his salary, he at length ģuitted the kingtom, uider the protection of Mr. Whitworth, the knglish amba-suder, in 171:. (Soe his Nariative in the l'relace to 1 he State of Russia.)

In 1721 he was employed in stopping thie breach at Dagenhan, made in the banh of the rucr Thames, near the village of that mame in Essix, and about 3 miles below Woolwich, in which he happly succovded, affer several other persoms hat failed in that underlaking. He \%as also omployed, the same gear, about the hario ur at Dublin, and published at that time an Answer to the oijections made against it.-Besides this piece, Captain Perry was author of The State of llussia, 1710 , Swo; and An Account of the Stopping of Dagenham Dreach, 1791, 8 vo .He died Feb. 111h, 17:33.

PERSELS, a constellation of the northern hemisphere, being une of the 48 ancient asterisms.- The Grechs labled that this is Perscus, whom they make the son of Jupiter by Danae. 'Tbe fatiter of that lady bat been told, that he should be killed by his grandchild, and having only Danae to take care of, he locked Ler up; but Jupiter found his way to her in a shower of gold, and Perseus werified the oracle. He cut off also the head of the gorgot, and affixed it to his slield; athl after many other great exploits be rescued Andromeda, the daughter of Cassiopera, whom the sea-nymphs, in revenge for that lady's boasting of superior beauty, had fastened to a rock to be devoured by a monster. Jupiter his father in homour of the expluit, they say, afterwards took up the hero, and the whole family with him, into the skies.- The number of stars in this cotistellation, in Ptolemy's catalogue, are 89 ; in Tycho's 29, in Heveljus's 46, and in the butamic catalogue 59.

PERSIAN Wheel, in Mechanics, a machite for raising a quantity of water, to serve for various purposes, Sucha whet is represented in plate 23, fig. 1; with which water may be rained by means of a stream an turning a wherl CDE, according to the order of the letters, with buchets $a, a, a, a, \& c$, himg upon the whed 1 bystrong pins $b, b, b, b, \& c$, fiacd in the side of the rim; which must be made as high as the water is intended to be raised above the lesel of that part of the stream in which the wheel is placed. As the whel turns, the buchets on the right hand godown into the water, where they are filled, and return up fuil on the left hand, till they coune to the top at k ; where the y strike against the end n of the fixed trough s, by which they are overset, and so empty the water jnio the trough; whence it is to be convryed in pipes to any place it is in-
kended for: and as eacb bucket gets over the trough, it falls into a perpendicular position again, and so goes down empty till it comes to the water at A, where it is filled as before. On each bucket is a spring r, which going over the top or crown of the bar m (fixed to the trough m) raises the bottom of the bucket above the level of its mouth, and so causes it to empty all its water into the trough.

Sometimes this wheel is made to raise water no higher than its axis; and then instead of buckets hung upon it, its spokes c, d, c, f, g, h, are made of a bent form, and hollow within; these hollows opening into the boles C, $\mathbf{D}, \mathrm{E}, \mathrm{F}$, in the outside of the wheel, and also into those at o in the box \mathbf{s} upon the axis. So that, as the holes C, D, \&ce, dip into the water, it runs into them; and as the whed turns, the water rises in the hollow spokes, c, d, \& c, and runs uut 11 a stream F from the holes at 0 , and falls into the trough o, whence it is conveyed by pipes.

Persian, or Persic, in Architecture, a name common to all statues of men; serving instead of culumns to support entablatures.

Persian Era and Year. See Epoch and Year.
PERSPECTIVE, the art of delineating visible objects on a plane surface, such as they appear at a given distance, or height, on a transparent plane, placed commonly perpendicular to the horizon, between the eye and the object. This is particularly called

Linear Perspective, as regarding the position, magniIude, form, \& c, of the several lines, or contours of objects, and expressing their dinainution.

Some make this a branch of Optics; others an art and science derived from it: its operations however are all geometrical.

History of Perspective. This art derives its origin from paintung, and particularly from that branch of it which was employed in the decorations of the theatre, where landscapes were chiefly introduced. Vitruvius, in the proem to his 7 th book, says that Agatharchus, at Athens, was the first author who wrote upon this subject, on occasion of a play exhibited by 乍schylus, for which be prepared a tragic scene; and that afterwards the principles of the art were more distinctly taught in the writings of Deunocritus and Anaxagoras, the disciples of Agatharchus, which are not now extant.

The perspective of Euclid and of Heliodorus Larisseus contains only some general elements of optics, that are by no means adapted to any particular practice; though they furnish some materials that might be of service even in the lisear perspective of painters.

Geminus, of Rhodes, a celebrated mathematician, in Cicero's time, also. wrote upon this sciencc. It is also evident that the !loman artists were acquainted with the rules of perspective, from the account which Pliny (Nat. 1list. lib. 35, cap. 4) gives of the representation on the scene of thoee plays given by Claudius Pulcher; by the appearance of which the crows were so deceived, that thry endeavoured to settle on the fictitious roofs. However, of the theory of this art among the aticicnts we know nothing; as none of their writugs have cscaped the general wreck of ancient literature in the dark ages of Europe. Doubtlexs this art must have been lost, when painting and sculpture no longer existed. However, there is reason to believe that it was practised rauch later in the eastern empire.

Jobn Trelaes, in the $\mathbf{1 2 t h}$ century, speaks of it as well Vol. 11.
acquainted with its importance in painting and statuary. Aud the Greek painters, who were employed by the Venetians and Florentines, in the 13th century, it seems brought some optical hnowledge along with them into Italy: for the disciples of Giotto are commended for observing perspective more regularly than any of their predecessors in the art had done; and he lived in the beginning of the 14th century.

The Arabians were not ignorant of this science; as may be presumed from the optical writings of Alhazen, sbout the year 1100. And Vitellus, a Pule, about the year 1270, wrote largely and learnedly on optics. And, of our own nation, friar Bacon, as well as John Peckham, archbishop of Canterbury, treated this subject with great accuracy, considering the times in which they lived.

The first authors who profiessedly laid down rules of perspective, were Bartoloneo liramantino, of Milan, whose book, Regole di Perspectiva, e Misure delle Antichita di Lombardia, is dated 1440; and Pietro del Borgo, likewise an Italian, who was the most ancient author met with by Ignatius Danti, and who it is supposed died in 1443. This last writer supposed objects placed beyond a transparent tablet, and so to trace the images, which rays of light, emitted from them, would make upon it. Albert Durer constructed a machine on the principles of Borgo, by which he could trace the perspective appearance of objects.

Leon Battista Alberti, in 14.50, wrote his treatise De Pictura, in which he treats chiefly of perspective.

Balthazar Peruzzi, of Siena, who died in 1536, had diligently studied the writings of Borgo; and his niethod of perspective was published by Serlio in 1540 . To him it is said we owe the discovery of points of distance, to which are drawn all lines that make an angle of 45° with the ground linc.

Guido Ubaldi, another Italian, soon after discovered, that all lines that are parallel to one another, if they be inclined to the ground line, converge to some point in the horizontal line; and that through this point also will pass a line drawn from the eye parallel to them. His Perspective was printed at Pisaro in 1600, and contained the first principles of the method afterwards discovered by Dr. Brook Taylor.

In 1583 was published the work of Giacomo Barozzi, of Vignola, entitled, The two Rules of Perspective, with a Iesrned commentary by Ignatius Danti. In 1615 Marolois' work was printed at the Hague, and engraved and published by Hondius. And in 1695 , Sirigatti published his :reatise of perspective, which is little more than an abstract of Vignola's.

Since that time the art of perspective has been gradually improved by subscquent geometricians, particulariy by professor Gravesande, and still more by Dr. Brook Taylor, whose principles are in a great measure new, and far more general than those of any of his predecessurs. He did not confine his rukes, as they bad done, to the borizuntal plane only, but mate them general, so as to affecs every species of lines and planes, whether they were parallel to the horizon or not; and thus his principles werc made universal. Besides, from the simplicity of his ruled, the tedious progress of drawing out plans and elevations for any object, is reudered useless, and therefore avoided; for by this method, not only the fewest lines possible are required to produce any perspective representation, but every figure thus drawn will bear the meest 2 A
mathematical examination. Further, bis system is the only one calculated for answering every purpose of thuse who are practitioners in the art of design; for by it they may produce either the whole, or only so much of an object as is wanted; and by fixing it in its proper place, its apparent magninude may be determined in an instant. It explains also tbe perspective of shadows, the reflection of objects from polished planes, and the inverse practice of perspective. His Linear Perspective was first published in 1715; and his New Principles of Linear Perspective in 1719, which he intended as an explanation of his first treatise. And his method has been chiefly followed by all others since.

In 1738 Mr. Hamilton published his Stereography, in 2 vols folio, after the manner of Dr. Taylor. But the neatest system of perspective, both as to theory and practice, on the same principles, is that of Mr. Kirby. There are also good treatises on the subject, by Desargues, Debosse, Albertus, Lamy, Niceron, Pozzo the Jesuit, Ware, Cowley, Priestley, Ferguson, Emerson, Malton, Henry Clarke, \&c, \&c.

Of the Principles of Perspective. To give an idea of the first principles and nature of this art; suppose a transparent plane, as of glass, \&c, ni raised perpendicularly on a horizontal plane; and the spectator s directing his eye o to the triangle ABC: if now we conceive the rays $\wedge 0, \mathrm{Bo}, \mathrm{co}, \& \mathrm{c}$, in their passage through the plane, to leave their traces or vertiges in $a, b, c, \& c$, on the plane; there will appear the triangle abc; which, as it atrikes the eye by the same rays $a 0, b 0, c o$, by which the reflected particles of light from the triangle are transmitted to the same, it will exhibit the true appearance of the triangle ABC, though the object should be removed, the same distance and height of the eye being preserved.

The business of perspective then, is to show, by what certain rules the points $a, b, c, \$ c$, may be found geometrically: and hence also we have a mechanical method of delineating any object very accurately.

Hence it appears that abe is the section of the plane of the picturewith the rays, which proceed from the original olject to the eye: and therefore, when this is parallel to the picture, its representation will be both parallel to the original, and simplar is it, though smaller in proportion as the uriginal object is farther from the picture. When the orighal object is brought to comcide with the picture, the representation is equal to the original; but as the object is removed farther and farther from the picture, ths image becomes smaller and smaller, and also rises higher and higher in the picture, till at last, wben the object is supposed to be at an infinite distance, its image vanishes in an imaginary point, exactly as high above the bottom of the picture as the eye is above the ground plane,
on which the spectator, the picture, and the original object are supposed to stand.

This may be familiarly illustrated in the following manner: Suppose a person at a window looks through an upright pane of glass at any object beyond; and, keeping his head steady, draws the figure of the object upon the glass, with a black-lead pencil, as if the point of the pencil touched the object itself; he would then have a true representation of the object in perspective; as it appears to his eye. For properly drawing on the glass, it is necessary to lay it over with strong gum water, which will be fit for drawing upon when dry, and will then retain the traces of the pencil. The person should also look through a small hole in a thin plate of metal, fixed about a foot from the glass, between it and his eye; kecping his eye close to the bole, otherwise he might shift the position of his head, and so make a false delineation of the object.

Having traced out the figure of the object, he may go over it again, with pen and ink; and when that is dry, cover it with a sheet of paper, tracing the image upon this with a pencil; then taking away the paper, and laying it upon a table, he may finish the picture, by giving it the colours, lights, and shades, as be sees them in the object itself; and thus he will bave a true resemblance of the object on the paper.

Of certain Definitions in Perspective.

The point of aight, in perspective, is the point E , where the spectator's eye should be placed to view the picture. And the point of sight, in the picture, called also the centre of the picture, is the point cdirectly opposite to the eye, where a perpendicular from the eye at g meets the picture. Also this perpendicular ec is the distance of the pic-

aure: and if this distance be transferred to the horizontal line on each side of the point c , as is sometimes done, the exiremes are called the points of distance.

The original plane, or geometrical plane, is the plane kz upon which the real or original object $A B G D$ is situated. The line on, where the ground plane cuts the bottom of the picture, is called the section of the original plane, the ground-line, the line of the base, or the findamental line. If an original line A a be continued, so as to intersect the picture, the point of intersection a is called the intersection of that original line, or its infersecting point. The horizontal plane is the plane abgd, which passes through the eye, parallel to the horizon, and cuts ihe perspective plane or picture at right angles; and the horisontal line bg
is the common intersection of the horizontal plane with the picture.

The vertical plane is that which passes through the eye at right angles both to the ground plane and to the picture, as ECsN. And the vertical line is the common section of the vertical plane and the picture, as CN .

The line of station SN is the common section of the vertical plane with the ground plane, and perpendicular to the ground line ot.

The line of the height of the eye is a perpendicular, as Es, let fall from the eye upon the ground plane.

The vanishing line of the original plane, is that line where a plane passing through the eye, parallel to the original picture, cuts the picture: thus bg is the vanishing line of $A B G D$, being the greatest height to which the image can rise, when the original object is infinitely distant.

The vanishing point of the original line, is that point where a line drawn from the eye, parallel to that original line, intersects the picture : thus c and g are the vanishing points of the lines $A B$ and $k i$. All lines parallel to each other haye the same vanishing point. If from the point of sight a line be drawn perpendicular to any vanishing line, the point where that line intersects the vanishing line, is called the centre of that vanishing line: and the distance of a vanishing line is the length of the line which is drawn from the eye, perpendicular to the said line.

Meascring points are points from which any lines in the perspective plane are measured, by laying a ruler from them to the divisions laid down upon the ground line. The measuring point of all lines parallel to the ground line, is either of the points of distance on the horizontal line, or point of sight. The measuring point of any line perpendicular to the ground line, is in the point of distance on the horizontal line; and the measuring point of a line oblique to the ground line is found by extending the compasses from the vanishing point of that line to the point of distance on the perpendicular, and setting off on the thorizontal line.

Some general Maxims or Theorems in Pezspective.

1. The representation $a b$, of a line $A B$, is part of a line sc , which passes through the intersecting point s , and the vanishing point c , of the origital line As.
2. If the original plane be parallel to the picture, it can have no vanishing line upon it; and consequently the representation will be parallel. When the original is perpendicular to the ground line, as AB, then its vwnishing point is in c, the centre of the picture, or point of sight; because EC is perpendicular to the picture, and therefore parallel to AB.
3. The image of a line bears a certain proportion to its
original. And the image may be determined by transferring the length or distance of the given line to the intersecting line; and the distance of the vanishing point to the horizontal line; i. e. by bringing both into the plane of the picture.

Pron. To find the representation of añ ob. jective point A.-Draw A1 and A2 at !!easure, intersecting the bottom of the picture in 1 and 2 ; and from the eye x draw Eil parallel to a 1 , and ex parallel to 12 ; then draw 11 and 22 , which will intersecteach other in a, the representation of the point a.

Otherwise. Let H be the given objective point,

from which draw $\boldsymbol{\text { n }}$ perpendicular to the fundamental line dE . From the fundamental line de cut off $\mathrm{IK}=\mathrm{I}_{\mathrm{H}}$: through the point of sight \mathbf{F} draw a horizontal line $\boldsymbol{F P}_{\mathrm{P}}$, and make Pr equal to the distance of the eye SK: lastly, join FI and PK , and their intersection h will be the appearance of the given objective point H , as required. And thus, by finding the representations of the two points, which are the extremes of a line, and connecting them together, there will be formed the representation of the line itself. In like manner, the representations of all the lines or sides of any figure or solid, determine those of the solid itself; which therefore are thus put into perspective.

Aerial Plaspective, is the art of giving a due diminution or gradation to the strength of light, shade, and colours of objects, according to their different distances, the quantity of light which falls upon them, and the medium through which they are sect.
Peaspective Machine, is a machine for readily and easily making the perspective drawing and appearance of any object, which requires little or no skill in the art. There have been invented various machines of this kind. One of which may even be seen in the works of Albert Durer. A very consenient one was invented by Dr. Bevis, and is described by Mr. Ferguson, in his Perspective, pa. 113. And enother is described in Kirby's Perspective, pa. 65.

Penspective Plan, or Plane, is a glass or other transparent surface supposed to be placed between the eye and the object, and usually perpendicular to the horizon.

Scenographic Perspective. See Scenograpiy.
Perspective of Shadons. See Shadow.
Specular Perspective, is that which represents the objects ia cylindrical, conical, spherical, or other mirrors. 2 A 2

PERTICA, a kind of comet, the same with Veru.
PETARD, a military engine, somewhat resembling in shape a high-crowned hat; serving formerly to break down gates, barricades, draw-bridges, or the lihe works intended to be surprised. It is about 8 or 9 inches wide, and weighs from 55 to 70 pounds. Its use was chiefly it: a clandestime or private attack, to break down the gates \&c, It has also been used in countermines, to break through the enemics' galleries, and give vent to their mines: but the use of petards is now discontinued. - Their intention is ascribed to the French Hugonots in the year 1579. The most signal exploit performed with them was the taking the city Cahors, as we are told by d'Aubigné.

PEITT (PETER), a considerable mathematician and philosopher of France, was born at Montluģon in the diocese of Bourges, in the year 1589 according to some, but in 1600 accurding to others.-He first cultivated the mathematics and philosophy in the place of his nativity ; but in 1633 be repaired to Paris, to which place his reputation had procured him an invitation. Here he becaune bighly celebrated for his ingenious writings, and for his connections with Pascal, Descartes, Mersenue, and the other great men of that time. He was employed on several occasions by cardinal Richelieu; he was commissioned by this minister to visit the sea-ports, with the title of the king's engineer; and was also sent into ltaly on the king's business. He was at Tours in 1640 , where he married; and was afterwards made intendant of the fortifications. Baillet, in his Life of Descartes, says, that Petit had a great genius for mathematics ; that he excelled particularly in astronomy; and had a singular passion for experimental philosophy. About 1637 he returned to Paris from Italy, when the Dioptrics of Descartes were much spoken of. He read them, and communicated his objections to Mersenne, with whom he was intimately acquainted. And yet he soont after embraced the principley of Descartes, becoming note only his friend, but his partisan and defeniler also. He was intimately connected with Pascal, with whom lie made at Rouen the same experiments concerning the vacnum, which Torricelli had before made in Italy; and was assured of their truih by frequent repetitions. This was in 1646 and 1647 ; antl though there appears to be a long interval from this date to the time of his death, we meet with no other memvirs of his life. He died Augnst the 20th 1667, at Iagny, near Paris, whither he had retired for some time before his decease.
l'etit was the nuther of several works on physical and astronomical subjects; the cbiel of which are,

1. Cbronslogical Discouree, \&c, 1636, 4to. In defence of Scaliger.-2, Treatise on the Proportional Compasses. -3. On the Weight and Magnitucle of Metals.-4. Construction and Use of the Artillery Calipers.-5. On a vacuuan. -6 . On Eelipses.-7. On Remedies against the Inuudations of the Seine ut Paris.-8. On the Junction of the Occan with the Mediterranean Sea, by means of the rivers Aude and Garonne.-9. On Comets.-10. On the proper dny for celebrating Easter.-11. On the Nature of Heat and Cold, \&c.

PETTY (Sir William), a singular instance of a universal genius, was the elder son of Anthony Petty, a clothier at Rumscy in Hampshire, where he was born May the 16th, $16 \% 3$. While a bay he took great delight in spending his time among the artiticers there, whose trades the could work at when but 12 years of age. He then went
to the grammar-school in that place, where at 15 he becance master of the Latin, Greek, and French languages, with arithmetic and those parts of practical geometry and astronomy aseful in nasigation. Soon after, he went to the university of Caen in Normandy ; and after some stay these he rcturned to England, where he was promoted in the hing's navy. In 1643, when the civil war began, and the tinues became troublesone, be went into the Netherlands and France for three years; and having vigorously prosecuted his studies, espercially in physic, at Utrecht, Leyden, Amsterdam, and Paris, he returned bane to Rumsey. In 1647 he obtained a patent to teach the art of double writing for 17 years. In 1648 he publisted at London, "Advice to Mr. Samuel Hartlib, for the advancement of some particular parts of learning." At this time he adhered to the prevailing party of the nation; and went to Oxford, where he taught anatomy and chemistry, and was created a doctor of physic, and rose intosuch repute, that the philosophical meelings, which preceded and laid the foundation of the Royal Society, were first held at his house. In 1650 he was made professor of anatumy there; and sonn after a member of the college of physicians in London, as also profesyor of music at Gresham-college, London. In 1632 lie was appointed physician to the army in Ireland; as also to threc lord lieutemants successively, Lambert, Fleetwood, and Hemry Cronwell. After the rebellion was over in Irrland, he was appointed one of the commissioners for dividing the forfined lands to the army who suppressed it; where he acquired a great fortune, When Henry Cromwell became lieutenant of that kiugdom, in 1655, he appointed Dr. Petty his secretary, and clerk of the council: he likewise procured him to be elected a burges* for Westloo in Cornwall, in Richard Cromwell's parliament, which met in Jannary 1658. But, in March following, Sir Ilicrom Sankey, member for Woolstock in Oxfordzhire, impeached him of high crimes and misslemeavors in the execution of his office. This gave the doctor a great deal of trouble, as he was sumnoned before the house of commons; and notwithstanding the sirenuous endeavours of his friends, in their recommendations of him to serctary Thurloe, and the defence he made before the house, his enemies procured his dismission from his public employments, in 1659. Ife then retired to lieland, till the restoration of king Charles the Second; soon after which he carne into England, where he was very graciously reccived by the king, resigned his professorship at Greshum-college, and was appminted one of the commissioners of the Court of Claims. Likewise, April the 111 h, 1661 , he received the honour of knighthood, and the grant of a new patent, constituting hin surveyor-general of Ireland, and was there chosen a member of parliament.
On the incorporating of the Royal Society, he was one of the first members, and of its first council. And though he had left off the pructice of physic, his name was continued as an honorary member of the college of physicians in 1663.
About this time he invented his double-bottomed ship, to sail against wind and tide, and afterwards presented a model of the vessel to the Royal Society; to whom also, in 1665 , be comm unicated "A Discourse about the Building of Ships," containing some curious secrets in that art. But, upon trial, finding his ship failed in some respects, he at lengil gave up that project.

In 1666 sir William drew up a treatise, called Verbut

Sapienti, containing an account of the wealth and expenses of England, and the method of raising taxes in the most equal manner.-The same year, 1666 , be suffered a considerable loss by the fire of London.- The year following le inarried Elizabeth, danghter of sir Hardresse Wialler; and afierwards set up iron-works and pilchard-fishing, opened lead mines and a timber trade in Kerry, which turued to very good account. But all these concerns did not hinder hin from the pursuit of both political and philosophical speculations, which he thought of public utility, publishing them either separately or by communication to the Royal Society, particularly on finances, taxes, political arithmetic, land carriage, guns, pumps, \&c.

At the first meeting of the Philosophical Society at Dublin, on the plan of that at London, every thing was submitted to his direction: and when it was formed into a regular society, he was chosen president in Nov. 1684. On this occasion he drew up a "Catalogue of mean, vulgar, cheap, and simple Experiments," proper for the infant state of the society, and presented it to them; as he did also his Supellex Philusophica, consisting of 45 instruments requisite to carry on the design of their institution. In 1685 be rade his will; in which he declares, that being then about 60 , his views were fixed upon improving his lands in Ireland, and to promote the tracle of iron, lead, marble, fish, and timber, which bis cstate was capable of. And as for studies and experiments, "I think now," says be, "to confine the same to the anatomy of the people, and political arithmetic; as also the improveruent of ships, land-carriages, guns, and pumps, as of most use to mankind, not blaming the study of other men." But a few years after, all his pursuits were stopped by the effects of a gangrene in his foch, occasioned by the swelling of the gout, which put a period to his life, at his house, in Piccadilly, Westruinster, Dec. 16,1687 , in the 65 th year of his uge. His corpere was carried to Rumscy, and there interred, near those of his parenis.

Sir Willian Petty died possessed of a very large furtune, as appears by his will; where he makes his real estate about 6,500 . per annum, his personal estate about 45,1000 , his bud and desperate dehts 30,000 , and the demonsirable improvenents of his Irish estate, 4000 . per annum; in all, at 6 per cent. interest, 13,000 , per annum. This estate came to his family, which consisted of his widow and three children, Charles, Ileary, and Anne: of whom Charles was created baron of She lhourne, in the county of Waterford in Ireland, by hing Willam the Thirel; but dying without issue, was succeeded by his younger brother Henry, who was created viscount Dunkeron, in the county of Kerry, und earl of Shelbourne Feb. 11, 1718. He married the lady Arabella Boyle, sister of Charles carl of Cork, who brought him several children. He, was member of parliameut for Circat Marlow in Buckinghamshire, and a fellow of the Royal Socicty: be died April 17, 1731. - Anne was married to Thomas Fitzmorris, baron of Kerry and Lixnaw, and died in Ireland in 1737.

The variety of pursuits, in which Sir William Petty was engaged, shows him to have had a genius capable of any thing to which he chose to apply it: and it is very extraordinary, that a man of so active and busy a spirit could find time to write so many things, as it appears be did, by the following catalogue.

1. Advice to Mr. S. Martlib \&c ; 1648, 4to.-2. A Brief of Proceedings between sir Hierom Sankey and the author \&c; 1659 , folio.-3. Reflections upon ame persons and
things in Ireland, \& c; 1660, 8vo.-4. A Treatise of Taxes and Contribution, \&c ; 1662, 1667, 1685, 4to, all without the author's name. This last was re-published in 1690, with two other anonymous pieces, "The Privileges and Practice of Parliaments," and "The Politician Discovered;" with a new title-page, where it is said they were all written by sir William, which, as to the first, is a mistake.-5. Apparatus to the History of the Common Practice of Dyemg;" printed in Sprat's History of the Royal Society, 1667, 4to,-6. A Discoursc concerning the Use of Duplicate Proportion, together with a New Hypothesis of Springing or Flastic Motions; 1674, 12 mo . -7. Colloquium Davidis cum Anima sua, \&c; 1679, folio.-8. The Politician Discovered, \&c; 1681, 4to.9. An Essay in Political Arithmetic; 1682, 8vo.-10. Observations upon the Dublin Bills of Mortality in 1681 , \&c: 1683, svo.-11. An Account of some Experiments relating to Land-carriage, Philos. Trans. No. 161.12. Some Queries for examining Mineral Waters, ibid. No. 166.-13. A Catalugue of Mean, Vulgar, Cheap, and Simple Experiments, \&c; ibid. No. 167.-14. Maps of Ireland, being an Actual Survey of the whole Kingdom, \&ec : J685, fulio--15. An Essay concerning the Multiplication of Mankind; 1686,8vo-16. A further Assertion concerning the magnitude of London, vindicating it, \& ; Philos. Trans. No. 185.-17. Two Essays in Political Arithmetic; 1687, 8vo.-18. Five Essays in Political Arithmetic; 1687, 8vo.-19. Observations upon London and Rome; 1687, 8vo.

His posthumous pieces arc, (1) Politicul Arithmetic ; $1690,8 \mathrm{vo}$, and 1755 , with his life prefixed.-(2) The Political Anatony of Ireland, with Verbum Sapienti, 1691, 1719.-(3) A Treatisc of Naval Philosophy; 1691, 12inn.-(4) What a complete Treatise of Navigation should contain ; Philos. Trans. No. 198.-(5) A Discourse of making Clotb with Sheep's Wool ; in Birch's Hist. of the Ray. Soc,-(6) Supellex Philosophica; ibid.

PHANTASMAGORIA, a new optical instrument, which has within a few years afforded much entertainment by exhibiting, in theatres and other places of amasemeat, the representation of spectres and other figures on a transparent scren placed between the instrument and the spectators, and no light beine suffered to appear, but that in which the images are enveloped, which renders the effect very singular; and this is still farther strengthened by the operator inereasing or diminishing the size of the shadnws at pleasure, by which the spectaton, under the influence of an optical illusion, fancy that the figures are approaching or receding from thers.
The first exhibition of this hind, (at least of late years,) was made by one Philidor at Vienua in 1790, and which was afterwards repeated by him at l'uris in 1792 with very great success. And a similur spectacle was opened in that metropolis by M. Rubertson in 1798 ; since which time they bave become very common in all the countries of Europe. It seems howerer that something of a similar kind was exhibited so far back as the 17 th century, being mentioued by Patin, in his "Relations Historiques," published at Amsterdam in 1605, though the instrument itself is not there deseribed.

The phantasmagoria does not differ much in its construction from the magic lantern; indeed, it is now so constructed that it answers either purpose, the principal difference being, that in the phantasmagoria, the glase widers on which the figures are painted, are rendered per-
fectly opake, except in the figures themselves, by which means all light is excluded except that in which the images are involved, and also the spectators are placed on the contrary side of the screen, which is made of some transparent thin substance, as mustitn, or such hike, that the figures may be seen through it: and the instrument is fixed on rollers or wheels, by which the operator can move it nearer to or farther from the sereen, and thus give to the figures any size at pleasure : there are also other contrivances for giving the figures or any parts of them motion, as the arms, legs, eyes, \&e, which have a very singular effect.

The greatest imperfection of this instrument is, that as the figures become smaller, which gives them the appearance of being at a greater distance, they lwecome brighter, which is contrary to the natural order of things, as distance always decreases both the apparent magnitude and distinctness of objects. This defect however may be conaiderably lessened by the following construction, which is suggested by Dr. Young in his Lectures on Natural Philosophy:

The light of the lamp a (fig. 1. plate 29) is thrown liy the mirror B, and the lenses C and D, ou the painted slider at E , and the magnifier \boldsymbol{y} forms the image on the acreen at G . This lens is fixed to a slider, which may be drawn out of the principal support, or box 11 : and when the box is drawn back on its wheels, the rod ik lowers the point k, and by means of the rod KL adjusts the slider in such a manner, that the image is always distinctly painted on the screen 6 . When the box advances towards the screen, in order that the images may be diminished and appear to vanish, the support of the lens F suffiers the screen m to fall and intercept a part of the light; thus taking off from the natural brightmess of the object. The rod $\mathrm{x} x$ inust be equal to Kt , und the point 1 must be twice the focal length of the lens F, before the object, I being immediately under the focus of the lens. The screen m may have a triangular opening, so as to uncuver the middle of the lens only, or the light may be intercepted in any other manner. Sce Dr. Young's Lectures of Natural Philosophy.

PHARON, the name of a game of chance. See Demoivre's Doctrine of Chances, pa. 77 and 105.

PHASES, in Astronomy, the various appearances, or quantities of illumination of the moon, Venus, Mercury, and the other planets, by the sun. These pbases are very observable in the moon with the naked eye; by which she sometimes increases, sometimes wanes, is now bent into horns, and again appears a halfocircle; at other times she is gibbous, and again a full circular face. And by help of the telescope, the like variety of phases is observed in Venus, Mars, \&c. Copernicus, a little before the use of telescopes, foretold, that after-ages would find that Venus underwent all the changes of the moon; which prophecy was first fulfilled by Gulileo, who, directing his telencope to Venus, observed her phases to resemble those of the moon; being sometimes full, sometimes horned, and sometimes gibbous.
l'uases of an Eclipse. To determine these for any time : Find the moon's place in her visible way for that moment; and from that point as a centre, with the interval of the moon's semidiurieter, describe a circle: In like manner filld the sun's place in the ecliptic, from which, with the semidiameter of the sun, describe another circle: the intersection of the two circles shows the phases of the eclipse, the quantity of obscuration, and the position of the cusps or horns.

PHENOMENON, or Put nomenow, an appearance in physics, an extraordmary apprarance in the beavens, or on earth; either discovered by ubservation of the celestial bodies, or by physical experiments, the cause of which it not obvicus. Such are meteors, comets, uncommon appearatice of stars and planets, earthquakes, dec. such also are the effects of the magnet, phosphorns, \&e.

PHILOLAUS, of Crotona, was a celebrated phulosoplier among the ancients. He was of the school of Pythagoras, to whom that philosopher's Gulden Verses have been ascribed. He made the hearens his chefolject of contemplation; and has beell said to be the author of that true system of the woild which Copernicus afterwards revived; but erroneously, because there is undouhted evidence that Pythagoras learned that sysicm in Egypt. On that erruneous supposition however it was, that Bulliald placed the name of Philolaus at the head of two works, written to illustrate and confirm that system.
"He was (says I)r. Enfield, in his History of Philosophy) a disciple of Archytas, and flourished in the time of Plato. It was from him that Plato purchased the written records of the Pythagorean system, contrary to an express wath taken by the socrety of Pythagereans, pledging themselves to keep secret the mysteries of their sect. It is probable that among these broks were the aritings of Climeus, on which Plato formed the dialogue which bore his name. Plutarch relates, that Pbilolaus was one of the persons who escaped from the house which was burned by Cylon, during the life of Pythagoras ; but this account cannot be correct. Philolaus was contemporary with Plato, and therefore certainly not with Pythageras. Interfering in affairs of state, he fell a sacrifice to political jéalousy.
" Philolaus treated the doctrine of nature with great subtlety, but at the same time with great obscurity; referring every thing that exists to mathematical principles. He taught, that ieason, improved by mathematical learn$\mathrm{ing}_{\text {g, }}$, is alone capable of judging concerning the nature of things : that the whole world cousists of intinite and finite ; that number subsists by itself, und is the chain by which its power sustains the eternal frame of things; that the Monad, is not the sole principle of things, but that the Binary is necessary to furnish materials from which all subsequent numbers may be produced; that the world is one whole, which has a fiery centre, about which the ten celestial splieres revolve, heaven, the sun, the planets, the earth, and the moon ; that the sun has a vitreous surface, whence the fire diffused through the world is reflected, rendering the mirror from which it is reflected visible; that all things are preserved in harmony by the law of necessity; and that the world is liable to destruction both by fire and by water. From this summary of the doctrine of Philolaus it appears probable that, following Timarus, whuse writings he possessed, he so far departed from the Pythagorcan system as to conceive two indrpendent principles in nature, Gor and matter, and that it was from the same source that Plato derived his doctrite upon this subject."

PIHLOSOPHER, a person well versed in philosophy ; or who makes a profession of, ur applies binuself to, the study of nature or of morality.

Puilosofnen's Stone, a long-sought-for preparation, which was to transmute or exalt impure metals, such as tin, lead, copper, \&c, into gold. There are three methods by which the alchemists have attcmpted to arrive at the urt
of making gold; the first by separation, the second by maturation, and the third by transinutation, or turning all metals readily into pure gold, by melting thein in the fire, and casting a little quantity of a certoin preparation inte the fused matter, upon which the faces are volatilized and burnt, and the rest of the mass turned into pure gold. Many thousands of receipts have been given for conducting the experiments in this art, and many persons have ruined their fortunes in the pursuit of it; but repeated failures have at last put an end to this hopeless speculation.

PHILOSOPHICALTAansactions, those of the Royal Sociely. Sce Transactions.

1'HILOSOPIIILING, the act of considering some object of our knowledge, examining its propertics, with the phenomena it exhibits, and inquiring into their causes or effects, and the laws of them; the whole conducted according to the nature and reason of thingx, and directed to the inprovement of kiowledge.

The Rales of Pallosopnizino, as established by sir Isaac Newton, are, 1. That no more causes of a natural effect be admitted than are true, and suffice to account for its phenomena. 'This agrees with the selltiments of most philosophery, who hold that nature does nothing in vain; and that it were vain to do that by many means, which might be done by fewer.
2. That natural effects of the same kind, proceed from the same cuuses. 'Thus, for imstance, the cause of respiration is one and the same in man and brute; the cause of the descent of a stone, the same in Europe as in America; the cause of light, the sane in the sun and in culinary fire; and the cause of refliction, the same in the planets as the earth.
3. Those qualities of bodirs which are not capable of bring heightened, and remitted, and which are found in all bodies on which experiments can be made, must be considered ias universal qualitios of all bodics. Thus, the extension of body is olily perceived by our senses, nor is it perceivable in all bodies: but since it is found in all that we bave perception of, it may be affirmed of all. So we find that several bodics are hard; and argue that the bardness of the whole only arises from the bardness of the parts: whence we infer that the particles, not only of those bodics which are sensible, but of all others, are like: wise hard. Lastly, if all the bodies about the earth gravitate towards the carth, and this according to the quantity of matter in each; and if the moon gravitate towards the earth also, according to its quantity of matter; and the sea again gravitate towards the moon; and all the planets and comets gravitate towards each other: it may be affirmed universally, that all bodies in the creation gravitate towards each other. This rule is the foundation of all natural philosophy.

PHILOSOPHY, the knowledge or study of nature or morality, founded on reason and experience. İterally and orignally, the word sigaified a love of wisdom. But by philosophy is now meant the knowledge of the nature and reusons of thing»; as distinguished from history, which is the bare knowledge of facts; and from mathematics, whict is the knowletige of the quantity and measures of things. These three kinds of knowledge ought to be joined as much as possible. History furnishes matter, principles, and practical examinations; and mathematics completes the evidence.

Philowphy being the knowledge of the reasons of
things, all arts must have their peculiar philosophy which constitutes their theory: not only law and physic, but the lowest and most abject arts are not without their reasons. It is to be observed that the bare intelligence and meinory of philosophical propositions, without any ability to demonstrate them, is not philosophy, but history only. However, where such propositions are determinate and true, they may be usefully applied in practice, even by those who are ignorant of therr demonstrations. Of this we see daily instances in the rules of arithmetic, practical germetry, and navigation; the reasons of which are often not understood by those who practise them with success. And this success in the application produces a conviction of mind, which is a kind of medium between philosophical or scientific knowledgr, and that which is historical only.

If we consider the difference there is between natural philosophers, and other men, with regard to their knuwledge of phenomena, we shall find it consists not in an exacter knowledge of the efficient cause that produces them, for that can be mo other than the will of the Deity; but only in a greater and more enlarged comprehension, by which analogies, harmonirs, and agreements are described in the works of nature, and the particular effects explained; that is, reduced to general rules, which rules, grounded on the analogy and uniformuess observed in the production of natural effects, are more agreeable, and sought after by the mind; for that they extend our prospect beyond what is present, and near to us, and enable us to make very probable conjectures, concerning things that may have happened at very great distances of time and place, as well as to predict things to colme; which sort of endeavour towards omniscience is much affected by the mind. Berkeley, Princip. of Ilum. Knowledge, sect. 104, 105.
From the first broachers of new opinions, and the first founders of schools, philosophy is become divided into several sects, some ancient, others modern; such are the Platonists, Peripatetics, Epicureans, Stoics, Pyrrhonians, and Academics ; also the Cartesians, Newtonians, \&c. See the particular articles for each. Philosophy may be divided into two branches, or it inay be considered under two circumstances, theoretical and practical.
Theoretical or Speculative Philoso rи y, is employed in mere contemplation. Such is physics, which is a bare contemplation of nature, and natural things.

Philosophy may be divided into three parts; intellectual, moral, and physical : the intellectual part comprises logic and metaphysics; the inoral part contains the laws of nature and nations, ethics and politics; and lastly the physical part comprebends the doctrine of bodies, animate or inanimate: thesc, with their various subdivisions, will comprise the whole of philosophy.

Practical Pittosophy, is that which lays down the rules of a virtuous and happy life; and excites us to the practice of them. Most authors divide it intu two kinds, answerable to the two sorts of human actions to be directed by it; viz, logic, which governs the operations of the understanding; and ethics, properly so called, which direct thnse of the will.

For the several particular kinds of philowophy, see the articles, Arabian, Aristotelian, Atomical, Cartesian, Corpuscular, Epicurcan, Experimental, Hermetical, 1eibtuitzian, Mechanical, Moral, Natural, Newtouian, Oriental, Platonic, Scholastic, Socratic, \& c_{1} \&c.

PHLOGISTON, in Cbemistry, a term that seems to be almost banished from our language. It was invented by Stahl, according to whom there is only one substance in nature capable of conbustion, this he called plilogiston. and all those bodies wnich can be antlamed contain more or less of it. Combustion by his theory is merely the separation of this sulstance. Those bodses which coutain some of it are aiacombustibles. All combustibles are composed of ans incounbustible body und phlongiston united; and during the combustion the phlogiston flus ott, and the incombustible body is left behond. 'Thus when sulphur ts burnt, the substance that remains is sulphuric acid, an incombustible bodes. Sulphur therefore is said to be composed of sulphuric acid and pblogiston. This theory has long since given place to that establushed by Lavotsier, and so much improved by Dr. Thomson of Edinburgh. See the article Comausiton.

PHCENIX, a constellation of the soutbern bemisphere ; being one of the new-added avterisms, unknown to the ancients, aud is not visible in our northern parts of the globe. There are 13 stars in this constellation.

PIIONICS, otherwise calied Acoustics, is the doctrine or science of sounds. Pbonics may be considered as an art analogous to optics; and may be divided, loke that, iuto direct, refracted, and reflected. These branches, the bishop of Ferns, in allusion to the parts of optics, denominates phonics, diaphonics, and cataphonics. See Acoustics.

PHOSPHORUS, a matter which shines, or even burns spontancously, and without the application of auy sensible fire. Phosphori are either natural ur artificial.

Natural Phosphort, are maters which become lue minous at certain tumes, without the assisance of any art or preparation. Such are the glow-worms, frequent in our colder countries; lantern-flies, and other shining insects, in hot countries; rotten-wood; the eyes, blood, scales, tiesh, sweat, feathers, \&c, of several animals; diamonds, when rubbed after a certain manner, or after having been exposed to the sun or light; sugar and sulpbur, when pounded in a dark place; sca-water, and some mineral waters, when briskly agitated; a cat's or honse's back, duly rubbed with the hand, \&ce, in the dark; nay Dr. Croon tells us, that on rubbing his own body briskly with a well-warmed shirt, he has frequently made both to shine; and Dr. Sloane adds, that he knew a gentleman of Bristol, and his son, both whose stockings would shine much after walking. All natural phosphori have this in common, that they do not slime always, and that they never give any heat. Of all the natural phosphori, that which bas occasioned the greatest speculation, is the

Barometrical or Metcural Phosphorus. M. Picard first observed, that the mercury of his barometer, when shaken in a dark place, emitted light. And many fanciful explanations have been given-of this phenomenon, which however is now found to be a mere electrical effect. Mr. Hawksbee has several experiments on this appearance. Passing air forcibly through the body of quicksilver, placed in an exhausted recciver, the parts were violently driven against the side of the receiver, and gave all around the appearance of firc; continuing thus till the receiver was half full aguin of air.

From other experiments be found, that though the appearalice of light was not producible by agitating the mercury in the same manner in the common air, yet that a very fine medium, uearly approaching to a vacuum, was
not at all necessary. And lastly, from other experiments be found that mercury inclosed in water, which communicated with the open air, by a violent shaking of the vessel in which it was inclosed, emitted particles ot light in great plenty, like little stars. By including the vessel of mercury, \&c, in a receiver, and exlausung the air, the phenonenon was changed; and on shaking the vessel, instead of sparks of light, the whole mass appeared one continued circle of light.

Further, if mercury be inclosed in a glass tube, close stopped, that tube is found, on being rubbed, to give nuech more light, than when it had no nercury in it. Whets this tube has been rubbed, after raising successively its extremities, that the mercury might flow from one end to the other, a light is seen creeping in a serpantine manner all along the tube, the mercury being all luminous. Ily making the mercury run along the tube atterwards without rubbing it, it emitted some light, though much less than before; this proves that she thiction of the mercury against the glass, in running along, doss in sume measure electrify the glass, as the rubbing it with the hand does, only in a much less degree. This is more plainly proved by laying some very light down urar the tube, for this will be attracted by the electricity raised by the roming of the mercury, and will rise to that part of the glass along which the mercury runs; from which it is evident, that what has been long known in the world under the name of the phosphorus of the barometer, is not a phosphorus, but merely a light raised by electricity, the mercury electrilying the tube. Philiss T'rans. No. 484.

Artificial Puosphons, are such as owe their luminous quality to some art or preparation. Some of these are made by the maceration of plants alone, and without any fire; such as thread, linen cloth, but above all paper: the luninous appearance of this last, which it is now known is an electrical phenomenon, is greatly incicased by heat. Almost all bodies, by a proper treatinent, bave that power of shimug in the dark, which at tirst was supposed to be the property of one, and afterwardy only of a few. Sce Philos. 'Trans, No. 478, in vol. 44, pa. 83.

The discovery of phosphorus was made in 1677 by one Brandt, a citizen of Hamburgb, in his researches for the philosopher's stone, and the preparation was long kept a lucrative secret in the hands of a few persons; but as it was generally known to have been prepared from human urine, and as the methed then employed, though tedious and disgusting, was extremely simple, it was detected by several chemists, but first by Kunckel and Mr. Boyle, and the real nature of phosphorus has been gradually explained by a vast number of ingenious and elaborate rescarches. Kunckel having first discovered the method of proparing this substance, it is generally culled Kunckel's phosphorus-

The carlicet method of preparing phosphorus was in the following munner. A large quantity of human urine was collected, und after ronaining for a time to become putrid, it was evaporated to dryness in any suitable vessel. The residue was then mived with charcoal in powder, and heated gradually to low redness in un iron pot, till the mass began to send forth blue luminous vapours. It was then remasived into a coated earthen retort with a receiver, and heat applied gradually till it reached the utmost intensity; during which the phospherus distilled over, and partly concreked in the neck of the retort, and pertly fell in drops into the receiver. This, which was at first black and foul, was purified by melting, and was
formed into sticks, which were long sold at a very bigh price, as a great philosophical curiosity.

This disgusting process is now completely laid aside, and phosphorus is obtained in a much more certain manner, from the white earih left after the calcination of bones; but for the process of which operation we must refer the reader to Murray's and Parkinson's Chemistries, and to the article Phosphorus in Aikin's Cliemical Dictionary.

Many curious and amusing experiments are made with phosphorus; as by writing with it, whell the letters will appear like flame in the dark, though in the light nothing appears but a dim smoke; also a little bit of it rubbed between two papers, presently takes fire, and burns vehemently; \&c. By washing the face, or hands, \&c, with liquid phosphorus, they will shine very considerably in the dark, and the lustre will becommunicated to adjacent objects, yet, without lurting the skin; and on biinging in the candle, the shining disapprars, and no change is perceivable.

Phosphorus, in Astronomy; is the morning star, or the planet Veaus, when she rise's before the sun. The Latins call it Lucifer, the French Etoile de berger, and the Greeks Phosphorus.

PHOSPHURETS, in Chemistry, are substances formed by an union with phosphorus: thus, we have the phosphutct of carbon, which is a compound of carbon with phosphorus; we have likewise the phosphuret of lime, hydrogen, \&c.

PHOSPHURETTE.D Hydrogen, phosphorus dissolved in hydrogen gas; which may be done by introducing phosphorus into a glass jar of hydrogen gus standing over mercury, and then melting it by means of a burning glass; the gas dissolves a large proportion of it. The compound has a very fetid odour, something like that from putrid fish. When it comes into contact with common air, it burns with great rapidity, and if mixed with that air it detonates violently. Oxygen gas produces a still more rapid and brilliant combustion than common air. When bubbles of it are made to pass up through water, they explode in succession as they reach the surface of the liquid; a beautiful column of white smoke is formed. This gas is the most cornbustible substance known. Its combustion is the combination of its phosphorus and hydrogen with the oxygen of the atmosphere, and the products are phosphoric acid and water. These substances, mixed or combined, constitute the white snow .
PHYSICAL. Something belonging to nature, or existing in it. Thus, we say a physical point, in opposition to a mathematical one, which last ouly exists in the imagination. Or a physical subsiance or bodj; in opposition to spirit,or metaphyrical substance, \& C.
Puysical, or Sensi/le Horizom. See Horizon.
Physico- Mathematics, or Mixed Mathenratics, inclordes thost brancless of physics which, uniting obsertation and experinient to mathematical calculation, explain mathematicully the phenomena of nature.

PHYSICS, called also, thysiology. and Natural Phitosophy, is the doctrine of natural bodies, their phenomena, causes, and effects, with their vatious affiections, mos tions, operations, AC. So that the immediate and proper objects of plis,ics, are body, space, and motion. The ongin of plysics is ref reded, by the Gresks, to the Barbarians, va, the hrachmans, the magh, and the Hebrew

Vol. 11 .
and Egyptian priests. From these it passed to the Greek sages or sophi, particularly to Thales, who it is said first professed the study of nature in Grecce. Hence it descended into the schools of the Pythagoreans, the Platonists, and the Peripatetics; whence it passed into Italy, and thence through the rest of Europe: though the druids, bards, \&c, had a kind of system of physics of their own.-Physics may be divided, with regard to the manner in which it has been treated, into the following kinds.

Symbolical Pursics, or such as was couched under symbols : such was that of the old Egyptians, Pythagoreans, and Platonists; who delisered the properties of natural bonlies under arihmetical and geomerrical characters, and hicruglyphics.

Peripatetical Pinistes, or that of the Aristotelians, who explainerl the nature of things by mutter, form, and privation, elementary and occult qualities, sympathies, untipathies, attractions, \&c.

Eirperimental Pn ysics, which inquires into the reasonn and natures of things from experiments: such as those in chemistry, hydrostatics, preumatics, optics, \&c.

Mechunical or Corpuscular Puysics, which explains the apptarances of nature from the mather, motion, structure, and figure of bodies and their parts; all according to the seatled laws of nature and mechanics. See each of these articles under its proper head.

PIASTER, a Spanish money, more usunlly called Piece of Eight, about the value of 4 s .6 d .

PlaZZA, popularly called Piache, an lialian name for a portico, or covered walk, supported by arches.

PIAZZI, a small new primary planel, discovered Jan. 1, 1800, by the astronomer Piazzi of Palerino. It is also called Czres; which see.

PICARD (Jotts,) anable mathernatician of Fragce, and one of the most learned astronomers of the 17 th century, was born at Fleche, and became priest and prior of Rille in Anjou. Coming afterwards to Paris, his talents for mathematics and astronomy soon made him known and respected. In 1666 he was appointed astronomer in the Acaderny of Sciences. And five years after, be was sent, by order of the king, to the castle of Uraniburg, built by Tycho Brahé in Denmark, to make estronomical ubservations there, and from thence be brought the original manuscripts, written by Tycho Brake; which are the more valuable, as they difier in many places from the printed copies, and contain a bouk more than has yet appeared. 'I'hese discoveries were followed by many otbers, particularly in astronomy. He was one of the first, who applied the wiscope to astronmical quadrants: he first executed the wink called, La Cumorssance eles Tcmps, which the calculated from 1679 to 1683 inchisincly: he first observed the light in the vacuum of the barometer, or the mercurial phosphorus: he nlso first of any went through several parts of France, to measure pe ilegrees of the French morodian, and firt gave a clatt of the country, which the Cassinis nfierwards carricd to a great dergrec of perfection. He died in 16s2 or 1653, leaving a bame dear to his triends, and respectable to his cuntemporaries and to postenly. His works are,

1. A treatise on leselling.
2. Practical Dalling by calculation.
3. Fragments of Dioptices.
4. Experiments on Ruming \%ater.
5. Oi Mchanrements.
6. Mensuration of Flunds a ad Solids.
7. Abridgment of the Measure of the Farth.
8. Journcy to Uranibuig, or Astronomical Ubservations made in Denmark.
9. Astronomical Observations made in France.
10. La Counvissarce des T'mps, from 1679 to 1683.

All these, and some other of lins works, which are much estuemed, are given in the 6th and 7th volumes of the Memoirs of the Academy of Sciences.

PICKET', Picquel, or Piquet, in Fortification \&ec, a stake sharp at one end, and usually shod with iron, used in laying out ground, to mark its several bounds and angles. There are also larger pichets, driven into the earth, to hold together fascines or faggots, in worhs that are thrown up in haste. As also verious kinds of sunaller pickets for divers other uses.

HIECES, in Artillery, include all kinds of great guns and mortan, ; meaming pieces of ordnance, or of artillery.

1HEDOUCHE, in Architecture, a little stand, or pedestal, rither oblong or square, enriched with mouldings ; serving to support a bust, or other little figure; and is more usually called a bracket ןredestal.

PIEDILOIT, in Architecture, a kind of square pillar, or pier, partly hid within a wall. Differing from the pilaster by heving no regular base nor capital.

Piedroit is alwo used for a part of the solid wall anbexed to a door or window ; comprehending the door-prost, chambranle, tableau, leaf, \&c.

PIER, in Building, denotes a mass of stome, \&c, opposed by way of fortress, against the force of the sea, or a great nver, for the security of ships lying in any harbour or haven. Such are the piers at Dover, or Ramsgate, or Yarmouth, \&.c.

Pieks are also used in Architecture for a kind of pilasters, or buttresses, raised for support, strength, and sumetimes for ornament.

Circular Piers, are called Massive Columns, and are either with or without caps. These are often scen in Saracenic architecture.

Piers, of a Bridge, are the walls built to support the arches, and from which they spring as bases, to stand upon. Piers should be built of large blocks of stone, solid throughout, and cramped together with iron, which will make the whole as one solid stone. Their extremitics, or ends, from the bottom, or base, up to highwater mark, ought to project sharp out with a saliunt angle, to divide the stream. Or perhaps the bottom part of the pier should be built flat or square up to abont half the height of low-water mark, to encourage a lodgment against it for the sand and mud, to cover the foundation ; lest, being left bare, the water should in time undermine and ruin it. The best form of the projection for dividing the stream, is the triangle; and the longer it is, or the more acute the saliant angle, tbe better it will divide it, and the less will the force of the water be against the pier; but it may be sufficient to make that angle a right one, as it will render the masonry stronger, and in that case the perpendicular projection will be equal to half the breadth or thickness of the pier. In rivers where large heavy craft navigate, and pass the arches, it may perhaps be better to make the ends semicircular; for though this figure does not divide the water so well as the triangle, it will better turn off, and bear the shock of the craft.

The thickness of the piers ought to be such as will make them of weight, or strength, sufficient to support their in-
terjacent arch, independent of the assistance of any other arches. And then, if the middle of the pier be run up to its full beight, the centring may be struck, to be used in aunther arch, before the hanches or spandrels are filled up. They ought also to be made with a broad bottom on the foundation, and gradually diminished in thickness by offects up to low-water mark.

To find the thickness YG of the Piers, necessarv to support an arch $A B M$, this is a general rule. Let K be the centre of gravity of the half arch ADCB, $A=$ its area; Kı perpendicular to a ss the span of the arch, os its height, and 8 B its thickness at the crown: then is the thickness of the pier $5 G=\sqrt{ }\left(\frac{G A \times A L}{E V \times A I} \times \Omega_{A}\right)$.
The inrestigations of this rule, and other methods for this purpose, may be seen in my 'Tracts, vol. 1, pa. 72, \&c.

PIKE, an offensive weapon, consisting of a shaft of wood, 12 or 14 feet long, headed with a flat-pointed stecl, called the spear. Pliny says the Lacedemonians were the inventors of the pike. The Macedonian phalanx was evidently a battalion of pikemen. The pike was long used by the infantry, to enable them to sustain the attack of the cavalry; but it is now taken from thern, and the bayonet, fixed to the muzzle of the firelock, is given instend of it, It is still used by some officers of intintry, under the name of spontoon.

Half PIKE is the weapon carried by an officer of foot; being only 8 or 9 fect long.

PILASTER, in Architecture, n syuare columis, sometimes insulated, but more frequently let within a wall, and only projecting by a 4th or 5th part of its thickness. The pilaster is difierent in the dutferent orders; borrowing the name of each order, and having the same proportions, and the same capitaly, members, and ornaments, with the columns themselves.
Demi Pilaster, called also Membretio, is a pilaster that supports an arch; and it generally stands against a pier or column.

PILES, in Building, are large stakes, or beams, sharpened at the end, and shad with iron, to be driven into the ground, for a foundation to build upon in narshy places. Amsterdam, and sone other citics, are wholly buile upon piles. The stoppage of Dagenham breach was effiected by dove-tail piles, thet is by piles mortised intu one another by a dovetail joint. Piles are drisen down by blows of a large iron weight, ram, or hainmer, dropped continually upon them from a beight, till the pule is sumh deep enough into the ground.

Notwithstanding the momentum, or force of a body in motion, is as the weight multiplied by the velocity, or
simply as its velocity, the weight being given, or constant ; yet the etfect of the blow will be nearly as the square of that velocity, the effect being the quantity the pile ainks in the groond by the stroke. For the force of the bluw, which is transferred to the pile, being alestroyed, in some certain definite tome, by the friction of the part which is within the earth, and which is nearly a constant quantity ; and the spaces, in cunstant forces, being as the squares of the velocities; therefore the effects, which are those spaces sunk, are nearly as the square of the velocities; or, which is the same thing, nearly as the beights fallen by the ram or hammer, to the head of the pile. See, upon tbis subject, Leopold Belidor, also Desaguliers's Exper. Philas. vol. 1, pa. 336, and vol. 2, pa. 417 : and Pbilos. 'Trans. 1779 , pa. 120: ulso my Tracts, vol. 9, prob. 2, pa. 317.

There have been various contrivances for raising and drupping the hemmer, for driving down the piles; sume simple und moved by strength of men, and some complex and by machinery; but the completest pile-driver is estecrued that which was employed in driving the piles in the foundation of Westminster bridge. This machine was the invention of Mr. Vauluue, and the deacription of it is as follaws.

Description of Vauloue's P1L e-Drizer. See fig. 2, pl. 25. A is the great upright shaft or axle, carrying the great wheel a and drum c, and turned by horses attaclied to the bars $s, 3$. The wheel s turns the trundle x, having a fly o at the top, to regulate the motion, and to act against the horses, and keep them from falling when the heavy ram φ is disengaged to drive the pile P down into the mud $\& \mathrm{cc}$, in the bottom of the river. The drum c is loose upon the shaft A, but is locked to the wheel s by the bolt r. On this drum the great rope 11 it is wound; one end of it being fixed to the drum, and the other to the follower G, passing over the pulleys I and k. In the fullower 0 are contained the tongs p, which take hold of the ram Q, by the staple R for drawing it up. D is a spiral or fusee fixed to the drum, on which winds the small rope T, which goes over the pulley v, under the pulley v, and is fastened to the top of the frame at 7. T'o the pulley-block v is hung the counterpoise w , which hinders the follower from accelerating as it goes down to take hold of the ram: for, as the follower tends to acquire velocity in its descent, the line T winds downwards upon the fusee, on a larger and larger radius, by which neans the counterpuise w acts stronger and stronger against it; and so allows it to come down with only a moderate and uniform velocity. The bolt \mathbf{Y} locks the drum to the great wheel, being pushed upward by the small lever 2 , which goes through a mortise in the shaft A, turns upon a pin in the bar 3 fixed into the great wheel s , and has a weight 4 , which always tends to push up the bolt \mathbf{y} through the wheel into the drum. L is the great lever turning on the axis m, and resting upon the forcing bar 5,5 , which goes down through a hollow in the shaft A, and bears upon the little lever 2 ,

By the horses going round, the great rope m is wound about the drum c, and the ram q is drawn up by the tongs r in the follower G, till they come between the inclined planes E; which, by shutting the tongs at the top, open them beiow, and so discharge the ram, which falls down between the guide posts 66 upon the pile p, aud drives it by a few strokes as far into the ground as it can go, or as is desired; after which, the top part is sawed off close to the mud, by an engine for that purpose. Immediately after the ram is discharged, the piece 6 upon the follower
a takes holil of the ropes aa, which raine the end of the lever L, and cause its end s to destend and priss down the forcing bar 5 upon the litule lever 2, which, by drawning down the bult Y , unlochs the drum c from the great wheel B; and then the follower, being at liberty, comes down by its own weight to the rara; and the lower ends of the tongs slip over the stople R, and the weught of their beads causes them to fall outward, and shut uponit. Then the weight 4 pushes up the bolt v into the drum, which locks it to the great wheel, and so the ram is drawn up as before.

As the follower comes down, it causes the drum to turn back ward, and unwints the rope from it , while the horses, the great wheel, trundle, and fly, go on with an uninterrupted notion: and as the drum is turung backwarel, the counterpoise w is drawn up, und its rope T wound upan the spiral fuxe D. 'There are several holes in the under side of the drum, and the bolt x ulways takey the first one that it finds when the drun stops by the falling of the follower upon the ram; till which stoppage, the bult has not time to slip into any of the holes.

The peculiar aslvantages of this engine are, that the weight, called the ram, or hammer, may be raised with the least force ; that, when it is raised to a proper height, it readily disengages itself and falls with the utmust freedom ; that the forreps or tongs are lowered down speedily, and instantly of themselver again lay holsl of the rain, and lift it up; on which acconnt this machine will drive the greatest number of piles in the least time, and with the fowest labourens.

This engine was placed upon a barge' on the water, and so was easily conveyed to any pluce desired. Theram was a ton weight; and the guides b, b, by which it was let fall, were 30 feet ligh.

A new machine for driving piles has been invented lately by Mr. S. Bunce of Kirby-street, Intton-street, London. This, it is said, will drive a greater number of piles in a given time than any other ; and that it can be constructed more simply to work by horses than Vaulaue's cagine above described.

Fig. 3 and 4, plate 25, represent a side and front section of the machine. The chicf parts are, A, fig. 3 , which are two endless ropes or chains, connected by cross pieces of iron B (fig. t) corresponding with two cross grooves cut diametrically opposite in the wheel c (fig.3) into which they are received; and by which means the rope or chain A is carried round. FIIK is a sidc-view of a strong worden frame moveable on theaxis H . a is a wheel, over which the chain passes and turns within at the top of the frame. It moves occasionally from F to o upot the centre I, and is kept in the position F by the weight ifixed to the eud κ. In fig. 5, r . is the irun ram, which is connected with the cross pieces by the hook $m . ~ w$ is a cylindrical piece of wood suspended at the hook at 0 , which by sliding frecly upon the bar that connects the hook to the ram, always brings the hook upright upon the chain when at the bottom of the machine, in the position of ap. See fig. 3 .

When the man at s turns the usual crane-work, the ram being connected to the chain, and passing betwern the guides, it is drawn up in a perpenticular direction; and when it is nearthe top of the machine, the projecting bar Q of the hook strikes agninst a cross piece of wood at R (fig. 3) ; and consequently discharges the ram, while the weight 1 of the moveable frame instantly draws the upper wheel into the position shown at y, and kecps the chain free of the ram in its descent. The hook, while descend-

2 B 2
ing, is prevented from catching the chain by the wooden piece N : for that piece being specifically lighter than the irion weight below, and moving with a less degree of velocity, cannot come into contact with the iron, till it is at the bottom, and the ram stops. It then falls, and again connects the hook with the chaig, which draws up the ram, as liefore.

Mr. Bunce has made a model of this machine, which performs perfectly well : and he obscrves, that, as the motion of the wheel c is uninterrupted, there appears to be the least possible time lost in the operation.

PiLe is also used among Architects, for a mass or body of building.

Pile, in Artillery, denotes a collection or heap of shot or shells, piled up by horizontal courses into cither a pyramidal or else 3 wedge-like form ; the base being an equilateral triangle, a square, or a rectangle. In the iriangle and square, the pile terminates in a single ball or point, and forms a pyramid, as in plate 24, fig. 4 and 5 , but with the rectangular basc, it finishes at top in a row of balls, or an edge, forming a wedge, as in fig. 6 .

In the triangular and square piles, the number of horigontal rows, or courses, or the number counted on one of the angles from the bottom to the top, is always equal to the number counsed on one side, in the bottom row. And in rectangular piles, the number of rows, or courses, is equal to the number of balls in the breadth of the bottom row, or shorter side of the base: also, in this casc, the number in the top row, or edgé, is one more than the difference between the length and breadth of the base. All which is evident from the inspection of the figures, as above.

The courses in these piles are figurate numbers.
In a triangular pile, each borizontal course is a triangular number, produced by taking the successive sums of the ordinate numbers, viz,

$$
\begin{array}{ll}
1 & =1 \\
1+2 & =3 \\
1+2+3 & =6 \\
1+2+3+4 & =10, \& c .
\end{array}
$$

And the number of shot in the tiangular pile, is the sum of all these triangular numbers, taken as far, or to as many terms, as the number in one side of the base. Therefore, to find this sum, or the number of all the shon int the pile, multiply continually together, the number in one side of the base row, and that number increased by 1 , and the same number increased by 2 ; then $\frac{1}{6}$ of the last product will be the answer, or number of all the shot in the pile. That is, $\frac{1}{6} n \cdot n+1 \cdot n+2$ is the sum; where n is the number in the bottom ruw.

Again, in square piles, each horizontal course is a square number, produced by taking the square of the number in its side, or the successive sums of the odd numbers, thus,

$$
\begin{aligned}
1 & =1 \\
1+3 & =4 \\
1+3+5 & =9 \\
1+3+5+7 & =16, \& c c
\end{aligned}
$$

And the number of shot in the square pile is the sum of all these square numbers, continued so far, or to as many terms, as the number inone side of the base. Therefore, to find this sum, multiply continually together, the number in one side of the bottom course, and that number increased by 1; and double the same number increased by 1 ; then $\frac{5}{6}$ of the last product will be the sum or answer. That is, $\frac{1}{6} n \cdot n+1.2 n+1$ is the sum,

In a rectangular pile, each horizontal course is a rect-
angh", whose two sides bave always the same difference as thuse of the base course, and the brenith of the top row, or edge, being only $1:$ because cach course in ascending has its length and breadth always less by 1 than the course next below it. And these rectangular courses are found by multiplying successively the scrims or breadths 1, 2,3, 4, \&e, by the same turms added to the constant difference of the two sides d; thus,

$$
\begin{aligned}
& 1 \cdot 1+d=1+d \\
& 2 \cdot 2+d=4+2 d \\
& 3 \cdot 3+d=9+3 d \\
& +\cdot 4+d=16+4 d, \& c
\end{aligned}
$$

And, the number of shot in the rectangular pile is the sum of all these rectangles, which evidently consist of the sum of the squares, together with the sum of an arithme tical progression, connnued till the number of ternus be the ditference between the length and breadth of the base, and 1 less than she edge or top row. Therefore, to find this sum, multiply continually together, the number in the breadth of the base ruw, the same number increased by 1 , and double the same number increased by 1 , and also increased by triple the difference between the longth and breadth of the base; then $\frac{7}{6}$ of the last product will be the unswer. That is, $\frac{1}{6} b \cdot b+1.2 b+3 d+1$ is the sum: where b is the breadth of the base, and d the difference between the lengtlo and breadth of the bottom course.

As to incomplete pijes, which are only frustums, as wanting a similar small pile at the top; it is evident that the number in them will be found, by first computing the number in the whole pile, as if it were complete, and also the number in the small pile wanting at top, both by their proper rule; then subtracting the one number from the other.

In piling of shot, when room is an object, it may be observed that the square pile is the least eligible of any, as it takes up more room, it proportion to the number of shot contained in it, than either of the other two forms; and thut the rectangular pile is the most eligible, as taking up the least room in proportion to the number it contains.

PILLAR, a kind of irregular column, round, and in sulated, or detached from the wall. Pillars are not restrictell to any rules, their parts and proportions being arbitrary; such for example as those that support Saracenic vaults, and other buildings, \&c.

PiNGRE' (Alexander Guy), a French astronomer, was born at Paris in 1711; and died in 1796, at 85 years of age. He applied with great assiduity to scientific pursuits, and became librarian of St. Geneviève at Paris. In 1760 he was sent to the South sca, to observe the approaching transit of Venus over the sun's disk. He was afterwards employed in proving the going of the timepieces of M. Leroy. He was first admitted a member of the Academy of Sciences; and afterwards of the National Institute. M. Pingré's works chiefly are ; 1. State of the Heavens from 1754 to 1757. 2. Memoirs of Discoveries made in the South sea, 4to. 3. Historical and Theoretical Treatise on Comets, 2 vols. 4 to. 4. Translation of Manilius's Astronomics, 8 vo . 5 History of Astronomy in the 37th cemury.

PINION, in Mechanics, is an arbor, or spindle, in the body of which are several notches, which are catched by the teeth of a wheel that serves to turn it round. Or a pinion is any lesser wheel that plays in the teeth of a larger. In a watch, dec, the nutches of a pinion are called

Jeaves, and not teeth, as in other wheels; and their number is commonly $4,5,6,3, \& \mathrm{c}$.

Pisios of Report, is that pinion, in a watch, commonly fised on the arbor of a great wheel; and which used to have but four leaves in old watclose: it drives the dialwheel, and carries about the hand. The number of turns to be laid upon the pinion of report, is found by this proportion: as the beats in one turn of the great wheel, are to the beats in an hour, so are the hours on the face of the elock (viz 12 or 24), to the quotient of the hourwheel or dialowheel divided by the pinion of report, that is, by the number of turns which the pinion of report makes in one turn of the dial-wheel: which in numbers is 26928:20196::12:9.-Or thus; as the hours of the watch's gonig, are to the numbers of the turns of the fuser, so are the bours of the face, to the quatient of the pinion of report. So, if the bours be 12, then as $16: 12:: 12: 9$; but if 24 , then as $16: 12:: 94: 18$.

This rule may serve to lay the pimion of report on any other wheel, thus: as the beats in one turn of any whed, are to the beats in an hour, so are the hours of the face, or dial-plate, of the watch, to the quotient of the dialwheel divided by the pinion of report, fixed on the spindle of the aforesaid wheel.

PINT, a measure of capacity, being the 8 th part of a gallon, both in ale and wine measure, de. The wine pint contains 29 cubic inches; and the ale pint $35 \frac{7}{4}$ cutbic inches. The wine pint of pure spring water, weighs noar 17 ounces avoirdupois, and the ale pint a little above 20 ounces.-The Paris pint contains about 2 pounds of common water. And the Scotch pint contains $108 \frac{2}{8}$ cubic inches, and therefore contains 3 English pints.

PISCES, the 12 th sign or constellation in the zodiac ; in the form of two fishes tied together by the tails. The Greeks, who have some fable to account for the origin of every constellation, tell us, that when Venus and Cupid were oue time on the bauks of the Euphrates, there appeared before then that terrible giant Typhon, who was so long a terror to all the gods. These deities immediately, they say, threw themselves into the water, and were there changed into these two fishes, the Pisces, by which they escaped the danger. But the Eqyptians used the signs of the zodiac as part of their hieroglyphic language, and by the 12 they conveyed an idea of the proper employment during the 12 months of the year. The Ram and the Bull had, at that time, taken to the increase of their flock, the young of those animals being then growing up; the maid Virgo, a reaper in the field, spoke the approach of harvest; Sagittary declared autumn the time for hunting; and the Pisces, or fisbes tied together, in token of their being taken, reminded ineu that the approach of spring was the time for fishing.

The ancients, as they gave one of the 12 months of the year to the patronage of each of the 12 superior deitics, so they also dedicated to, or put under the tutelage of each, one of the 12 signs of the zodiac. In this division, the fishes naturally fell to the share of Neptune; and bence ariser that rule of the astrologers, which throws every thing that regards the fate of fleets and merchandise, under the more immediate patronage and protection of this consteliation.-The stars in the sign Pisces are, in Ptolemy's catalogue 38, in Tycho's 36, in Hevelius's 39, and in the Britannic catalogue 113.

PISCIS Australis, the Southern Fish, is a constellation of the southern hemisphere, being one of the uld 48 constellations mentioned by the ancients. The Gireeks buve
here again the fable of Venus and her son throwing themselves into the sea, to escape from the terrible "Typhon. This fable is probably burrowed from the heroglyphics of the Epyptians. With them, a finh represcuted the sea, its element ; and Typhon wis probably a land flond, perhaps represented by the sign Atguarius, or water-pourcr, whose striam or river is ripresented as swallowed up by this fish, as the land thoorts and tivers are by the sea. And Venus was some queen, perbap's Scmiramis, otherwise called Hnmanah, who tork to the river or the sca with her snn, in a vessel, to avoid the thoud, \&c. The rmarkable star Fomahast, of the 1st magnitude, is just in the mouth of this tish. The stans of shis constellation are, in Ptolemy's catalogue is, and in Flamsteed's 24.

P'scis Volans, the Flying Fish, is a small constellation of the southern hemisphere, unknown to the ancieus, being added by the moderms. It is not visible in our latitude, and contains only 8 stars.
PISTOLE, a gold coin in Spain, Italy, Switzerland, \&ec, of the value of about 16 s .6 d .

PISTON, a part or nember in several machines, particularly pumps, air-pumps, syringes, \&c; called also the embolus, and popularly the sucker. The piston of a pump is a sturt cylinder of wood or metal, fitted exactly to the caviry of the barrel, or body; which, being worked up and down alternately, raises the water; and when ruised, presser it again, so ns to make it force up a value with which it is furnished, and so escape through the spout of the puinp. There are iwo sorts of pistons used in pumps ; the one with a valve, called a bucket; and the other with out a valre, called a forcer.

PITCH, in Musie, is the acuteness or graveness of any particular sound, or of the tuning of any instrument. \boldsymbol{A} sound less acute than some other sound with which it is compared, is said to be of a lower pitch than that other sound; and vice versa.

PITISCUS (Bartholomew), a German mathemati. cian, who died in 1613. He was anthor of two respectable mathematical works: 1. Tisgonometria first, publistied at Franktort, in 1599, a larget of. in 4 to, being a very eomplete work on that science, with very large tables of sines, tangents, und secants : it afterwards went through several editions, and was translated into Einglish by Handson, in 1614. See my Tracts, vol. 1, pa. 294.-2. Thesaurns Mathematicus, in folio, 1613 , being an edition of the large tables of Mheticus, with all the numerous errors corrected.

PITOT (Henky), a French mathematician, was born at Aramont in Languedoc, 1695, and dieal there in 1771 , in his 77th yrar. Pitot learned the mathematics without a master, and repaired to Paris in 1728, where he was admitted a member of the Academy of Sciences in 1784. Besides a vast number of his memoirs printed in the Academy's collection, he published in 1731 the Theory of the Working of Ships, in 1 vol. 4to; a work of considerable merit, which was translated into English, and procured the authot's admission into the Royal Suciely of London. In 1740 , the states-general of Languedoc appointed lan their chief engineer, with the office of inspector-general of the canal which joins the two seas. That province is indebted to him for several valuable monuments of his genius; and he conslucted to Montpellier a copious supply of water, fiom a distance of 9 miles, a work which is the admiration of all strangers.

PLACE., in Philosophy, that part of infinite space which any borly possesses. Aristotle and his followers divide place into External and Internal.

PLA

Internal Place, is that space or room which the body contains. And

Erternal Place, is that which includes or contains the body; which is by Aristotle called the first or concave and imnoveable suifnce of the ambiene berly.

Newton, betier, and more intelligibly, distinguishes place into absolute and relative.
Absofute and Primary Place, is that part of infinite and innuovenble space which a body possesses. And

Relatice, or Secondary Place, is the space it possesses considered with regard to other adjacent objects.

Dr. Clark adds anether kind of relative place, which he calls relatively cominon place; and defines it, that part of any moveable or measurable space which a body possesses; which place moves together with the body.

Plack, Mr. Locke observos, is sometimes likewise taken for that portion of infoite space possessed by the material world ; though this, he adds, were more properly called extension. The proper idea of place, according to hims is the relative position of any thing, with regard to its disstance from certain fixed prints; whence it is said a thing has or has not changed place, when its distance is or is not altered with respect to those bodies.

Place, in Optics, or Optical Place, is the point to which the eye refers an object.

Optic Place of a star, is a point in the surface of the mundane spliere in which a suectatorsces the centre of the star, Acc. - This is divided into True and Appareat.

True, or Real Optic Place, is that point of the surface of the sphere, where a spectator at the centre of the carth would see the star, \&c.

Apparent, or Visible Optic Place, is that point of the surface of the sphere, where a spectator at the surface of the earth sees the star, \&c.-The distance between these two optic places makes what is called the parallax.

Place of the Sun, of Mron, or Star, or Planel, in Astronomy, simply denotes the sign and degree of the zodiac whel the luminary is in; and is usually expressed either by its latitude and lougitude, or by its right ascension and declination.

Placz of Radiation, in Optics, is the interval or space in a medium, or transparent borly, through which any visible object radiates.

Prace, in Geometry, usually called Locus, is a line used in the solution of problems, being that in which the determination of every case of the problem lies. See Lucus, Plame, Simple, Solid, \&c.

Place, in War and Fortification, a general name for all kinds of fortresses, where a party may defend themselves.

Place of Arms, a strong part where the arms \&cc, are deposited, and where usually the soldiers assemble and are drawn up.

PLAFOND, or Platrond, in Architecture, the ceiling of a room.

Plain \&e. See Plane.
PLAN, a representation of something, drawn on a plane. Such as mapu, clarts, and ichnographics.

Plan, in Architecture, is particularly used for a draught of a building; such as it appears, or is intended to appear, on the ground ; showing the extent, division, and distribution of its area into apartments, rooms, passages, \&ce. It is also called the ground plot, platform, and ichnography of the building; and is the first device or sketch the arehitect makes.

Geometrical Plan, is that in which the solid and vacar:t parts ate represented in their natural proportion.

Raised P'AN, is that where the elevation, or upright, is shown upot the geonetrical plan, so as to hide the distri. bution.

P'crapective Pt.a x , is that which is conducted and exhioited by tegradations, or diminutions, according to the rules of perspective.

PLANE, or PIAIN, in Geometry, denotes a plane figure, or a surface lying evenly between its bounding lines: Euclid. Sonne define a plane, a surface, from every point of whose perimeter a right live may be drawn to every other point in the sarne, and always coinciding witb it-As the right line is the shortest extent from one point to awother, so is a plane the shortest extension between one lime and another.

Planes are much used in astronemy, conic sections, spherics, \&c, for imaginary surfaces, supposed to cut and pass through sulid bodics. When a plane cuts a cone parallel to one side, it makes a parabola; when it cuts the coneobliquely, an ellipee or hyperbola; and when parallel to its base, a circle. Every section of a sphere is a circle. The sphere is wholly' explained by planes, couceived to cut the celestial bodies, and to fill the areas or circumferences of the orbits: and in estimating their inclination, they are all referred to the plane of the earth's orbit, or plane of the ecliptic.

Pi.ane of a Dial, is the surface on which a dial is supposed to be described.

Plane, in Mechanics. A Horizontal Plane, is a plane that is level, or parallel to the horizon.

Inclined Plase, is one that makesan oblique angle with a horizontal plane. The doctrine of the mution of bodies on inclined planes, makes a very considerable article in mechanics, and bas been fully explained under the articles, Mecilanical Potects, and Ixchimed Plane.

Plane of Gravity, or Gravitution, is a plane supposed to pass through the centre of gravity of the body, and in the direction of its tendency; that is, perpendicular to the horizon.

Plane of Reflection, in Catoptries, is a plane which passes through the point of reflection; and is perpendicular to the plane of the glass, or reflecting body.

Planf. of Refraction, is a plane passing through the illcident and refracted ray.

Perspectire PLAKE, is planetransparentsurface, usually perpendicular to the horizon, and supposed to be placed between the spectator's eyo and the object be views; through which the optic rays, emitied from the several points of the object, are supposed to pass to the eye, and in their passage to leave marhs that represent them on the said plane.-Some call this the table, or picture, because the draught or perspective of the object is supposed to be upon it. Others call it the section, from its cutting the visual rays; and others again the glass, from its supposed transparency.

Geometrical Plane, in Perspective, is a plane paralled to the horizon, upon which the object is supposed to be placed that is to be drawn.

Horizontal Plase, in Perspective, is a plane pussing through the spectator's eye, parallel to the horizon.

Vertical Plane, in Perspective, is a plane passing through the spectator's eye, perpendicular to the geometrical plane, and usually at right angles to the perspective plane.

Objective Plame, in Perspective, is any plane situate in the horizontal plane, of which the representation in perspective is required.

Plane of the Horopter, in Optics, is a plane passing through the horopter AB, and perpendicular to a plane passing through the two optic axes Cn and cr. See the fig. to the article lororter.

Plane of the Projection, is the plane upon which the spliere is projected.

Plaisf Angle, is an angle contained under two right lines or surtaces.-It is so called in contradistinction to a wold angle, which is formed by three or more planes; and to a splierical angle, contained between two arcs of great circles on a sphere.

Pliane Triangle, is a triangle formed by three right lines; in opposition to a spherical and a mixt triangle.

P'lane Trigonometry is the doctrine of plane triangles, their measures, proportions, \&cc.

Pi.AN e. Gilass, or Mirror, il Optics, is a glass or mirror having a flat or even surface.

Plane Chart, in Navigation, is a sea-chart, having the meridians and parallels represented by parallel straight lines; and consequently having the degrees of longitude the same in every part. See Challt.

Plase Number, is that which may be produced hy the multiplication of two numbers, the one by the uther. Thus, 6 is a plane number, being produced by the inultiplication of the two numbers 2 und 3 ; also 1.5 is a plane number, being produced by the multiplication of the numbers 3 ind 5 . Sec Number.

Plane. Place, Locus Plants, or Lochs ad Planum, is is term used by the ancient geometricians, for a geometrical locus, when it was a right line or a circle, in opposition to a solid place, which was one of the conic sections. These plane loci are distinguished by the moderns into loci ad rectum, ind loci ad circulum. . See Loces.
Plane Problem, is such a one as cannot be resolved geometrically, but by the intersection either of a right line and a circle, or of the circumferences of two circles. Such as the following: viz, Given the hypothenuse, and the sum of the other two sides, of a right-angled triangle; to find the triangle. Or this: Of four given lines to furm a trapezium of a given area.

Plane Sailing. in Nivigation, is the art of worhing the several cases and varicties in a sbip's motion on a plane chart; or of navigating a ship upon principles deduced from the notion of the earth's being an extended plane. This principle, though notoriously false, yet places being ladd down accordingly, and a long voyage broken tnto many short ones, the voyage may be performed tolerably well by it, especially near the same meridian.

It plain sailing, it is supposed that these three, the rhumb line, the meridian, and parallel of latitude, will always form a tight-angled triangle; and so posited, as that the perpendicular side will represent part of the meridian, or nonih and wouth line, containing the difference of latitude ; the base of the triangle, the departure, or east and west line; and the hypothenuse the distance sailed. The angle at the vertex is the course; and the angle at the base, the complenent of the course; any two of which, besides the right angle, being given, the triangle may be protracted, and the ather three parts found.-For the ductrine of plane sailing, see SaIL1sis.

Phane Scaie, is a thin ruler, on which are gradunted the lines of chords, sines, tangents, scants, ledzucs,
rhumbs, \&ec; being of great use in most parts of the mathematics, but especially in navigation. See its deseription and use under Scale.

Plane Table, an instrument much used in land-surveying; by which the draught or plan is taken upon the spot, as the survey or measurement goes on, without any future protraction, or plotiug. This instrument consists of a plane rectangular toard, of any convenient size, the centre of which, when used, is fixed by means of screws to a three-legged stand, having a ball and socket, or universal joint, at the top, by means of whicb, when the legs are fixed on the ground, the table is inchned in any direction. To the table belongs,

1. A frame of wool, made to fit round its edges, for the purpose of fixing a sheet of puper upon the table. The ofie side of this fratne is usually divided into equal parts, by which to draw lines across the table, parallel or perpendicular to the sides; and the other side of the frame is divided into 360 degrees, from a centre which is in the middle of the table; by means of which the table is t. be used as a theodolite, \&c.
2. A magnetic needle and compass screned into the side of the table, to point out directions and be a check upon the sights.
3. An index, which is a brass two foot scale, either with a small telescope, or open sights erected perpendicularly upon the ends. These sights and the fiducial edge of the index are parallel, or in the satue plane.

General Use of the Plane Table.
To use this instrument properly, whe a shect of writing or drawing paper, and wet it to make it expand; then spread it flat upon the table, pressing down the frame upon the edges, to stretch it, and keep it fixed there; and when the praper is become dry, it will, by shriuhing again, stretch itself smooth and flat from any cramps or unevenness. Upon this paper is to be drawn the plan or form of the thing measured.

The gencral use of this instrument, in land-surveying, is to begin by setting up the table at any part of the ground you think the most proper, and make a point upon a convenient part of the paper or table, to represent that point of the ground; then fix in that point of the paper one leg of the compasses, or a fine stecl pin, and apply to it the fiducial edge of the index, moving it round the table, close by the pin, till through the sights you perceive some point or temarkable object, as the corner of a field, or a picket set up, \&c; and from the station point draw a dry or obscure line along the fiducial edge of the index. Then turn the index to another object, and draw a line on the paper towards it. Do the same by another; and so on till as many objects are set as may be thought necessary. Then measure from your station towards as many of the objects as may be necessary, and no more, taking the requisite offsets to comers or crooks in the hedges, \&xc ; laying the measured distances, from a proper scale, down upon the respective lines on the paper. Then move the table to any of the proper places measured to, for a second station, fixing it there in the original position, turning it about its centre for that purpose, both till the magnetic nevdle point to the same degree of the compass as at first, and also by laying the fiducial edge of the index along the line between the two stations, and turaing the table sill through the index the former station can be seen; and then fix the table there: from this new station repeat the same operations as at the former; setting several objects, that
is, drawing lines towards them, on the paper, by the edge of the index, measuring and laying off the distances. And thus proceed from station to station; messuring only such lines us are necessary, and determining as many as you can hy intersecting lines of direction drawn from differeat stations.

Of Shifting the Paper on the Plank Table. When one paper is full of the lines $\& \mathrm{c}$ mensurvd, and the survey is not yet completed; draw a line in eny mannes through the farthest point of the last slation line to which the work can be conveniently laid down; then take the sheet off the table, and fix another fair sheet io its place, drawing a line upon it, in a part of it the most convenient for the rest of the work, to represent the line drawn at the end of the work on the formor paper. Then fold or cut the old shect by the line drawn upon it; apply it so to the line on the new shert, and, as they lie tugether in that position, continue or produce the last station line of the old sheet upon the new one; and place upon it the remainder of the measurement of that luse, beginning at where the work left off on the old sheet. And so on, from one sheet to nomber, till the whole work is cumpleted.

But it is to be noted, that if the said joining lines, upon the pld and new shect, have not the same inclination to the side of the table; the nexdle will not respect or peint to the original degree of the compass, when the table is rectified. But if the needle be required to respect still the same degree of the compass, the easiest way then of drawing the lines in the same position, is to draw them both parallel to the same sides of the table, by means of the equal purallel divisions marked on the other two sides of the trame.

When the work of survesing is done, and you would fasten all the sheets togethrr into one prece, or rongh plan, the aforesaid lines are to be accurately joined together, in the anme inanuer as when the lines were transferred from the old sheets to the new ones.

P'LANET, or Wandering Star, in Astronomy, is a celestial body revolving about the sun, or some other planet, as a centre, or focus, in nearly a circular orbit, or in an ellipse of suall excentricity.

The planets are usually distinguished into primary and secondary.

Primaly Planets, are thoge that revolve about the sun as a centre, or focus; such as Mercury, Venus, the carth, \&c.

Se:ondary Planets, are such as revolve about a primary planet us a centre, as the primary ones do about the sun; being mose commonly called satellites; nuch is onr moon, and the satellites of Jupiter, Saturn, and Uranus. SceSatellite.

The primary planets are again distinguisloed iuto Su perior and interior.

The Superior I'lancts are those which are above the earth, or fartier from the sun; as Mars, Vesta, Juno, icc.

The Inferior Planets are those that are below the carth, as Mercury and Venus.

Till very lately the number of the primary planess was csteemod ouly, six, which it was thought conssituted the whole of our planetary system: these were Mercury, Venus, larth, Mars, Jupiter, and Saturn; all of which it appears have been kacosn from the bighest amtiquity.

But the great perfection to which telescopen bave been brought, b:as, withita few years, nearly doubleal thenumber of the phanets. Dr. Werschel discoresed Uranus at Bath,

March 13, 1781. This planet was first named, in honour of his present majesty, the Georgiun Sidus, while some astronomers called it Herschel, from its discoverer; but both these names have now given way to that of Uranus.

An eighth planet, Ceres, was discovered by l'iazzi, at Palurmo in Italy, January 1st, 1 Sol.

A ninth, Pallas, was diseovered by Dr. Olbers, at Bremen, on March 28th, 1802.

A tenth, Juno, was first observed by Mr. Mardiug, at Lilienthal near Bremen, on the 1st of September 1804.

And finally, another new planet, Vesta, making the number of planets in our system eleven, was discovered by Dr. Olbers, at Bicmen, March 29th, 1×07; being the sccond that this celebrated astronomer bad discovered in 5 years. Four out of the five new planets have their orbits between those of Mars and Jupiter; these are Vesta, Juno, Pallas, and Ceres; but the other, Uranns, is the higbest in our system. The order of the planets is therefore as follows; Mcrcury, Venus, Earth, Mars, Vesta, Juno, Pallas, Ceres, Jupiter, Siuturn, and Uranus.

The planets were represented by the same characters as the chemists use to represent their metals by, on account of some supposed analogy between those celestial and the subtertaneous bodies. Thus,
Mercury, the messenger of the Gods, represented by \S, the same as that metal, imitating a man with wings on his head and feet, is a small bright planet, with a light tinct of blue, the sun's constant attendant, from whose side it never departs above 28 degrees, nud by that means is usually hid in his splendour. It performs its course around him in about 3 months.

Venus, the goddess of love, marked $\%$, from the figure of a woman, the same as drnotes copper, from a slight tinge of that colour, or verging to a light straw culour. She is a very bright planet, revolving next above Mercury, and never appcars above 48 degrees from the sun, finishing her course about him in about 7 montbs. When this planet goes before the sun, or is a morning star, it has been called Phosphorus, and also Lucifer ; and when following him, or when it slines in the evening as an evening star, it is called Hesperus.

Tellus, the Earth, next above Venus, is denoted by Θ, and performs its course about the sun in the space of a year.

Mars, the god of war, characterized 8 , a man holding out a spear, the same as tron, is a ruddy fiery-colourcd planet, and finishes his course about the sun in about 2 years.

Vesta, Junu, Pallas, Ceres, are the planets next in order, and their periods of revolution about the sun ate as below: Vesta in days; Juno in 2007 $\frac{7}{y}$ days; Pallas in 1682 days; and Ceres in 1681 days. These four planets are toe stmall to be distinguished hy the naked eye.

Jupiter, the chief god, or thumlerer, marked 4, to represent the thunderbolts, denoting the same as tin, from his pure white brighteses. This planet is nest above Mars, and completes its coune round the sun in about 1.2 years.

Saturn, the father of the Gods, is expressed by h, to imitate an old man supporting himetf with a sunff, and is the same as denoter lead, from his feeble light and duaky colour. He revolvts next above Jupiter, nid performs his course in about 30 years.

Lastly, Uranus, the Georgian, or Henschel, is denoted by 皆, the initial of his name, with a cross for the Cbris.
tian planet, or that discovered by the Christians. This is the highest, or vutermost, of the hoows planets, and revolves around the sun in the space of about 90 ycars.

It is to be regretied that all the new planets lave not been called by the names of their respective di-coverers, instead of the fanciful and unmeating names that have been imposed on them by the continental astronomens.

From these descriptions a person may casily distinguish all the old planets. For if, after sun'set, he sees a planet nearer the cast than the west, he may conclude it is neither Venus nor Mercury; and be may determine whether it is Saturn, Jupiter, or Mass, by the colour, light, and magnitude: by which also be may distinguish between Venus and Mercury.

It is probuble that all the planets are dark opake bodies, similar to the carth, and for the following reasons.

1. Mecausc, in Mercury, Venus, and Mars, only that part of the dish is found to shine which is illuminateal by the surs ; and again, Venus and Mercury, when between the sun and the earth, appear like maculat or dark spots on the sun's face: from which it is evident, that thase three planets are opake budies, illuminated by the borrowed light of the sun. And the same appears of Jupiter, frou his being void of light in that part to which the shadow of his satellites reaches, as well as in that part torned froin the sun: and that his satellites are opake, and seflect the sun's light, like the moon, is abundantly showis. Moteover, since Saturn, with his riug and satellites, and also Ilerschel, with his satellites, only yield a pale hight, considerably fainter than that of the rest of the plancts, aud than that of the fixed stars, though these be vastly more remote; $i t$ is past a doubt that these planets ton, with their attendants, are opake bodies.
2. Since the sun's light is not transmitted through Mercury or Venus, when placed against him, it is plain they are dense opake bodirs; which is likewase cvident of Jupiter, from his hiding the satellites in his shadow; and therefore, by amatogy, the same may be concluded of Saturn, and all the rest.
3. From the variable spots of Venus, Mars, and Jupiter, it in evident that these planets have a changrable atmosphere; which hiud of atmosphere, by a lihe arguncur, may be inferred of the satellites of Jupiter; and therefore, by similituds, the same may be concluded of the other planets.
4. In like manuer, from the mountains observed in the moon and Venus, the same may be supposed in the other plancts.
5. Lastly, since all these planets are opake badies, shining with the sun's borrowed light, are furnished with mountains, and are encompassed with a changeable atmosphere; we may iufer that they have waters, seas \&cc, as well as dry land, and are bodies like the moon, and therefore like the earth. And hence, it acens also probable, that the other planets have their animal inhabitants, as well as our earth has.

Of the Orbius of the Planets.

Though all the primary planets revolve about the sun, their orbits are not circles, but ellipses, having the sun is one of the foci. This circumstance was first discovered by Kepler, from the observations of Tyebu Bralie: before that, all astronomers took the planetary orbits for excentric circles. All the planes of these orbits intersect in the sun; and the line in which the plane of each orbit cuts that of the earth, is called the Line of the nodes;

Vol. II.
and the two points in which the orbits themselves touch that plate, are the Nodes; also the angle in which rach plane cuts that of the ecliptic, is ealled the Inclination of the plane or orbit.-The distance between the centre of the sun, and the centre of each orbit, is called the excen tricity of the planet, or of its orbit.

The Motions of the Planets.
The motions of the primary planets are very simple, and tolerably unitorm, as being compounded only of a projectile motion, furward in a right line, which is a tangent to the orbit, and a gravitation towards the sun at the entre. Besides, being at such vast distances from each other, the efficts of thear mutunl gravitation towards one another are in, a cousiterable degice, though not altogether, imsensible: for the actuon of Jupher upon Saturn, for ex. is found tu be stoz of the action of the sun upon Saturn, by cowparing the matter of Jupiter with that of the san, and the square of the distance of each from Siaturn. So that the elliptic orbit of Saturn will be found more just, if ins focus be supposcid not in the centre of the sun, but in the common ceutre of gravity of the sun and Jupiter, or rather in the common centre of gravity of the sun and all the otber planets. In like manner, the clliptic orbit of any otber plates will be found more accurate, by supposing its fucus to be in the common centre of gruvity of the sun and all the planets tbat are below it. But the matier is far otherwise, in respect of the secondary planets: for every one of these, though it chielly gravitates towards its respective primary one, as its contre, yet at rqual distances from the sun, it is also attracted towards him with an equally accelerated graviny, as the primary one is towards him; but at a greater distance with less, and at a nearer distance with greater: from which double tendency towards the sun, and tuwards their own primary planets, it happens, that the motion of the satellites, or secondary planets, is very much compounded, and affected with various inequaliics.

The motions even of the primary planety, in their elliptic orbits, are not equable, because the sun is not in their centre, but their focus. Hence they move; sometimes fester and sometimes slower, as they are ncarer to or farther from the sua ; but yet these irregularities are all certain, and follow according to an imnintable law. Thus, the ellipsis PEA \& $c_{\text {, representing the orbit of }}$ a planet, and the focus s the sun's place: the axis of the ellipse AP, is the line of the apses ; the point A, the higher apsis or aplielion; P the lower apsis or perathetion; cs the excentricity; and zs the planet's man distance from the sun. Now the motion of the planet in its perihelion P is swiftest, but in its aphelion A it is slowest; and at \mathbf{e} the mution as well as the distance is a
 nucan, being there such as would describe the whoke orbit in the same time it is really described in. And the latw by which the motion in every point is'regulated, is this, that a line or radius drawn from the ceatre of the sun to the centre of the planet, and thus carried along with an angular motion, always describes an elliptic area proportional to the time; that is, the trilineal area AsB, is to the area ase, as the time the planct is in moving over $A B$, to the time it is in moving over Af. This law was first discovered by Kepler, from observations ; and

2 C

PLA
［ 194 ］

PLA
has since been accounted for and demonstrated by sir Isaac Newton，from the general laws of attraction and projectile motion．

As to the periods and velocities of the planets，or the times in which they perform their coursus，they are tound to have a wonderful harmony with their distances from the sun，and with one another：the nearer each planet being to the sun，the quicker still is its motion，and its period the shorter，according to this general and regular law ；viz，that the squares of their periodical times are as the cubes of their mean distances from the sun or focus of their orbits．The knowledge of this law we owe also to the sagacity of Kepler，who found that it obtained in all the prinary planets；as astronomers have since found it also to hold good in the secondary ones．Kepler in－
deed deduced this law merely from observation，by a com－ parison of the several distances of the plazerts with their periods or times：the ghory of investigating it from physi－ cal principles is due to Sir lsaac Niswton，who has the－ monstrated that，in the present state of nature，sucb a law was inevitable．

The plienomena of the planets are，their Conjunctions， Oppositions，Filongations，Stations，Retrogradations，Pha－ ses，and Eeclipses；for which see the respective articles． For a view of the comparative magninudes of the planets， and of their several distances，dc；sev the artiches Orbit ami Solan Systrm，as also Plate 26，fig．1．－The fol－ lowing Table contains a synopsis of the distances，magni－ tudes，periods，\＆ce，of the several planets，according to the latest observations and improvements．

Table of the Planetary Motions．Distances，\＆ec．

Anno isis	Mancray	Vines．	Елйт．	Mans．	Virsta，er OLums＇．	JiNo，or H ккמanct．	Pallas， 17 Otezas＇．	$\left\lvert\, \begin{aligned} & \text { CREs, } \\ & \text { Piazed. } \end{aligned}\right.$	Jumita．	Satules．	$\left\{\begin{array}{c} \text { Cnakus, or } \\ \text { Hzevelerl, } \\ \text { yiss. } \end{array}\right.$
Grweiest elongra tion of inturior． and parnllus of su－ perien planets．	$25^{\prime \prime} 20$	$43^{*} 4 s^{\prime}$	弪	$45^{\circ} 24^{\prime \prime}$					$11{ }^{\circ} \mathrm{S1} 1^{\prime \prime}$	$6^{\circ} 19{ }^{\prime \prime}$	3×47
Penmikal inule tions mand ther งun．	$\begin{array}{llll}4 & 4 \\ 4 & 23 & 11\end{array}$			4366		200）${ }^{1}$ di	1682du．	1681 da．		107591	－ 30689
Diuntial rotethus upon their axet	＊\times \％	$23^{36}{ }^{3}$		$24^{15} 40^{\text {m }} 224$					$2^{31} 36 \%$	$10^{\circ} \quad 17{ }^{\circ}$	$\cdots \geqslant$
Inelinations of their urbits to the ectipric．	$7^{*}{ }^{\prime}$	$\left.\mathrm{a}^{0} \cdot 2 \mathrm{a}^{\prime}\right\}$	＊＊	$2^{\circ} 31^{\prime}$	$7^{\circ} 41$	$13^{\circ} 4^{\prime}$	334 ${ }^{6} 38$	$10^{\circ} 38^{\prime}$	$1^{\circ} 17^{\prime}$	$2^{\circ} 30^{\prime}$	$0^{0} 464$
Phece of the ao－ cending numb．	$1 * 13^{n} 47$	$2^{*} 14^{6} 44^{\prime}$	会安安	$1{ }^{10} 17^{\circ} \mathrm{s} 9^{\prime}$	${ }^{\circ} 143^{*} 13^{*}$	$s^{2} 211^{2} 4^{\prime}$	$3^{\prime \prime} 22^{\prime \prime}$ a $1^{\prime \prime}$	$2^{*} 81^{\circ} 7^{\circ}$	$348^{\prime \prime} 30^{\prime}$	＊＊ $21^{\prime \prime} 48^{\prime}$	3＊ $13^{\circ \prime 2}{ }^{16}$
Hace of the aphe Hon，or proint Eur－ shent from the sur．	$\$^{+1} 14^{9} 13 \%$	$10^{\circ} 9^{\circ} 35^{\prime}$	$7^{\prime \prime} 9^{\circ \prime} 15^{\prime \prime}$	3＊ $2^{\circ} 6^{\prime} \frac{1}{2}$		$7{ }^{\circ} \cdot 21^{\circ} 49^{\prime \prime}$	$10^{\circ} 4^{\prime} 36^{\prime \prime}$	（0） $26^{6} 9$	O＊ $10^{\circ} 3.3 \%$	yp $0^{2} 43^{\prime}$	$11^{\prime} 23^{4} \times 3^{\prime}$
（irratent apyaneut diamerers，sezp from the earth．	$11^{\prime \prime}$	56＂	\cdots	$27^{4 \prime}$	－		$0 \cdot 3$	$1^{\prime \prime}$	39°	$33^{\prime \prime}$	$4 \prime$
Diameter in Eng． lioh tailes：that of the sus being 69321% ．	3214	7467	；014	4189			80	163	89170	74042	35109
Eruparimenal meats datances from she sun，	39710	7233.4	100000	132369	233513	966400	276；00	276300	520259	954072	1918362
Mcan distucem from the sun in semitianerers of the earth．	9210	17210	23799	36.262	96049	63400	63604	63831	123778	227025	459000
Mean daslacces from the sun in Faclish miles．	37 mills．	68 mith．	95 mills．	144 milh．	$\begin{array}{\|l\|} \hline \text { Lese than } \\ \text { Cercs. } \end{array}$	290 mils．	165 milk．	260 mills	400 mills．	900 milla．	1500 mills．
Fincencricyties in perts of mean dis－ tances．	$7^{4} 5$	TII	5	T^{18}	\pm	$\frac{1}{4}$	$\frac{7}{4}$	TI	${ }_{\text {I }}{ }^{1}$	$\stackrel{3}{18}$	\％
Propurtion of tast： and beat；that or the earth being 100.	668	191	100	43	19	14	13	13	3.7	11	0－276
Proportion of buile：that of the sun being 1380000 ．	$\frac{1}{15}$	$\frac{3}{7}$	1	7^{7}		\checkmark	บร＊＊	тr｜iste	1424	1000	96
isupertion of dop－ sily；，that of the tun being $\frac{1}{2}$ ．	3	113	1	${ }^{7} 7$					－23	－02	＊

PLA

A planet's motion, or distance from its apogee, is called the mean anmmaly of the planet, and is measured by the area it describer in the given time: when the planet arrives at the iniddle of its orbit, or the point E , the area or time is called the truc anomaly. When the planet's motion is reckoned from the fint point of Aries, it is called its motion in longitude ; which is either mean or true; viz, mean, which is such as it would have were it to more uniformly in a circle; and truc, which is that with which the planet actually describes its orbit, and is measured by the are of the ecliptic it describes. And hence nayy be found the planet's place in its orbit for any given time ufter it has left the aphclion: for suppose the area of the ellipsis be so divided by the line so, that the whole elliptic area may have the same proportion to the part asg, as the whole periodical time in which the planet descrites its whole orbit, has to the given time; then will o be the planet's place in its orbst sought.

PLANF:TARIUM, an astronomical machine, contrived to represent the motions, orbits, \&c, of the planets, as they really are in nature, or according to the Copernican ststern. The larger kind of them ure called Orreries. See Orrpry.

A remarkable tuachine of this sort was invented by Haygens, and described in his Opusc. Pisth. tom. 2. p. 157, edit. Amst. 1728, which is still proserved among the curiosities of the university at Leyden. In this platetarium, the five primary plaocts perforin their revolutions about the sun, and the moon performs ber revolution about the earth, in the satne time that they are really performed in the heavens. Also the orbits of the moon and planets are represented with their true proportions, excentricity, position, and declination from the ecliptic or orbit of the earth. So that by this machine the situation of the planets, with the conjunctions, oppositions, \&c, may be known, not only for the present time, but for any other time, eitber past or jet to come; as in a perpetual ephemeris.

There was exhibited in Lomelon, viz, in the year 1791, a stull much more complete planelariun of this kind; called " a planelarium or astronomical machine, which exhibited the most remarkable plenomena, motions, and revolutions of the universe. Invented, and partly rexecuted, by the celebrated M. Phil, Matthew Hahn, member of the academy of sciencewat Erfurt. But finished and completed by Mr. Albert de Mylius." This is a most stupendous and clabounte machine ; consisting of the solar system in general, with all the orbiss and planets in their due proportions and positions; as also the several particular planetary systems of such as have satellites, as of the carth, Jupiter, \&c; the whele kept in, continual motion by a chromometer, or grand eight-day clock; by which all these systems are made perpetually to perform all their motions exactly as in nature, exhibiting at all times the true and real motions, presitions, mspects, phenomena, \&e, of all the celestial bodies, even to the very diurnal rotation of the planets, and the unequal thotions in their elliptic orbits. A description was published of this must superb machine; and it was purchased and sent as one of the presents to the emperor of China, in the embassy of Lord Macartney, in the year 1793.

But the planetariums or orreries now most conmanly used, do not represent the true times of the celestial motions, but only their proportions; and are not kept in continual motion by a clock, but are only turned round occasionally with the hand, in order to give young legimers an idea of the planctary system; as also, if constructed
with sufficient accuracy, to resolye problems, in a coarse way, relating to the motions of the planets, and of the earth and monn, \&c.

Dr. Desaguliers (Exxp. Philos. vol. 1, p. 430,) describes a planetarium of his own contrivance, which is one of the best of the common sort. The macbine is contrived to be rectified or set to any latitude; and then by turning the handle of the planetarium, all the planets perform their revolutions round the sun in proportion to their periodical times, and they carry indices which show the longitudes of the planets, by pointing to the divisions graduated on circles for that purpose.

The planetatium represented in fig. 1, plate 22, is an instrument consrived by Mr. Wm. Jones, of Holborn, London, mathematical instrument maher, who has puid consideruble attention to such machines, to bring them to a great degree of simplicity and perfection. It represents in a general punner, hy various parts of its machinery. all the motions and phebomena of the planctary system. This machine consists of, the Sun in the centre, with the Planets in the order of their distance from him, viz, Mercury, Venus, the Earth and Monn, Mars, Jupiter with his nmons, and Safurn with his ring and moons; and to it is also occasionally applied an extra long arm for the Genrgian Planet and his monns. To the earth and monn is applied a frame c1, containing only four wheels and two pinions, which serve to preserve the carib's axis ith its due parallelism in ts motion round the sun, and to give the moon at the same time her dne revolution about the earth. These whects are comected with the wheel-work in the round box below, and the whole is set in motion by the winch 11 . The arm m that carries round the moon, points out on the plate c her age and phases for any situation in her orbit, upon which they are engraved. In like manner the arm points out her place in the celiptic B , in signs and degrees, called her geocentric place, that is, as seen from the carth. The moon's orbit is represented by the flat rim A; the two joints of it, upon which it turns, denoting her nodes; and the orbit being made to incline to any required angle. The terrella, or little carth, of this machine, is usually made of a three-inch globe papered, \&c, for the purpose; and by means of the terminating wire that goes over it, points out the claanges of the seasons, and the different lengths of days and nights more conspicuously. By this machine are scen at once all the platiets in motion about the Sun. with the same respective selucitios and periorls of revolution which thry have in the heavens; the wheelwork being calculatel to a minute of time, from the latest discoverics. Sec Mr. Jones's Description of his new portable Orrery.

PLANETARY, something that relates to the planets, Thus we say, planetary worlds, planetary inhnbitants, planetary motions, \&c. Huygens and Fonteselle hring several probable arguments for the reality of planctary worlds, animals, plants, men, \&c.

Planetary Syatem, is the system or asscmblage of the planets, primary and seconelary, moving in their mo spective orhits, round their common centre the sun. See Soliar System.

Planetary Days. With the ancients, the woek was shared among the seven planets, each planct having its day. This we learn from Dion Cassius and Mharch, Sympos. lib. 4. q. 7. Herodotus addt, hat it was the Egyptians who first discoverel what gnd, that is what planet, presides over each day; for that among this preople 2 C 2
the planets were directors. And hence it is, that in most European languages the days of the week are still denuminased from the planets; as sunday, monday, ixc.

Planetary Dia's, are such as bave the planetary bours inseribed on them.

Phanetany Hours, are the 12th parts of the artificial day and night. See Planetory Hour.

Planetahy S quares, are the squares of the seven numbers from 3 to 9 , disposed magically. Cornelius Agrippa, in his book of magic, has given the construction of the seven planetary squares. And M. Poignard, canon of Brussils, in his treatise on sublime syuares, gives new, general, and easy methods, for making the seven planetary squarts, and all others to infinity, by numbers in all hinds of progressions. See Magic Square.

Pianftary lears, the periods of time in which the several planets make their revolutions round the sun, or earth.- Λ s from the proper revolution of the earth, or the apparent revolution of the sun, she solar yrar tahes its orginal; so from the proper sevolutions of the rest of the planets about the earth, as many kinds of years urise; viz, the Saturnian year, which is defined by 29 Egyptian years 174 days 58 minutes, equivalent in a round number to 30 solar years. The Jovial year, containing 11 scars 317 days 14 hours 27 minutes. The Martial year, containing 1 year 321 days 23 hours 31 minutes. For Venus and Mercury, as their years, when judged of with rezard to the earth, are almost equal to the solar year; they are more usually estimated from the sun, the true centre of their motions: in which case the former is equal to 224 days 16 hours 49 minutes; and the latter to 87 days 23 hours 16 minutes.
PLANIME:IRY, that part of geometry which considers lines and plane figures, without any regard to beights or depths.-Planimetry is particularly restuicted to the mensuration of planes and other surfaces; as contradistinguished from stereometry, or the inensuration of solids, or capacities of length, breadth, and depth.-Planimetry is performed by means of the squares of long measures, as square inches, square feet, square yards, \&e; that is, by squares whose side is an inch, a foot, a yard, \&ec. So shat the area or content of any surface is said to be found, when it is known how inany such square inches, feet, yards, \&c, it contains. Sec Mensuration and Surveying.

PLANISPHERF., a projection of the splere, and its various circles, on a plane; as upon paper or the like. In this sense, maps of the beavens and the earth, exhibiting the meridians and other circles of the sphere, may be called planiyphervis.

Planisphere is sometimes also considered as an astronomical instrument, used in observing the motions of the heavenly bodies; being a projection of the celestial sphere upos a plane, representing the stars, constellations, \&ec, in their proper situations, distances, \&c. As the Astrolabe, which is a common mame for all such projections.

In all plunispheres, the eye is supposed to be in a peint, viewing all the circles of the sphere, and roferring them to a platue beyond them, against which the sphere is as it were flatuened: and this plane is called the Plane of Projuction, which is always some one of the circles of the splucre itself, or parallel to some one.

Among the infinite sumber of planispheres which may be furminhed by the different planes of projection, and the difierent positions of the eye, there are two or three that have beet preferred to the rest. Such as that of Ptolemy,
where the plane of projection is parallel to the equator: that of Gewma Frisius, where the plane of projection is the colure, or solstitial meridian, and the ege the pole of the meridian, being a stercographacal projection: or that of Juhn de Ruyas, a Spaniard, whose plane of projection is a meridian, and the cye placed in the asis of that meridian, at an intintte distance ; being an orthographical projection, and called she Analemma.

PLANO.Concate glass or lens , is that which is plane on one side, and concave on the other. And

P1.ano-Conrex glass or lens, is that which is plane on one side, and convex on the other. See Lexs.

PLATH-Band, in Architecture, is any flat square moulding, whose lieight much exceeds its projecture. Such are the faces of an architrave, and the plat-bands of the modillions of a cornice.

PLATFOITII, in Artillery and Gunnery, a small elevatien, or a fiour of wood, stone, or the like, on which cannon, \&c, we placed, for more conseniensly working and firing them.

Platroks, in Architecture, a row of brams thal support the timber-woth of a roof, Iging on the top of the walls, where the cintablature ought to be raimet. Also a kind of fat waih, or plane floor, on the top of a huilding; whence a fair siew may be taken of the arjacent grounds. Su, an ellifice is said to be covered with a platform, when it has no arched rouf.

PLATO, one of the most celcbrated among the ancient philosopliers, being the founder of the sect of she Academics, was the son of Aristo, and-born at Athens, abuut 429 years before Clirist. He was of a royal and illustrious family, being descended by his father from Codrus, and by his mother from Solon. The name given him by his parents was Aristocks; but being of a rolust make, and remarkably bruad-shouldered, from shis circumstance he was nich-nained Plaso by his wrestling-master, which name be retained ever after.

From his infancy, Plato dissinguished himself by his lively and brilliant imaginasion. He cagcrly imbibed the principles of poetry, music, and painting. The charms of philusopby howerer prevailing, drew hun from thuse of the fine arts; and at the age of twonty be attached bimself to Socraces only, who called him the Swan of the Academy. The disciple protited so well of his master's' lessons, that at twenty-five jears of age lie had the reputation of a consummate sage. He lived with Sucrates for eight years, in which time he conmitted to writing, according to she custom of the students, the purport of a great number of his master's cacellent lectures, which he digested by way of philusophical conversations; but made so tiany judicions additions and improvements of his own, that Socrates, hearing him one day recite his Lysis, cried out, O Ilercules! how many fine sentiments does this young man ascribe to me, hat I never thought of! And Laerifius assure, us, that be compued several discourses which Socrates had no manuer of hand in. At the sima when Sucrates was first arraigned, Plato was a junior senator, and he assumed the orator's chair to plead his maste's cause, but was interrupted in that design, and the judges passed sentence of condemnatiod upon Socfates. Upon this occasion Plaso begged him to accept from hin a sum of money sufficient to purchase his culargement, but Socrates peremptorily refuwd the generous oficr, and suffiered himself to be put to death.

The philusophers who were at Athens were so alarmed
at the death of Socrates, that most of them fled, to avoid the cruclty and injustice of the government. Platn retired, till the storni should be over, to Megara, where he was kindly entertained by Euclid the pbilosopher, who had been one of the fint scholars of Socrates. Afterwards he determined to travel in pursuit of knowledge; and from Mogara he went to Italy, where be conierred with Eurytus, Philolaus, and Archytas, the most celebrated of the Pythagoreans, from whom he learned all his natural philosoply, diving into the thost protound and mysterious secrets of the Pythagotic ductrines. But perceiving other knowledge to be connceted with them, he went to Cyrene, where he studied geometry and other branches of mathematics under Theodorus, a celebrated master.

IIener he travelled into Egypt, to learn the theology of their priests, with the sciences of arithmetic, astrunomy, and the nicer parts of geometry. Having taken also a survey of the country, with the course of the Nile and the canals, he settled sonue time in the province of Sais, Iearning of the sages there their opinions concerning the universe, whether it had a begmang, whether it moved wholly or in part, \&ec ; also concerning the immortality and transmigration of souls: and bere it is also thought he had some comanunication with the books of Moses.

Plato's curiosity was not yet satisfied. He travelled into Persia, ta coisult the magi as to the religion of that country. He desiguel also to have penetrated into India, to learn of the Brachmans their manners and customs ; but was prevented by the wars ill Asha.

Attrwards, returning to Athens, he applied himself to the teaching of philosophy, opening bis school in the Academia, a place of exercise in the suburbs of the city; whence it was that bis followers took the name of Acadetnics.

Yet, settled as he was, he made several excursions abroarl: one in partieular to Sicily, to view the fiery ebulhtions of Mount Litna. Dionysius the tyrant then reigned at Sy racuse, where Plato went to visit him; but, instead of flattering him like a courtier, he reproved him for the disorders of bis court, and the injustice of his government. The tyrant, not used to disugrceable truths, was enraged at Plato, and woulil have put him to death, if Dion and Aritomenes, formerly his scholars, and then favourites of that priuce, had not powerfully interceded for him. Dionysius however delivered him into the hands of an euvoy of the lacedenumians, who were then at war with the Atheniaus: and this envoy, touching on the coast of Xgina, sold him for a slave to a merchant of Cyrene; who, as soon as lie had bought him, liberated him, and sent him home to Athens.

Some time after, be made a second vnyage into Sicily, in the reign of Dionysius the younger; who sent Dion, bis ainister and favourite, to invite him to court, that he might learn from him the art of governing his people well. Plato accepted the insitation, and went; but the intinacy between Dion and Plato raising jeulousy in the tyrant, the former was disgraced, and the latter sent back to Athens. But Dion, being taken into favour again, persuaded Dionysius to recall Plato, which hedid, and received him with all the marks of goodwill and friendship that a great prince could bestow. He sent out a fine galley to meet bim, and went himself in a magnificent chariot, attended by all his court, to recrive-him. But this prince's uneven temper hurried him into new suspicions. It seems indeed that these apprehensions were not altogether groundless: for

Alian says, and Cicero was of the same opinion, that Plato taught Dion how to dispatch the tyrant, and to deliver the people from oppresson. Howcever this may be, Plato was oItcheded and complained; and Dionysius, incensed at these complaints, resolved to put him to death: but Archytas, who had great interest with the tyrant, being informed of it by Dism, interceded for the philosupher, and obtained leave for him to retire.

The Athenians reccived him joyfully at his return, and offered lim the administration of the government; but be declined that honour, choosing rather to live quietly in the Academy, in the peaceable contemplation and study of philosophy; being indeed so desirous of a private retirement that he never married. His fame drew disciples from all parts, when he would admit them, as well as invitations to come to reside in many of the other Grecian states; but the three of his pupils that most distinguished themselves, were Speusippus his nephew, who continued the Acaderyy after him, Xenocrates the Caledonian, and the celebrated Aristotle. It is said also that Therophrastus and Demosthencs were two of his disciples. He had it seems so great a respect for tbe science of geonetry and the mathematics, that be had the following inscription painted in large letters over the door of bis academy; Let no one enter hene, uxless he has a taste for Geometry and the Matienatica!

Butas his great reputation gained him on the one hand many disciples and admirers, so on the other it raised him some emulators, especially among his fellow-disciples, the folluwers of Socrates. 'Xenophon and he were particularly disatiected to each other. Plato was of so quiet and even a temper of mind, even in his youth, that he never was known to express a pleasure with any greater emotion than that of a smile; and he lad such a perfiect command of bis passions, that nothing could provoke lis anger or resentment; from hence, and the subjeet and style of his writings, be aequired the appellation of the Diviue Plato. But though be was naturally of n reserved and very pensive disposition; yet, according to Aristotle, he was affable, conrteous, and perfectly gond-natured; and sometimes would condescend to crack little innocent jukes on his intimate acquaintauces. Of his affability there needs no greater pronf than his civil manner of conversing with the philosophers of his own times, when pride and envy were ut their beight. His behaviour to Diagenes is always mentioned in his history. This Cynic was greatly offended, it seems, at the politeness and fine taste of Plato, and used to enteh all opportunities of slarling at him. Dining one day at his tuble with other company, when trampling to pou the tapestry with his dirty feet, be uttered this brutish sarcasm, "I trample upon the pride of Plato:" to which the latter "isely and calmly replied, "with a greater prit e."

This extraordinary naan, being arrived at 81 years of age, died on his birth-day a very casy and peaccable drath, In the midst of an entertainment, according to some; but, according to Cicero, as be was writing. Both the life and death of this philosopber were calm and undisturbed ; and indeed lie was finely composed for happiness. Besides the advantages of a noble birth, he had a large and comprehensive understanding, a vast fund of wit and good taste, groat evenness and aweetness of temper, cultivated and rrfined by education and travel ; so that it is no wonder lie was honoured by his countryinen, esteemed by strangers, and adored by his scholars." Tully perfectly adored him: be tells us that he was justly called by Panatius, the dir
vine, the most wise, the most sacretl, the Homer of philosophers; thinks, that if Jupiter had spoken Greek, be would have dome it in l'lan's style, \&c. But, panegyric aside, Plato was certainly a very wonderfol man, of a large and comprehensive mind, an imagination infinitely ferile, and of a most tlowing and copious eloquence. However, the strength and heat of fancy prevaling over judgment in his composition, he was too upt to soar beyond the limits of earnhiy things, to range in the imaginary regions of general and abstracted ideas; on which account, though there is always a greatress and sublimity in bis manner, be did not philusophize so much according to truth and nature as Aristotle, though Cicero did not scruple to give him the preference.

The writings of Plato are all in the way of dialogue, where he seems to deliver nothing from himself, but every thing as the sentiments and opinions of others, of Snecrales chietly, of Timaus, \&c. His style, as Aristotle observed, is between prose and verse: on which account some liave not scrupled to rank him among the poets: and indeed, besides the elevation and grandeur of hisstyle, his inatier is frequently the offipring of imagination, instead of doetrines or truths deluced from nature. The first edition of Plato's works in Greek, was printel by Adus at Venice in 1513: but a Latin version of them by Mansilius Ficinus had beell print dhere in 149 t . They were reprinied together at lyons in 1588, and at Franctort in 1602. The famous printer Henry Stephens, in 1578 , gave a beautiful and correct edition of Plato's works at P'aris, with a new Latin version by Serranus, in three volumes folio.-And the industrious Thomas Taylor has lately green us several of Plato's works in an English translation.

PLATONIC, something shat relates to Mlato, his scliool, philosopty, opinions, or the lihe.

PLATONIC Bodics, so called from Plato who treated of them, are what are otherwise called the regular todies. They are five in number; the tetraedron, the hexaedron, the octacdron, the dodecaedron, and the iconsedion. Ste each of these articles, as also Regulau Bopies,

Piatonic Year, or the ©reat Year, is a perind of time determined by the revolution of the equinoxes, or the time in which the stars and constellations return to their former places, in respect of the equinoxes. - The Platone year, nccor ling to T'ychn Brahe, is sis ti molar ycars, according to lliecioli 25920 , and according to Cassini 24800 years. -This period being once accomplished, in wat an opinion among the ancients, that the world was to begin anew, and the same scries of things to return over again.

PLATONISM, the ductrine and sentiments of Plato and his followers, with regard to philosophy, \&c. His disciples werre called Acudemics, from Acudemia, the name of a villa in the suburbs of Athens where he opened his school. Among these were Xenocrates, Aristoile, Incurgm, Demosthenes, and Isnerates. In physics, he chiefly followed Heraclims; in elhics and politics, Socrates; and in metaphysics, Pythagoras.

After his death, two of the principal of his disciples, Xenocrates and Aristotle, continuing bis office, and teaching, the one in the Academy, the other in the Lycxum, formed two sects, under different names, though in other respects the same; the one retaining the denomination of Academics, the other assuming that of Penifatetics. See these two articles.

Afterwards, about the time of the first ages of Christianity, the followers of Plato quitted the title of Acade.
mists, and took that of Platonists. It is supposed to have been at Alexandria, in Egypl, that they tirst assumed this new title, after having restured the ancient academy, und re-established Plato's seniments; which had many of theu been gradually dropped and laid aside. Porphyry, Plotin, lamblichus, Proclus, and Plutarch, are those who ucquired the greatest reputation among the Greek Plalunists; ApuKius and Chalcidius, among the Latins; and lhilo Judaus. among the Hebrews. The modern Platonists own Plutin the founder, or at least the reformer, wi their sect.

The Platonic philusophy appears very consistent with the Mosaic ; and many of the primitive fulbers follow the opiniuns of that philosopher, as being favourable to Chritianity. Justin is of opinion that tbere are many thing in the works of Plato which this philosopher could nut learn from mere natural reason; but thinks he nust have learnt them from the books of Mloses, which be might have read when in Eeypt. Hence Numenius the Pythagorean expressly calls Plato the Antic Mones, and upbrawds hon with plagiarism; because lie stole his doctrine cuncerning Ged and the world from the buoks of Moses. Theadoret says expressly, that he lias nothing good and commendable concerning the Deity and his wership, but what be sook from the Hebrew theology; and Cle nems Alexandrinus calls him Ihe Hebrew Plitusopher. Gale is very pargicular in his proot of the point, that Plato botrowed his philosophy fiom the scriptures, either immediately, or hy means of tradition; and, besider the authority ot the atscient writers, be brings wome arguments from ibe thang, itself. For cxample, Plato's coufession, that the Grecks borrowed their knowledge of the one infinite God, from an ancient people, better and nearer to God than they; by which people, our author makes nu doubt, he mennt the Jews, from his account of the state of imuconce; as, that man was born of the eath, that be was nuked, ilnt he enjoyed a iruly happy star, that he convened with brutes, dec. In fact, from an examinution of all the palte of Plato's pholosophy, physicul, metuphysical, and cthical. this aumor finds, in every one, evidint marhs of its sacred original.

As to the manner of the creation, Plato teaches, that the world was nade according to a ceriain esemplar, or ides, in the divine archictet's mind. And all things, in the univeres, in like manner, he shows, depend on the efficacy of internal ideas. This idral world is shus explained by Didymus: "Plato supposs certain paucrns, or exemplars, of all sensible things, which he calls ideas; and as there may be sarious improssions taken off from the same seal, so he says are there a vast number of natures existing Iromeach idea." This idea he stppous to be an eternal essence, and to occasion the several things in nature to be such as inelf is. And that most brautitul and perfeet ider, which comprehends all the rest, be maintains to be the world.

Farther, Plato teaches that the universe is an intelligent animan, consisting of a body and a soul, which he calls the fenerated God, by way of distinction from what be cells the immutable exence, who was tise cause of the generated God, or the universe.

According to Plato, there were two kinds of inferior and derivative geds; the mundane gods, all of w hich had a tomporary generation with the world ; and the supramundane eternal gods, which were nill of them, one excepted, produced from that one, and dependent on it as their cause. Dr. Cudworth says, that Plato assersed a plu-
rality of gods, meaning animated or intellectual beings, or damons, superior to men, to whom honour and worship are due; and applying the appellation to the sun, moun, and siars, and aiso to the carth. He asserts however, at the same time, that there was one supreme God, the selforiginated being, the maker of the heaven and earth, and of alt those other gods. He also maintains, that the Psyche, or universal inundane soul, which is a self-moving principle, and the immediate cause of all the motion in the world, was neither eternal nor self-existent, but made or produced by God in time; nad above this self-moviug Psyche, but sulordinate to the Supreme Being, and derived by enamation trom him, he supposes an immoveable Nous or intellect, which was properly the Deroiurgus, or framer of the world.

The first matter of which this body of the universe was formed, he observes, was a rude indigested heap, or chaos: Now, adds be, the crcation was a mixed production ; and the world is the result of a combination of necessity and understanding, that is, of matter, which he calls necessity, and the divin* wisdom: yet so that mind rules aver neccosity; and to this necessity be ascribes the introduction and prevalence buth of moral and natural evil.

The principles, or elements, which Plato lays down, are fire, sir, water, and eath. He supposes two heavers, the Empyreau, which he takes to be of a fiery nature, and to be inhatited by angels, \&cc; and the Starry lwayen, which he teaches is nut adamantine, ot sulid, but liquid and spirable.

With regard to the human soul, Plato maintained its transmigration, and consequently its future immortality and pre-existence. He asserted, that human souls are here in a lapsed state, and that souls sinning should fall down into thrse earthly bodies. Eusebius expressly says, that Plato held the soul to be ungenerated, and to be derived by emanation from the first cause.
llis playsics, or ductrine De Corpore, is chiefly laid down in his Timeus, where he argues on the properies of body in a geometrical manner; which Aristotle takes occasion to reprehend in him. His doctrine De Mente is deInvered in his 10th book of laws, and his Parmenides.

SL. Augustine conmends the Platunic philosuphy; and even says, that the Platonists were not far from Chrigtianity. It is also certain that most of the celebrated fathers were Platotists, and borrowed many of their ex' planations of Scripture from the Platonic systetn. 'To account for this fact, it may be observed, that towards the end of the second century, a new sect of philosophers, called the modern, or later Platonics, arose of a sudden, spread with amazing rapidity through the greatest part of the Roman empire, swallowed up almost all the other sects, and proved wery detrimental to Christianity.

The school of Alexandria in Egypt, instituted by Ptolemy Philadelphus, renewed and reformed the Platonic philosophy. The votaries of this system distinguished themselves by the title of Platonics, because they thought that the sentiments of Plato concerning the Devty and invistble things, were much more rational and sublime than those of the otber philosophers. This new species of Platonism was embraced by such of the Alexandrian Chrishuns as were desirous to retain, with the profession of the Gospel, the title, the dignity, and the habit of philosophers. Ammonius Saceas was its pincipal founder, who was succeeded by his disciple Plotinus, as this latter was by Porphyry, the chief of those formed in his schovel.

From the time of Ammonius until the sixth century, this was almost the only system if philosophy publicly taught at Alexandria. It was brought into Greece by Plutarch, who renewed at Athens the celebrated academy, froin whence issued many illustrious philosuphers. The general principle on which this sect was founded, was, that truth was to be pursucd with the utmost liberty, and to be collected from all the different systems in which it lay dispersed. But none that were desirous of being ranked among these new liatunists, called in question the main doctrines ; those, for example, which regarded the existence of one Goul, the fountain of all things; the eternity of the world; the dependence of matter upon the Supreme Being; the nature of souls; the plurality of gods, \& C.

In the fourth century, under the reigh of Valentiniath, a dreadful storm of persecution arose against the Platonists: many of whom, being nccused of magical practices, and other crinues, were capitally convicted.

In the fifth century Proclus gave uew life to the doctrine of Plato, and restured it to its former credit in Greece; with whom concurred many of the Christian doctors, who adopted the Platonic system. The Platonic phulusophers were generally opposers of Christianity; but in the siath ceutury, Chalcidius gave the Pagan system an evangelical aspect; and those who, before it became the religron of the state, ranged themselves under the standard of Plato, now repaired to that ol Christ, without any great change of their system.

Under the emperor Jutinian, who istued a farticular edict, prohibiting the tuaching of philosuplyy at Athens, which edict sceins to have beetil Ievelled an modern Platonism, all the celebrated philosophers of this sect took refuge ainong the Persians, who wore at that time the enemies of Rome; atd though they returned from their voJuntary exile, when the peace was concluded between the Pcrsians and Romans, in 533, they could never recover their former credit, nor obtain the direction of the public schorols.

Platonism however prevailed among the Greeks, and was by them, and particulariy by Gemistius Pletho, introduced imo Italy, and established, under the auspices of Cosmo de Medicis, about the year 1439, who ordered Marsilius Ficinus to translatc iuto Latin the works of the most renowned Platonists.

PLATONISTS, the followers of Plato; otherwise called Academics, from Academia, the natne of the place that philosopher chuse for bis residence at Athens.

PLEIADI.S, an assemblage of seven stars in the neck of the constellation Taurus, the bull; though there are now only six of them visible to the naked cye. The largest of these is of the third magnitude, and called Lucido Pleiadum. -The Grecks fabled, that the name Pleiades was given to these stars from seven daughters of Atlas and Pleione, one of the daughters of Oceanus, who having been the nurses of Bacchus, were for their services taken up to heaven and placed there as stars, where they still shine. The meaning of which fable may be, that Atlas first observed these stars, and called them by the names of the daughters of his wife Pleionc.

PLENILUNILM, the full-moon.

PLENUM, in Physics, signifies that state of things, in which every part of space, or extension, is supposed to be full of matter : it opposition to a vacuum, which is a space devoid of all matter.-The Cartesians held the doctrine of an absolute plenum; namely on this priaciple,
that the essence of matter consists in extension; and ennsequently, there being every where extension or space, there is every where matter : which is little better than begging the question.

PLINTII, in Architecture, in flat square member in form of a brick or tile; used as the foot or foundation of columns and pullars, \&c.

Pl.OT, in Surveying, the plan or draught of any parcel of ground; as a field, farm, or manor, \&ce.

PIOTIING, in Surveying, the deseribing or laying down on paper, the several angles and lines, \&ce, of a tract of land, that has been surveyed and meawured. Plotting is usually performed by two instruments, the protractor and plotting-scale; the former serving to lay off all the angles that have been measured and set down, and the latter all the measured lines. See these two instruments under their respoctive names.

Plotteng Scale, a mathematical instrument chicfly uscd for the plotting of grounds in surveying, or setting off the lengths of the lines. It is either 6,9 , or 12 inches in length, and about an inch and half broad; being made of bus-wood, brass, ivory, or silver; those of ivory are the neatest.

This instrument contains various scales or divided lines, on both sides of it . On the one side are a number of plane scales, or scales of equal divisions, each of a different number to the inch; as also scales of chords, for laying down angles; and sometimes even the degrees of a circle marked on one edge, answering to a centre marked on the opposite edge, by which means it serves also as a protractor. On the other side are several diagonal scales, of different sizes, or different divisions to the inch; serving to take off lines expressed by numbers to three dimensions, as units, tens, and hundreds; as also a scale of divisions which are the 100th parts of a tiont. But the most useful of all the lines that can be laid upon this itastrument, though not always dons, is a line or plane scale upon the two "lposite edges, made thin for that purpose. This is a very useful line in surreying; for by laying the instrament down upon the paper, with its divided edge along a line upon whish are to be laid off several distances, for the places of off-sets, \&c ; these distunces are all transferred at once from the instrument to the fine on the proper, by making small marks or points againet the respectuve divisions on the edge of the scalc. See fig. 2 and 3 , plates 26 and 27.

Plottino-Table, in Surveying, is used for a plane table, as improped by Mr. Beighton, who has obviated inany inconvenictices atiending the use of the common plane table. See Philos. Truns, numb, 461 .

PLOUGII, or PLow, in Navigation, an ancient mathematical instrument, made of box or pear-tree, and used to take the height of the sun or stars, in order to find the latitude. This instrument admits of the degrees to be very large, and has been much esteemed by many artists; though now quite out of use.

Ploven-Mondoy, the first after Epiphany, or Jan. 6.
PLUMB-Line, a term emong artificers tor a line perpendicular 10 the horizon.

PLUMMET, Plumb-rulf, or Plemb-hinf, an instrument used by masons, curpenters, \&c; to draw perpendiculars; in order ta judge whether walls, $\& \mathrm{c}$, be upright, or planes horizontal, and the like.

PLUNGER, in Mechanics, a solid brass cylinder, used as a forcer in furcing pumps.

PL.US, in Algebra, the affirmative or positive sign + , signifying more or addition, or that the quantity following it is cither to be considered as a positive or affirmative quanlity, or that it is to be added to the other quantities ; sin $4+6=$ 10, is read thus, 4 plus 6 is equal to 10 . See Arfirnative Sign. The mure early writers of Algebra, as Lucas de Burgo, Cardan, Tiartaglia, \&c, wrute the word mosily at full length: afterwards this was contracted or abbreviated, using one or two of its first letters; which iutial was, by the Germans I thitak, corropted to the present character + ; which I find first used by Stifelius, printed in bis Arithmetic.

PLUVIAMETER, a machine for measuring the quantity of raill that falls. There is described in the Philos. Trans. (numb. 473), by Robert Pickering, under the namo of an Ombrameter, an instrumett of this kind. It consists of a tun funnel d_{i}^{*} whose surface is an inch square (fig. 6, plate 25); a flat bourd $a a$; and a glass tube $b 6$, set into the niddle of it in a groove; and an index with disistons $c c$; the board and tube being of any length at pleasure. The bore of the tube is about half an inch, which Mr. Picheting salys is the best size. Tbe machine is fixed in same free and open place, as the top of the house, $A \mathrm{c}$.

The rain gauge unployed at the house of the Royal Soe ciety is deseribed by Mr. Cavendish, io the Philus. Trans. for 1776, p. 384. The vessel which receives the rain is a conical funatl, strengehened at the top by a brass ring, 12 inches in diameter. The sides of the funnel and inner lip of the brass ring are inclined to the horizon, in an angle of above 65°; and the outer lip in an angle of above 50°; which aresuch degrees of sterpness, that there seerns no probatility either that any raill which falls within the funnel, or on the inner lip of the ring, shall dash out, or
 that any which falls on the outer lip shall dash iuto the funnel. The annexed figure is a vertical section of the funnel, ABC and ahe being the brass ring, ba and ba the iuner lip, and ec and be the outer.

In fixing pluviameters, care should be taken that the rain may have free access to them, without being impeded or overshaded by buildings, dec; und therefore the teps of houses are mostly to be preferred. Also when the quantities of rain collected in them, at difierent places, are compared together, the instruments ought to be fixed at the same height above the ground at both places; because at diffierent heights the quantitirs are always different, eren in the same place. And bence also, any register or account of rain in the pluviameter, ought to be accompanied with a note of the beight above the ground the instrumem is placed at. Siee ఇuantaty of Rais.

PNEUMATICS, that branch of natural philosophy which treats of the weight, pressure, and elasticity of the air, or elastic tluids, with the efferis arising from them. Wulfius, instead of preumntics, uses the term Aeromutry.This is a sister science to Hydrostaties; the one considering the air in the same manner as the other does water. And some consider pneumatics as a branch of nechanics; because it considers the air in motion, with the consequent effects.-For the nature and properties of air, see the article Ats, where they are pretty largely treated of.

To which may be added the following, which respects more particularly the science of pneunatics, as contained in a few proposinious, and their corollarics.

Phop. 1. The Air is a heary fluid body, which surrounds and gravitates on atl parts of the earth's surface.

These propertics of air are proved by experience. That it is a fluid, is evident from its easily vielding to any the least foree impressed upon it, with linle or no sensible re-sistance.-But when it is moved briskly, by any means, as by a fan, or a pair of bellows; or when any body is moved swiftly through it; in these cases we become sensible of it as a body, by the resistance it makes in such motions, and also by iss impelling or blowing away any light substances. So that, being capable of resisting, or moving other bodies by its impulse, it must isself be a borly, and be heavy, like all other bodies, in proportion to the matter it contains; and therefore it will press upon all bodies that are placed ender it.-And being a fluid, it will spread itself over the entire surface of the earth; also like other thids it will gravitate upon, and press every where upon the carth's surface.

The gravity and pressure of the air is also evident from many experiments. Thus, for instance, if water, or quicksilver, be poured into the tube Acr, and the air be sulfered

to press upon it, in both ends of the tube; the fluid will rest at the same height in both the legs: but if the air be drawn out of one end as 5 , by any means; then the air pressing on the other end A, will press down the fluid in this leg at n , and raise it up in the other to d , as much higher than at a , as the pressure of the air is equal to. By which it appears, not only that the air does really press, but also what the quantity of that pressure is equal to. And this is the principle of the barometer.

Prop. II. The air is also an elastic fluid, being condensible and expanvible. And the law it observes in this respect is this, that its density is ativays proportional to the force by which it is compressed.

This property of the air is proved by many expuriments. Thus, if the handle of a syringe be pushed inwards, it will condense the inclosed air into a less space; by which it is shown to be condensible. But the ineluded air, thus condensed, will be felt to act strongly against the hand, and to resist the foree compressing it more and more; and on withdrawing the hand, the handle is pushed back again to where it was at first. Which shows that the'air is clastic.

Agrain, fill a strong bottle half full with water, and then insert a pipe into it, putting its lower end down hear to the bottom, and cementing it very elose round the mouth of the bottle. Then if air be strongly injected through the pipe, as by blowing with the mouth or otherwisc, it will pass through the water from the lower end, and ascend up intu the part before occupied by the air at o,

Vol. II.
and the whole mass of air become there condensed, because the water is not easily compressed into a lens space. But on removing the foree which injected the uir at F, the water will begin to rise from thence in a jet, belng pushed up the pipe by the increased clasticity of the air 6 , hy which it presses on the surface of the water, and forces it through the pipe, till us much be expelled as there was air forced in; when the air at c will be re duced to the same density as at first, and, the balance being restored, the jet ceases.

Likewise, if into a jar of water AB, be inverted an emply glass tumbler c, or such like; the water will enter it, and

partly fill it, but not near so high as the water in the jar, compressing and condensing the air into a less space in the upper part c, and causing the glass to make a sensible resistance to the hand in pushing it down. Hut on removing the band, the elasticity of the internal condensed air throws the glass up again.-All these showing that the air is condensible and clastic.
Again, 10 show the rate or proportion of the elasticity to the condensation; take a long slender glass tube, open at the top A, bent near the bottom or close end \mathbf{B}, and equally wide throughout, or at least in the part mD (2d fig. above). Pour in a little quicksilver at A, just to cover the bottom to the bend at CD, and to stop the communication between the external air and the air in ED. Then pour in more quicksilver, and mark the corresponding heights at which it stands in the two legs: so, when it ristes to H in the open leg Ac , let it rise to E in the close one, reducing its included air from the natural bulk an to the contracted space Be, by the pressure of the column ne; and when the quichsilver stands at t and E, in the open leg, let it rise to F and o in the other, reducing the air to the respective spaces BF, BG, by the weights of the columns If, kg . Then it is always found, that the condensations and clasticities are as the compressing weights, or columns of the quicksilver and the almosphere together. So, if the natural bulk of the air ed be compressed into the spaces BE, n, BC, or reduced by the spaces DE, DF, DG, which are $\frac{1}{4}, \frac{1}{1}, \frac{1}{4}$ of $B D$, or as the numbers $1,2,3$; then the atmosphere, together wilh the corresponding column $\boldsymbol{H e}, \mathrm{f}, \mathrm{K} \mathrm{g}$, will also be found to be in the same proportion, or as the numbers $1,2,3:$ and then the weights of the quicksilver are thus, viz, ne $=\frac{1}{2} A, f=A$, and $\mathrm{kg}=3 \mathrm{~A}$; where a denotes the weight of the atmosphere. Which shows that the condensations are directly as the cotopressing forces. And the clasticities are also in the same proportion, since the pressurcs in AC are sustnined by the elasticitios in n $\mathrm{D},-$ From the foregoing principles may be 21)
deduced many usctul remaiks, as in the following corollaries.

Corol. 1. The space that any quantity of air is confined in, is reciprocally as the force thal compresses it. So, the forces which contine a quantity of air in the cy-

lindrical spaces AG, BG, cG, nre reciprocally as the same, of reciprocally us the beights $A D, B D, C D$. And therefore, if to the two perpendicular lines $A \mathrm{D}, \mathrm{DH}$, as asymptotes, the hyperbola tKL be described, and the ordinates A1. BK, CL be drawn; then the forces which confine the air in the spaces AG, BG, CG, will be as the corresponding ordinates AI, BK, CL, since these are reciprocally as the abscisses $A D, B D, C D$, by the nature of the hyperbola.

Corol. 2. All the air near the carth is in a state of compression, by the weight of the incumbent atnosphere.

Corod. 3. The air is denser near the earth, than in high places; or denser at the foot of a mountain, than at the top of it. And the higher above the earth, the rarer it is.

Corol. 4. The spring or elasticity of the air, is equal to the weight of the atmosphere above it ; and they will jroduce the same effects; since they are always sustaitied and balanced by each other.

Corol.5. If the density of the air be incroased, preserving the same levat or temperature ; its spring or elasticity will als, be increased, and in the same propertion.

Corol. 6. By the gravity and pressure of the atmoophere upon the surfaces of fluids, the fluids are made to rise in any pipes or seswels, when the spring or pressure within is diminishecl or taken off.

Prop. 111. Heat increaser the elavicity of the gir, and cold diminishes it. Or heat exprads, and cold contracts and condenses the air.

This property is also proved by experience.-Thus, tic n bladder very close, with some air in it; and lay it before the fire ; then as it warns, it will more atsd more distend the bladder, and at lust burst it, if the heat be continued and increased bigh enougb. But if the bladder be removed from the fire, it will contract again to its former state by cooling.- It was on this principle that the first air-balloons were made by Montgolfier: for by leatug she air within them, by a fire underneath, the hot air distends then to a size which occupies a space in the atmorsphere whose weight of common uir exceeds that of the balloon.

Also, if a cup or glass, with a little rir in it, be inverted into a vessel of water; and the whole be heated over the fire, orotherwise: the air in the top will expand tall it fitl the glass, and expel the water out of it ; and part of the air itself will follow, by continuing or increasing the heat. - Many other experiments to the same effect might be adduced, all proving the properties mentioned in the proposition.

Schol. Hence, when the force of the elasticity of the air ts consilered, regard must be had to its heat of temperature ; the same quantity of air leing more or less elastic,
as it lueat is more or less. And it has been foumd by enperiment that its clasticity is increased at the following rate, vix, by the 435 th part, by each degrec of heut expressed by Fahrenheit's thermometer, of which there are 180 between the freezing and boilugg point. It has also been found (Pbilos. Trans. 1777, pa. 560 \&cc), that water expands the 6666th part, with each degree of heut; and mercury the 9600 th part by each degree. Moreover, the relative or specific gravitics of these three substances, are as folluw :
$\left.\begin{array}{lr}\text { Air } & 1.238 \\ \text { Water } & 1000 \\ \text { Mercury } & 13600\end{array}\right\}$ when the barom. is at 30,
and the thermom. at 55.

Also these numbers are the weights of a cubic foot of each. in the same circumstances of the barmeter and thermometer.

1'rop. IV. The weight or pressure of the atmosphere, upon any base at the surface of the earth, is cqual to the weight of a column of quichiviter of the sume buse, and its height between 25 and 31 inches.

This is proved by the barometer, an itatrument which measures the pressure of the air ; the description of which sec under its proper article. For at some seasons, and in some places, the air sustains and balances a column of mercury of about 28 inches; but at others, it balances a column of 29 , or 30 , or near 31 inches high; seldom in the extremes 28 or 31, but commonly about the racans 29 or 30, and indeed mostly near 30. A variation which depends partly on the difierent degrees of heat in the air near the starface of the cartb, and partly on the commotions and changes in the atmosphere, from winds and other causes, by which it is accumulated in some places, and slepressed in others, being thereby rendered denser and heavier, or rarer and ligher; which changes in its state are almost continually happening in any one place. But the medium state is from $29 \frac{1}{3}$ to 30 inches.

Corol. 1. Hence the pressure of the atmosphere on every square inch at the earth's surface, at a medium, is very near 15 pounds avoirdupois. For, a cubic fool of mercury weghing nearly 13600 ounces, a cubic inch of it will weigh the 1728 th part of it, or almost 8 ounces, or hali a pound, which is the weight of the atmosphere for every inch of the barometer on a base of a square inch; and therefore 29! ${ }^{\frac{1}{2}}$ inches, the medium height of the barometer, weighs ahaust 15 pounds, or rather $14 \frac{1}{2} 1 \mathrm{~b}$ very nearly.

Ciral.2. Hence also the weight or pressure of the ntmosphere, is equal to that of a column of water from 32 t/ 35 feet high, or ou a mediunu 33 or 34 feet high. For water and quickislier are in weight acarly as 1 to 13.6 ; so that the atmosphere will balance a column of water 13.6 times higher than one of quicksilver; consequently 13.6×30 inches $=408$ inches or 34 feet, is mear the medium beight of water, or it is more bearly $33 \frac{1}{4}$ feet. And hence it appears that a common sucking pump will not raise water higher than about 34 feet. And thut a syphon will not run if the perpendicular beight of the top of is be more than 33 or $3+$ feet high.

Corol.3. If the air were of the same uniform density, at every leeight, to the top of the atmosphere, as at the surface of the earth; its altitude would be about $5 \frac{1}{4}$ miles at is medium. For the weights of the same volume of air and water, are nearly as 1.232 to 1000 ; therefore as $1 \cdot 232: 1000:: 3 \rightarrow$ feet : 27600 feet, or $5 \frac{1}{2}$ miles very nearly. And so high the atmosphere would be, if it wese
all of uniform deosity, like water. But, from its expansive and elastic quality, it becomes continually more and more rare the farther above the earth, in a certain proportion which will be treated of below.

Corol. 4. From this prop. und the last, it follows that the height is always the same, of a uniform atmosplicere above any place, which shall be ull of the uaform density with the air there, and of equal weight or pressure with the real height of the atmospbere above that place, whether it be at the same place at different times, or at any different places or heights above the earth; and that height is always about 27600 feet, or $5 \frac{1}{2}$ miles, as found above in the $9 d$ corollary. For, as the density varies in exact proportion to the weight of the column, it therefore requires a column of the same height in all cases, to make the respective weights or pressures. Thus, it w and w be the weights of atmosplicre above any places, D and d their densities, and u and h the heights of the uniform columns, of the same densities and weights: Then $\boldsymbol{n} \times \mathrm{D}=\mathrm{w}$, and $h \times d=v$; therefore $\frac{w}{\mathrm{D}}$ or H is equal to $\frac{20}{d}$ or h; the temperature being the same.
Prop. V. The density of the atmosphere, at differens heights above the earth, decreases in such a proportion, that when the heights increase in arithmetical progression, the denstics dectease in geometrical progremion.

Let the perpendicular line AP, erected on the earth, be conceived to be divided into a great number of very small parts A, B, C, D, \&C, fortaing so many thin sarata of air in the atmosphere, all of different density, gradually decreasing from the greatest at A : then the density of the several strata A, B, C, D, \& C, will be in geometrical progression decreasing.

For, as the strata A, B, C. \&c, are all of equal thickness, the quantity of matter in rach of them, in as the density there; but the density in any one, being as the compressing force, is as the weight or quantity of matter from that place upward to the tup of the atmosplecere; therefore the quantity of matter iu each stratum, is also as the whole quantity from that place upwards. Now if froin the whole weight at any place as B , the
 weight or quantity in the stratum a be subtracted, the remainder will be the weight at the next higher stratum c; that is, from each weight subtracting a part which is proportional to itself, leaves the next weight; or, which is the same thing, from cach density subtracting a part which is always profortional to itself, leaves the next density. But whell any quantities are contiaually diminished by parts which are proportional to themselves, the remainders then l,rm a series of continued proportionals; and consejucutly these densties are in geometrical progression. Thus, if the first density be D , and from each there be taken its nth part; then there remains its $\frac{n-1}{m}$ part, or the ${ }_{n}$ part, putting m for $n-1$; and therefore the seties of densities will be $n, \frac{m}{n} \mathrm{n}, \frac{m^{7}}{n^{i}} \mathrm{D}, \mathrm{mr}_{n^{2}} \mathrm{D}, \& \mathrm{c}, \frac{\mathrm{m}}{\mathrm{n}}$ beugg the common ratio of the suries.
Shol. Hicause the termis of an aritbmetical series are proportional to the logatithms of the terms of a geomeirical series; therefore different altitudes above the earth's
surface, are as the logarithms of the densities, or weights of air, at those altitudes. So that, if t denote the density at the altitude, a, and d the density at the alitude a; then a being as the logarithm of D , and a as the logarithin of d, the dif. of altitude $\Delta-a$ will be as
the log. of $D-\log$. of d, or as \log. of $\frac{D}{d}$
And if $\mathrm{A}=0$, or D the density at the surface of the earth, then any aititude above the surface a, is as the log. of $\frac{p}{d}$. Or, th general, the \log. of $\frac{\pi}{d}$ is as the altitude of the one place ahove the wther, whether the lower place be at the surface of the earth, or any where else.

And from this property is derived the method of determining the lieights of mountuins, and uther enninences, by the barometer, which is an instruinent that measures the weight ordensity of the air at any place. Sce Barometer. Furby tuking with this insirument, the pressure or density at the frout of a hill for instance, and again at the top of it, the difference of the logarithms of these two pressures, or the logarithms of their quotient, will be as the difference of altitude, or as the height of the hill; supposing the temperatures of the air to be the same at both places, and the gravity of air not altered by the different distances from the earth's centre.

Sec more on this head under thearticles Atmosphere and Baruaeter.

By the weight and pressure of the atmosphere, the effect and operations of preumatic engines may be accounted for, and explained; such as syphons, pumps, barometers, \& c. See each of these articles, also AirR.

Pneumatic Engine, the same as the Ata Pump.
POCKET Electrical Apparatus.-Tbis is a contrivanco of Mr. Willium Jones, in Hulborn, the form of which is represented in plate 28 , fig. 4

This small machine is capable of a tolerably strong charge, or accumulation of electricity, and will give a stnall shock to one, two, three, or a greater mumber of persons. A is the Leyden phial or jar that holds the charge. B is the discharger to discharge the jar when required nithout electrifying the person that holds it, \mathbf{c} is a ribbon prepared is a peculiar manner so as to be excited, and communicate its electricity to the jar. D are two hair, \&ce, skin rubbers, which are to be placed on the first and middle fingers of the left hand.

To charge the Jar. Place the two finger-caps n on the first and middle finger of the left hand; hold the jar a at. the sume time, at the joining of the red and black on the outside between the thumb and first finger of the same hand ; then take the ribbon in yuur right hand, and steadily and gently draw it upwards between the two rubbers D, on the two fingres; taking care at the same time, that the brase ball of the jar is kept nearly close to the ribbon, while it is passing through the fingers. By repeating this operation twilve or fourieen times, the electrical fire will pass into the jar which will become clarged, and by placing the discharger c against it, as in the plate, you will see a sensible apark pass from the ball of the jar to that of the discharger. It the apparatus be dry and in good order, you will hear the crackling of the fire when the ribboe is passing through the fingers, and the jar will dischange at the distance represented in the figure.

To clecirify a Persun. You must desire bim to take the 21) 2
jar in one hand, and with the other tonch she hnob of it: or, if diversion is intended, desire the person to smell at the knob of it , in expectation of smelling the scent of a rose or a pink; this last mode has occasioned it to be sometimes called the Magic Smeiling Bottle.

Poetical. Rising and Setling. Sce Rising and Sext-ing.-The uncient poets, referring the rising and setting of the stars to that of tiee sun, make three kints of rising and setting, viz, Cosmical, Acrunicul, and lichacal. beceach of these words in its place.

POINT, a terin used in various arts nal sciences.
Point, in Architecture. Arches of the third Point, and Arches of the fourth Point. Sce Arcues.

Put st , in Astronomy, is a term applied to certain parts or places marked in the heavens, and distinguished by proper terms. The four grand points or divisiuns of the hori201, viz, the east, west, north, and south, are called the Cardinal Ponts.-The zenith and nadir are the Vertical Points.-The points where the orbits of the planets cut the plane of theecliptic, nre called the Nodes. - The points whete the celiptic and equator intersect, are called the Equinoctial Points. In particular, that where the sun asectids t: wards the north pole is called the Vernal Point; and that where he descends towards the sonth, the Antumual Point. -The highest and lowest points of the ecliptic are called the Sulstitial Points. Particularly, the furmer of them the Estival or Summer Point ; the latter, the Brumal or Winecr Puint.

Points, in Flectricity, are those acute terminations of bodies which facilitate the passage of the electrical fluid either from or to such bodies. Mr. Jallibert was probably the first person whoobserved that a body pointed at one end, and round at the other, produced different appearances on the sarne body, according as the pointed or round end was presented to it. But Dr. Franklin first observed and evinced the whole effect of pointed borlies, both in drawing and throwing off electricity at greater distaness than other budies could do it; though lie candidly acknowledges, that the power of points to throw off the clece tric fire was communicated to hitn by his friend Mr. Thomas Hophinson.

Dr. Franklin electrified an iron sloot, 3 or 4 inches in diameter, and oborred that it would not attract a thread when the point of a needie, communicating with the earth, was presented to it; and be found it even inpossible to reectrify an iron shot when a sharp needle lay upon it. This remarkuble property, prasessed by pointed bodies, of gradually and silently receiving or throwing off the electric fluid, has been evinced by a variety of other familiar experiments. Thus, if one hand be applied to the outside coating of a large jar fully charged, and the point of a needle, held in the sther, be directed towards the knob of the jar, and moved gradually mear it, till the point of the needle touch the knob or ball, the jar will be entirely discharged, so as to give no shock at all, or one that is hardly sensible. In this case the proint of the needle has gradually and silently drawn away the superabundunt electricity from the clectrifued jar.

Further, if the knob of a brass rod be held at such a distance from the prime conductor, that sparks may easily escape from the latter to the farmer, while the machine is in motion; then if the point of a needle be presented, though as twice the disance of the rod from the conductor, no more sparks will be seen passing to the rod. When the needle is removed, the sparks will be sen; but on
presenting it again, they will again disapprar. So that the point of the needle draws off silently almont all the fluid, which is thrown by the cylinder or globe of the machine upon the plime conductir. This experiment nuy be varied, ly tiving the wedle upon the pime conductor will the point "pward; and then, though the kuob of a discbarging rod, or the kuuckle of the finger, be brought very near the prime conducror, and the excitation be very strong, little or no sparin wilt be perecived. - The influence of points is also evineed in the nunusing experituent, connmonly called the electucal home-race, and many others. Ser Tuesder-homse.

The late Mr. Ilenly exhibited the efficacy of puinted bodics, by suspending a large bladder, well blown, and covered with gold, silver, or brass leaf, by weavs of gumwater, at the end of a silken thread (or 7 feet long, hunging from the ceiling of a room, and dectrifying the bladder by giving it a strong spark with the hmob of a clanged botile : on presenting to it the himes of a wise, it cansed the bladder to move towads the knob, and whens nearly in contact gave it a spark, thus disclarging its electricity. lby giving the bladder unother clarge, and presenting the point of a needle to it, the bladier was mot mutracted by the point, but rather receded from it, especially when the needte was suddenly presented towards il.

But experiments ermeing the efficacy of pointed bodirs tor silently receiving or throwing off the electric fluid, way be infinitely diversitied, according to the tancy or comenience of the electrician. It may be wbe ived, that in the case of points throwing off or receiving electrocity, a current of air is semsible at an electrified puint, which is always in the direction af the point, whether the electricity be positive or negative. A fict which has bern well ascertained by many electricians, und particularly by Dr. Priestley and Sig. Weccaria. The former contrivel to exhibit the influence of this current on the flame of a candic, presented to a printed wire, eleetrified negatively, a well as positively. The blast was in both cases nlike, nend so strong as to lay bare the greatest purt of the wich, the Aame being driven from the point; and the cffect was the same wbether the electric fluid issued out of the point or entered into it. He farther evinced this phenomenon by means of thin light vanes; and he found, as Mr. Wilson had before observed, that the vanc, would not turn in vacue, nor in a close unexhaustel receiver where the air hat no free circulation. Aod in twech the same manitre, Beccaria sxhibited to sense the influence of the wind or current of air driven from points.

As to the Theory of the phenomena of points, these are accounted for in a varicty of wass, by dificrent authors, though perhaps by none with perfect satisfaction. See Franklin's writings on Electricity; I.ord Mahon's Pranciples of Electricity, 1779; Becrarin's Artificial Flectricity, 1776, pa. 33t; and Priestley's History of Viketricity, vol. I, pa. 191, edit. 1775.

As to the Application ot the doctrine of points; it may be observed that there is not a more important fact in the bistory of electricity, than the use to which the diseotery of the efficacy of pointed bodies has been applied. Dr. Franklin, having ascertained the identity of electricity and lightning, was presrntly led to propoce a chiap and ensy method of sccuring buildings from the damage of lightning, by fixing a pointed metal rod higher than any part of the building, and communicating with the ground, or withthe nearest water. And this contrivance was actnally
expcuted in a variety of cases; and has ustally been thought an excellont preservative against the terrible effects of lughtwing.
some few instances however having occurred, in which buildings have been struck and danaged, thongh provided with these conductors; a controversy arose with regard (o) their expediency and utility. In this controversy Mr. Berjamin Wibson took the lead, and Itr. Musgraws, and some few other electricions, the least acquainted with the subject, cuncurred with him in their opprostion to pointed clownted conductors. These gentlemen allege, that every point, as such, salicits the lightning, and thus contributes bot only toincrease the quantity of every aciual discharge, but also frequently to occasion a disclaarge when it might tut ontarwise buve happened: whereas, say they, if instead of pointed consluctors, those with blumerl terininations were used, they would as effictually auswer the purpose of conveying away the lightning safely, without the same tendency to increase or invite it. Accurelingly M. Wilson, in a loter to the marquis of Rockingham (Philos. Trans, vul. $5 t_{\text {, art }} 44$), exprvases his opinion, that, in order to prevent hghtning trum doing mischief to bigh buildings, large magazmes, and the like, instead of the elevated exterual conductors, that, on the inside of the highest part of such building, and within a fisut or two of the sop, it may be proper to fix a rounded bar of metal, and to continue it duwn along tle side of the wall to any kind of monsture in the ground.

On the other haml, it is urgal by the advocates for pointed conductors, that points, instead of tucreasing an uctual discharge, really preveut a discharge where it would otherwise happen, and that blunted conductors tend to invie the clouds charged with lightniag. Aud it seems to be a cortain lact, that though a sharp point will draw off a charge of electricity silently at a much oreater distance than a knob, yet a knob will be struck with a full explosion or shock, the charge being the same in both cases, at a greater distance than a sharp point.

The efficacy of pointerl bodies for preventing a stroke of lightring, is ingeniously explained by Dr. Granklin in the following manner:-An rye, he say 5,50 situated as to view horizontally the underside of a thunder-cloud, will see it very ragged; with a number of sepurate frugmenty or small cloutis one under another; the lowest somelimes not far from the earth. 'Fliese, as so many steppingstones, assist in conducting a strohe betwenn a cluud and a building. To represent these by an experionett, te sakes two or three lucks of fine loose cotton, und connects one of them with the pronue conductor by a fine thread of 2 iuches, another to that, and a third to the second, by like throads, which may be spun out of the same cotton. 'Ihen by turning the glote, all these locks will extend themselves towurds the table, as the lower small clouds do towarals the earth; but on prescnting a sharp point, erect under the lowest, it will slirink up to the second, the secand up to the first, and all tugether to the prime consluctor, where they will continue as long as the point continues under them. May not, be adds, in like mamwer, the small electrificd clouds, whesecquilibrium with the earth is swon restored by the point, rise up to the muin budy, and by that means occasion so lagge a vacancy, as that the grand cloud cannot strike in that place? letters, fin. 121.

Mr. Henly ivo, as well as scereral other persons, with a view of determining the question, whether puints or knobs are to be pruferred for the terminations of conductors,
made several experiments, showing in a variety of instances, the efficacy of puint, in solently drawing of the elecrricity, and preventing strokes which would happen to huobs in the satne situation. Philos. Trans, vol. 4, part 2, art. 18. Secabo Thu x der-House.

Indeed it has been universally allowed, that in cases whete the quaminy of electricity, with which thundercloudx are charged, is small, or when they move slowly in their passage to and over a building, poimed conductors, whel draw off the electrical fluirl shemly, within the distance at which rounded ends will explowe, will gradually exhaust them, and hus coutribute to prevent a stroke and preserve the buildings to which they are annexed.
But it has been said by those who are averse to the use of such conductors, that if clauds, of great extent, and highly electrified, should be driven direcily over thetn with grent velocity, or if a cloud hanging directly over buildings to which they are annexel, suddenly recrives a charge by explosion from mother cloud at a distance, so as to enable it insantly to strike into the carth, these pointed conductors must take the explosion; on account of their greater readiness to admit electricity at a much. greater distance than those that are blunted, and in proportion to the difference of that striking distunce, do mischief insteat of good: und therefore, they add, that such pointed conductors, though they may be sometinues adiantugeus, are yet at otber times prejudicinl; und that, as the purpose for which comaluctors are fised upon buildings, is not to protect them from one paricular kind of clouts only, but if possible from all, it cannot be advisable to use that hind of conductors which, if they diminish danger on the ene hand, will increase it on the other. Ihesides, it is alleged, that of pointed conductors are attended with any the slightest degree of danger, that danofer must be considerably augmented by carrying them high up into the nir, and by fixing thom upon every angle of a building, and by making them project in every direction. Such is the reayoning of Dr. Musgrave: sce Lis paper in the Pbilos. Truths. vol. 68, part 2, urt 36.

Alr. Wilson tor, dissenting from the report of a comanitere of the Royal Society, appointed to inspect the damage dome by lightning to the house of the Besral of Ordnance, at Purflevt, in 1777, was led to justify his dissent, and to disparage the use of poimed and elevatrd contuctors, by means of a magniticent apparntus which be construcied, and with which be might produce etifects similar to those that had happened in the case referred to the consideration and decision of the committee. With this siew lie procured a model of the Bosrd-house at Purfleet, resembling it as nearly as possible in every essential appendage, and furnished wibh conductors of different lengths and terminations. Aud to construct a subsitute for a cloud, he joined together the broall rims of 130 drums, forming together a cylinder of 155 fert in length, and above 16 inches in diameter; and this immense cylinder, of about 600 square feet of coated surfice, was connected occasionally with one end of a wire 4800 leet long- As this bulky apparatus, representing the thundercloul, could not consenicntly be put in motion, be contrised to accomplish the saine end ly moving ihe model of the building, with a velocity answering to that of the clond, which he states, at a moderate conputation, to be about 4 or 5 iniles an hour. This apparatus was charged by a machine with one glass cylinder, about 10
or 11 feet from its nearest end; and the whole of the apparatus was disposed in the grent roon of the Pantheon, and applied to use in a vanely of experiments. But it is impossible within the limits of shits artucle to do justice to Mr. Wilson's experiments, or to the inferences which be deduced from them: we can only observe, that nost of his experiments, in which the model of the house, which was passed swiftly under the artificial clond, and having annexed to it either the pointed or blunt conductors at the same or different heights, were intended to show, that pointed conductors are struck at a greater distance, and with a higher elevation, than the blunted ons: aud form all his experiunents made with pointed and rounded conductors, proxided the circumstances be the same in troth, he infers, that the sounded wnes ure much the safer of the two ; whether the lightong proceeds from one cloud or from suveral; that these are will sufer which rise little or nothing above the highest part of the building: und that this safety anises from the grealest resistance excred at the larger surface. See I'hlus. Trats. for 1778 , pa. ใ3?.

The committce of the Royal Socicty however, which was composed of mine of the most distinguished electricinns in the kingdon, and to whom was reierrid the consideration of the most effectual method of speuring the powder-maguzines at Purflect against the effects of lightning, exprest their united opinion, that eltevated sharp rods, constructed and disposed in the manner which they direct, are preferable to low conductory terminated in rounded enus, knots, or bulls of metal; and that the experiment and reasonings, made and alleged to the contrary by Mr. Wilson, are incouclusive.

Mr. Nairtue also, in order to obviate the objections of Mr. Witson and others, and to sindicate the preference generally piven to high and pointed conductors, constructed a inuch emore simple apparatns than that of Mr. Wilson, with which lie made a number of well-disigmed and well-conducted exproinents, which apprar to prove the superiority of the puinted conductor ns faras it is capable of being proved by an artificial electrical apparutus. From these last experiments it appears, that though the point was struck by means of a swift motion of the artificial cloud, yet a small ball of 3 tenths of an inch diameter was struck further off than the point, and a larger ball at a much greater distance than eirber, even with the swiftest motion, Upon the whole, Mr. Nuirne seems to be justuied in preferrime elevated puinted conductors; next th them, those that are pointed, though they rise but hittle above the highest part of a building; and after them, those that are twribinated iu a bull, and placed esen with the highest part of the buitding. See Pinlus. Trans. $17 / 78$, pa. 82.3.
On the other part, Dr. Musgrave, not yet satisfied, gase in noulfer paper, being "Rcasuns fon dissenting from the Report of the Committec appointed to consider of Mr. Wihon's Experoments; inclading Remarka on some Fixperiments ethibited by Mr. Nairne;" which is inserted, by mistake, before Mr. Natirne's paper, being at pa. 801 of the vame velhtore.

And turtwre. Mr. Wilson has anolher paper, on the same subject, at pa, 999 of the same vil. of Puilos. Trans. for 1778 , entuted, "N.w Eaperiments upon the Leyden Pl:ial, respechang the termination of conductors;" reprating alvel asserting his furmer objections and reasonings.

In the Philos. Trans. tuo, for 1779, pa. 45t, Mr. Wil-
liam Swiit has a paper, further prosecuting this subject ; making various experiments with simple and ingenious machinery, with models of housce and clouds, and with various kinds of conductors. From the experiments be infers in gencral, that "the whole current of these experiments tends to show the preference of poins to balls, in order to diminish und draw off the electric matter when excited, or to prevent it from uccumuinting; und consequently the propricty or even necessity of terminating all conductors with points, to make them usfol to preveat damage to buildings from lighming. Nay the very construction of ull electrical machmes, in which it is necessary to round all the prarts, and to avoid making edges and points which would hander the matter foom being excited, will, I imagine, on reflection, be anather corroborating proof of the result of the experiments themselves."

Thene were other communications made to the Royal Sociely on the important suliject of conductors, somo of which were recetved, and others rejected. On the whole, this contest turned wut one of the most extraordinary that ever was ugtentel in the Socrety; producing the most temarkable dispulev, ditiferences, and strange consequences. that ever the Sucwty experienced saise it bad existence; cons quences wbich maniferted themselve's in various instances for many years after, and which continue to this very day. All which, with the various secret springs and astonishing intrigues, may probably be given to the public on some uther uccasion.

Potnt, in Geometry, aconding to Euclid, is that which has no parts, or is indivistble; bcing void of all extension, buth its to length, breadth, and dipth.

This is what is otherwise called the Mathematical Point, teing the intersection of two lincs, and is only conceived by the innagination; yet it is in this that all magnitude tegins and ends; the extemes of a line boing points; the extromes of a surfuce, lines; and the extremes of a solid, suffares. And bence some define a point, the ine ptise of magnitude.

P'roportion of Mathemutical l'orvts. It is a popular maxim, that all infinites are equal; yet is the maxim false, whetier of quantitics infiutely grvat, or infinitely Intie. Dr. Halley, and others have shown that there are infinite quantities which are in a finite propertion to cach other; and some that are infinitely greater than others. Sce In rinite: Duanticy.

And the same is shown by Mr. Robarts, of infinitely small quantities, or mathematical Points. He demonstrates, for instance, that the points of contact between circles and their tangents, ure in the subduplicate ratio of the diameters of the circles ; that the point of comaet between a splere and a plane is infinitely greater thun between a circle and a line; and that the puints of contact in spheres of different magnitudes, are to each other as the diameters of the spheres. Philos. Trans. vol. 27, pa. 170.

Conjugate l'ourt, is used for that point into which the conjugate oval, belonging to some kind of curves, vanishes. Muclaurin's Algebra, pa. 308.

Point of Contrary Fienure, \&ec. See Isplexion, Rethogradateon ot Retheriakssion, \&c, of curies.

Poists of the Contpass, or Hurizon, \& c , in Cicograplyy and Nusigation, are the poitts of division when the whole circle, quite arcoud, is divided into 32 cqual parts. These points are therefore at the dintance of the 32 d par: of the circle, or $11^{\circ} 13^{\prime \prime}$, from each other: hence $5^{\circ} 37^{\prime} \frac{1}{2}$ is the
distance of the half points, and $2^{\circ} 48^{\prime} \frac{3}{3}$ is the distanec of the quarter points. Sce Compass. The principal of these are the four cardinal points, rast, west, north, and south.

Point is also used for a cape or headland, jutting out into the sca.-The seamen say (ww points of land are one in another, when they are in a right lime, the one behind the other.
Poivt, in Optics. As the
Potst of Concourse or Concurremic, is that in which converging rass meet; and is usually cafled focus.

Point of Dispersion, Incidence, Reflection, Refraction, and Radiant Poist. See these several articles.

Point, in Perspective, is a tern used for various parts or places, with regard to the perspective plane. As, the

Potst of Sight, or of the Eye, called alsos the Principal Point, is the point on a plane where a perpendicular from the eye meets it. See Prraprctive. Some authors, bowever, by the Point of Sight, or Vision, mean the point where the eye is actually placed, and where all the rays terminate. See lenspective.

Point of Distance, is a point in a horizontal line, at the same distance from the principal point as the cye is from the same. See Perspretive.

Third Poist, is a point taken at diseretion in the line of distance, where all the diagonals meet that are drawn from the divisions of the geometrical plane.

Objective Poist, is a point on a geometrical plane, whose representation on the perspective plane is required.

Accidental Point, and Vitual Point. See Accidental add Visval.

Point of View, with regant to Building, Painting, \& c , is a point at a certain distance from a building, or otber object, where the cye has the most advantageous siew or prospect of the same. And this point is usually at a distance equal to the height of the building.

Potst, in Pbysics, is the smallest or least sensible object of sight, marked with a pen, or point of a compass, or the like. This is popularly called a Physical point, and of such does all physical magniuude consist.

Point-Blance, Point-Blank, in Gumery, denotes the horizontal or level position of a gun, or having its muzzle neither elevated nor depressed. And the peint-blanc range, is the distance the shot gocs, before it strikes the level ground, when discharged in the borizontal or peintblane direction. Or sometumes this means the distance the ball goes horizontally in a straight-lined directon.

POINTING, in Artiliery and Ginnery, is the laying a piece of ordnance in any proposed direction, either horizontal, or elevated, or depressed, to nny angle. This is usually effected by means of the gunner's quadrant, which, being applied to, or in, the muzzle of the piece, shows by a plummet the degree of eleration or depression.

Pointisg, in Navigation, is the marking on the chart in what point, or flace, the vessel is. - This is done by means of the latitude and longitude, after these are known, or found by observation or computation. Thus, draw a line, with a pencil, across the chart according to the latitude; and another across the other way according to the Ingitude; then the intersection of these two lines, is the point or place on the chart where the ship is; which is then marked black with a pen, and the pencil lines rubbed nut. From the point or place, thus found, the chart readily shows the direct distance and course run, as also that still idrun to the intended port, \&c.

POLAIt, something that relates to the poles ot the worlht : as polar virtue, polar tendency.

Polar Circtes, are two lesser circles of the sphere, or globr, ose about each pole, and at the same distance from It as is equal to the sun's grentest declination or the nbliquity of the ecloptie; thai is, at present 23° 虫起-The space included within each polar circle, is the frigid zone; and to every part of this sprace, the sun never sets at some time of the year, and never rices at another time; each of these boing a longer duration as the place is nearer the prole.

Polas Dials, are such as have their planes parallel to some great circle passing through the poles, or to some one of the hour-circles; so that the prole is weither elevated above the plane, nor depressed below it.-This dial, therefure, can have no contre; atal consequently its syle, subatyle, and hour-lines, are paraltel-Thss whll therefore be an horizontel dial to those who live at the equator.

Polat projecton, iv a representithon of the carth, or heawens, projected on the plane ot one of the poline circles.

Pooman Hegione, are these parts of the earth which lie near the north and south poles.

POLAAITY, the quality of a thing having poles, or pointing to, or respecting some pole: as the magnetic needte, \&c.-By heating an iron bur, and letting it cool again in a vertical positoon, it acquires a polarity, or magesnetic virtue: the lower end becoming the north pole, ant the upper end the south pole. But iron bars hequire a polarity by barely continuing a long time in an crect position, even withont heating then. Thus, the uprightiton bars of some windows, \&ec, are often found th bave poles: Nay, an iron rod acquires a polarity, by the mere holding it erect; the lower end, in that case, attracting the south end of a magnetic nedde; and the upper, the north end. But these poles are mutable, and shift with the situation of the rod.- Some modern writers, particularly Dr. Fliggins, in hiv Philosophical Esuy cuncerning light, have maintained the polarity of the parth of natter, or that their simple attractions are more forcilde in one direction, or anis of cach atom, than in any other.

POLES, in Astronomy, the extrmities of the axis on which the whole sphere of the world revolves; or the points on the sarface of the sphere through which the axis passes. These are on every side at the distanre of a quadrant, or 90°, from evely point of the equinoctial, and are called, by way of eminence, the poles of the world. That which is visible to us in Europe, or raised above our horizub, is called the Arctic or North Pole; and its opposite one, the Antarctic or Soush Pols.

Poles, in Geography, ure the extremities of the earth's axis; or the points on the surface of the earth through which the axis prasces. Of which, that eletated above our horizon is called the Aretic of North Pule; and the opposite one, the Antarctic or South Pole.

In consequence of the situation of the polc, with the inclination of the errth's axis, and its parallelism during the annual motion of our globe round the sun, the poles have only one day and one night throughout the year, each bring lalf a yrar in leugth. And because of the obliquity with which the rays of the sun fall upon the polar regions, and the groaf lengith of the night in the winter season, it is commonly supposed the cold is so iutense, that thove parts of the globe which lie near the poles bave never been fully explored, though the ntiempt has been reqeatedly made by the most celrbrated naviga-
tors. And yet Dr. Halley was of opinion, that the solstitial day, at the pole, is as hot as at the equator when the sun is in the zemah; because all the 24 hours of that day woder the polle the sun-lwams are inclined to the horizon in "un angle of $23^{\circ} 25^{\prime}$; whereas at the equator, though the sun becomes verticai, yet he shines no more than 12 hours, being absent the other 12 hours: nnd besadey, that during 3 hours 8 minutes of the $1:$ hours which he is above the borizon there, he iv not so much elenated as at the pole. Exparience however stems to show that this opuainn and reasoting of Dr. Halley are not well fuluded: for in all the parts of the earth that we know, the middle of summer is always the less hot the fasther the place is from the equator, or the nearer it is to thie pole.

The great object for which navigators bave ventured themscles in the frozen seas about the nurth pule, was to tind out a more quick and ready passage to the tast lidias. And this has been anempted thrie several ways: one by coasting ulong the worthern pants of Europe and Asia, called the norih-east passage; another, by salling round the nonthern part of the Americuu continent, called the northwest pasaage; and the third, by saling directly aver the pole itself.

Tbe possibility of sueceeding in the north-east was for a long time belicved; and in the last century many navigators, particularly the Hollanders, attempted it with great fortitude and perseverance. Dutit was always found nonpossible to surmount the obstacles which vature had thrown in the way; and subsequent attempts have in a manner demonstrated the impossibility of ever sailing castward along the northern coast of Asia. The reason of this impussibility is, that in proportion to the extent of land, the cold is always greater in winter, and rice versa. This is the case even in temperate climates; but much more so in thuse frozen regiots when the sun's influence, even in summer, is but smail. Hence, as the continent of Asia extends a vast way from west to, east, and has besides the continent of Europe joined to it on the west, it fullows, that ubout the middie part of that tract of land the cold should be gieater than any where else. Experietece hws determined this to be fact; and it now appears, that abont the middle of the northern part of Asia, the ice never thaws; teither bave even the hardy Russians and Sibe rians themelves been able to overcome the difficulties thry meet with in that part of their vognges.

With regard to the northowest passape, the same difficultics occur as in the other. According to Captain Croh's voyage, it appears that it there is any strait which divides the continent of Atherica into two, it must lie in a higher latitude than 70°, and consequently be perpetually frozen up. And therefore if a nurthowes passage can be fisund, it must be by saling ronnd the whole American cratinent, instead of secking a passage through it, which some bave supposed to exist in the bottom of Baftin's Bay. But the exient of the American continent to the northward is yet unknown; and there is a possibility of its locing joinet to that part of Asia between the I'iasida and Chatanga, which bas never yet been circumnavigated. Indeed a rusour has lately gone abroad of some remarhable inlet being oberved on the western coast of Nurth America, which it is guessed may possibly lead to some communication with the eastern side, by the lakes, or a passage into Hudson's Bay: but there seems little or no probability of any success this way, in which ntany fruitess at-
tempts bave bect made at varinus times, It remains therefore to consider, whether there is any probability of attaning the wished-for passage by saing directly nurth, between the eastern and wistera couthents.

The late celebrated mathematicion, Mr. Maclaurin, was so fully persuaded of the practicability of passing by thes way to the South and Indan seas, that he used to -uy, if his other avocations wodld permit, he would undertake the voyage of trial, even at his uwn expense. 'the practicubility of this method, which would lead directly to the pole itself, has also been ingeniously supporied by Mr. Daines Barington, in some tracts pubbishod in the years $1: 75$ and 1776 , in consequence of the unsuceessful attempt made by captain Phipps in the year 1773, to reach a bigher northern latitude than $\$ 1^{\circ}$. Slr. Barringion irstances a great number of navigators who bave reached sery ligh northern latitules; nay, some who hase bren at the pole itself, or gone beyond it. From all which he concludes, that if the voyage be attempted at a proper time of the year, thiore would not be any great difficulty in reaching the pole. Those sast picces of ice which conmenly obstruct the navigators, he thinks, pruceed from the biouths of the great Asiatic rivers which run northward into the frozen ocean, and ate drwen castward and westward by the currents. But, though we should suppose them to come directly from the pole, still our author thinks that this affords an undeniable proof that the pole itselt is free from ice; lecause, when the picces leave it, and come to the sonthward, it is impossible that they can at the same titne accuinulate at the pole.

The Altitude or Eireation of the Po.s.e, is an arch of the meridian intercepted between the pule and the horizon of any phace, and is ryual to the latitude of the place.

To obsere the Altutude of the Pole. With a quadrant, observe both the greatest and least meridian altitusle of the pole star. Then half the sum of the two altitndes, will be the height of the pole, or the latitude of the place; and hali the diffirence of the same will be the distance of the star from the pole. But, for accuracy, the observed altitules should be enrrected on necount of refraction, be fore their sum ur ditietence is taher. Sce Refraction.
l'ole, in Spherics, or the pole of a grat circle, is a point on the sphere equally distant from every part of the circumference of the great circle ; or a point 90° distant from the circumference of any part of it . -The zenith and nadir are the poles of the horizon; and the poles of the equator are the same with those of the spibere or globe.

Poles, in Magnetism, are two points in a lobalatunc, corresponding to the poics of the world; one pointing to the norith, and the other to the south. If the stone be broken it ever sis many pieces, every fragment will still have its two poles. And if a magnet be bisicteal by a plane perpenticular to the axis; the two prims latore joined will become opprasite poles, one in cach wognient. -In touching a needle, de, with a magnet, that part intended for the north end must the touched winh the south pole of the magnet; and that intended for the seruth end, with the north pole; for the poles of the nealle becone contrary to those of the magnet.-A puce of iron acquires a polarity ly only holding it upright; though its polisute not fixed, but shtit, and are tuverted as the iron is. Itre destroys all fixed poles; but it strengthens the mutable unes.

Dr. Gillertt snys, the end of a rod being heated, and left to cool pointing nosthwad, it becomes a tixed north pule;
if southward, a fixed south pole. When the end is cooled while held downward, it acquires rather more magnetism than if cooled horizontally towards the north. But the best way is to cool it a litile inclined to the north. Repeating the operations of heating and cooling does not the crease the cliect.

Dr. Power says, if a rod be held northwards, and the north end be bamnered in that position, it will become a fixed north pole; and contravily if the south end be hammesed. The heavier the blows are, cateris paribus, the stronger will the magnetism he; and a few hard blows have as much effect as a great number. And what is said of hatmering, is to be likewise understood of filing, grinding, sawing, \&e; nay, a gentle rubbing, when long continued, will produce poles.

Old punches and drills have all fixed north poles; because they are almost constantly used downwards. New drills have either mutable poles, or wak north ones. Drilling with such a one southward horizuntally, it is a chance if you produce a fixed south pole; much less it you drill south downwards; but by drilling south upwards, you always make a fixed south pole. Mr. Ballard says, that in 6 us 7 drills, made in his presence, the bit of each became a north pole, merely by hardening.-A weak fixed polo may degenerate into a nutable one in a das, or even in a few minutes, by holding it in a position contrany to its prole. The loadstune itseli will not make a Gixed pole in every piece of iron: if the iron be thick, it is necessary that it lave some cunsiderable length.

Pole of a Glass, in Optics, is the thickest part of a convex glass, or the thinnest part of a concave one; being the same as what is other wise called the vertex of the glass; and which, when truly ground, is exactly in the middle of its surface.
Pole, or Rod, in Surveying, is a lineal measure containing $5 \frac{1}{2}$ yards, or $16 \frac{1}{1}$ feet.-The square of it is called a square pole; but more ustually a perch, or a rod.

Fole-Star, is a star of the 2d maguitude vear the north pole, in the end of the tail of ursa minor, or the Little Bear. Its mean place in the heavens for the beginning of 1810, was as follows: viz,

Right ascension	-	13°	$36^{\prime \prime}$	$15^{\prime \prime}$
Annual variat, in ditto	-	0	3	8
Declination	-	88	17	41
Annual variat. in ditto	-	0	0	$19{ }^{\circ} \%$

The proximity of this star to the pole, on which account it is always above the horizon in these nortiern latitudes, makes it very useful in navigation, \&c, for determining the meridian line, the clevation of the pole, and consequently the latitude of the place, \&c.

POLEMOSCOPE, in Optics, an oblique kind of proepective glass, contrived for the seeing of objects that do not lie directly before the cye. It was insented by Hevelius, in 1637. See Opera gluss.

POLITICAL Arithmetic, the application of arithmetical calculations to political uses and subjects; such as the public revenues, the number of people, the extent and value of lands, taxes, tracie, commerce, or whatever relates to the power, strength, riches, \& c , of a nation or commonwealth. Or, as Davenant concisely defines it, the art of rasoning by figures, upon things relating to government. The chief authors who have attempted calculations of this kind, are, Sir William Petty, Majur Graunt, Dr. Halley, Dr. Davenunt, Mr. King, Dr. Price, M. Kerseboom, and M. de Parcieux.

Vol. II.

Sir William Petty, among many other articles, states that, in his tine, the people in Eingland were abut 6 mifions, and their annual expense about $\overline{7}$, cach; that the rent of the iands was abuut 8 millions, and the interests and pronis of the personal estates as much; that the rent of the houses in England was 4 nillions, and the profits of the labour of all the pcople 26 milions yearly; that the corn used in England, at Ss. the bushel for wheat, and 2 s .6 d . for barley, amounts to 10 millions per annum; that the navy of England required 36,000 men to man it, and the trade and other shipping about 48,000 ; that the whole number of people in Engiand, Scotland, and Ireland, tugether, were about 9 milions and a half; and those in France about 13 millions and a half; and in the whole world about 350 millions; also that the whole cash of England, in current money, was then about 6 millions sterling. See bis Polnticul Arith. p. 74, \&c.

Dr. Davenant gives sonse good reasons why many of Sir W. Petty's numbers are not to he entirely depended onl; and advances others of his own, fouaded on the observations of Mr, Greg. King. Some of the particulars arc, that the land of England is 39 millions of acres; that the number of people in London was about 530,000 , and in all England five millions and a half, increasing 9000 ennually, or about the Gouth part ; the ycarly rent of the lands 10 millions, and that of the bouses 2 millions; the produce of all kinds of grain 9 millions. Davenant's Essay on the probable methods, \&c, in his works, vol. 6 .

Major Graunt, in his observations on the bills of mortality, computes, that there are 39,000 square miles of land in Eugland, or 25 milion acres in England and Wales, and $4,600,000$ persons, making about 5 acres and a hulf to each person; that the people of London were 640,000 ; and states the several numbers of persons living at the different ages.

Sir William Petty, in his discourse about duplicate proportion, further states, that it is found by experience, that there are more persons living between 16 and 26 than of any other age; and from thence he infers, that the square roots of every number of men's ages under 16, whose root is 4 , shuw the proportion of the probability of such persons reaching the age of 70 years: thus, the probability of reaching that age by persons of the

> ages of $16,9,4$, and 1 ,
> are as $4,3,2, \quad 1$ respectively.

Also that the probabilities of their order of dying, at ages above that, are as the square roots of the ages: thus, the probabilities of the order of dying first,

$$
\begin{aligned}
& \text { of the ages } 16,25,36,8 \mathrm{c} \text {, } \\
& \text { are as the roots } 4,5,6, \& \mathrm{c} \text {, }
\end{aligned}
$$

that is, the odds are 5 to 4 that a person of 25 dies before one of 16 , and so on, declining up to 70 ycars of age.

Dr. Halley has made a very exact estimation of the degrees of mortality of mankind, from a curious table of the births and buriuis, at the city of Breslau, in Silesia; with an atteropt to ascertain the price of annuities upon lives, atid many other curious particulars. See the Philos, Trans, vol. 17, pa. 596. Another table of this kind is given by Simpson, for the city of London; and several by Price, Morgan and Baily, for many different placcs.

Mr. Kerseboom, of Holland, has many and cariou, calculations and tables of the same kind. From his observations on the births of the people in England, it appears, that the number of males born, is in proportion to 2 E
that of the females, as 18 to 17 ; and that of the inhabitants living in Holland are in the same proportion.

Dr Brackenridge has given an estimate of the number of people in England, furmed both from the number of houses, and also from the quantity of bread consumed. On the former priaciple, he finds the number of houses in England and Wales to be about 900,000 ; and, allowing 6 persons to each house, the number of people near 5 millions and a hallf. And on the latter principle, estimating the quantity of corn consumed at home at 2 millions of quarters, and 3 persons to every quarter of corn, makes the number of people 6 millions. See Philos. Trans. vol. 49 , art. 45 and 113 .
1)r. Derham, from a great number of registers of places, finds the proportions of the marriages to tho births and burials; and Dr. I'rice has done the same for still more places; the indiums of all which are,

		Marriages to Birthe, an
Dr. Derham	-1	$=1$ to 4.7
Dr. Price	-	$\quad 1$ to 3.9

Sce Philos. Truns. No. 480; also Dr. Price's Observations on Reversionary Payments; and the articles of this Dictionary, Expectation of Liff, Life-Annazities, Mortality, Population, \&c.

POLLUN, in Astronomy, the hind twin, or the posterior part of the constellation Gemini.

Poleux is also a fixed star of the second magnitude, in the constellation Gemini, or the Twins. See Cistor and Pollur, also Gemini.

PULYACOUS'IICS, instruments contrived to multiply sounds, as polyscopes or multiplying glasses do the images of objects.

POLYEDRON. See Polyizdron.
POLYGON, in Geometry, a figure of many sides ; and consequently of many angles also; for every figure has as many sides as angles. If the angles be ali equal among themselves, the polygon is said to be a regular one; otherwise, it is irregular. Polygons also take particular names according to the number of their sides; thus a l'olygon of S sides is called a trigon,
4 sides \quad a tetragon,
5 sides
6 sides a pentagon,

- a bexagon, \&c;
and a circle may be considered as a polygon of an infinite number of small sides, or as the limit of the polygons.

Polygons have various propertics, as below :

1. Every polygon may be divided into as many triangles as it liath sides.
2. The angles of any polygon taken together, make twice as tnany right angles, wanting 4, as the figure huth sides. Thus, if the polygon has 5 sides; the double of that is 10 , from which subtracting 4 , leaves 6 right angles, or 540 degrecs, which is the suin of the 5 angles of the pentagon. And this property, as well as the former, belongs to both regular and irregular polygons.
3. Every regular polygon may be euther inscribed in a circle, or described about it. But nut so of the irregular ones, except the triangle, and another particular case as in the following properiy: An equilatcral figure inseribed in a circle, is always equiangular.- But an equiangular figure inscribed in a circle is not always equilateral, bilt only when the nuraber of sides is ondd. For if the sides be of all even number, then they may either be all equal ; or else half of them may be equal, and the other half equal
to each other, but different from the former half, the cquals being placed alternately.
4. Every polygon, circunseribed about n circle, is equal to a right-angled triangle, of which one legg is the radius of the circle, and the other the perinueter or sum of all the sides of the polygon. Or the polygon is equal tolnalf the rectangle under its perimeter and the radius of its inscribed circle, or the perpendicular from its centre upon one side of the polygon. Hence, the ares of a circle Leing less than that of its circumscriting polygon, and greater than that of its inscribed one, the circle is the limit of the inscribed and circumscribed polygons : in like manner the circumference of the circle is the limit between the perimeters of the said polygons; consequently the circle is equal to a right-angled triangle, having one leg equal to the radius, aud the other leg equal to the circumference; and therefore its area is found by multiplying half the circumference by half the diameter. In lihe inanner, the area of any polygon is found by multiplying half its perimeter by the perpendicular demitted from the centre upon one side.
5. In my Mensuration, pa. 15 \&c, is given the genmetrical construction of several polygons; by which it appears that, as the regular trigem, square, and pentagon, can be inscribed geometrically in a circle; and as an arc may be always bisected geometrically; thelefore any polygon whose numbers of sides is expressed by $2^{n}, 3.2^{n}$, or 5.2^{n}, may be inscribed in a given circle by the scale and compasses only. And it has lntely been shown that a polygon, the number of whose sides is a prime number of the form $2^{n}+1$, may also be inscribed geometricalty in a circle, a problem that was tar from being thought pose sible, till M. Gauss published his celebrated wark entutled Disquisitiones Arithmelice, in which he has given a complete solution of this problem; it is however too complex to introduce in this place, and Jittle suited to practical pur* poscs. Sce Prime Nubarif.
6. But though we cantut inscribe grometrically any regular polygon whatever in a circle, we have a practical method of performing it, by means of the knowis mmasure of the angles, some examples of which may be seen in the following table, which exhibits the most remarkable patticulars in all the polygons, up to the dudecagon of 12 sides; viz, the angle at the centre AOR, the angle of the polygon cor cas or donble of OAB, and the area of the polygon when each side $A \mathrm{~h}$ is 1 . (See the following figure.)

$\begin{aligned} & \text { Nin of } \\ & \text { ides. } \end{aligned}$	Name of polygon.	Ang. 0.	Anc. c. u	Atre.
3	Trigon	190	to	0.4130197
4	Tetragon	${ }^{(1)}$	90	1.0000000
5	Pentagon	72	108	1.72047\%
6	Hexagon	60	120	2.5950762
7	Heptugon	517	1284	36339124
8	Octagon	45	135	$4.828+271$
9	Nomagon	40	140	6.1815242
10	Decagan	36	$1+4$	$7 \cdot 6942088$
11	Undecagon	32.8	1475	9:3656349
12	Dodecagon	30	1%	11.1961524

By means of the numbers in this table, any polygons may be constructed, or their areas found: thut, (1:t) To innerihe a Polygon in a given Circle. At the centre make the angle o equal to the angle at the centre of the pro-
posed polygon, found in the 3d column of the table, the legs cutting the circle in A and B; and join a and B which will be one side of the polygon. Then take as between the compasses, and apply it continually round the circumprence, to complete the polygon.
(2d) Upon the given line Aa to describe a regular Polygon. From the extremities draw the two lines so and no, making the angles A and B each equal to balf the angle of the polygon, found in the 4 th column of the table, and their intersection o will be the centre of the circumscribed circle: shen apply an continually round the circumference as before.
(3d) To describe a Po'yyon about a given Circle.-At the centre o make the angle oi the centre as in the 1st art. its legs cutting the circle in a and b: join $a b$, and parallel to it draw as to touch the circle: and meeting oa and ob produced in A and B: with the radius OA, or OB, describe a circle, and
 around its circumference apply continually AB, which will complete the polygon as before.
(4th) To find the Area of any regular Polygon-Multiply the square of its side by the tabular area, found on the line of its name in the last column of the table, and the product will be the area. Thus, to find the area of the trigon, or equilateral triangle, whose side is 20 . The square oi 20 being 400 multiply the tabulararea $\mathbf{4 3 3 0 1 2 7}$ by 400 , and the product 173.20508 will be the area.
7. There are also several curious alsebraical theorems for inscribing polygons in circles, or finding the chord of any proposed part of the circuinference, which is the same as angular sections. These kinds of sections, or parts and multiples of arcs, were first treated of by Vieta, as shown in the Introduction to my Log. pa. 9, and since pursued by several other mathematicians, in whose works they are usually to be found.

Polygos, in Fortification, denotes the figure or perimeter of a fortress, or fortified place. This is cither Exterior or Interior.

Exterior Polvaon is the perimeter or figure formed by lines connecting the points of the bastions to one another, quite round the work. And

Interior Polygon, is the perimeter or figure formed by lines connecting the centres of the bastions, quite around.
Line of Polygons, is a line on some sectors, containing the homologous sides of the first nine regular polygons inscribed in the same circle; viz, from an equilateral triangle to a dodecagon.

POLIGONAL Numbers, are the continual or successive sums of numbers in arithmetical progression, beginning at 1 , and regularly increasing; beng called polygonals, because the number of points in them may be arranged in the form of the several polygonal figures in geometry, as is illustrated under the article Figurate Numbers; which see.

The several kinds of polygonal numbers, viz, the triangles, squares, pentagons, hexagons, \&c, are formed from the addition of the terms of the arithmetical series, having respectively their common difference 1, 2, 3, 4, \&c; viz, if the common difference of the arithmeticals be 1 , the sums of their terms will form the triangles; if 2 , the squares ; if 3 , the pentagons; if 4 , the hexagons, \&c. Thus:
$\begin{cases}\text { Arith. Progres. } 1,2,3,4,5,6,7 .\end{cases}$ $\begin{cases}\text { Triang. Nos. } & 1,3,6,10,15,21,28 .\end{cases}$
$\left\{\begin{array}{l}\text { Arith. Progres. 1, 3, 5, 7, 9, 11, } 13 .\end{array}\right.$
\{ Syuare Numbers 1, 4, 9, 16, 25, 36, 49.
\{Arith. Progres. 1, 4, 7, 10, 13, 16, 19.
$\{$ Pentagonal Nos. $1,5,12,22,35,31,70$.
$\left\{\begin{array}{l}\text { Arith. Progres. 1, 5, 9, 13, 17, 21, } 25 .\end{array}\right.$
\{Hexagonal Nos. 1, 6, 15, 28, 45, 66, 91.
The Side of a polygonal number is the number of points in each side of the polygonal figure when the poims in the number are ranged in that form. And this is aloo the same as the number of terms of the arithancticals that are added together in composing the polygonal number.

The Augles, or Numbers of Angles, are the same as those of the figure from which the number takes its name. So the angles of the triaugular numbers are 3, of the square ones 4 , of the pentagonals 5 , of the hexagonals 6 , and so on. llence, the angles are Ω more than the common difference of the arithtetical serics from which any rank of polygonals is formed: so the arithenctical serics has for its common difference the number 1 or 2 or 3 kc es iollows, viz, 1 in the triangles, 2 in the squares, 3 in the pentagons, \&c; and, in general, if a be the number of angles in the polygon, then $a-2 b=d$ the common difference of the arthmetical series, or $d+2=a$ the number of angles.

Prob. 1. To find any Polygonal Number proposed; having given its side n and angles a. The polygonal number being evidently the sum of the arithmetical progression whose number of terms is n and common difference $a-2$; and the sum of an arithmetical progression being equal to half the product of the extremes by the number of terms, the extremes being 1 and $1+d$ $(n-1)=1+(a-2) \cdot(n-1)$; therefore that number, or this sum, will be
$\frac{n^{2} d-n(d-2)}{2}$ or $\frac{n^{2}(a-2)-w(a-2)}{2}$, where d is the common difference of the arithmeticals that form the polygonal number, and is always 2 less than the number of angles a.

Hence, for the several kinds of polygons, any particular number whose side is n, will be found from rither of these two formulx, by using for d its values $1,2,3,4, \& \mathrm{c}$; which gives these following formulae for the polygonal number in each sart, viz, the

Triangular	$-\frac{1}{(}\left(n^{2}+n\right)$,
Square	$-\frac{1}{\left(2 n^{2}-0 n\right)}=n^{2}$,
Pentagonal	$-\frac{1}{(}\left(3 n^{2}-n\right)$,
Hexagonal	$-\frac{1}{1}\left(4 n^{2}-2 n\right)$,
Heptagonal	$=\frac{1}{2}\left(5 n^{2}-3 n\right)$,
mgonal	$-\frac{1}{4}\left[(m-2) n^{2}-(m-4) n\right]$.

Paos. 2. To find sum of any Number of Polygonal Numbers of any order.-Let the angles of the polygon be a, or the common difference of the arithmeticals that form the pulygunals, d; and n the number of terms in the polygonal serics, whose sum is sought: then is
$\frac{1}{6}\left(n^{2}-1\right) d n+\frac{1}{2}(n+1) n$ or $\frac{1}{6}\left(n^{2}-1\right) \cdot(a-2) n+\frac{1}{2}(n+1) n$ the sum of the n terns sought.

Hence, substituting successively the numbers $1,2,3,4$, $\& c$, for d, there is obtained the following particular cases, or formula, for the sums of n terms of the scveral ranks of polygonal numbers, viz, the sum of the

2 E 9

POL

Triangulars		$\frac{1}{6}\left(n^{1}+3 n+2\right) n$,
Squares	-	$\frac{i}{6}\left(2 n^{2}+3 n+1\right) n$,
Pentagonals	-	$\frac{1}{4}\left(3 n^{2}+3 n+0\right) n$,
Hexagonals	- -	$\frac{7}{6}\left(4 n^{2}+5 n-1\right) n$,
Heptagonals	- -	$\frac{1}{6}\left(5 n^{2}+3 n-2\right) n$.

$\$ c$, which may be illustrated as follows:
Triangles.

Side.
12
13
Triangle.

Figure.

Squares.

by as many points, as there are actually in the diagonals and the two sides produced.

This rule is general, from the triangle up to the polygon of an infinite number of sudes.

Fermat discovered a very curious and general property of polygonal numbers, which is this: That every number is the sum of one, two, or three triangular numbers; the sum of one, two, three, or four squares; the sum of one, two, three, four, or five pentagonal numbers ; and so on; that is generally : If m denote any order of polygonal numbers, then any number whatever may be resolved into m polygonal numbers of this order, or a less number.

This curious property bas not bowever been demonstrated, except for the cases of triangles and squares, the other cases seeming to bid defiance to the effurts of those mathematicians who have attempted them. A demurstration for the squares may be seen in Leybourn's Mathematical Repository; and for both the squares and triangles, in Legendre's Eassi sur la Theorie des Numbres.

POLYGONOMETRY, the science and principles of polygons. For which, see my Course of Mathematics, last volume.

POLYGRAM, in Geometry, a figure consisting of many lines.

POLYHEDRON, or Polyedron, a body or solid contained by many rectilinear planes or sides. When the sides of the polyhedron are regular polygons, all similar and equal, then the polybedron becums a regular body, and may be inscribed in a sphere; that is, a sphere may be described about it, so that its surface shall touch ail the angles or corners of the solid. There are but five of these regular bodies, viz, the tetraedron, the hexaedron of cube, the octaedron, the dodecaedron, and the icosacedron. See Reoular Body, and each of those fine bodies severally.

Gmomonical Polyucdaon, is a stone with several faces, on which are projected various linds of dials. Of this sort, that in the Privy-garden, London, now gone to ruib, was esteemed the finest in the world.

Polyhedrox, in Optics. Sce Poryscopr.
POLYHEDROUS Figure, in Geumetry, a solid contained under many sides or plancs. See Polviedros.

POLYNOMIAL, in Algebra, a quantity of many wames or terms, and is otherwise called a Multinomial. As $a+3 b-2 c+4 d$, \&c. See Multinomial.

POLIOPTRUM, in Optics, a glass through which olsjects appear multiplied, but diminished. This difiers both in structure and phenomena from the common multiplying glasses called polyhedra or polyscopes.

To construct the Polyoptrum,-From a glass AB, plane on both sides, and about 3 fingers thick, cut eut spherical segments, scarce a 5 th part of a digit in diameter.-If then the glass be removed to such a distance from the eyr, that you can take in all the cavities at one view, you will see the same object, as if through so many several con-" ceve glasses as there are cavitics, and all exceeding small. -Fit this, as an object-glass, in a tube A ACD, whose aperture AB is equal to the diameter of the glass, and the other $C D$ is equal to that of an eyc-glass, as for instance about a finger's breadth. The length of the tube Ac is to be accommo-
 dated to the object-glass and cye-glass, by trial. In CD fit a convex eye-glass, or in its stead a meniscus having the distance of its principal focus a little larger than
the length of the tube; so that the point from which the rays diverge after retraction in the object-glass, may be in the focus. If then the eye be applied tear the cye-glass, a single object will be seen reqeated as oftell as there are cavities in the object-glass, but still diminished.

POLYSCOPL, or Pol rurbrow, in Optics, is a multiplying glass, being a glass or lense which represents a single object to the eye as if it were many. It consists of seveial plane surfaces, disposed intor a convex form, through every one of which the object is seens

Phenomena of the l'olyscope.-1. If several rays, as EF, $\triangle A, C D$, fall parallel on the surface of a pulyscope, they will continue paralled after refraction. It then the polyscope be supposed regular, $1 \mathrm{LI}, \mathrm{Hi}, \mathrm{ta}$ will be as tangents cutting the spherical convex lens in r,
 B , and n ; and consequently, rays falling on the points of contact, intersect the asis. Plierefore, since the rest are parallet to thexe, they will also mutually intersect each other in c .-Hence, if the eye be placed where parallel rays decnasute, rays ot the same object will be propagated to it still parallel from the sevetal sides of the glass. Thercfore, smece the crymalline humour, by its convexity, unites parallel rays, the rays will be united in as many different peints of the retina, a, b, c, as the glass has sides. Consequently the eye, through a polyscope, sees the object repented as thany times as there are sides. And hence, since rays coming from very remote objects ate prarallel, a remete object is seen through a polyscope as often repeated as that has sides.
2. If rays $A B, A C, A D$, coming from a radiant point A, falt on several sides of a regular polyscope; after refraction they will decussute in 6 , and proced on a titte diverging.-Hence, if the eye be placed
 where the rays decussate after coming from the zeveral planes, the rays will be propagated to it from the several planes a litule diverging, or as if they proceeded from diferent points. But since the crystalline humour, by its convexity, collects rays from several points into the same point ; the rays will be united in as many different points of the retina, a, b, c, as the glass has sides; and consequently the eye, being placed in the focus a, will see even a near object through the polyscope as often repeated as that has sides.

Thus may the images of objects be multiplied in a camera ohscura, by placing a polyscope at its aperture, and adding a convex lens at a duc distance from it. And it makes a very pleasant appearance, if a prism be applied so that the coloured rays of the sun refricted from it be reccived on the polyscope: for by this means they will be thrown on a paper or walt near at hand in little lucid specks, much exceeding the brightness of any precious stone; and in the focus of the polyscope, where the rays decussate (for in this experiment they are received on the convex side), will be a star of surprising lustre.

Farther, it images be painted in water-colours in the arcola or little squares of a polyscope, and the glass be
applied to the aperture of a camera obscura; the sun's rays, passing through it, will carry with then the images, and project thein on the opposte wall.-l his artitice bears a resemblance to that other, by which an image on paper js projected on the camera; viz, by wetting the puper with vil. and straining it tight in a frame ; then applying it to the aperture of the camera obscura, so that the rays of a candle may pass through it upon the polyscope.

To make an Ananorphoris, or Deformed Imuge, which shalt appear regular and beauliful throwgh a Polyscope, or Multiplying Gilass.-At one end of a horizontal table erect another perpendicularly, on which a figure may be designed; and on the other end erect anotber, to serve as a fulcrum or support, moveable on the horizontal one. To the fulcrum apply a plano-convex polyscupe, consisting, for example, of $2+$ plane triangles; and tet the polyscope be fitted in a draw-tube, of which that end towards the cye may have only a wry small apettore, und a little farther off than the focus. Remove the futcrum from the other perpendicular table, till it be out of the distance of the focus; and the more so, as the image is to be greater. Before the little aperture place a lamp; and trace the luminous areole projected from the sides of the polyscope, with a black lead pencil, on the vertical plane, or a paper applied uponit.
In the several areola, design the different parts of an image, in such a manner us that, wheh joined together, they may make one whole, looking every now and then through the tube to guide and correct the colours, and to see that the several parts match and fit well together. As to the intermediate space, it may be filled up with aay figures or desigos at pleasure, contriving it so, as thut to the naked eye the whole may cxhbit some appearance very different from that intended to appear through the polyscope. - The rye, now louking through the small aperture of the tube, will see the several parts and members dispersed among the areolx to exhibit one continued innage, all the intermediate parts disappoaring. See Anamorphosis,

POLYSPASTON, in Mechanics, a machine so called by Vitruvius, consisting of an assemblage of screral pulleys, used for raising benvy weights.
PONTON, or Pontoon, a kind of flat-bottomed boat, whose carcase of wood is lined within and without with tin. Sone uations line them on the outside only, and that with plates of copper, which is better. Our pontions are 21 feet long, nearly 5 feet broad, and 2 fect $1 \frac{1}{\frac{1}{2}}$ inch deep within. They are carried alung with an army upun carriages, to make temporary bridges, called puntoon-bridges.

Pontoon-Bridge, a bridge made of pontoms slipped into the water, and moored by anchors and othernise fastened together by ropes, at simell distances from cse another; then covered by beams of timber passing ores them; upon which is laid a thooring of boards. Hy this means, whole armies of infantry. cavalry, and artillery are quickly passed over rivers.- For want of pontuons, \& $\mathrm{c}_{\text {, }}$ bridges are sometines forined of empty powder-casks, or powicr-barrels, which support the beanis and flooring. Julius Casar and Aulus Gellius both mention pontoons (pontones); but theirs were no more than a kind of square Alat vessels, proper for carrying over horse, \&c.

P'ONT-Volant, or Figing-bridge, is a kind of bridge used in sieges, for surprising a puat or outwork that has but narrow monts. It is made of two small bridges laid over each other, and so contrived that, by means of cords and
pulleys placed along the sides of the under bridge, the upper may be pushed forwards, till it join the pluee where it is designed to be fixed. The whole length of both ought not to be above 5 fathoms, lest it should break with the weight of the inen.

POPLLATION of the World.-From Le Sage's Atlas, 1814, is in

Europe			Millions.
Asia	-	-	170
Africa	-	-	380
Ancrica, North	-	-	90
The Oceanic Islands	-	-	30
population of the globe	-	20	

PORCH, in Architecture, a kind of vestibule supported by columns: much used at the entrance of the ancient temples, balls, churches, \&c. Such is that before the door of St. Paul's, Covent Garden.

When a porch had four columins in front, it was called a tetrastyle ; when six, hexastyle: when eight, "etostyle, asc. See Tetrastyle, ide.

PORES, are the small intersticrs between the particles of nuatter which compose bodies; and are either cmpty, or filled with some insensible medium. - Condensation and rarefuction are only performed by elosing and opening the pores. Also the transparency of bodies is supposed to arise from their pores being directly opposite to one another. And the matter of mensible perspiration is conveyed through the porcs of the cutis.-Mr. Boyle has a particular essay on the porosity of bodies, in which be proves that the most solid bodies buse some kind of pores: und indeed if they had not, all bodies would be alike specifically heavy.

Sir laac Newton shows, that bodies are much more rare and porous than is commonly believed. Water, for example, is 19 tumes lighter and rarer than gold; and gold itseli is so rare, as very readily, and without the least opposition, to transmit magnetic eflluvia, and rasily to admit even quicksilver into its pores, and to let water passthrough it: for a coucave sphere of gold hath, when filled with water, and soldered up, upon pressing it with a great force, suffered the water to squecze through it, and stand all over its outside, in multitudes of small irrops like dew, without bursting or cracking the gold. Whence it may be concluded, that gold has more peres than solid parts, and consequently that water has above 40 time more pores than parts. Hence it is that the magnetic effluvia passes freely through all cold bodies that are not maynetic; and that the rays of Jight pass, in right lines, to the greatest distances through pellucid bodies.

PORIME, Porima, in Gcometry, a kind of easy lemma, or theorem so casily demonstrated, that it is ahnust selfevident : such, for example, as that a chord is wholly within the circle.-Porime stands opposed to aporime, which domotes a proposition so difficutt, as to be almost impossible to be demonstrated, or cffected. Such as the quadrature of the circle, \&c.

PORISM, Porima, in Geometry, has by some been defined a general theorem, or canon, deduced from a geometrical lucus, and serving for the solution of other general and difficult problenis. Proclus derives the word from the lirick resilw, I cstablish, and conclude from something already done and demonstratud: and accordingly be defines porisma a theorem drawn occasionally from
some other theorem already proved: in which sense it agrees with what is otherwise called corollary, and was much used as such even by the geumeters two or three centuries ago.

Pappus says, A porism is that in which sonething was proposed to be investigated, of something between a theormm and a prublem. Others derive it from nojos, a pussage, and make it of the nature of a lemma, or a proposition neerssary for passing to another riore important one.

But Dr. Simson, rejecting the accounts that have been gisen of a porism, defines it a proposition, either in the forin of a probless or a theorem, in which it is propesed cither to investigate, wr demonstrate. And Mr. Playfair says, A poriso is nothing else than that particular ease, whan the data of a problecin are so related to one another as to render it indefinite, or eapable of innumerable solutions Edinburgh Pholos. Trans. vul, 1, pa. 60,

Euclid wrote three bochs of porishis, being a curious collection of various things relating to the analyons of the more difficult and general problems. Thase books however are lost; and nothing remains in the worhs of the ancient geometricians concerning this subject, besides what Pappus has preserved, in a very impertect and otsscure state, in his Mathematical Collections, viz, in the introluction to the 7 th book.
Several athmpt have been made to restore these writinge in some degree, brside's that which Pappus has lett upon the sulject. I hus, Fermat has given a few propusitions of this kind; which are to be found in the collection of his wofts, in folio, $1679, p a .116$. The like was done by Bulliald, in bis Exercitationes Geontetricex, 450, 1655°. Dr, Rubert Simson gave alsu a specimen, in two propositions, in the Philos. Trany, vol. 32, pa. 330; and bersdes lett behind him a coustierable treatise on the subject of porisros, which has been printed in an edition of his works, at the expense of the earl of Stauhope, in 4t0, 1776; an Euglish translation of a part of which was published by Mr. Lawson in the year following.

The whole three books of Euchad were alon restored by that ingenious mathematician Albert Girard, as appears by two notices that he gave, first in his Trigonometry, printed in French, at the Hagur, in 1629, and also in his edition of the works of Stevinus, printed at Leyden in 1634, pa. 459; but whether his intention of publishing the on was ever carried into execution, I have not been able to learn.

A learned paper on the subject of porisms, by the very ingenious profensor Playfair, was inserted in the 3Il volume of the 'Trausactions of the Royal Society of Edinburgh. And as this paper contains a number of curious observatious on the geometry of the ancients in gentral, as well as forms a complete treatise as it were on porism in particular, a pretty considerable alstract of it cannot but he deemed in this place very useful and important.
" The restoration of the ancient books of geometry (sayy the learned professor) would have been impossible, without the coincidence of two circumstances, of which, though the one is purcly accidental, the other is essentially connected with the nature of the mathematical sciences. The fint of tiese circumstances is the preservation of a short abstract of those books, drawn up by Pappus Alexandrinus, together with is serics of sueh fomuata, as he judged useful to facilitate the study of them. The second is, the necessary connection that takes place amon? the
objects of every mathematical work, which, by excluding whaterer is arbitrary, makes it pessible to determine the whole course of an investugation, when ouly u few poiats in it are known. From the union of these circumstances, mathematics har etjoyed an advantage of which no oher branch of koowledge can partake; aind while the critic or the fustorian has only been able to lament the fate of those lrooks of Livy and Tacitus which ure lost, the geometer bas had the ligh satisfaction to behold the works of Euclid and Apollonius retiving under bis hands.
"The first restorers of the ancient hooks were not, however, aware of the full extent of the worh which they had undertaken. They thought it sufficient to denonstrate the propositions, wheh they knew from Pappus, to hnee been contained in thone bowhs; but they did not follow the ancient method of investigation, and few of them appear to have had any idea of the elegant and simple analysis by which these propositions were originally discovered, and by which the Greek gevenetry was peculiarly distinguished.
is Among these few, Fermat and Halley are to be particularly remarked. The former, one of the greatest mathematicians of the last age, and a man in all reapecis of superior abibities, had very just notions of the seometrical malysis, and uppears often rbundantly skiltul in the ase of it ; yet in his resturation of the Loci Plani, it is reunarknble, that in the moss difficuli proposinions, he lays aside the analytical method, mind contents himself with giving the synthetical detmonstation. The latter, among the great number and variety of his literary occupations, found time for a most attentive study of the ancient mathematicians, und was an instance of, what experience shows to be much rarer than might be expected, a man equally well acyuanted with tie uncient and the motern geometry, and equally dispased to do justice to the mirit of both. He restored the brohs of Apollonius, nn the problem De Sectione Spatii, necording to the true prineiples of the ancient analysis.
" These books however are but short, so that the fitst restoration of considerable extent that can be reckoted complete, is that of the Loci Piani by Dr. Simson, published in 1749; which, if it difters at all from the work it is intended to replace, seems to do so only by its greater excellence. This mech at least is certain, that the method of the ancient geometers does not appear to greater advantage in the most entire of their writings, than in the restoration above mentioned: and that Dr. Simsun has often sacrificed the elegance to which bis own analysis would have led, in order to tread more exactly in what the lemuata of Pappus pointed out to him, as the track which Apollonius tad pursued.
"There was another saliject, that of porisms, the most intricate and enignatical of any thing in the ancient geometry, which was still reserved to exercise the genius of Dr. Simson, nnd to call forth that enthusiastic admairation of antiquity, and that unwearied perseverance in research, for which he was so peculiarly distinguished. A treatise in three books, which Euclid hat compoied on porisins, was lost, and all that remained concerning them was en abstract of that treatise, inserted by Pappus Alexandrinus it his Mathematical Collections, in which, had it been entire, the geometers of later times would doubtless have found wherewithal to console themselves for the loss of the origital work. But unfortunately it has
suffered so much from the injuries of time, that all which we can immediately learn from it is, that the macients put a high value on the propositions which they culled porisms, and regarded them as a very imporlant part of their analysis. The porisms of Euclid ure suid to be, "Collectio artificiosissina multarnm rerun qua spectant ad analysin difficiliortun et generalium proble matum." The curtosity, however, which is excited by this encominn is quichly uisappointed; for whell Puppus procerds to explain what a porism is, he lays down two definitions of it, one of which is rejected by him as imperict, while the other, which is stated as correct, is too vague and indefisite to convey any useful information.
4 'Those defeets might nevertheless have been oupplied, if the enumerntion which be next gives of Fuclid's Prom positions had been entire; but on nccount of the extreme brevity of lis enutacimions, and their reference to a diagram which is lost, nid for the constructing of which no ditections are given, they are all, eacept one, perfectly unintelligible. For these reasons, the fragnent in question is so obecure, that even to the learning and penetration of Dr. Halley it sremed improssible that it cubld ever be explained; and he therefore concluded, after giving the Gieeh text with all possible correctness, and adding the Latin translation, "Hactenus Porismatum descriptis nec inihi intellecta, nee lectori protutura. Negue alier fieri potuit, tan ob defectum schemmis cujus fit mentio, quan ob omissa quaedam et tansposita, vel aliter vitiata in propesitionis generalis expositione, unde quid sibi velit Pappus haud mihi datum ast conjicere. His adde dictionits nuedunt nimis contractum, ac it re difficili, qualis hate est, mininie usurpandum.:
** It is true, honever, that before this time, Fermat had artempted to explain the nature of prorisms, nud not altogether without success. Guiding his conjectures by the definition which Pappus ceusures as imperfect, because it defined porisms only 'ah uccidente,' viz, "porismas est qued deficit liypothesi in Thec,remate hocali,' he formed to himself a tolerably just notion of these propositions, and illustrated his general description hy examples that are in cffect prorimos. But be was able to proceed no farther: und he neither proved, that his notion of a porism was the same with Euclid's, nor attompted to restore, or explain any one of Fuelid's propositions; much less did he suppose, that they were to be investigated by an analysis peculiar to themselves. And so imperfect indeed was this attemp?, that the complete restonation of the porisms was necessary to prove, that Fermat had even approximated to the truth.
". All this did not however deter Dr. Simson from turning his thoughts to the same subject, which he appenrs to have done very early, and long before the publication of the Loci Plant in 1749.
" The account he gives of his progress, and of the obstacles he encoulitered, will be always interesting to mathematicians. Postquam vero apud Pappum Jegeram; porismata Euclidis collectionem fuisse artuficiosissimam multarum rerum, qua spectant ad analysin difficiliorum et generalium problemutum, magno desiderio tenebar, aliquid de jis cognoscendi ; quare soepius et multis variisque viis tum Pappi propositionem generaletn, mancam ct imperfectam, tuin promum lib. i.
" - Porismn, quod solum ex omnibus in tribus libris integrum ndhuc manet, intelligere et restituere conabar; frustra tamen, tihil coim proficiebam. Cumque cogitu-

Liones de lace re multum milhi temporis consumpserint, atyue molestae admodum cvasermt, firniter animura induxi base nunquatm in pusterum investigare; presertim cum optimus geonetra laallenus spem onnem de iis intelligends abjecisset. L'inde quoties menii occurrebant, totics eas arce bam. Postea tamen accidit, ut improvidum et propossti unmenorem invascrint, meque detinuerint donec tandera lux quadan effuberit, que spem milhi facicbat inveuiedi satem Pappi propustioneon generalena, quan quiden unlta investigatione tandem restitui. Haxc autein paulo post una cum Porismate primo hb. i. impressal est inter Transactioncs Phil, anni 1\% 123 , num. 1:7:
"The propositions mentioned, as inserted in the Pbilosophical Transactions for 1723, are all that Dr. Sinison pubtiohed on the subject of porisms during his life, though be continued his investigations cuncerning them, and succected in restoring a great number of Euclid's propositions, together with their analysis. The propositions thus restured form a part of that valuable edition of the posthumous works of this geometer which the mathematical world owes to the munificence of the late earl Stanhope.
"'The subject of porisms is not however exhausted, nor is it yet placed in so clear a light us to need to further illustration. It yet remains to enquire into the probable origin of these propositions, shat is to say, into the steps by which the ancient geometers appear to have been led to the discovery of them.
" It remains also to point out the relations in which they stand to the other classes of geometrical truths; to consider the species of atalysis, whether geumetrical or algebraical, that belongs to them: and, if possible, to assign the reason why they have so long escaped the notice of modern mathematicans. It is to these points that the following observations are chiefly directed.
"I brgin with describing the steps that appear to have Jed the ancient georacters to the discovery of porisms; and must here supply the want of express testimony by probable reasonings, such us are necessary, wheneser we would trace remote discoveries to their sources, and which have nore weight in mathematics than in any other of the sciences.
" It cannot be doubted, that it has been the solution of probiems, which, in all states of the mathematical sciences, has led to the discovery of most geometrical truths. The first mathematical enquiries, it particular, must have occurred in the form of questions, where something was given, and something required to be done; and by the rensonings necessary to answer these questions, or to discover the relation belween the things that were given and those that nere to be found, many truths were suggestel, which came afierwards to be the suljects of separate demunstration. The number of these was the greater, as the ancient geometers always undertook the solution of problems with a scrupulous and minute ataention, which would scarcely suffer any of the collateral truths to escapo their observation. We know from the exanuples which they have left us, that they never considered a problem as resolved, till they had distinguisbed all its varieties, and evolved separately every different case that could occur, carefully remarking whatever change might arise in the construction, from any change that was supposed to take place among the magnitudes which were given.
" Now as this cautious method of proceeding was not
better calculated to avoid error, than to lay hold of every iruhi that was counected with the main object of enquiry, these geometers soon observed, that there were muny problems which, in certain circumstances, would admes of no solution whatever, and that the general construction by which they were resolved would fail, in consequence of a particular relation being supposed among the quantities which were given.
"Such problems were then said to become impossible; and it was readily perceived, that this always bappened, when whe of the conditions preseribed was inconstatent with the rest, so that the supposition of their being united in the samesulject, involsed a contradiction. Theus, when it was required to divide a given line, on that the rectangle uuder its segments should beequal to a given space, it was exdent, that if this space was greater than tife square of half the given tiuc, the thing requared could not pussibly be done; the two condinons, the one defining the magmtude of the line, and the other shat of the reciangle unier ins sogments, being theal inconsistent with oue amoner. Hence an intinity of beantiful propositions concerning the maximn and the mataina of quamities, or the limits of the possible relations which quantutios may stand in to one another.
" Such cases as these would occur even in the solution of the siaplest problems; but when geometers procceded to the analysis of such as were more complicated, tney must have remaihed, that their constructions would sometimes fail, for a reason directly contrary to shat which haw now been ussigned. Instances would be found where the lines that, by their intersection, were to determine the thing sought, instead of intersceting one another, as they did in gencral, or of not mareting at alt, as in the abovementiuned case of impossibility, would concide with one anuther entirely, and lease the question of consequence uaresolved. But shough this circumstance must have created considerable embarrassment to the geometers who first observed it, as being perbaps the only instance in which the language of ther ownscience had yel appeared to thein ambiguous or obscure, it would not probably be long all they found out the true interpretation to be pht on it. After a little retlection, they would conclude, that since, in the general problem, the magnitude requmed was determined by the intersection of the two lines atoove mesttioned, that is so say, by the points common to them both; so, in the case of their coincidence, as all their points were in common, esery one of these points must afford a rolution; which solutions therefore raust be mfinite in num. ber; and also, though infinite in number, they mut ail be related to obe another, and to the things gasen, by certain laws, which the position of the two cuinciding lines must uectssurily uletermine.
" On enquiring farther into the peculianity in the state of the data which had produced this unexpected result, it might likewise be rematheal, that the whole procerded from one of the canditions of the problem involvitg a another, or necessarily including 11 ; so that ahey both tugether made infact but oue, and did not lease a sufficient number of medependent conditions, to contine the problem to a single solation, or to any determinate number of solutions. It was not difficult afterwards 10 perceive, that these cases of problems formed very cuicus propositions, of an intermediate nature between problens and theorems, atd that they admitued of being enuuciated separately, ill a manarr peculiarly elegant and concise. It was to such propo-
sitions, so enunciated, that the ancient geometers gave the tume of porisms.
"This deduction requires to be illustrated by examples." MP. Playfair then gives several problems by way of illustration; one of which, which may here suffice to show the method, is as follows:
"A triangle ABC being given, and also a point D ; to draw through o a straight line dg, such, that, perpendiculars being drawn to it from the three angles of the triangle, viz, AE, Bfi, CF, the sum of the two perpendiculars on the same side of $D G$,
 shall be equal to the remaining perpendicular: or, that az and bg together, may be equal to cr.
"Suppose it done: Bisect AB in H, join CHI, and draw hx perpendicular to do.-Because $A B$ is bisected in H, the two perpendiculars AE And no are together double of HK; and as they are also equal to Cr by hypothesis, cr must be double of HK ; and CL of LH. Now, CH is given in position, and magnitude ; therefore the point t is given ; and the point 1 being also given, the line pL is given in positlon, which was to le found.
"The construction was obvious. Bisect AB in 1, join CA, and take HI equal to one third of CII; the straight line which joms the points D and L is the line required.
"Now, it is plain, that while the triangle a Be remains the same, the point L also remains the same, wherever the point D muy be. The point d may theretore coincide with 2 ; and when this happens, the position of the line to be drawn is left undetermined; that is to say, any line whateser drawn through c will satisfy the cunditions of the problem. Here therefore we lave another indefinite case of a problem, and of consequence another porism, which may be thus enuticiated: "A triangle being given in position, a point in it may be found, such, that any straight line whatever being drawn through that point, the perpendiculars drawn to this straight line from the two angles of the triangle which are on one side of $i t$, will be together equal to the perpendicular that is drawn to the same lime from the angle on the other side of it.
" This porism may be made much more general; for if, instead of the angles of a triangle, we suppose ever so many points to be given in a plauc, a point may be found such, that any straight line being drawn through it, the sum of all the perpendiculars that fall on that line from the given points on one side of it, is equal to the sum of the perpendiculars that fall on it from all the points on the other side of it.
" Or still more generally, iny number of points being given not in the same plane, a point may be found, through which if any plane be supposed to pass, the sum of all the perpendiculars which fall on that plane froms the points on one side of it, is equal to the sum of all the perpendiculars that fall on the same plane from the points on the other side of it. It is unnecessary to observe, that the point to be found in these propositions, is no other than the centre of gravity of the given points ; and that therefore we have here an example of a porism very well known to the modern geometers, though not distinguished by them from other theorems.".

After some examples of other porisms, and remarks upon them, the author then adds,

Vol. II.
"From this account of the origin of porisms, it follows, that a porism may be defiued, A proposition nffirming the possibtity of finding such conditions as will render a certain problem indcterminute, or copable of innumerable solutions.
"To this definition, the different characters which Pappus has given will apply without difficulty. The propositions described in it, like those which he mentions, ure, strictly speaking, neither theorems nor problems, but of an intermediate nature between both; for they neither simply enunciate a truth to be demonstrated, nor propose a question to be solved, but are affirmations of a truth, in which the determination of an unknown quantity is involved. In as far therefore as they assert, that a cerlain problem may become indeterminate, they are of the tuature of theorems; and in as far w they seek to discover the conditions by which that is brought about, they are of the nature of problems.

- In the preceding definition also, and the instances from which it is deduced, we may trace that imperfect description of porisms which Pappus ascribes to the later geometers, viz, ' Porisma est quod deficit hypothesi a theoremate locali." Now, to understand this, it must be observed, that if we take the converse of one of the propositions called Luci, and make the construction of the tigure a part of the hypothesis, we have what was called by the ancients a local Theorem. And again, if, in enunciating this tbeorem, that part of the hyperthesis which contains the construction be suppressed, the proposition arising from thence will be a porism; for it will enuiciate a truth, and will also require, tu the full understunding and investigation of that truth, that sumething should be found, viz, the circumstance in the construction, supposed to be omitted.
"Thus when we say; If from two given pointe E and D, two lines EP and PD are inflected to a third point F, so as to be to one another in a given ratio, the point F is in the circumference of a circle given in position: we have a
 Locus.
"But when conversely it is said; If a circle abc, of which the centre is o, be given in position, as also a point E , and if D be taken in the line $\mathbf{E O}$, so that the rectangle EO, OD be equal to the square of $A O$, the semidiameter of the circle; and if from es and d, the lines er and dy be inflected to any point whatever in the circumference $A B C$; the ratio of EF to DF will be a given ratio, and the same with that of EA to AD: we have a local theorem.
" And, lastly, when it is said; If a circle $\triangle \mathrm{BC}$ be given in position, and also a point E , a point D may be found, such, that if the two lines EY and PD be inflected from : and D, to any point whatever r, in the circumference, these lines shall have a given ratio to one another: the proposition becomes a porism.
"Here it is evident, that the local theorem is chnnged into a porism, by leaving out what relates to the determination of the point D , and of the given ratio. But though all propositions formed in this way, from the conversion of Loci, be purisms, yet all porisms are not formed from the conversion of Loci. The first and second of the preceding, for instance, cannot by conversion be changed into Loci; and therefore the definition which describes all $2 F$
porisms as being so convertible, is not sufficiently comprehensive. Fermat's idea of porisms, as has been already observed, was founded wholly on this definition, and tberefore could not fail to be intperfect.
" It appears therefore, that the definition of porisms given absve, ayrees with Pappus's idea of these prupositoons, as fur at least as can be collected from the imperlect fragments which contain his general description of them. It'agress also with Dr. Simson's defintion, which is this: - Porisma est propositio in qua proponitur demonstrare reru aliquain, vel plures datas esse, cui, vel quibus, ut et cuilibet ex rebus innumeris, non quidern datis, sed quax ad ea qua data sunt eandem habent relationent, cunvenire ostendendum est affectionem quandam communem iu propositione deacriptan.'
" It cannot be denied, that there is a considerable degree of obscurity in this definition; notwithstanding which it is certain, that every proposition to, which it applies must contain a problematical part, viz, 'in qua proponitur demonstrare reen aliquarn, vel plutes dalas esse; and also a theoretical part, which contains the property, or communis affectio, affirmed of certain things which have been previously described.
" It is also evident, that the suiject of every such proposition, is the relation between magnitudes of three different kinds; determinute magnitudes which are given; determinate mavitudies which are to be found; and indeterminate magnitudes which, though unhmited in number, are comsected with tbe others by wome common property. Now, these are exactly the conditions contained in the definitions that have been given here.
"To confirm the truth of this theory of the origin of porisms, or at least the justress of the notions founded on it, I must add a quatation from an exsay on the same subject, by a member of this society, the extent and correctness of whose views make every coincidence with his opinions pecularly flattering. In a paper read several years ago before the Pisilosophical Society, Profestor Dugald Stewart defined a porism to be "A propostion affirming the possibility of finding one or more ot the conditions of an indeterminate theorem.' Where, by an indeterminate theorem, as be had previously explaned it, is meant one which expresses a relation betwern certain quantities that are indeterinimate, both in magnitude and in number. The near agrecment of this whih the defintion and explapations which have been given above, is too obvinus to require to be pointed out; and I have only to observe, that it was not long after the publication of Sunson's posthumous works, when, being both of us occupied in speculations concerming porisms, we were led separately to the conclusions which I have now statel.
"In an enquiry into the origin of porisms, the etymology of the term ougltt not to be forgotten. The question inderd is not about the derivation of the word חΠ_{g} for concerning that there is no doubt; but sbout the revason why this terin was applied to the class of propositions above described. Two opinions may be formed on this sulject, and each of them with considerable probability; 1 mo . One of the significations of $\pi \partial f i \not \approx \omega$, is to acyuire or obtoin; and hence Пoorg μ, the thing obrained or gained.
"Accordingly, Scapula says, ' Est vox a peometris desumpta qui throrema aliquid ex demonstrativo syllogismo necessario sequens inferentes, illud quasi lucrari dicuntur, quod non ex professo quidem theorematis hujus instituta sit demonstratio, sed tamen ex demonstratis recte sequa-
tur.' In this sense Euclid uses the word in his Elements of Geotnetry, where be calls the corollaries of his proposition, porismata. This circumstance creates a presumption, that when the word was applied to a particular class of propowitions, it was meant, in both cases, to convey nearly the same idea; as $1 t$ is not at all probable, that so correct a writer as Euchd, and so scrupulous in his use of words, should employ the same term to express two ideas which are perfictly different. May we not therefureconjecture, that these propusitions gut the name of porisms, entisely with a reference to their origin? According to the iden explained above, they would in general oceur to mathematicians when engaged in the solution of the more difficult problenis, and would arse from those particular cuses, where one of the coudinions of the data involved in it sonue one of the rest. Thus a particular kind of theorem wrould be obtained, following ns a curollary from the solution of the problem: and to this theorem the term Ispitua might be very pruperly applied, since, in the words of Scupula, ulready quoted, 'Non ex professo theorematis hujus institutasit demonstratio, sed tamen ex demonstratis recte sequatur.?
" 2do. But though this interpretation agrees so well with the sujposed origin of porisms, it is iot free from difficulty. The verb $\pi e_{6} b_{6}$ a has another signification, to find out, to disencer, to devese; and is used in this sense by Pappus, when be says that the propositions called poriams,
 those who are abic to tonderstand and intestigate. Hence comes π tpigus; the act of Amding out or discorering, and fromi π agisuos, in this sense, the same author evidently considers [legiofux us being derived. His words are, E Sacav

 thing proposed for the finding out, or discuvering of the oery thing proposed. It seems singular, however, thut porisms should have taken their name from a circumstance common tothem with so many other geometrical truths; and if this was really the case, it must bave been on account of the emgomatical form of their enuncuations, which required, that in the analysis of these propositions, a sort of dinble discovery should be made, not only of the trath, but alses of the tneaning of the very thing which was proposed. They may therefore have been called porismata, or illvestigations, by way of tminence.
"We might next proceed to consider the particular porisms which Dr. Simson has restured, and to show, that every one of ltim is the indeterninate case of some problern. But of this it is so easy for any one, who has attended to the preceting semarks, to satisfy himsell, by barely examimng the enunciatons of those propositions, that the detall, unto which it would lead, secuts to be unnecrssary, I shail therefore go on to make some observatons on that hind of analysis which is particularly adapted to the invesagation of porisms.
"If the idea which we have given of these propositions be just, it follows, that they are always to be discovered by considering the cuses in which the construction of a problem fuils in consequence of the lines which, by ther interection, or the points which, by their position, were to detcrmine the magnitude required, happening to coincide with one another-a ponsm tnay therefore be deduced from the prublem it belongs to, in the same manner that the propositions concerning the maxima and minima of quantitice are deduced from the problems of which they
form the limitations; and such no doubt is the most natural and most ubvious analysis of which this class of propositions will adnit.
"It is not, however, the only one that they will admit of ; and there are good reasons for wishing to be provided with another, by means of which, a porism that is any how suspectrd tw exist, may be found out, independently of the general solution of the problem to which it belougs. Of these reasons, one is, that the porisin may perhaps admit of being investigated more easily than the general problem aulmits of being resolved; and another is, that the furmer, in almost every case, helps to discover the simplest and most elegant solution that cas be given of the latter.
"It is desirable to have a method of investigating porisms, which docs not require that we should previously resolve the problems they are connectel with, and which may always serve todetermine, whether to any given problem there be attached a porism, or not. Dr. Simson's Analysis may be considered as answering to this description; for as that geometer did not regard these propositions at all in the light that is done here, nor in relation to their origin, an independent analysis of this kind was the only one that coulil occur to him; and be has accordingly given one which is extremely ingenious, and by no means easy to be invented, but which he user with great skilfulness and dexterity throughout the whole of his Restoration.
"It is not easy to ancertain whether this be the precise method used by the ancients. Dr. Simson had here nothing to direct hin but his genius, and has the full merit of the first inventor. It seems probable, however, that there is at least a great affinity between the methods, since the lemmata given by Pappus as necessary to Euclid's demonstrations, are subservient also to those of our inodern geometer.
"It is, as we have seen, a general priaciple, that a problem is converted into a porism, when one, or when two, of the conditions of it, necessarily involve in them some one of the rest. Suppose then that two of the conditions are exactly in that state which determines the third; thed, while they remain fixed or given, should that third one be supposed to vaty, or differ, ever so little, from the state required by the other two, a contradiction will ensue. Therefore if, in the hypothesis of a problem, the conditions be so related to one another, as to render it indeterminate, a porism is produced; bnt if, of the conditions thus related to one another, some onc be supposed to vary, while the others continue the same, an absurdity follows, and the problem becomes impossible. Wherever therefore any problem admits both of an indeterminate, and an impossible case, it is certain, that these cases are nearly related to one another, and that some of the conditions by which they are produced, are common to both.
"It is supposed above, that two of the conditions of a problem involve in them a third ; and wherever that happens, the conclusion which has been deduced will invariably take place.
"But a porisn may sometimes be so simple, as to arise from the mere coincidence of one condition of a problem with anotber, though in no case whatever, any inconsistency can take place between them. Thus, in the second of the foregoing propositions, the coincidence of the point given in the problem with another point, viz, the centre of gravity of the given triangle, renders the problem indeterminate; but as there is no relation of distance, or position, between these points, thut may not exist, so the pro-
blem has no impossible case belonging to it. There are, however, comparatively but few porisms so simple in their origin as this, or that arise from problems in which the conditions are so little complicated; for it usually happens, that a problem which can become indefinite, may also become impossible; and if so, the connection between these casces, which bas been already explaimed, never fails to take place.
" Another species of impossibility may frequently arise from the porismatic case of a problem, which will very much affect the application of gcometry to astronomy, of any of the sciences of experiment or observation. For when a problem is to be resolved by help of data furnished by experiment or observation, the first thing to be considered is, whether the data so ohtained, be sufficient for determining the thing sought; and in this a very erroncous judgment may be formed, if we rest satisficd with a general view of the subject. For though the problem may in general be resolved from the data that we are provided with, yet these data may be so related to one another in the case before us, that the problem will become indeterminate, and instead of one solution, will admit of an infinite number.
"Suppose, for instance, that it were required to determine the position of a point y from knowng that it was situsted in the circumfurence of a given circle $A B C$, and also from knowing the ratio of its distances from two given points E and D; it is certain that in general these data would be sufficient for determining the situation of F. But nevertheless, if z and p should be so situated, that they were in the same atraight line with the cettre of the given circle; and if the rectangle under their distances from that centre, were also equal to the square of the radius of the circle, then, the position of F could not be determined.
"This particular instance may not indeed occur in any of the practical applications of gcometry; but there is one of the same kind which bas actually occurred in astronomy. And as the history of it is not a little singular, affording besides an excellent illustration of the nature of porisms, I bope to be excused for entering into the following detail concerning it.
"Sir Jsaac Newton having demonstrated, that the trajectory of a comet is a parabola, reduced the actual deter mination of the orbit of any particular comet to the solution of a geometrical problem, depending on the properties of the parabola, but of such considerable dificulty, that it is necessary to take the assistance of a more clementary problem, in order to find, at least nearly, the distance of the comet from the earth, at the times when it was observed. The expedient for this purpose, suggested by Niewton himself, was to consider a small part of the comet's path as rectilineal, and described with an uniform motion, so that four observations of the comet being made at moderate intervals of time from one another, four straight lines would be determined, viz, the four lines joining the places of the earth and the comet, at the times of observation, across which if a straight line were drawn, so as to be cut by them in three parts, in the ssme ratios with the intervals of time above-ruentioned; the line so drawn would nearly represent the comet's path, and by its intersection wihh the given lines, would determine, at least nearly, the distances of the comet from the carth at the time of observation.
"The geometrical problem here employed, of drawing 2 F 2
a line to be divided by four other lines given in position, into parts having given ratios to one another, had been already resolved by Dr. Wallis and Sir Christopher Wren, and to their solutions Sir Isaac Newton added three others of his own, in different parts of his works. Yet none of all these geometers observed that peculiarity in the problem which rendered it inapplicable to astronomy. This was first done by M. Boscovich, but not till after many trials, when, on its application to the motion of comets, it had never led to any satisfactory result. The errors it produced in some instances were so considerable, that Zanotti, seeking to determine by it the orbit of the comet of 1739, found, that his construction threw the comet on the side of the sun opposite to that on which he had actually observed it. This gave occasion to Boscovich, some years afterwards, to examine the different cases of the problem, and to remark that, in one of them, it became indeterminate, and that, by a curious coincidence, this happened in the only case which could be supposed applicable to the astronomical problem above-mentioned; in other words, he found, that in the state of the data, which must there always take place, innomerable lines might be drawn, that would be all cut in the same ratio, by the four lines given in position. This be demonstrated in a dissertation published at Rome in 1749, and since that time in the third volume of bis Opuscula. A demonstration of it, by the same author, is also inserted at the end of Castillon's Commentary on the Arithmetica Unisersalis, where it is deduced from a construction of the general probleth, given by Mr. Thomas Simpson, at the end of his Elements of Geometry. The proposition, in Buscovich's words, is this : - Problema quo quaritur rectu linea quar quatuor rectas positione datas ita sectet, ut tria cjus segmentas sint invicem in ratione data, evadit aliquando indeterminatum, ita ut per quodvis punctum cujussis ex iis quatuor rectis duci possit recta linea, qua ei conditioni faciat satis.'
"It is needless, I belicve, to remark, that the proposition thus enunciated is a porism, and that it was discovered by Boscovich, in the same way in which I have supposed porisms to have been first discovered by the geometers of antiquity.
"A question nearly connected with the origin of porisms still remains to be solved, namely, from what cause has it arisen that propositions which are in themselves so important, and that aciually occupied so considerable a place in the ancient geometry, have been so litule remarked in the modern? It cannot indeed be said, that propositions of this kind were wholly unknown to the moderns before the restoration of what Euclid had wrinen concerning them; for besides Boscovich's proposition, of which so much bas been already said, the theorem which asserts, that in every system of points there is a centre of gravity, has been shown above to be a porism; and we shall see hereafter, that many of the theorems in the higher geometry belong to the same class of propositions. We may add, that some of the elementary propositions of geomerry 'want ooly the proper form of enunciation to be perfect porisms. It is not therefore strictly true, that none of the propositions called porisms have been known to the moderns; but it is ceriain, that they have not met, from them, with the attention lbey met with from the ancients, and that they have not been distinguished us a separate class of propositions. The cause of this difference is undoubtedly to be sought for in a comparison of the methods employed for the solution of geometrical problems in ancient and modern times.
"In the solution of such problems, the geometers of antiquity proceeded with the utmost caution, and were careful to remark every particular case, that is to say, every change in the construction, which any change in the state of the data could produce. The differen conditions from which the solutions were derived, were supposed to vary one by one, while the others remained the same; and all, their possible combinations being thus enúmerated, a separate solution was given, wherever any considerable change was observed to have taken place.
"This was so much the case, that the Sectio Rationis, a geometrical problem of tho great difficulty, and one of which the solution would be dispatched, according to the methods of the modern geometry, in a single page, was male by Apollonius, the subject of a treatisc consisting of two books. The firsi book has 7 general divisions, and 24 cases ; the second, 14 general divisions, and 73 cuses, each of which cases is separately considered. Nothing, it is evident, that was any way connecied with the problem, could escape a geometer, who proceeded with such minuteness of investigation.
"The same scrupulous exactness may be remarked in all the other mathematical researches of the ancients; and the reason doubtless is, that the geoncters of those ages, however expert they were in the use of their analysis, had not sufficient experience in its powers, to trust to the more gelneral applications of it. That principle which we call the law of continuity, and which connects the whole system of mathematical iruilis by a chain of insensible gradations, was scarcely known to them, and has been unfolded to us, only by a more extennive knowledge of the mathematical sciences, and by hat mosi perfect mode of expressing the relations of quantily, whicb forms the language of algebos; and it is this principle alone which has taught us, that though in the solution of a problem, it may be innpossible to conduct the investigation without assuming the data in a particular state, yet the result may be perfectly general, and willaccoumodate itself to every case with such wonderful versatulity, as is scarecly credible to the most expericiced mathematician, and such as often forces him to stop, in the inidst of his calculus, and look back, with a mixture of diffidence and admiration, on the unforess en harmony of his conclusions. All this was unknown to the ancients; and therefore thry had no resource, but to apply their analysis separalely to each particular case, with that extreme cantion which has just been described; and in doing so, they wre likely to mmark many peculiarities, which more extensive views, and inore expedinious merhods of investigation, might perluaps bave iuduced them to overlook.
"To rest satisfied, indeed, with too general results, and unt to descend sufficiently into particular details, may be considered as a vice that naturally arises out of the excellence of the modern analysis. The effect which this has had, in concealing from us the clasy of proposithons we are now considering, cannot be better illusirated than by the example of the parison discosered by Boscovich, in the manner rolated above. Though the problem from which that porism is derised, was resolved by several mathermaticians of the first emitenec, anong whom also was sir lsase Newion, yet the porism which, as it happens, is the inost imporiant case of it, was not obscived by any of them. This is she more reinarkable, as Sir Isanc Newton takes notice of the two most simple cases, in which the problcm obviously adinits of innu-
merable solutions, viz, when the lines given in position are citber all parallel, or all meeting in a point, and these two hypotheses he therefore expressly excepts. Yet be did nol remark, that there are other circumstances which may render the solution of the problem indeterminate as wall as these; so that the porismatic case considered above, escaped his observation: and if it escaped the observation of une who was accustomed to penetrate so far into matters infinitely more obscure, it was because be satisfied himself with a general construction, without pursuing it into its particular cases. Had the solution been conducted after the manner of Euclid or Apollonius, the porism in question must infallibly have been discovered."

In the "Account of the Life and Writings of Hob. Simsson, M. D." published in 1813, by the Rev. Dr. Wm. Trail, we find many learned observations on the sulject of porisms. Alter a particular account of the labours of many authors on this subject, from Euclid and others among the ancients down to Pappus and Proclus, and the attempls at restoration by many of the moderns, but chiefly by Dr, Sinnson, Dr. Trall says,
"After a certain prugress in the prosecution of this sulject, it became an important object to ascertain n just definition of the porism. The definition givell by the leser mathematicians, as stated by Pappus, but censured by bin, 'quod deficit hypothesi a theoremate locati,' clenrly implies that a porisin had an imniediate reference to a lucus; though it is not less clear that Pappus considered loci as only one cluss of porisins, (a large one no doubt,) but that of course many porisms have no connexion whatever with loci.
"But the definition which Pappus quotes from the ancients (viz, that it is sumething proposed to be investigated), as more characteristic of porisms, is too general for any useful purpose; and though it does correspond to the nature of these prupositions, yet it is deficient in discrimination, and of itself neither conveys any precise notion of Euclid's porisins, nor gives assistance to the investigation of any individual proposision.
" After much consideration of varions forms of a definition which had occurred to him, the doctor finally settled the following: ' A porism is a proposition in which it is proposed in demonstrase that some one or more things are given, to which, as also to every one of iunumerable other things, not indeed given, but having the saine relation to those that ure giveb, it is to be shown that there belongs some common aflection described in the proposition.'
"The doctor illustrates the propriety and accuracy of this definition by meny examples; andshows particularly wherein the definition blamed by Pappus coincides with his, and wherein it is deficient, by cicluding many genuine prorisms. The definition indeed, with much address, is so framed as to enrrespond with all the intimations of Pappus respecting porisms, and also with the characier of the individual porisms of Etelid, which Dr. Sinson had discoverad ; and therefore may justly be considered as expressise of the untions on this subject entertained by the ancienss. It is not pretended that this wav a definition of the ancients; for probally $\mathrm{m}^{\text {ar }}$ precise definition was given by them, of either theorem, problem or porisn!. None apperers in the works of the more carly geometers, which are sull prescrved in a considerable degree of puriy; and where such definitions would nalurally have had a place. And we may affirm with much probability, that if ady
useful and characteristic definition of a porism had reached the times of Pappus, he would not have neglected so valuable a remnant of ancient mathematical science, in a work obviously designed for the prescraation of the more curious portions of it. He does not omit a definition, which probably was only a tradituonal and pointed otservation of some ancient geometer, and though of no use in explaining the character of a porism, yet is in some degree fortifivd his objection to the definition of the later mathematicians, who, be states, from inability, could not accomplish the investigation of porisms; but satisfied themselies with assuming the constructions as they found them in Euclid, or other geometers, and adding the demonstrations.
"It is observed by Pappus, that a porism is neither a problem nor a theorem, but sumething of an imermediate nature; and that it might be proposed either as a problem or as a theorem; some geumeters contending for the one, and some for the other. Dr. Simson his given a form to the cnunciation of a porism, implying this intermediate characier between a problem and a theorem. In his enunciation it is affirmed that certain things may be foulnd, which shall have the relations or propertis therein desctibed. Perhaps this form resembles more that of a theorem, than of a problem; but at the same time, the things, of which it is suid that they may be found, inusi be aetially investigated by analysis, as if the proposition were a problem. Were it simply proposed te investigate certain things whieh nould tave the proporo ties expressed in the poriom, it may be reganded as a problem; but if these things are found by a constructiondescribed in the enunciation, the propestion becomes a theorem, affirming the truth of the properties asserted; and then a demonstration only is requircd, withour'any investigation ; in the manner which appears to have been practised by the later mathematicians, alluded to by Pappus.
"I cannot omit adverting in this place to a very ingenious theory of porisms proposed by Mr. professor Playfair of Fdinburgh, first briefly in his account of the life of Dr. Stewnrt, and afterwards more fully explained in a memoir ont that subject in the 3 d volume of the Transactions of the Royal Society of Edinburgh. The result of his investigation is, that a porism is the case of a problem which becomes indeterminate; or more particularly a porisun is a proposition affirming the possibility of finding such conditions as will rendera certain problem indeterminate, or capable of innumerable solutions." But thougb I admire the ingenuity, and fully admit the woundness, of this defininion, and also the utility of the principle on which it is founded, in the discovery of porisms, I must acknowledge my doubt of that parncular notion of a porism having ever been adopted, or even proposed, annong the ancient geometricians. The circumstance of its being so satisfactory as a definition, is to me a proof that it was never generally known or embraced: for had it ever been approved and estublished, it seems scarce possible that it should afterwards have been neglected and lost. Thal, among the ancients, the consideration of the relations subsisting among the data, in some problems, might bave occasionally suggested the particular case in which these problems would become indeterminale, is rery probable. It might also have often occurred to them, that this indererminate case involved an important general proposition, whel might be arparalely stated as such, and pre-
served. Many porims, of Enclid mas possibly have been invented in that way; but still $\$ entertain a doubt, if ever the ancients were in possession of this notion as a principle, and as the proper ground of the definition of a porism. Pappus mentions the tefinition of the ancients, and apparently as the only one which they were known to possess, though, as has been remashed, it be of no particular use. He nections also a delinition of the later mathematicians, which be censures as erroneous: but, if such a complete and satisfactory defintion, wbich not only accurately distinguishes that class of propositions, but points out an obvious source of the discovery of them, had ever been generally understood among the ancients, it is difficult to suppose that it could ever have been lost; and had it reached the troe of Pappus, it is most improbable that he should neglect the recording of it in his detailed account of Euclid's treatise on this subject. With these strong internal probabilities, and the total want of external evidence, I must (with deference, however, to the opinion of those who may think differenily) adhere to the judgment which I have already expressed, concerning the recent origin of this excellent defininion, proposed by Mr. Playtair."

On this subject, see also several other places in Dr. Trail's works, particularly the note D , pa. 88.

Porism was also used in another sense, by the ancient geometricians, and even down to near the 17 th century, to denote the same thing as the common corollary.

PORISTIC Mechod, is that which determines when, and by what means, and how many different ways, a problem may be resolved.

PORTA (Jonn Baptista), called also in Italy Giovan Batista de la Porta, of Naples, flourished about the end of the 16 th century, and was famous for his skill in philosophy, mathematics, medicine, natural history, \&ce, as well as for his indefatigable endeavours to improve und propagate the knowledge of those sciences. Wuh this view, he not ouly established private schools for particular sciences, but to the unimest of his power promoted public academies. He had no small share in esublishing the academy at Gli Ozioni, at Naples, and bad one in his own bouse, called de Secreti, into which none were admitted members, but such as had made sone new discoveries in nature. He invented the camera olscura, improved afterwards by Gravesande, and formed the plan of an encyclopardia. IIe died at Pisa, in the kingdorn of Naples, in the year 1615. Porta gave the fullest proof of an extensive genius, and wrote a great many works; the principal of which are as follow:

1. His Natural Magic ; a book ubounding with curious experiments; but containing nothing of magic, in the common acceptation of the words as be pretends to nothing above the power of nature.
2. Elements of Curve Lines.
3. A Treatise of Distillation.
4. A Treatise of Arithmetic.
5. Concerning Secret Letter-writing.
6. Of Optical Refractions.
7. A Treatise of Fortification.
8. A Treatise of Physiognomy.

Beside some Plays and other pieces of less note.
PORTAIL, in Architecture, the face or frontispiece of a church, viewed on the side in which the great door is placed. It means also the great door or gate itself of a palace, castle, \&c.

PORTAL, in Architecture, a term used for a litile square corner of a room, cut oft from the rest of the room by the wainscut; frequent in the ancient buildings, but now disused.

Portal is sometimes alio used for a little gate, portella ; where there are two gates, a large und a small one.

Pontal is sometimes also used for a kind of arch of joiner's work before a door.

PORTCULLICE, called also Herse, and Sarrasin, in Fortificution, an assumbluge of several large pieces of wood laid or joined across one another, like a harrow, and each pointed at the bothom with iron. These were formerly used to be hung over the gateways of fortified places, to be ready to let down in case of a surprise, when the enemy should come so quick, as not to allow time to shut the gates. But the orgues are now more generally used, being found to answer the purpose better.

PORT-Fire, in Gunnery, a paper tube, about 10 inches long, filled with a composition of meal-powder, sulphur, and nitre, rammed miderately hard; used to fire guns and mortars, instead of a match.

PORTICO, in Architeclure, is a hind of gallery, raised upon arches, under which people walk for shelter.

POSITION, or Sire, or Situacion, in Plyysics, is an affection of place, expressing the manuer of a body's being in it.
l'osipion, in Architecture, denotes the situation of a building, with respect to the poinss of the horizon. The best it is thought is when the four sides point directly to the four winds, or cardinal points.

Position, in Astronomy, relates to the spherc. The position of the sphere is either right, parallel, or oblique; whence arise the inequality of duys, the difference of seasons, ${ }^{2}$ c.

Circles of Positsox, are circles passing through the conmon intersections of the horizon and meridian, and through uny degree of the ecliptic, or the centre of any star, or wher point in the heavens; used for finding out the position or situatien of any star. These are usually counted six in number, cunting the equalor into twelve equal parts, which the astrolugers call the celsstial houses.

Position, in Arithmetic, called nlso False Position, or Suppsition, or Rule- of-False, is a rule so called, because it cunsists in calculating by false numbers, supposed or taken at random, accoreing to the process described in any question or problem proposed, as if they were the true numbers, and then from the results, compared with that given in the question, the true numbers are found. It is sumetimes also called Trial-and-Error, because it pencteds by trials of false numbers, and thence finds out the tive ones by a comparison of the errors.-Position is eithe r single or double.

Single dosition is when only one supposition is emploved in the calculation. And Double Position is that in which two suppositions are employed.-To the rule of position properly belong such questions as cannot be resolved from a direct process by any of the other usual rules in arithmetic, and in which the required numbers do not ascend above the first power : such, for exumple, as most of the quistions usually brought to exercise the reduction of simple equations in algebra. But it will not bring out true answers when the numbers sought ascend above the first power; for then the results are not proportional to the positions, or suppused numbers, as in the single rule; nor yet the eirurs to the difference of the true
number and each position, as in the double rule. Yet in all such cases, it is a very good approximation, and in exponential equations, as well us in many other things, it succeeds better thin perhaps any other method whatever.

Those questions, in which the results are proportional to their suppasitons, beloug to single position: such are those which require the multiplication or division of the number sought by any number; or in which it is to be increased or dunintahed by itself any number of times, or by any part or parts of it. But tions- in which the results are not propornomal to their positions, belong to the double rule: such are those, ill which the numbers sought, or their multiples or parts, are increased or diminished by some given absolute number, which is no known part of the nuinber sought.

In Sivgle Position. Suppose, or assume any number at pleasure, for the number sought, and proceed with it as if it were the true number, that is, perform the same operations with it as, in the question, are described to be performed with the number sought: then it the result of those operaitions be the same with that mentioned or given in the question, the supposed uumber is the same as the true one that was required; but if it be not, make this proportion, viz, as the result is to that in the question, so is the supposed falsc number, to the true one required.

Eirample. Suppose that a person, after spending $\frac{f}{f}$ and $\frac{1}{4}$ of his money, has yet remaining 601.; what sum had he at first ?

Suppose he had at first 1201.

Now $\frac{1}{3}$ of 120 is	$\mathbf{4 0}$
and t ot it is	30
their sum is	70

their sum is . 70
which taken from 120
leaves remaining $\quad 50$, instead of 60 .
Therefore as $30: 60:: 120: 144$ the sum at first.
Proof. $\frac{1}{3}$ of 144 is 48
$\frac{1}{4}$ of it is
36
their sum 84
taken from 144
leaves just 60 as per quest.
To work by the Dotable Rule of Posimion.
In this rule, make two different suppositions, or assumptions, and work or perform the operations with each, deseribed in the question, exactly as in the single rule: and if weither of the supposed numbers solve the question, that is, preduce a result agreeing with that in the question; then observe the errors, or how much each of the false results differs from the true one, and also whether they are too greast or too little; marking them with + when too great, and with - when too little. Next multiply, crosswise, each pasition by the error of the other; and if the errors be of the same affection, that is both + , or both - , subtract the one product from the other, as also the one error from the other, and divide the former of these two remainders by the latter, for the answer, or number sought. But if the errors be unlike, that is, the one + , and the otber -, add the two products together, and also the two errors tugether, and divide the former sum by the latter, for the answer.

Rovle 2. Multiply the difference of the two assumed numbera by one of the errors, and divide the product by the differenee of the results, the quotient will be the correction of the assumed number belonging to that error: Then add this quotient or correction to the said assumed
number when it is tou small, but subtract it when too great, to give the answer.

This rule of position, or trial-and-error, is a good gencral way of approximating to the roots of the higher equations, to which it may be applied even before the equation is reduced to a final or simple state, by which it often saves much trouble in such reductions. It is also eminently useful in resolving esponential cquations, and equations involving arcs, or siues, Acc, or logarithms, and in short in any equations that are very intricate and difficult. And even in the extraction of the higher roots of common numbers, it tuay be very usefully applied. For examples, and the demonstration of the rules, see the 1st vol. of my Course of Mathematics.

The rule of position passed from the Monrs into Europe, by Spain and Italy, along with their algebra, or method of equations, which was probably derived from the former.

Positios, in Geometry, respects the situation, bearing, or direction of one thing, with regard to another. And Euclid says, "Points, lines, and angles, which have and kee, always one and the saine place aod situation, are said to be given by position or situation." Data, def. 4.

POSITIVE 2untities, in Algebra, such as are of a real, affirmative, or additive nature ; and which either have, or are supposed to have, the affirmutive or positive sign + before them; as a or $+a$, or be, \&c. It is used in contradistinction from negative quantities, which are defective or subductive ones, and marhed by the sign - ; as $-a$, or $-a b$.

Positive Electricify. In the Franklinian system, all bodies supposed to contain more than their natural quantity of electric matter, are said to be positively electrified; and those which have less than that quantity, are suid to be electrificd angatively. These two electricities being at first prolluced, the one from glass, the other from amber or rosin, the former was called vitreous, the other resinous electricity.

POSTERN, or Sally-port, in Fortification, a small gate, usually made in the angle of the tlank of a bastion, or in that of the curtain, or near the orillon, descending into the ditch; by which the garrison can march in and out, unperceived by the enemy, either to relieve the works, or to make private sallies, \&c.-It means also any private or back door.

POSTICUM, in Architecture, the postern gate, or hack-door of any fabric.

POSTULATE, a demand, petition, or an assertion of so obvious a nature, as to weed neither demonstration nor explication, to render it either more plain or certain. This definition will nearly agree also to an axiom, which is a self-evident theorem, as a postulate is a self-evident pro. blem.-Ruclid lays down these three postulates in his Elements ; viz, 1 st , That from one point to another a liue can be drawn. 2d, That a right line can be produced out at at pleasure. 3d. That with any centre and radius a circle may be described.-As to axioms, be has a great number; as, That two things which are equal to one and the same thing, are equal to each other, \&c.

POTASH, in chemistry, one of the three fixed alkalies, procured from the burnt ashes of vegetables, by combustion in iron or other pots; whence the compound pot-ash.
POTASSIUM, a recently discovered and very singular metal, obtained by peculiar management, from pot-ash,
which in motern chemistry can only be reganded as its exyd.

POUND, a certain weight; which is of two kinds, vix, the pound troy, and the pound avoitdupois; the former consisting of is ounces troy, and the latter of 16 ounces avoirt'upois. 'The puond troy is to the pound avoirdupois as 5760 to 69994 , or ncarly 576 to 700.

Pound also is an imnginary money used in accounting, in several countics. Thus, in England there is the pound sterling, containing in value 20 shillings; in France the pound or lisre Tournois and Parisis; in Holland and Flanders, a pound or livre de gros, \&c.-The term arose from hence, that the ancient pound sterling, though it only contained 240 pence, ns ours does; yet each penny being equal to five of ours, the pound of silver weighed a pound troy.

POUNDER, in Artillery, a term used to express a certain weight of shot or ball, or how many pounds weight the proper ball is for any cannon: as a 24 pounder, a 12 pounder, \&c.

POWDER, Gun. Sce Gunpowder.

Powdea-Triers. See Ephouvette.

POWER, in Mechanics, denotes some force which, being applied to a machine, tends to produce motion; whether it docs actually produce it or aot. In the tormer case, is is called a moving power; in the latter, a sustaining power.

Power is ulso used in Mechanics, for any of the six simple machines, viz, the lever, the balance, the screw, the wheel and axle, the wodge, and the pulley.

Power of a Glass, in Optic, is used for the distance between the convexity and the solar fucus.

Power, in Arithmetic, the produce of a number, or other quantity, arising by multiplying it by itself, any number of times. Any number is called the first or single power of itself. If it be multiplied ouce by itselt, the product is the second power, or sytare ; if this be multiplied by the first power again, the product is the third power, or cube; if this be multiptied by the tirst power again, the product is the fourth power, or biquadratic; and so on; the power being alwnys denominated from the number which excoeds the inultiplications by one or unity, which number is called the index or exponent of the power, and is usually set at the upper corner towards the right of the given quantity or root, to dennte or express the power. Thus, 3 or $3^{4}=3$ is the 1 st power of 3 , 3×3 or $3^{2}=9$ is the 2 d power of 3 , $3^{1} \times 3$ or $3^{3}=27$ is the 3 d power of 3 , $3^{3} \times 3$ or $3^{4}=81$ is the 4th power of 3 , \&c. \&c.
Hence, to raise a quantity to a given power, is the same as to find the product arising from its being multiplicd by itself a cerlain number of times; for example to raise 2 to the 3 d power, is the same thing as to find the fuctum, or product $8=2 \times 2 \times 2$. The operation of raising powers, is called Involution.

Powers, of the same degree, are to one another in the ratio of the roots as manifold as their commont exponent contains units: thus, squares are in a duplicate ratio of the roots; cubes in a triplicate ratio; \ddagger tb powers in a quadruplicate ratio.-And the powers of proportional quantities are also proportional to one another: so, if $a: b: c: d$, then, in any powers also, $a^{n}: b^{2}:: c^{2}: d^{2}$.

The particular names of the several powers, as introduced by the Arabians, were, square, cube, quadratoqua-
datum or biquadrate, sursolid, cube squared, sccond sursolid, quadrato-quadrato-quadratum, cube of the cube, square of the sursolid, third sursolid, and so on, according to the products of the indices.

And the names given by Diophantus, who is followed by Vieta and Oughtred, are, the side or riot, square, cube, quadrato-quadratum, quadrato-cubus, cubo-cubus, qua-drato-quadrato-cubus, quadrato-cubo-cubus, cubo-cuborubus, \&c, according to the sums of the indices.

But the moderns, ufter Harriot and Descartes, are contented to distinguish most of the powers by the exponents; as 1st, 2d, 3d, 4th, \&c.

The characters by which the several powers are denoted, both in the Arabic and Cartenian notation, are thus:

Arab.	1	R	\boldsymbol{q}	\boldsymbol{c}	$b q$	s	q	$B y$	qq	$b c$
Cart.	a°	a^{\prime}	a^{2}	a^{3}	a^{4}	a^{4}	a^{4}	a^{7}	a^{a}	a^{0}
	1	2	4	8	16	32	64	128	256	512

Hence, 1st. The powers of any quantity, form a series of grometrical proportionals, and their exponents a series of arithmetical proportionals, in such sort that the addition of the latter answers to the multiplication of the former, and the subtraction of the latter answers to the division of the former, \&ec ; or in short, that the latter, or caponents, are as the logarithms of the former, or powets.

$$
\begin{aligned}
\text { Thus, } a^{2} \times a^{3} & =a^{3}, \text { and } 2+3=5 ; \\
4 \times 8 & =32 ; \\
\text { also } a^{3} \div a^{3} & =a^{3}, \text { and } 5-3=2 ; \\
32 \div 8 & =4 .
\end{aligned}
$$

2d. The 0 Power of any quantity, as $u^{\prime \prime}$, is $=1$.
Sd. Powers of the same qualtity are multiplicd, by adding their exponents: Thus,

Mult. by	$\begin{aligned} & a^{3} \\ & a^{4} \end{aligned}$	$\frac{x^{2}}{2^{4}}$	$\begin{aligned} & y^{m} \\ & y^{\text {in }} \end{aligned}$	$x^{x^{10}}$	$\begin{gathered} a^{3} \\ a^{\mathrm{n}} \end{gathered}$
Prod.	a^{7}	x^{6}	y^{*}	$x^{\text {m }}$	

4th. Powers are divided by subtracting their exponents. $\begin{array}{llllll}\text { Div. } & a^{T} & a^{6} & y^{m i n} & a^{\infty}+a^{n} a^{3}+n \\ \text { by } & \frac{a^{3}}{} & x^{2} & y^{m} & x^{m} & a^{2} \\ \text { Quot. } & \frac{a^{4}}{4} & a^{4} & y^{m} & x^{n} & a^{0}\end{array}$
5th. Powers are abo considered as negative ones, or having negative exponents, when they denote a divisor, or the denomina:or of a fraction. So $\frac{1}{a^{4}}=a^{-3}$, and $\frac{2}{a^{4}}=$ $2 a^{-3}$, and $\frac{n^{\prime}}{2}=a^{2} x^{-4}$, Sce. And bence any quantity may be changed from the denominator to the numetator, or from a divisor to a multiplier, or vice versa, by changing the sign of its expment; and the whole series of powers priceeds indefinit ly both ways from 1 or the 0 power?positive on the oue hand, and negative on the other. Thus,

$$
\begin{aligned}
& \& \operatorname{ccc} a^{-4} a^{-3} a^{-2} a^{-1} a^{0} a^{8} a^{2} a^{3} a^{4} \& \mathrm{c}, \\
& \text { or, \&c } \frac{1}{a^{4}} \frac{1}{a^{2}} \frac{1}{a} \frac{1}{a} 1 a^{2} a^{3} a^{4} \& c .
\end{aligned}
$$

Powers are also denoted with fractional exponents, or even with surd ur irrational ones; and then the numerator dunotes the power raised to, and the denominator the exponent of some root to be extracted: Thus, $\sqrt{ } a=a^{\frac{3}{3}}$, and $\sqrt{a^{3}}=a^{\frac{3}{2}}$, and $\sqrt{ } a^{2}=a^{\frac{3}{3}}$, \&c. Thesc are sometimes called imperfect powers, or surds.
When the quantity to be raised to any power is positive, all its powars must be positive. And when the radical quantity is negative, get all its even powers must be pesitive : because $-x-$ gives + : the odd powers only be ing negatuse, or when their exponcnts are odd numbers: Thus, the powers of $-a$,
are $+1,-a,+a^{2},-a^{2},+a^{4},-a^{2},+a^{4}, \& c$. n here the evell poners a^{*}, a^{*}, a^{a} are positive, and the odd powers a, a^{3}, a^{3} are negative.
Hence, if a power have a negative sign, no even root of it can be assigned; since no quantity multiplied by its.If an even numbrer of times, can give a negative product. Thus $\sqrt{ }-a^{2}$, or the square or 2 d root of $-a^{2}$, cannot be assigned; and is calked an inpossible root, or an imagiuary quantity. Every power has as many roots, real and imaginary, as there are units in tbe exponent.
M. Labire gives a very odd property common to all powers. M. Carre had observed with regard to the number 6 , that all the natural cubic numbers, $8,27,64,125$, having their roots less than 6 , being divided by 6 , the remainder of the division is the root itself; and if we go fartber, 216 , the cube of 6 , being divided by 6 , leaves no remainder; tut the divisor 6 is itself the root. Again, 343, the culse of 7 , being divided by 6 , leaves 1 ; which added to the divisor 6, makes the root 7, \&c. M. Lahire, on considering this, has found that all numbers, raised to any power whatever, have divisors, which have the same effect with regard to them, that 6 has with regard to cubic numbers. For finding these divisors, be discovered the following general rule, viz, If the exponent of the power of a number be even, i.e. if the number be raised to the 2 d , 4th, 6th, \&c, power, it must be divided by 2; the remainder of the division, when there is any, added to 2, or to a multiple of 2 , gives the root of this number, corresponding to its power, i.e. the $2 \mathrm{~d}, 4 \mathrm{th}, 6 \mathrm{th}, \& \mathrm{c}$ root.

But if the exponent of the power be an uneven number, i. e. if the number be raised to the $3 \mathrm{~d}, 5 \mathrm{th}, 7 \mathrm{th}, \& \mathrm{c}$ power; the double of this exponent will be the divisor, which has the property abovernentioned. Thus is it found in 6, the double of 3 , the exponent of the power of the cubes: so also 10 , the double of 5 , is the divisor of all 5 th powers; \&c.

If r be a prime number, and n any number not divisible by r, then $n^{\boldsymbol{r}}$, being divlded by r, will leave the same remainder, as n when divided by the same number: and hence it follows that $\frac{r^{r \prime-n}}{r}$ is ulways an integer; and since n is prime to r, therefore $\frac{n^{r-1}-1}{r}$ is always an integer when r is a prime number and n prime to r. This is a very im portant theorem in the theory of numbers, the invention of which is due to Fermat, though the demonstration of it was first given by Euler in the Petersburg Memoirs.

By means of this theorem we readily deduce the following table of the forms of powers, with regard to cortain oumbers taken as moduli. Thus all

And generally if $m+1$ is apprime number, then λ^{m} is of one of the forms $(m+1) n$ or $(m+1) n+1$. And if $2 m+1$ be a prime, then x^{m} is of one of the three forms $(n+1) n$ or $(n+1) n \pm 1$. And since neither $7+1$ nor $2.7+1$ is a prime, therffore 7 th powers cannot be

Vol. II.

PRA

reduced to the laws observed in the foregning table, for which reason this power is there omitted.

Any power of the natural numbers $1,2,3,4,5,6, \& c$, as the nth power, has as many orders of differences as there are units in the common exponent of all the numbers; and the last of those differences is a constant quantity, and equal to the continual product $1 \times 2 \times 3 \times 4 \times \cdots$.- $\times n$, continued till the last factor, or the number of factors, be n, the exponent of the powers. Thus, the 1st powers, $1,2,3,4,5, k c$, have but one order of differences $11112 \& c$, and that difference is 1 . The 2d pwrs. $1.4,9,16,25, \& \mathrm{c}$, have two orders of differences $\quad 35_{2}^{5} 72_{9}$
and the last of these is $9=1 \times 2$.
The Sd pwrs. $1,8,27,64,125,8 \mathrm{c}$, have thrre orders $\begin{array}{lllll}\text { of differences } & 7 & 19 & 37 & 61\end{array}$

121824 66
and the last of these is $6=1 \times 2 \times 3$.
In like manner, the 4 th or last differences of the 4 th powers, are rach $24=1 \times 2 \times 3 \times 4$; and the 5 th or last differences of the 5 th powers, are each $120=1 \times 2$ $\times 3 \times 4 \times 5$. And so on. Which property was first noticed by Peletarius.

And the same is true of the powers of any other arithmetical progression $\mathbf{3}, 1+d, 1+2 d, 1+3 d, \& \mathrm{c}$,
viz, $1,(1+a)^{n},(1+2 d)^{n},(1+3 d)^{n}, \& e c$,
the number of the nrders of differences being still the same exponent n, and the last of those orders each equal to $1 \times 2 \times 3 \cdots \times n d^{m}$, the same product of factors as before, multiplied by the same power of the common difference d of the series of roots : as was shown by Briggs.
And hence nrises a very casy and gencral way of raising the powers of all the natural numbers, via, by common addition only, beginning at the last differences, and adding them all continually, one after another, up to the powers themselves. Thus, to generate the series of cubes, or 3d pewers, adding always 6 , the common 3d difference gives the 2d differences $12,18,24, \& \mathrm{cc}$; and these added to the 1st of the 1st differences 7 , gives the rest of the said Ist differences; and these again added to the 1st cube 1, gives the rest of the series of cubcs, $8,27,64, \& \mathrm{c}$, as below.

9dD.	$2 d \mathrm{D}$.	$1 s t \mathrm{D}$.	Cubes. 6
12	7	1	
6	18	37	8
6	24	61	27
	30	91	125
			216
			8 cc.

Commensurable in Power, is said of quannitics which, though not commensurable themselves, have their squares, or some other power of them, commensurable. Fuclid confines it to squares. Thus, the diagonal and side of a square are commensurable in power, their squares being as 2 to 1 , or commensurable; though they are not commensurable themselver, being as $\sqrt{2}$ to 1 .

Powen of an Hyperbola, is the square of the 4 th part of the conjugate axis.

PRACTICAL Arithmetic, Geometry, Mathematics, 2 G
\&c, is the part that regards the practice, or application, as distinguished from the theoretical part.

PRACTICE, in Arithnetic, is a rule which expeditiously and compendiously answers questions in the golden rule, or fule-of-three, especially when the first terns is 1 . Sce rulce for this purpose in all the books of practical arnbmetic.

PRECESSION of the Equinnxes, is a very slow motion of them, by which thry change their place, going from east to west, or backward, in antecedentia, as astronorners call it, or contrary to the order of the signs. From the late improvements in astronomy it appears, that the pote, the solsticis, the equinoxes, and all the other points of the ecliptic, have a retrograde inotion, and are constantly moving from cast to west, or from Aries towards Pisces, $d \mathrm{c}$; by ineans of which, the equinetial points are carricd fartber ated farther back, among the preceding signs or stars, at the rate if about $50^{\prime \prime} \frac{1}{}$ each year ; which retrograde motion is called the Precession, Recession, or Ketrocessim of the Equinoxes.
Hence, as the stars remain nearly immoveable, and the equinoxes go backward, the stars will seen th move more and more eastward with respect to then: for which reason the longitules of all the stars, being reckoned from the first point of Arics, or the vernal equinox, are continually increasing. From this cause it is, that the constellations seem all to have changed the places assigned to them by the ancient astronomers. In the time of Hipparchus, and the oldest astronomers, the equinoctial points were fixed to the first stars of Aries and Libra: but the signs do not now answer to the same poims; and the stars which were tben in conjunction with the sun when he was in the equinox, are now a whole sign, or $\mathbf{3 0}$ degrees, to the eastward of it: so, the first star of Aries is now in the portion of the ecliptic, called Taurus; and the stars of Taurus are now ill Gemini; and those of Gerqini in Cancer; and 10 on.
This seening change of place in the stars was first observed by Hipparchus of Rhotes, who, 128 years before Christ, found that the longitudes of the stars in his time were greater than they had been before observed ty Timochares, and than they were in the sphere of Eudoxus, who wrote 380 years before Chrint. Ptolemy also perceised the gradual ehange in the longitudes of the stars; but he stated the quantity at too litte, making it but 1° in 100 years, which is at the rate of only $36^{\prime \prime}$ per year. I'-hang, a Chinese, in the year 721, stated the quantity of this change at 1° in 83 years, which is at the rate of $43^{\prime \prime}$ p.r year. Other mure undern axironomers have male this precession still more, but with some small diff rences from each other; and it is now usually taken at $50^{\prime \prime} \frac{1}{3}$ per year. All these rates are deduced from a comparison of the longitude of certain stars as observed by more ancient astronomers, with the hater obsernutions of the same stars; viz, by subtracting the former from the latere, and dividing the remainder by the uunber of years in the interval between the dates of the obseriations. Thus, by a medium of a great number of comparisons, the quantity of the anaval cbange has been fivel at 50 "?

Thus, by tating the longitudes of the priscipal stars astablished by Tycho Brabe, in his book Astronomiar Instaurate Progymnamata, pia. 208 and 232, for the beginning of 1586, and comparing them with the same as determined for the year 1750, by M. Lacaille, for that in-
terval of 164 years, there will be obtained the following differences of longitude of several stars; siz,

which divided by 164 , the interval of years, gives $30^{\circ \prime} \cdot 336$, or neally $50^{\prime \prime \prime} \frac{1}{3}$, or after the rate of $3^{\circ} 93^{\circ} 33^{\prime \prime} 5$ in 100 years. And nearly the samo conclusion tesults from the longitudes of the stars in the Brimanic catalogue, compared with thome of thic still later catalogue. Soe Latande's Astronomy, in several places.

Mr. Mayer, in the construction of his tables, assumed the precession of the equinoxes, or the nnnual motions of the fixed stars in longilude, to be exactly $50^{\prime \prime} .3$, without paying any regard to the alteration of the place of the equinox arising from the translation of the plaue of the ecliptic by the action of the planets. Dr. Bradley, by comparing his own observationv of declinations of stars, lying on both sides of the equinoctial colure, with the lake observations of Tycho Brahé, found the precession of the equinoses in longtude, to be exactly 1° in $71 \frac{1}{2}$ yrars, or at the rate of $50^{\prime \prime} \cdot 3.5$ in a year, which is evidently what arises from the motion of the plane of the equator alone, being that which is occasionct by the actions of the sun and moon on the spberoidal Ggure of the earth. But the equinoctial point is also altered, though in a far less degree, by the continual motion of the plane of the ectiptic, owing to the action of the planets, and gocs forward $\boldsymbol{0}^{\infty} \cdot 15$ in a year, from that cause, along the celiptic, which will diminish the precession of the equinoxes, on the apparent annual motions of the fixed stars, lying near the plane of the ecliptic, in longitude as much, and so reduce them from $30^{\prime \prime} \cdot 35$ tu $30^{\prime \prime \prime}+20$ or $30^{\prime \prime} \frac{1}{3}$. Sce Naut. Ephemer, for 1797, the preface.

Taking therefore $30{ }^{\prime \prime} \frac{1}{4}$ for the true mean annual precession of the equmoxes, at this rate it will require $25,816 \frac{1}{2}$ years for the equinoxes to make their revolution westward quite around the circle, and return to the same point again.

The aucients, and even some of the moderns, have taken the equinoxes to be immovenble; and ascribed that change in the distance of the stars from it, to a real motion of the orb of the fixed stars, which they supposed had a slow revolution about the poles of the ecliptic; so as that all the stars perform their circuits in the ecliptic, or its parallels, in the space of 25,791 years; after which they sbould all return again to their former p laces.

This periol the ancients called the Platonic, or great ycar: and imagined that at is completion every thing would begin as at first, and all things come round it the same order as they have done isfore.

PRE
[927]
them al\} the signs of the ecliptic, it follows, that those stars which in the infancy of astronomy were in Aries, are now found in Taurus; those of Taurus in Gemini, de. Hence likewise if is, that the stars which rose or sit at any particular scason of the year, in the times of Hesiod, Fudoxus, Yirgil, Pliny, \&ec, by no means answer at this time to their descriptions.

As to the physical cause of the precession of the equinoxes, sir lsaac Newton demonstrates, that it arises from the broad or flat spheroidal figure of the earth; which itself arises from the carth's rotation abrot its axis: fur as more matner has thus been accumulated all round the equatorial parts, than any where else on the earth, the sun und moon, when on cither side of the equator, by attracting -this redundant matter, bring the equator sooner under them, in every return towards it, than if there were no such accumulation.

Sir lsaac. Newton, in determining the quantity of the annual precession from the theory of gravity, on supposition that the equatorial diameter of the earth is to the polar diameter, as 230 to 229 , finds the sun's action sutficient to produce a precession of $9^{\prime \prime} t$ only; and collecting from the tides the proportion between the sun's force and the moon's to be as 1 to $4 \frac{1}{3}$, he settles the mean precession resulting from their joint actions, at $50^{\prime \prime}$; which, it must be owned, is nearly the same as it has since been found by the best observations ; and yot several other mathematicians have since objected to the truth of Newton's computation.

Indeed, to determine the quantity of the precession arising from the action of the sun, is a problem that has bern much agitated among modern mathematicians; and though they seem to agree as to Newton's mistake in the salution of it, they have yet generally disagreed from one another. Dalembert, in 1749, printed a treatise on this subject, and claims the honour of having been the first who rightly determined the method of resolving problems of this kind. The subject has been also considered by Euler, Frisi, Silvabelle, Walmesley, Simpson, E:merson, Laplace, Lagrange, Landen, Milner, and Vince.
M. Silvabelle, stating the ratio of the earth's axis to be that of 17 S to 177 , makes
the annual precession catused by the sun $13^{\prime \prime} 52^{\prime \prime \prime}$,
and that of the moon - $\quad \$ 4$ 17;
making the ratio of the lunur force to the solar, to be that of 5 to 2; also the nutation of the carth's axis caused by the moon, during the time of a semirevolution of the pole of the moon's orbit, i. e. in $9 \frac{1}{4}$ years, he makes $17^{\prime \prime} 51^{\prime \prime \prime}$. - Walmesley, on the supposition that the ratio of the earth's diameters is that of 230 to 229 , and the obliquity of the ecliptic to the equator $23^{\circ} 29^{\prime} 30^{\prime \prime}$, makes the annual precession, owing to the sun's force, equal to $10^{n / 583}$; but supposing the ratio of the diameters to be that of 178 to 177 , that precession will be $13^{\prime N} .675 .-\mathrm{Mr}$. Simpson, by a different method of calculation, determines the whole annual precession of the equinoxes cansed by the sun, at $21^{N} 6^{\prime \prime \prime}$; and he has pointed out the errors of the computations proposed by Silvabelle and Walmesley.-Mr. Milner's deduction agrees with that of Mr. Simpson, us well as Mr. Vince's; and their papers contain besides several curious particulars relative to this subject. But for the various principles and reasonings of these mathematicians, see Philos. Trans, vol. 48, pa. 385 ; vol. 49 , pa. 704 ; vol. 69, pa. 505 ; and vol. 77 , pa. 363 ; us also the writings of Simpson, Emerson, Landen, \&e ; also Lalande's Astro-

2 G 2

Homic, and the Memoirs of the Acad. Sci. in several places.

As to the effect of the planets on the equinoctial points, Laplace, in bis new researches on this article, finds that their action causes those points to advance by $0^{\prime \prime}-2016$ in a year, along the equator, or $0^{n} \cdot 1849$ along the ecliptic; whence it follows that the quantity of the luni-solar precession must be $50^{\prime \prime} \cdot 4349$, since the total observed precession is $50^{\prime \prime} \frac{8}{2}$, or $50^{\prime \prime} 25$.

To find the Precession in right avcension and declination.
Put $d=$ the declination of a star,
and $a=i t s$ right ascension;
then their annual variations of precessions will be nearly as follow:
$\mathrm{viz}, 20^{17} .084 \times \cos . a=$ the annual preces, in declinat. and $46^{\prime \prime} \cdot 0619+20^{\prime \prime} \cdot 084 \times \sin , a \times$ lang. $d=$ that of right ascension. Sce the Connoissance des Temps for 1792, pa. 206, \&c.

PRESS, in Michanics, is a machine made of iron or wood, serving to compriss or squeeze any body very close, by means of screns. The common presses consist of six members, or pieces; vix, two flat and smooth planks; between which the things to be pressed are laid ; two screws, or worms, fastened to the lower plank, and passing through two holes in the upper; and two nuts, sering to drive the upper plank, which is moveable, against the lower, the latter being sable, and without motion.

PRESSION. See Pagssure.

PRESSURE, is properly the action of a body which makes a continual effort or endeavour to move another : such as the action of a heavy body supported by a horizontal table ; in contradistinction from percussion, or a momentary force or action. Pressure equally respects both bodics, that which presses, and that which is pressed; from the mutual equality of action and reaction.

Pressure, in the Cartesian philosophy, is an impulsive kind of motion, or rather an endeavour to nove, impressed on a fluid medium, and propagated through it. In such a pressure the Cartesians suppose the action of light to consist. And in the various modifications of this pressure, by the surfaces of bodies, on which that medium presms, they suppose the various colours to consist, \&c. But Newton shows, that if light consisted only in a pressure, propagated without actual motion, it coulli not agitate and warm such bodies as reflect and refract it, as we artually find it does; and if it consisted in an instantaneous mution, or une propagated to all distances in an instant, as such pressure supposes, there would be required an infiate force to produce that motion every moment, in every lucid particle. Further, if light consisted cither it pressure, or in motion propagated in a fluid medium, whether instantaneously, or in time, it must follow, that it would inflect itself ad umbram; for pressure, or motion, in a fluid medium, cannot be propagated in right lines, beyond any obstacle which shall hinder any part of the motion ; but will inflect and diffuse itself, crery way, into those parts of the quiescent medium which lie beyond the said obstacle. Thus the furce of gravity tends downward; but the pressure which arises from that force of gravity, tends every way wish an equable force; und, with equal case and force, is propagated in crooked lines, as in straight olles. Waves on the surface of water, while they slide by the sides of any large obstacle, do inflect, dilate, and diffuse themselves gradually into the quiescent water lying bryond the obstacle. The wavcs, pulses, or tibrations
of the air, in which sounds consist, do manifestly infect themselves, though not so much as the waves of water; for the sound of a bell, or of a cannon, can be heard over a hill, which intercepts the sonorous object from our sight; and sounds are propagated as easily through crooked tubes, as tbrough straight ones. But light is never observed to go in curved lincs, nor to inflect itself ad umbram; for the fixed atars do immediately disappear on the interposition of any of the planets; as well as some purts of the sun's body, by the interposition of the moon, or Venus, or Mercury.

Pressure of Ait, Waler, \&c. Sce Air, Water, \&oc.
The effects anciently ascribed to the fuga vacni, are now accounted for from the wright and pressure of the air.

The pressure of the air on the surface of the earth, is balanced by a column of water of the same base, and ebout 34 feet high; or of one of mercury of near 30 inches ligh; and upon every square inch at the earth's surface, that pressure amounts to about $14 \frac{1}{4}$ pounds avoirdupois. The elasticity of the air is equal to that pressure, and by means of that pressure, or clasticity, the air would rush into a vacuum with a velocity of about 1370 feet per second. At different lieights above the earth's surface the pressure of the air is as its density and clasticity, and each decreass in such sort, that as the heights above the surface increase in arithmetical progression, the pressure \&e decreases in geometrical progrossion: and hence if the axis ac of a logarithmic curve AD be erected perpendicular to the horizon, and if the ordinate as denote the pressure, or elasticity, or density of the air, at the carth's surface, then will any other absciss
$\left.\begin{array}{l}\text { EF } \\ \text { OH } \\ \text { IK }\end{array}\right\} \begin{aligned} & \text { denote the pressure \& } C \text { at } \\ & \text { the altitude }\end{aligned}\left\{\begin{array}{l}\mathrm{BF}, \\ \mathrm{BG}, \\ \mathrm{B},\end{array}\right.$ The pressure of water, as this fluid is every-where of the same density, is as its depth at any place, and in ali directions the same; and upon a square
 foot of surface, ewry foot in height presses with the force of n weight of 1000 ounces or 6ithles, avoirdupeis. And benee, if A a be the depth of

water in any vessel, and be denote its pressure at the depth a ; by joining A E and drawing any other ordinates $\mathbf{Y 0}, 11$; then will these ordinates $\mathrm{FG}, \mathrm{H1}, \mathrm{\&} \mathrm{C}$, denote the pressure at the corresponding depths AG, A1, \&C ; also the area of the triangle ABE, will denote the whole pressure against the whole upright side AB and which therefore is but half the pressure on the bottom of the same area as the side. Moreover, if a hole were opened in the bottom or side of the vessel at в, the water, from the pressure of the superimeumbent fluid, would issue out with the velor city of $8 \sqrt{ } A B$ fect per second nearly; $A B$ being estimated in feet.

Pressure of Earth againt Walls, tre. This is a circumstance of considerable importance, on many occasious, as
in embankments, in fortifications, in docks, in piers, \&ec. The practice is to bave the counterparts equal to, or rather to exceed the pressure, in order to secure stability. For deterinining this equality, several different principles have been empluyed, approaching mere or less to perfect accuracy, as may be seen ill my Course of Mathematics, vol. 2, pa. 196, and vol. 3, pa. 256 ; where a popular and mechanical theory is delivered, for pretty compact or firm earth, different from former ones, and accompanied with several practical examples, which may be usefully consulted on any real occasion. Below is also inserted another new theory, for the pressure or pusb of semifluid and cohesive carth, communicated by a learned friend, Dr. Young, Foreign Secr. to the Royal Society.
An Esacy on the Pressure of semiffuid and cohesive Substances.
The resistance opposed by friction, or adhesion, to the relative motion of any two given solid or sernifluid substances, is nearly proportional to the force urging the surfaces into contact. Since, bowever, this force must necessarily be augmented by the force of direct cohesion, which is proportional to the extent of the surfaces in contact, it follows, that a portion of the resistance to lateral motion, must also, in cohesive substancers, be proportional to the magnitude of the surfaces concerned, and independent of the direct pressure. The proportion of the variable resistance, to the force on which it depends, is that of the beight to the horizontal extent of an inclined plane, on which the surfaces would begin to slide on each other, if this resistance only were conceraed, or if the force or weight were very great, and the extent of the sutface very small: and the angle formed by such a plane, with the horizun, is called the angle of repose of the substance. The inutual cohesion of two substances, may be estimated from the thickness of a coat of one of the sobstances, which would be supported by it in contact with a vertical surface of the other; and both these properties may be practically deturmined, with respect to any internal surfaces or sections of a given substance, by raising a portion of it, terminated by a horizontal and a vertical surface, until the angle breaks off, observing both the dupth and the breadth of the portion thus separating.
A. It is first required to deterinine the angle of fracture for a semifinid and cobesive substance, terminated by a horiznotal and a vertical surface, and sopported only by a horizontal force.

We have here a wedge of the given substance, tending to slide down an inclined plane, and to overcomeat once the horizontal pressore, and the resistances in the direction of the plane derived from the cohesion, and fiom the friction produced by the sum of the other forces; and we are to determine the breadth r of that wedse, in which this tendency will be the greatest, its depth bring a.

Now the weight of the wedge being expressed by far, its immediate tendency todescend along the inclined plane will be tax. $\frac{a}{\sqrt{(\omega a+a x)}}$, which will be upposed by the horizontal force f, acting in a contrary direction, and reduced to $f \frac{x}{\sqrt{(a n}+x x)}$, and by the resistance derived frotn three snurees: the first from the cohesion, which is expressed by $b \sqrt{ }(a a+x x), b$ being the thicknesss supported by the lateral adhesion of a vertical surface; the secoud and third from the two pressurcs, represented by $\frac{1}{2}$ tax $\frac{x}{\sqrt{(a a+x x)}}$ and $f \frac{a}{\sqrt{(a s}-x)}$, where t is the tangent of the angle of
repose, the resistance being to the direct or perpundicular pressure as t to 1. Hence, for the state of equilibrium, we bave the equation $\frac{1}{x} a x \cdot \frac{a}{\sqrt{(a u t+x x})}=f \cdot \frac{x}{\sqrt{(a a+i z)}}+$ $b \sqrt{ }(a a+x \mathrm{r})+\frac{z^{\prime}, a x}{\sqrt{2}} \frac{x}{\sqrt{2} u a+x r)}+\left(f \cdot \frac{n}{\sqrt{(a a+x i j})}\right.$ and $\frac{1}{2} a^{2} x=f r+b\left(a^{4}+x^{2}\right)+\frac{1}{\frac{1}{2} a t x^{2}}+a t f ;$ whence $f=$ $\xrightarrow{\text { hax }-a a b-b r r} \frac{h^{2}}{x+a l}$. This force must be a maximuns in the section affording the greatest pressure, and its fluxion must vanish; whence we bare $\left(\frac{1}{9} a^{2}-2 b x-a t x\right) \cdot(x+a t)$ $=\frac{1}{2} a^{4} x-a^{2} b-b x^{*}-\frac{1}{} a t x^{2} ;\left(b+\frac{1}{1} a t\right) x^{2}+(2 a b t+$ $\left.a^{2} r^{2}\right) x=a^{2} b+\frac{1}{1} a^{3} ; x^{1}+2 a t x=a^{4}, x=\sqrt{ }\left(a^{2}+\right.$ $\left.a^{2} t\right)-a t$; and if $b=0, f=a^{2}\left[4+t^{2}-t \sqrt{ }\left(1+t^{2}\right)\right]$. Hence it appears that, as Mr. Prony has already observed, the angle formed by the surface thus determined, with the vertical surface, is half the complement of the angle of repose, since ${ }^{\prime}\left(1+t^{t}\right)-t$ is the tangent of half the angle of wbich the cotangent is t, as is casily shown by a trigonometrical calculation; and that this angle is independent of the magnitude of the cobisive resistance, and determined only by the friction; at the same time, if the friction vanishes, and the cohesion alone remaius, we have $z=a$, the angle being 45°.
B. The portion of a semifluid and cohesive subutaner, of which the surfaces are horizontal and vertical, affording the greatest lateral pressure, is terminated by a planc.
For if we conceise the sobstance to be divided by a sccond vertical surface, parallel to the first, the angular situation of the upper part of the oblique termination, cut off by this sorface, will obviously becorrectly determined, if considered as a plane, accurding to the principles alrady laid down; and if any curved surface would aford a greater lateral pressure than a plane, ibe direction of the luwer part of the oflique termination, cousidered also as a plane, would reguire to be different from that of the upper, and this difference might be exbibited by supposing its horizontal extent to be variet, that of the upper portion remaining the same. But in fact, the determination of the direction for this part, thus considered, will be precisely the same as for the upper part ; since the propertion of the resistance to the pressure remainsthe same, and the horizontal force acts on the lower part of the oblique surface with the same increased intensity as the wright, the one depending on the other; so that the relations of all the forces concerned in the determination remain nuatered.
C. To determine what portion of a soft and adhesive substance, having a horizontal and a vertical surface, will stand alone.

 $\frac{1}{2} r a^{2}-a^{2} b-r^{2} a^{2} b-\frac{1}{2} r^{2} t a^{3}=0$, and $\frac{1}{2} r a-b-r^{2} b-$ $\frac{1}{2} r^{2} a t=0$, and $a=\frac{2 t+2 n t}{r-m t}=\frac{2 s}{r} \cdot \frac{1+r r}{1-r i}=\frac{4 \lambda}{r}$, and $b=\frac{1}{4} a r$; but if we observe a and x, we find $t=\frac{a n-3 y}{26 x}$, and $b=\frac{\operatorname{aex}-a \operatorname{tax}}{2 a s+2 x a}$. When t vanishes, x becomen equal to a, and $b=\frac{1}{2} a$: if $t=1, b=\cdot 1036 a$, if $t=\frac{2}{2}, b=$ -155a.
D. When the surface of a solt, or semifuid and cohesive substance, is inclined to the horizon, the portion affording the greatest herizontal pressure is generally terminated by a curve.

We may suppese the substance to be dividet into ver-

PRE

tical strata; and the meati depth of any stratum being called y, and the difference of the depths of its two surfaces c, we must inquire what must be its thickness x, in order to nflord the greatest horizontal thrust. The weight of the stratum will then loe represeated by y; ; and if the tangent of the elevation of the expuscd surface, ascending from its angular end, be w, the length of the oblique termination of the straturn will be $\sqrt{ }\left(x^{2}+(c+u r)^{1}\right)=z$: we have then, for the state of equilibrium, the equation $y x \cdot \frac{c+w x}{2}=f \cdot \frac{x}{2}+b z+t y x \cdot \frac{z}{z}+t f \cdot \frac{c^{\prime}+w r}{2}$, and $f=$ $\frac{e y x+\operatorname{tanyx}-\operatorname{tez}-t y z r}{x+i t+\operatorname{tur}}=$
 the fluxion of $f=0, x$ only being variable, we obtain $\left(c y+2 u y x-2 b x-2 b c x-2 b n^{2} x-2 t y x\right) \cdot(x+$ $c t+m a x)=(1+t s) \cdot\left(c y r+a y x^{2}-b x^{2}-b c^{2}-\right.$ $\left.2 b e a x-b u^{2} x^{2}-a y x^{2}\right) ;\left(2 x y-2 b-2 b w^{2}-9 t y\right) x$. $(1+t u) x+\left(2 u y-2 b-2 b u^{2}-2 t y\right) x \cdot c t+(c y-$ $2 b c u) \cdot(1+t u) x+(c y-2 b c u) \cdot c t=(1+t u) .(c y=$ $\left.b-b w^{1}-t y\right) x^{2}+(1+c u) \cdot(c y-2 b c u) x-$ $(1+t u), b c^{2}$; and $x^{2}+\frac{2 d t}{t+t u} \cdot x=$
 $\sqrt{ }\left(\frac{n}{(1+t u)^{\prime}}+\frac{\lambda t u-t y-t}{\left(v y-b-t_{w z}-t y\right) \cdot(1+t u)}\right)-\frac{t}{1+t_{u}}$. Having thus obtained the angular direction of the terminetiou of the vertical stratum, which affords the greatest lateral thrust when the height is y, we may proceed to find what must be the magnitude of y for different strata, in order that they may all possess this property, and that the whole horizontal force may consequently be the greatest possible. For this purpose we must substitute $\frac{\dot{x}}{-y}$ for $\frac{x}{c}, x$ being now considered as the whole horizontal thickness, and y the whole vertical ordinate or depth, as before. Hence $-\dot{x}=\frac{\dot{y}}{t+t u}\left(v^{\prime}\left(t^{2}+\frac{(1+t u) \cdot(N u-t y-b)}{b y-t u t-t y}\right)-t\right)=$ $\frac{j}{1+t_{y}}\left(\sqrt{ } \frac{-t y-b-b t}{y y}-t-b_{y} y-t_{y}-t\right)=\frac{j}{1+\frac{j}{t_{0}}} \times$ $\left.\left(\sqrt{\frac{b+b t}{b+f_{u m}+(t}+(t) y}+c^{2}\right) y\right)$. Call $\sqrt{ }(b+b t a u+(t-a) y)$, v, then $y=\frac{y^{\prime}-t-\operatorname{bon} u}{t-\alpha} ; \frac{2 \times \dot{v}}{1-u}$, and $-\dot{x}=$ $\frac{2 v \dot{v}}{(1+t u) \cdot(t-w)} \sqrt{ }\left(b+b t t+\frac{\left(t+t^{2}\right) v^{\prime}-b-\operatorname{mat}}{t-w}\right): 0-$ $\frac{\dot{y}}{1+t u}=\frac{3 \dot{v}}{(1+1 u) \cdot(1-u)} \sqrt{ }(b+b t t-(b+b u s):(t-u)$
$+\left(t+t^{2}\right):(t-a) \cdot v^{2}-\frac{\dot{y}}{1+t_{a}}$: and if we call
$\frac{(1-w) b+b t-(b+t w u)}{t+r}, d^{2}$, we have $-\dot{x}=\frac{2 \dot{v}}{\left\langle 1+\left(w_{j}-(l-b)\right.\right.}$ $\sqrt{\frac{1+p}{t-u}} \sqrt{ }\left(d^{2}+v^{2}\right)-\frac{\dot{y}}{1+f u}$.
But it is well known that the fluent of $\sqrt{ }\left(a^{2}+x^{2}\right) \dot{x}$ is $\frac{1}{1} x \sqrt{ }\left(e^{2}+x^{2}\right)+\frac{1}{4} a^{2} \cdot \mathrm{HL}\left(x+\sqrt{ }\left(a^{8}+x^{2}\right)\right)$, and by comparison with this fluent, we obtain the equation $e-x=$ $\frac{1}{(1+t u) \cdot(t-m)} \sqrt{\frac{1+p}{t-u}\left(v \sqrt{ }\left(d^{2}+v^{2}\right)+d^{2} \mathrm{HL}(p+\right.}$ $\left.\sqrt{ }\left(d^{2}+v^{2}\right)\right)-\frac{t y}{1+t a}+c$. When, however, $t-u$ is negative, that is, when the elevation of the inclined sur-
face is greater than could exist without the cobesion, the fluent assumes a different form, and we must make $d^{1}=$ $\frac{(u-1) \cdot(t+n)+0+\text { tewn }}{1+r}$; then $-\dot{x}=\frac{-2 \dot{\theta}}{(1+t u) \cdot(u-0)}$ $\sqrt{\frac{t}{4-t}} \sqrt{ }\left(d^{2}-v^{2}\right)-\frac{t \dot{y}}{1+t w}$. But it is known that the fluent of $\sqrt{ }\left(a^{2}-x^{2}\right) \dot{x}$ is $\frac{2}{4} r \sqrt{ }\left(a^{2}-x^{2}\right)+\frac{1}{2} a^{2}$ arc sine ${ }_{e}^{x} ;$ bence $e-x$ becomes $=c-\frac{1}{(1+i u) \cdot\left(k-t_{i}\right)}$

$$
\sqrt{ } \frac{t+t^{2}}{1}\left(d \sqrt{ }\left(d^{z}-v^{2}\right)+d^{2} \text { arc sine } \frac{v}{d}\right)-\frac{t y}{1+w}
$$

E. When the variable resistance vanishes, the curve becomes a perabola.

For if $t=0, \frac{x}{c}$ or $\frac{\dot{x}}{-j}$, becomes $=\sqrt{\frac{t}{b+\operatorname{bum}-k y}}$,
whence $x+c=\frac{2}{6} \sqrt{ }\left(b^{2}+b^{2} w^{2}-b u y\right)$; but when $x=0, y=a$, and $e=\frac{2}{u} \sqrt{ }\left(b^{2}+b^{2} u u-b a u\right),(x+$ $\left.\frac{2}{i} \sqrt{ }\left(b^{2}+b^{2} v u-b a u\right)\right)^{2}=\frac{4 t b}{4 u}+4 b^{2}-\frac{4 b}{u} y=x^{2}+\frac{4 b}{k u}$ $+4 b^{4}-\frac{4 k}{u}+\frac{4 z}{u} \sqrt{ }\left(b^{2}+b^{2} u u-b_{\text {aut }}\right)$, and $y=a-$ $\sqrt{ }\left(\mathbf{1}+u t-\frac{a}{b} u\right) x-\frac{k}{4 b} x^{2} . \quad$ In order to determine the whole horizontal force, we must find its fluxion by substituing \dot{x} for x, and $-j$ for c, intle equation for f, which becomes $-y \dot{y}+u y \dot{x}-b \dot{x}-b \frac{\ddot{y}}{x}+2 b y \dot{y}-b c^{2} \dot{x} ;$ and since $-\dot{j}=\sqrt{ }\left(1+m u-\frac{a}{b} u\right) \dot{x}+\frac{u}{2 b} \tilde{x} \dot{x}$, we obtain the fluent $=\xi-\frac{t}{8} y^{3}+a k x-\frac{u}{a} \sqrt{ }\left(1+u\left(\frac{a}{b} u\right) x^{\prime}\right.$ $-\frac{\Delta u}{12 b} a^{3}-b x-b x-b w^{0} z+a u x-\frac{u^{*}}{12 b} x^{3}-\frac{a}{2}$ $\sqrt{ }\left(1+w u-\frac{a}{b} u\right) x^{2}+2 b u y-\ln ^{2} x=g+(2 a u-2 b$ $\left.-2 b u^{2}\right) x-u \sqrt{ }\left(1+u^{2}-\frac{a}{b} i i\right) x^{2}-\frac{m u}{b b} x^{3}+2 b x y-$ $\frac{1}{x} y^{3}$, which must vanish when $x=0$, and $y=a$, or $g+$ 2 baus $-\frac{1}{1} a^{2}=0$, and $g=\frac{1}{2} a^{2}-2 b a n$. When $y=0$, $x+c=\frac{2 k}{u} \sqrt{ }\left(1+u^{2}\right)$, and $x=\frac{2 \mu}{u} \sqrt{ }\left(1+u^{2}\right)-\frac{2 k}{u}$ $\sqrt{ }\left(1+u^{2}-\frac{a}{t} u\right)$, and the whole force is $\frac{3}{2} a^{2}-2 b a u+$ $\left(9 a u-2 b-2 b u^{2}\right) x-u \sqrt{ }\left(1+w^{4}-\frac{a}{b} u\right) x^{2}-\frac{4 w}{6 t} x^{v}$.

Here it must be observed, that when $\frac{a}{b} u$ is equal to or greater than $1+u^{2}$, the problem becomes impossible, the value of ${ }_{c}^{\pi}$ becoming first infinite, and then imaginary. We may take for an example the case $u=\frac{1}{10}$ and $a=10 b$, then $\mathrm{x}=2 a(\sqrt{ } 1.01-1)=1.81 a$, and the whole force is $\frac{1}{1} a^{2}-02 a^{2}+(2 a-2 a-002 a) x-01 x^{2}-$ $\frac{r^{2}}{60 a}=3454^{2}$. If $u=1$, and $a=2 b, x=\sqrt{ } 2 a$, and the force $\frac{3}{3} a^{2}-a^{2}-\sqrt{ } 2 a^{4}-\frac{3}{3} \sqrt{ } 2 a^{2}$, which, being negative, implies that there can be no separation. In order to show how little the force thus determined differs from that which is afforded by a section terminated by a plane surface, even whare the variable resistance is supposed to be absent, we may calculate, for the depth of a, the horizontal extent x of a prismatic section affording the great-

PRI

If the wall, instead of being vertical, be inclined towards the bank, which is a condition highly favourable to its stability, the oblique direction of the thrust must also be taken into consideration, in computing its ragnitude. Let is be now the tangent of the deviation of the wall from the vertical direction, the surface of the earth being horizontal, and let x be, as above, the whole horizontal extent of the portion affording the greatest thrust, the force f being perpendictilar to the wall. We shall then have for the weight, $\frac{1}{1} a(x-a u)$, acting in the direction of the oblique surface \approx with the force $\frac{1}{2} a(x-a u) \frac{a}{2}$, and causing a resistance $\frac{1}{2} a t(x-a w) \frac{r}{2}$, In order to reduce the force f to the same direction, we must find the sine and cosine of the angle contained by the ublique surface z and the wall, which are $\frac{x-a u}{\sqrt{(1}+(t u)}$, and $\sqrt{ }\left(1-\frac{f x-a w)^{2}}{z^{0}+w^{\top} z^{1}}\right)$ $=\frac{1}{2} \sqrt{ }\left(a^{2}+x^{2} \frac{\left(x-a j^{4}\right.}{1+u^{2}}\right)=\frac{a+u r}{2 \sqrt{b^{1}+m_{k j}}}$; whence we
 of the wall, $f t$, being reduced in a similar manner, gives n $\frac{a+u x}{\sqrt{(1+a m)}}$, and $-A^{2} \frac{r-a z}{2 \sqrt{\left(1+u w_{2}\right.}}$, whence we have the equation $\frac{1}{2} a(x-a u), \frac{a}{2}=\frac{1}{3}$ at $(x-a u) \frac{x}{2}+$ $f \frac{x-a u}{z \sqrt{(1+u u)}}+f \frac{a+u x}{z \sqrt{(1+u v)}}+f\left(\frac{a+\frac{v x}{x} \frac{\sqrt{2}}{1+w(i)}-}{}\right.$ $f f^{2} \frac{x-a u}{2 \sqrt{(1}+u a j}$, or $a^{2}(x-a u)=a t x(x-a u)+g$ $\frac{x-a n}{\sqrt{(1+t u)}}+4 f \cdot \frac{(a+u x)}{\sqrt{(1+u a j}}-8 f^{2} \frac{x-c u}{\sqrt{(1+u a)}} ;$ consequently $\frac{f}{a \sqrt{(2}+m(u)}=\frac{(a-t r) \cdot(r-m u)}{(2-2 L) \cdot(x-a u)+4(a+1 u)}$: this we may call $\frac{b+c r+d r r}{c x+g}$; and when its fluxion vanishes, $(c+2 d x)$. $(c x+g)=e b+c c x+d e x^{2}=c e x+2 d e x^{2}+c g+$ $2 d g x, x^{2}+\frac{2 k}{e} x=\frac{k}{d}-\frac{G g}{d c}$, and $x=\sqrt{ }\left(\frac{k}{d}-\frac{G}{d c}+\frac{G g}{e q}\right)$ $-\frac{\pi}{c}$. Here $b=-a^{2} u, c=a+a u, d=-t, \frac{b}{d}=$ $\frac{a u}{t}, \frac{r}{d}=-\frac{a}{i}-a u, c=2-2 t^{2}+4 u s$, and $g=4 a t$ $-(2-24)$ an.
G. It will now be easy to find the dimensions of a wall, capable of withstanding the thrust of a given bank of earth, without being uverturned or carried away horizolltally, provided that we kiww the elevation at which the surface of the earth is capable of supporting itself.

It is obvitus that the whole pressure, like that of fluids, must be proportional to the square of the depth a, neglecting the effiect of adhesion; and consequently that the centre of pressure must be at one-third of the height. We may consider the specific gravity of the wall as equal to that of the earth, which will in general allow us some excess of stability for the security of the work: then if the wall be verical, and its thickness be y, the force treing reierred to the outside of the base of the wall as the fulcrum of a lever, we must have, in order that it may not be overturned, $\frac{3}{j} a \dot{f}=t f y+\frac{4}{4} a y y$, and $y^{2}+\frac{2 f}{a} y=\frac{2}{3}, y=$ $\sqrt{ }\left(\frac{3}{3} f+\frac{\left.f^{2} \frac{t^{\prime}}{a^{7}}\right)}{}\right)-\frac{\Omega}{a}$. And in the same manner, if we suppose the seccion of the wall to be triangular, its outer

PRE.
[93
$932]$
PRE
surface being sloped uff, we bavo $\frac{1}{} a f=t f=+\frac{i}{2} \pi z z$, and $z=\sqrt{ }\left(\frac{\ddagger}{\mathrm{j}} f+\left(\frac{\psi^{-2} t^{2}}{4^{2}}\right)-\frac{2 A}{4}\right.$, z being the thickncss at the bottom. When the wall in incluicd towards the bank, in an angle of which the taingent is u, f being the force perpendicular to 11 , and y the horizontal thickness of the wull, the force f will act on a lever of which the length is $\frac{1}{\mathrm{t}} \mathrm{c}^{2}(1+w u)+\frac{\mathrm{y}}{\sqrt{(1+w i})^{2}}$, and the friction $f f$ will act at the distance $\frac{y}{\sqrt{(1+e n c})}$, and the weight at $\frac{1}{y}+\frac{1}{\infty} a x$, whetice $\frac{1}{\delta^{2}} f \sqrt{ }(1+w u)+\frac{f(n)}{\sqrt{(1+m u)}}=\frac{f(v}{\sqrt{1}+\pi \pm)}+$

$\frac{1}{3} f \sqrt{ }(1+$ wus $)$; consequently $y=\sqrt{ }\left[\frac{1}{f} f \sqrt{ }(1+u u)+\right.$

If the wall be not securcly fixed at its foundations, for example when the carth is dug away beyond it, it may be liable to slide away laterally more casily than to be overturned. Supposiag it simply to rest on materials similar to those which constitute the bank, we may calculate the thickness sufficient to produce a resistance equivalent to the thrust; thus if the wall is vertical, we munt bave $f=t(a y+f)$, and $a y=\frac{f}{f}-f$; but when the wall is inclined, the force f takes from the weight the portion $f \frac{u}{\sqrt{(1+s e s)}}$, and the friction adds to it ouly $f t=\frac{1}{\sqrt{(1+w u)}}$, the borizontal thrust being $f \frac{1}{\sqrt{(t)}+\text { mas })}$; whence
$f \frac{1}{\sqrt{(1+u n)}}=r\left(n y-f \frac{v}{\sqrt{(1}-w+)}+f \frac{t}{\sqrt{(1}+2 m)}\right.$, and $a y$ $=\overline{v(1} \frac{1}{n+u s)}\left(\frac{1}{t}+u-t\right)$.
11. In the case of driving a pilc, the pressure of the soft materials is modified by the inversion of the direction of the friction of the vertical surlace, which now acts in conjunction with the weight of the materials, so that $\frac{7}{\frac{1}{2}} a x-a b-f f$ beconnes $\frac{!}{2} a x+a b+t f$, or, if $b=0$, simply $\frac{1}{4} a x+t f$; and $f=$ $\frac{1}{2} \cdot \frac{n a-a t r}{t+1}$, which is greatest when x is least, and becomes ultinately $\frac{f a a}{u+1}$, and the nsistance of will be $\frac{1}{2} a^{2} \frac{1}{t+1}$, which is a maximum when $t+1=2 t$, or $t=1$, being then $\frac{7}{4} a^{2}$; and in this case the resistance derived from the friction, on the whole of the lateral surfices of a square pile, would be equal to the weight of the earth which would press on one of the surfaces, if it were buried at the depth to which its lower end has penetrated. There would huwever be other resistances from the tenacity preventing the ready separation of the carth before the pile, which would perbaps considerably exceed the friction thus determined.
I. Such of the results of these calculations, as are most likely to be of practical utility, may be conveniently exhibited in the form of a tuble: but it must be remembered, in its application, that some additional strength ought always to be given to the works concerued, in order
to insure their stabilitydand that orcasional agitation witl very much diminish the resistance of almost all kinds of materials; to say nothing of the precaution necessary to obviate the effects of the penetration of water: which will not only act by its own bydrostatic pressure, but also weaken the adhesion of the eurth einployed, unless a sutficient number of apertures can be provided for allowing it to ercape.

TABLE of the Thrust of Earth against an upright Wall."

Surface Horizontal.

1: x	$00^{\circ} 00^{\prime}$	(1.41t)	1000	-577	707	
$: 10$	$\begin{array}{ll}3 & 4\end{array}$	1234	$\cdot 761$	491	. 591	3.767
:	77	1-194	713	47	- 57	812
: 6	928	1.132	$6+0$	44	-539	$\cdot 867$
1: 5	$11 \quad 18$	1.086	-389	-424	-514	1.414
1: 4	$14 \quad 2$	1-022	. 522	. 396	-479	979
3	1826	927	430	'355	- 430	-573
: 2	$26 \quad 34$	774	-300	-292	- 352	. 225
- 3	3341	-660	217	-246	295	-090
$3: 4$	$36 \quad 52$	-611	$\cdot 186$	-226	270	-059
1	45	-300	-125	-184	-221	-000

Descent of the surface towards the wall 10°

:	3	11	18	3.750	-805	$\cdot 491$	-591
1:	3	18	26	1.518	-528	-399	-481
:	9	26	34	1.058	-373	-322	-386
3 :	4	36	52	$\cdot 753$	$\cdot 211$	-240	-287
1	1	45	0	-585	-138	$\cdot 192$	-230

Descent of the surface towards the wall 20°

$1:$	2	26	34	2.028	-452	-350	-418
$3:$	4	36	52	1.040	-247	-255	-304
$1:$	1	45	0	-743	-155	-200	-239

$3:$	4	36	52	1.581	$\cdot 302$	$\cdot 282$	$\cdot 335$
$1:$	1	45	0	1.076	$\cdot 186$	$\cdot 220$	-262

$1: 1|45 \quad 0| 1-713|\cdot 246| \cdot 248|\cdot 294|$
Ascent of the surface towards the wall 10°

1	5	11	18	.746	-507	-391	${ }^{478}$	
1 :	3	18	26	-712	-374	- 332	401	
$1:$	2	26	34	-689	-257	-276	- 333	
3 :	4	36	32	- 534	$\cdot 170$	-217	-261	
1:	1)	45	0	-3, ${ }^{2} 2$	-119	-180	*216	20°
:	2	26	34	-559	. 239	. 263	- 317	
3:	4	36	52	-486	$\cdot 154$	'208	-250	
1:	1	45	0	$\cdot 377$	- 117	$\cdot 179$	'214	

30°

$3:$	4	36	52	$\cdot 460$	$\cdot 133$		
$1:$	1	45	0	$\cdot 408$	$\cdot 098$	$\cdot 195$	$\cdot 234$
$\cdot 165$	$\cdot 197$						

1: $1|45 \quad 0 \quad| \quad 408|\cdot 090| \cdot 159|\cdot 203|$

Table of the Thrust of Earthegains a Wallinclined touards the Bunk in an Angle of $11^{\circ} 18^{\prime}$, of which the Tangeat is 2 ; the Surface beins herizontal.

	To					
1:00	00' $0^{\prime} 00^{\prime}$	-200)	to00	- 500	${ }^{5} 540$	
1: 10	$\begin{array}{ll}5 & 43\end{array}$	1.119	721	-360	440	5.640
8	77	1.373	661	. 33	. 410	2.670
1: 6	928	1.256	-379	2*9	. 367	1.747
1: 5	118	1242	${ }^{5} 523$	261	337	1.308
:	$1 \% 2$	$1 \cdot 166$	- 45	$\cdot 226$	-300	-847
3	1826	1.059	'334	$\cdot 177$	-248	-308
1:2	26 3t	-885	-225	112	$\cdot 176$	-191
9:	3341	-733	-149	-074	-130	-077
$3: 4$	$36 \quad 52$	-636	-121	-060	-111	'047
1:1	450	-386i	$\cdot 071$.035	-074	-007

An instance bas occurred on a large scale, where the wall of a dock has given why horizontally, when its meall thickness was about "230, the ground having been dug away beyond its foundation: it was of brick, and somewhat curved, being vertical at the top, while the inclination of the chord, or the mean inclinution, was $11^{\circ} 18^{\circ}$, as is supposed in the sceond table. Hence it appears that the friction must have been somewhat less than $\frac{1}{\frac{1}{8}}$ of the weight, and that the materials would have stuod at an angle of about 25° : to have overturned this wall, the materials must have extibited a friction of about one-third of the weight, and have been incapable of stanaling at a greater inclination than abrout 20°.

In general, it will be unquestionably proper to calculate on a friction not exceeding \dot{j} of the weight, and to make the thickness of a wall, if vertical, at least $\frac{1}{5}$ or perliaps 3 of its height, and if inclined in an angle of 10° or $12^{\circ},^{\text {about }} \frac{1}{2}$, taking care to secure the founvation from sliding, to which an joclined wall will otherwise be liable if its thickness be less than $\frac{y}{4}$, though a vertical wall would be safe in this respect if its thickness were sufficient to secure it from being overturned. The disposal of a part of the materials of the wall in the form of counterforts, or butiresses, will add to the strength in either case, especially with respect to the danger of overturning: the curvature, which is a considerable convenience in the case of a dock, tensls in a slight degree to lessen the stability with respect to sliding, and makes it still more necessery to attend to the security of the foundation. On the other hand, when we have an opportunity of ascertaining, by a simple expreriment, the utmost fluidity that can be communicated by accidental moisture to a chalhy or gravelly soil, these calculations may often justify us in saving a very great experase, by proportioning the strength of the works th the object required to be attained by them.

Centre of l'asssuraf, in Hydrostatics, is that point of any plane, to which, if the total pressure were applied, its effect upon the plane would be the same as when it was distributed unequally over the whole; or it is that point in which the whole pressure may be conceived to be united; or it is that poont to which, if a force were applied equal to the total pressure, but with an opposite direction, it would exactly balance, or restrain the effeet of the pressure, so that the body pressed on would not incline to citber side. Thus, if abcD (2d fig. above) be a vessel of water, and the side BC be pressed upon with a force equivalent to 20 pounds of water, this force is unequally distributed over BC, for the parts near B are less pressed then those Vol. 11.
near c, which are at a greater depth; and therefore the efforts of all the particular pressures are united in some point k, which is nearer to C than to B; and that point E is called the centre of pressure: and if to that point a force equivalent to 20 pounds weight be applied, it will affect the plane BC in the same manner as by the pressure of the water distributed unequally over the whole; and if to the same point the same force be applied in a contrary direction to that of the pressure of the water, the force and the pressure will balance each other, and by opposite endeavours destroy each other's effects. Suppohing a cord eFg fixed at E, and passing over the pulley \mathbf{F}, has a weight of 20 pounds amexed to t, and that the past of the cord FE is perpendicular to $\mathbf{B C}$; then the effort of the weight σ is equal, and its direction contrary, to that of the pres. sure of the water. Now if \mathbf{z} be the centre of pressure, these two powers will be in equilibrio, and mutually deatroy each other's effects.

This point e, or the centre of pressure, is the same with the centre of percussion of the plane BC , the point of suspension being B, the surface of the wnter. And if the plane be oblique, the case is still the same, taking for the axis of suspension, the intersction of that plane and the surface of the fluid, both produced if necessary. See Cotes's Lectures, pa. 40, \&c.-The centre of pressure upon a plane parallel to the horizon, or upon any plane where the prossure is uniform, is the same as the centre of gravity of that plane. For the pressure acts upon every part in the same manner as gravity dons.

PRESTET (Johs), a priest of the Oratory, was born at Cbalons-sur-Saone, in 165s. He went to Paris carly in life, where, having finished his studies, he was entertained by father Malbranche, who taught him mathematiey, in which his young pupil made so rapid a progress, that at 17 years of age lie publisherl the first edtion of has Elcmens des Mathematiques. In the same yar he entered the congregation of the Orutory, and taught mathematics with much reputation, particularly at Angers and at Nantes. But he died in 1690 , at 32 years of age.-His Elemens, above noticed, contain many curious problems: the best edition is that of 16 s 9 , in 2 vols. 4 to.

PRICE (Richand), D. D. and F. R. S. was born in Glamorganshire in 1793, and died in 1791, about 6s years . of age. He received his edueation in a private academy, after which he became ininister to a congregation at Newington, in Middlesex ; whence he removed to that nf Hackney. He was alsi, lecturer of the ineeting-house in the OldJewry, in London, In 1764 he became P. R. s. and D. b, by a diploma from a Scotch university. At the time of the Anerican war he makle himself conspicuous by his zeal in the cause of liberty, which he also displayed on several other occasions : and for the publication of his Observations on Liberty and Civil Govermment, be liad the thanks of the city of London. Ainong many other learned accomplishtnents, Dr. l'rice was no mean malhematician, which enabled him to treat with peculiar precision, the calculations relating to political arithmetic, population, annuities, \&c. It is even said that lie had the benour of suggesting to the late prome minister, Mr. Pitt, the measure of the present sinking fund, to extinguish the national debt, by the allotment of an annual miltion to accumulate at compound interest. Dr. Price's principal works are: 1. Four Disscrtations on Providence and Prayer; on the Importance of Christianity, \&c. 2. A Review of the principal Questions and Difficulties in Morals. 3. Observations on Heversionary Paymeuts, A monuities, \&c, 2 vols. 8vo. 4. Dis2 H
cussion of the Ductrines of Muterialism and Necessity, in a correspondence with Dr. Priestley: 5. Fssay on the Population of Eingland and Wales. 0 . A volume of Sermons.

PRIESTLEY (Josepa), l L. D. and y. R.s. was borl on March 13, 1733, at Field-head, in the parish of Bir* stall, in the west-riding of Yorkshire. His father was concorned in the cloth manufacture, and intended his son Joseph also for trade, but was induced to change his nind by the youth's early attachment to reading and literary pursuits. After a pretty extensive course of classical studies, at 19 years of age he entered, as a divinity student, the academy of Daventry, under Dr. Ashworth, as successor of that keput by Dr. Doddridge at Northampton. He then officiated for some years as a minister at different places: and in 1761 joiued the academy of Warrington, as a lecturer in belles lettres; where his Biographical and Historical Charts appeared, as also his writings on subjects of bistory, general politics, \&ec: and bere, in 1767 , was published bis History of Elecrricity. In 1770, Dr. Priestley accepted the situation of domestic librarian to the earl of Shelburne, or rather his literary and philosophical companion, in the hours that could be devoled to such pursuits. His "History and Present State of Discoveries relating to Vision, Light, and Colours," in 2 vols. 4to, appeared in 1772; which may be considered as a 2 d part of a general history of the philosophical sciences; and which indeed proved the last, as the encouragenent of this work fell far short of that of the History of Electricity. In 1775 came out his "Examination of Dr. Reid on the Human Mind; Dr. Beattie on the Nature and Imnutability of Truth; and Dr. Oswald's Appeal to Common Sense." In 1777, "Disquisitions relating to Matter and Spirit." And soou after, his correspondence with Dr. Price, relative to the same points. In several volumes of the Philos. 'lrans,, as well as in scparate publications of his own, are seen lis numerous papers on discoveries relating to aēriform fluidy, and other chemicul subjects; besides many others on theology.

Dr. Presticy's engagement with lord Shelburne having ceased in $\mathbf{1 7 8 0}$, he accepted the office of pastor to a congregation at Birminghan; whence soon after issued some of the most important of his theological works ; from which arose several controversies on such topics, with Dr. Horsley and other learned men. Dr. Priestley remained at Birmingbam till 1791, when his bouse and library were burnt, with many others, in a popular cominotion in that place. After some little time an invitation to succeed Dr. Price, in a congregation at Hackney, gave him a temporary residence; till, in 1794, he sailed for North America, where he settled at the town of Northumberland, in the state of Pennsylvania, for the remainder of his life; and where be died the 9th of February 1804, at nearly 71 years of age.

The following has been given as a true character of Dr. Priestley.-" I beg you will insert the following faithful portratt of a man whose characier has been grossly misrepresented by interested enemies, and miscouceived by a deluded public -He was a patient, indefatigable, acute, and judicious experimental philusupher; a candid, bold, and unguarded disputant in theology; a sincere and zealous Christian, aserious and ranional preacher of the pracLical morality of relgion-but without the least pretension to, or affectation of, oratorical ornaments. His mind embraced the whole extent of the knowledge and literature in bis cleset: hut in the affurs of the world, he was a plain, uninformed, unaccomplished, honest suan. What he be-
lieved to be true be thought it his duty to propagate, without any regard ta his own interest or the prejudices of mankind: but being overpowered by calumny and oppression, he was conspelled to seek a revidetice amung strangers, and leave his principles and character to the impartial judgment of posterity."

PRIMARY Planets, are those ubich revulve round the sun as a centre. Such are the planets Mercury, Venus, Terra, (the Earth,) Mars, Vicsta, Juno, Pallas, Cires, Jupiter, Saturn, and Herschel, \&ec. They are thus called, in contradistinction from the secondary planets, or satellites, which revolve about their respective primaries. See Hlayet.

Piline and Ulitiaste Ratios, a methodinented by sir Isaac Newton, at once to avoid the tedinusness of the ancients and the inaccuancy of the moderns. The foundstion of this method is contained in the first lemena of the first bork of the Priucipin, -'This lenoma may be thus explaned. Let there be two quantities, one fived and the other varying, su related to cach other, that, 1st, the varying quantity continually approaches to the fixed quantity ; $2 d$, that the varging quantily never reaches or can pass beyond the tixed one; 3dly, that the sarying quantity approaches nearer to the fixed one than by any assigned difterence; then is such a fixed quantity called the limit of the varying one ; or, in a looser way of speaking, these quanities may be said to be ultimately equal or in a ratio of equality.

On this subject, see Newton's Principia, lib. 1 ; Smith's Fluxions; Ludlam on Clumate Ratios; \&c.

PRIMES, denote the first divisions into which some whole or intuger is divided. As, a minute, or prime minute, the buth part of a degree; or the first place of decimals, being the 10th parts of units; or the first division of inches in duodecimals, being the 12th parts of inches; $\& \mathbf{c}$.

Phime Numbers, are those which can only be measured by unity, or exactly divided without a remander, 1 being the only aliquot part: as $2,3,5,7,11,13,17$, \&c. And they are otherwise called Simple or Incomposite numbers.

The peculiar property of prime numbers, as to their forms, the method of tinding them, and the many collateral truths that have been derived from the invesigatiuns of thuse propertics, have rendered them deserving of the particular attention of mathematicians; and accordingly, we find some of the most celebrated analyats of modern times have bestowed on the theory of those numbers many elaborate and ingenivus investigations; aroong whom, those who have more particularly distinguished themselves, are Bachet, Fermat, Euler, Lagrange, Legendre, and Gauss; the united efforts of these celebrated authors to any parnicular subject, cannot fail of giving it considerable importance in the opinion of mathematicians, at the same time that we may expect from their combined and concentrated labours, that many interesting truths have betn the reward of so much talent and ingenuity.

It would be contrary to the plan of this work to enter at any lengiln into the investigations above alluded to, but the result of them will no doubt be accepiable to the reader; we shall thercfore content ourselves with recording some of the inost injprtaint of those propositions, referring for their inwestigations and demonstrations to the authors above quoted, viz, Bachet's Dhophantus published in 1621, and his work entitied, Problems plaisans et delectables \&ec ; Fermat's edition of Rachet's Diaphantus, with notes, published in 1670; Euler's Algebra published in German 1770, and since translated into the Russian,

PRI

French, and Euglish languages, with the additions by Lagrange, on the same subject; also to the Analysis Infinitorum of the same author, and more particularly to the Petersburg Acts, which contain many of the ingcinous labours of this celcbrated geometer; Lagrange's additons to E'uler's Algebra above quoted, and to the Berlin Mcmoirs froin 1760 for several years. But the most elaborate and connected works on the subject of numbers are those of Legendre, entitled Fssai sur la Theorie des Nombres, second edition, published in 1808; and the Disquisitiones Arithrneticie by M. Gauss, published at Leipsick in 1801, and since (1807) thanslated into French by Poulet Delisle, under the Litle of Recherclies Arithmetiques.

In these works tbe reader will find the subject of numbers handled in the most masterly manner, many particular properties of the prime numbers accurately demonstrated, and their applications to various parts of the $\mathbf{I n}$ determinate and general Analysis.

Every prome number, greater than 2, is of one of the forms $4 n+1$, or $4 n-1$.

Every prime number, greater than 3, is of one of the forms $6 n+1$, or $6 n-1$.

Aud as, in the former case, n may be either even or odd; it therefore tollows, that every prime number, except 2, is of one of the forins $8 n+1,8 n+3,8 n+3$, or $8 n+7$.

In the same onanner we may divide prone nunibers into classes according to any montulus at pleasure, but the last four forms, in which are incladed the first two forms $4 n+1$ and $4 n-1$, are, those which are found to pussess the most distinct properties.
But though every prime number, except 2, is contained in one or other of these four forms, the converse of the proposition is not true, namely, that every number in those torms is a prime number. Indeed no formula has yet been discovered that belongs exclusively to prime numbers, nor has any direct rule beell given for finding them, or for ascertaining whether a given number be prime or not ; Enler hat however considerably simplitied the metbod of trials, in this latter case, by means of the difierent furms of divisors that belong to certain algebraical formula; thus, be bas shown, in the Berlin Memoirs for 1772. that $A=2^{31}-1$ can have no divisors except numbers of the form $248 n+1$, or $248 n+63$; and having made trials of all the prime numbers in those forms, less than 46339 , the root of the number A, and finding that none of them divided Δ, he thence confidently concludes that $2^{3}-1=2147483647$ is a prime number: and this is the greatest of those tbat have been verified at present.

It is needless to observe, that without some method similar to the one above given, we should lave no means of ascertaining whether the number was prime or not, but by trying every prime number for a divisor from i to $\sqrt{ } \mathrm{A}$, that is, from 1 to 46339 , which would be too laborious a task for any one to have attempted.

Fermat had asserted that both $2^{31}-1$ and $2^{2 n}-1$ were prime numbers, but Euler has shown that this last may be decomposed into the factors $3 \cdot 5 \cdot 17 \cdot 257 \cdot 65337$.

Erutosthenes invented a method of finding those numbers, thut it is rather mechanical than analytical; this is generally spoken of under the appellation of Eratosthenes' Sicve, or the Sieve of Eiratosthenes, a description of which is given under that article. See Sieve.

Propertics of Prime Nimbers.
Every prime number, $4 n+1$, is the sum of two squares, or is of the form $z^{2}+y^{3}$. Thus $17=4^{2}+1^{8}$; $29=3^{2}+2^{2} ; 37=6^{2}+1^{2}$, \&cc.

Every prime number, $8 n+1$, is at the same time of the three forms $x^{2}+y^{2}, x^{2}+2 y^{2}$, and $x^{2}-2 y^{2}$. Thus $41=5^{2}+4^{4}=3^{2}+2 \cdot 4^{\prime}=7^{4}-2.2^{2}$.

Every prime number $8 n+3$, is of the form $x^{2}+2 y^{2}$. Tluus $43=5^{2}+2.3^{2}$, and $59=3^{2}+2.5^{2}$, \& c.

Every prime number, $8 n+7$, is of the form $x^{2}-2 y^{3}$. Thus $31=7^{4}-2.3^{2}$ and $47=7^{2}-2.1^{3}$, dc.

The demonstrations of these four theorems were first given by Lagrange, ill the Berhn Memnirs for 1775; they may also be found in the notes subjoined to the second English edition of Euler's Algebra. It is lihewise to Lagrange that we are indebted, if not for the demonstration of the properties conalined in the following table, at least for pointung out the method that led to them, as is ingenuously acknou ledged by Legendre, at pa. 286, 1st edition, and at pa. 262, 2d edition ot his 'I beory of Numbers, whence this table is extracted.

Table of the Forms of Prime Numbers.

	Prime Numbere,	Forms.
1	$4 n+1$	$y^{2}+z^{2}$
2	$6 n+1$	$y^{3}+y z+z^{2}$
3	$8 n+1,7$	$y^{2}-2 z^{2}$
4	$8 n+1,3$	$y^{2}+2 z^{2}$
5	$12 n+1$	$y^{7}-3 z^{*}$
6	$12 n+11$	$3 y^{2}-z^{2}$
7	$14 n+1,9,11$	$y^{2}+7 z^{2}$
8	$20 n+1.9,11,19$	$y^{2}-5 z^{2}$
9	$20 n+1,9$	$y^{2}+5 z^{2}$
10	$20 n+3,7$	$2 y^{4}+2 y z+3 z^{2}$
11	$24 n+1,19$	$y^{2}-6 z^{2}$
12	$24 n+5,25$	$6 y^{2}-z^{4}$
13	$24 n+5,11$	$2 y^{2}+3 z^{2}$
14	$24 n+1,7$	$y^{2}+6 z^{4}$
15	$28 n+1,9,25$	$y^{2}-7 z^{2}$.
16	$280+3,19,27$	$7 y^{2}-s^{4}$
17	$30 n+1,19$	$y^{2}+15 z^{2}$
18	$30 n+17,23$	$3 y^{2}+5 z^{3}$
19	$40 n+1,9,31,39$	$y^{2}-10 z^{2}$
20	$40 n+3,13,27,37$	$2 y^{2}-5 z^{3}$
21	$40 n+1,9,11,19$	$y^{2}+10 z^{2}$
22	$40 n+7,13,23,37$	$2 y^{3}+5 z^{3}$
93	$120 n+11,29,59,101$	$5 y^{2}+6 z^{2}$
24	$120 n+13,37,43,67$	$10 y^{2}+3 z^{2}$
25	$1: 0 n+1,51,49,79$	$y^{2}+30 z^{2}$
26	$120 n+17,23,47,113$	$2 y^{2}+13 z^{2}$

Beside the properties of prime numbery above enumerated, and those which are given under the article Numara, we have another to nutice, the discovery of which has been the admiration of every mathematician in Europe, namely, the solution of the equation $x^{\star}-1=0$, when s is a prime number.

The first investigation and demonstration of this problem was pullished by M. Gauss, in his truly ingenious work entitled Disquisitiones Arithmetice; though it seems that Vandermonde had asserted, in the Memoirs of the Academy of Sciences, at Paris in 1771 , pa. 416, but without explaiming the method, that suchequations were always resolvable by means of equations of inferior degrees. It is however to M. Gauss that we are indebted for the complete development of this interesting theorem, he having shown, in the most satisfactory manner, that when n is a prime number, and $(n-1)$ is resolved into its prime factors $a^{x} b^{k} c y \& c$, that the solution of the equation $x^{n}-1=0$ may be obtuiued by means of a equations of the degree $a_{\text {, }}$
$\hat{\beta}$ of the degree b, γ of the degree $c, \& c$; thus the equation $x^{33}-1=0,\left(73-1\right.$ being equal to $\left.3^{2} \cdot 2^{3}\right)$ is re:solved by means of two equations of the third degree, and three of the scond ; and $x^{17}-1=0$, (as $18=3^{2} 2^{\prime}$) is resolved by means of two cubic, and one quadratic equation. And hence it follows, that when $n=2 m+1$ that the equation $x^{n}-1=0$ may be resolved by means of m quadratie equations, in which case the roots may be found by construction, and consequeatly the circle may, with such values of n, be divided into n equal parts by means of the scale and compasses only, which was always thought to be impossible till the appearance of the work above mellitioned.
Since 17 is a prime number of this form, that is, $17=$ $2^{\prime}+1$, therefore a circle may be divided geometrically into $1 \hat{i}$ equal parts ; and situce $15=3 \times 5$, and $16=2^{\circ}$,
therefore the carcle may be divided into equal parts re. presented by the three consccutive numiners 15,16 and 17 ; the sane is also true of the three numbers 255,256 , and 237, since $255=3 \times 5 \times 17 ; 256=2$, and $257=24+1$: also of the three 63535. 65536, and 65537 , because $65335=255 \times 257,65536=9^{15}$, and $65537=2^{\text {t6 }}+1$. Hut as $2^{13}+1$ is net a prime, we cannot pursue this rrasoning any farther. See liauss's Disquisitiones Arithmetica, Legendre's Essai sur la Theorie des Nombres, 2d Edition, atd the Complement to Lacloix's Algebra.

The follouing Table contains all the prime numbers, and all the odd composite numbers, under 10,000 , wilh the least prime divisors of these ; the description, nature, and use of which, sce inmediately following the table.

A Table of Prime and Composite Odd Numbers, under 10,000

A Table of Prime and Componice Odd Numbers, ender 10,000.

A Table of Prime and Composite Numbers, under 10,000.

In the foregoing table, all the odd numbers that end with 5 are omited, because it is known that 5 is a divisor, or aliquot part of every such number.- The disposition of the prime and composite odd numbers in this table, is along the top line, and down the first or left-hand column; while their least prime divisors are placed in the angles of mreting in the body of the page. 'I'hus, the figures along the tip line, viz, $0,1,2,3,4, \& c$, to 99 , are so many hundreds; and those down the first column, fiom 1 to 99 also, are units or ones; and the former of these set before the latter, make up the whole number, whether it be prime or composite; just like the disposition of the natural numbers in a table of logarithms. Thus the 16 in the top line, joined with the 19 in the first column, makes the number 1619: the angle of their meeting, viz, of the column under 16 , and of the line of 19 , being blank, shows that the number 1619 has no aliquot part or divisor, or that it is a prime number. In like manner, all the other numbers are prianes that have no ligure in their angle of meeting, as the numbers $41,401,919, \& c$. But when the two parts of any number bave some figure in their angle of meeting, that figure is the least divisor of the number, which is therefure not a prime, but a composite number: so 301 has 7 for its least divisor, and 803 bas 11 for its least divisor, and 1633 has 23 for its least divisor.

Hence, by the foregoing table, are immediately known at sight all the prime numbers up to 10,000 ; and hence also are readily found all the divisors or aliquot parts of the composite numbers, namely in this matmer: Find the least divisor of the given number in the table, as above; divide the given number by this divisor, and consider the quotient as another or new number, of which find the least divisor also in the table, dividing the said quotient by this last divisor; and so on, dividing always the last quotiont by its least divisor found in the table, till a quotient be found that is a prime number: then are the said divisors "and the last or prime quotient, all the simple or prime divisors of the first given number; and if these simple divisors be multiptied tug-ther thus, viz, every two, and every three, and every four, \&c, of them together, the several products will make up the compound divisors or aliquot parts of the first given number; noting, that if the given number be an even one, divide it by 2 till an odd number come out.

For example, to find all the divisors or component facturs of the number 210. This being an even number, dividing it by 2 , one of its divisors, gives 105 ; and this ending with 3 , dividing it by j, anotber of its factors, gives 21 ; and the least divisor of 21, by the table is 3 , the quotient from which is 7 ; therefore all the prime or simple factors of the given number, are 2, 3, 5,7. Set these therefore down in the first line as in the margin; then inultiply the 2 by the 3 , and set the product 6 below the 3 ; next multiply the 5 by all that precede $i t, v i z, 2,3,6$, and set the producis below the 5 ; lastly multiply the 7 by all the seven factors preceding 11 ,
 and set the products below the 7 ; so shall we have all the factors or divisors of the given number 210, which are these, vis,
$2,3,5,6,7,10,14,15,21,30,35,42,70,105$.
A table containing every divisor of every number from I to 10,000, was given by Anjema, and was repriated in

London in 1747. And a much more extensive table of this kind is given in the second edition of Vega's tables, where also is a table of all prime numbers to 400,000 .

Prime Vervical, is that vertical circle, or azimuth, which is perpendicular to the meridian, and passes through the east and west points of the borizon.

Prime Vericale, in Dialling, or Prime-Vertical Dials, are those that are projected on the plane of the prime vertical circla, or on a plane parallel to it. These are otherwise called direct, erect, north, or south dials.
$\mathrm{P}_{\mathrm{R}} \mathrm{an} \mathrm{E}$ of the Moon, is the new moon at her first appearance, for about 3 days after her clange. It means also the Goldex Number; which see.

PRIMUM Mobite, in the Ptolemaic Astronongy, is supposed to be a vast sphere, whose centre is that of the world, and in comparison of which the earth is but a point. This they descrite as including all other spheres within it, and giving motion to them, turning itself and all the rest quite round in 24 hours.

PRINCIPAL, in Arithmetic, or in Commerce, is the sum lent upon interest, either simple or compound.

Prixcipal Poiat, in Perspective, is a point in the perspective plane, upon which falls the principal ray, or line from the eye jerpendicular to the plase. This point is in the iatersection of the horizontal and vertical planes ; and is also called the point of sight, and point of the cye, or centre of the picture, or again the point of concurrence.

Principal Ray, in Perspective, is that which passes from the spectator's eye perpendicular to the picture or perspective plane, and so meeting it in the principal point. PRINGLE: (Sir Jонs), Baronet, the late worthy president of the Royal Suciety, was born at Stichel-house, in the county of Roxburgh, North Britain, April 10, 1707. His father was Sir John Pringle, of Stichel, Bart. and his mother Magdalen Elliott, was sister to Sir Gilbert Eilliot, of Stobs, Baronet. He was the youngest of several sons, three of whom, besides himself, arrised to years of maturity. After receiving his grammatical education at home, he was sent to the university of St. Andriws, where having staid some years, he removed to Edinhurgh in 1727, to study physic, that being the profession which he now determined to follow. He staid however unly one year at Ediuburgh, being desirous of going to Leyden, which was then the most celebrated school for medicine in Europe. Dr. Boerhasve, who bad brought that university into grest reputation, was considerably advanced in years, und Mr. Pringle was desirous of benefiting by that great man's lectures. After having gone through his proper course of studics at Luyden, he was admitted, in 1730, to bis doctor of physic's degree; upon which occasion his inauğral dissertation, De Marcore Senilh, was printed. On q ...'ng Leyden, Dr. Pringle retarned and sctiled at Edinburga as a physician, where, in 1734, he was appointed, by the magistrates and council of the city, to be joint professor of pneumatics and moral philosophy with Mr. Scott, during this gentleman's life, and sole professor after his decease; being also admitted at the same time a member of the university. In discharging the dutirs of this new emplnyrent, his text-book was Puffindorff De Officio Iiomingset Civis; agrecably to the method he pursued through life, of making fact and experiment the basis of srience.

Dr. Pringle continued in the practice of Physic atedinburgh, and in duly performing the office of professor, till 1742, when he was appointed physician to the cerl of Stair,
who then commanded the British army. By the interest of this nobleman, Dr. Pringle was constituted, the same year, plysician to the military hospital in Flanders, with a salary of 20 shillings a-day, and the right to half-pay for life. On this occasion he was permitted to retain his professorship of moral philosophy; two gentlemen, Messrs. Muirhead and Cleghorn teaching in his absence, as long as he requested it. The great attention which Dr. Pribgle paid to bis daty as an army physician, is evident from every page of his Treatise on the Diseases of the Army, in the execution of which office he was sometimes exposed to very imminent dangers. He soon after also met with no small affliction in the retirement of his great friend the carl of Stair, from the army. He offered to resign with bis noble patron, but was not permitted: he was therefore obliged to content bimself with testifying his respect and gratitude to him, by accompanying the carl 40 miles on his return to Eingland; after which he took leave of him with the utunust regret.

But though Dr, Pringle was thus deprived of the immediate protection of a nobleman who knew and esteemed his worth, his conduct in the duties of his station procured him effectual support. He uttended the army in Flanders through the campaign of $\mathbf{1 7 4 4}$, and so powerfully recommended thonself to the duke of Cumberland, that is the spring following he had a commisaion, appointing him pliy-sician-general to the king's forces in the Low-Countries, and parts beyond the seas; and on the next day be received a sccond commission from the duke, constituting him plassician to the royal hospitals in thuse countrics. In consequence of these promotions, he the same year resigned his professorship in the university of Edinburgh.

In 1745 be was also with the army in Flanders; but was recalled from that country in the latter end of the year, to attend the forces which were to be sent agaimst the rebels in Scotland. At this time be had the honour of being chosen $\boldsymbol{\gamma}$, R.s. and the Society had good reasun to be pleased with the addition of such a raember. In the beginuing of 1746 , Dr. Pringle accompanied, in his ofticial capacity, the duke of Cumberland in his expedition against the rebels; and remained with the forces, atter the batile of Culloden, till their return to England the fullowing summer. In 1747 and 1718 , he again attended the army abroad; but in the autumn of 1748 , he embarked with the forces for England, on the signing of the treaty of Aix-le.Chapelle.

From that time lie mostly' resided in London, where, from his known skill and experience, and the reputation he had acquired, he might reasonably expect to succeed as a physictan. In 1749 he was appothated physician in ordinary to the duke of Cumberland. And in 1750 he published, in a letter to Dr. Mead, Observations on the Ganl or Huapital Fever: this prece, with some alterations, was afterwards included in his grand work on the Diseases of the Army.

In this and the two following years Dr. Pringle communicated to the Royal Society his celebrated Experiments upon Septic and Antiseptic Substances, with Remarks relating to their (lse in the Theory of Medicine: some of which were printed in the Philosophical Transactions, and the whole were subjoined, as an appenalix, to lis Obecrations on the Disenses of the Army. Those experiments procured for the ingenions author the bonnur of Sir Godfrey Copley's gold tnedal; besides gaining him u high and just reputation as an experimental philosopher.

He gave also many other cutious papers to the Royal Society: thus, in 1753, be presented, An Account of several Persons seized with the Gaol Fever by working in Newgate ; and of the Manner by which the lufietion was communicated to one entire Famaly ; it the Philos. Trans. vol. 48. His next communication was, A remarkable case of Fragility, Flexiblity, and Dissolution of the Bones ; in the same vol-In the 49th volume, are accounts which he gave of an Earthquake felt at Brussels; of another at Glasgow and Dunbarton; and of the Agitation of the Waters, Nov, 1, 1756, in Scotland and at Hamburgh.-The 50th volune contuins his Observations on the Case of lord Walpole, of Woillerton; and a Relation of the Virtues of Soup, in Dissolving the Stone,-The next volume is enriched with two of the doctor's artieles, of considerable lengit, as well as value. In the first, he hath colleeted, digested, and related, the different accounts that had been given of a very exiraordinary Fiery Meteor, which appeared the 26 th of November 1758 ; and in the second he has made a variety of remarks upon the whole, displaying a great dezree of philosophical sagacity:- Besides lin cotumunications in the Pliblosophical Transactions, be gave, in the Sth volune of the Edinburgh Medical Essays, an account of the Success of the Vitrum ceratuin Antimenii.

In 1752, Dr. Pringle married Charlotte, the second daughter of Dr. Oliver, in emisent physician at Bath: a connexion which thowever did not last long, the lady dying in the space of a few ycars. And nearly about the time of his marriage, he gave to the public the first cdition of his Observations on the Discases uf the Army; which afterwards went through many ellitions with improvements, was tramslated into the French, the German, and the Ialian languages, and der.rvedly gained the author the bighest credit and cocomiunas. The utility of this work however was of still greater inpourtance than its reputation. From the time that the doctor was appointed a physician to the army, it seems to have bren has grand object to lessen, as far as lay in his poner, the calamitico of war ; nor was he without considerable success in his noble and benewolent design. 'The bencfits which may be derived from our nuthor's great work, are not solely confined to gentlemen of the medical profestion. Cieneral Melville, a genteunan who umted uith his miltary abilities the spirit of philosophy, and the feelings of humanity, was enabled, when governor of the Neutrai Islamis, to be singularly useful, in convequence of the instructions be had receivel from Dr. Pringle's book, und frow personal conversation with bim. Jy faking care to have bis men always lodged in large, open, and airy apartments, and ty never letting his forces remuin long enough in smampy places to be injured by the noxious air which they ale subject to, the general was the happy instrument of saving the lives of 700 soldiers.

Though Dr. Pringle had not for some years been called abrond, he still held his place of physcian to the urmy ; and in the war that began in 1755, he altended the campls in Eingland during three seasons. In 1738, however, be entirely quitted the service of the army; and being now determined to fix wholly in London, lie wus the satie year admitted a licenciate of the college of physicians.-After the acecssion of king George the 3il to the thrune of Great Brituin, Dr. Priugle was apponted, in 1761, physician to the queen's household; and this honour was succeeded, by his being constituted, in 1763, physician extraordinary to the quern. The same year he was chusen a member of
the Academy of Sciences at Haarlem, and elected a fellow of the Royal College of Physicians in London,- In 1764, on the decease of Dr. Wollaston, he was made physician-in-ordinary to the queen. In 1766 he was elected a foreign member, in the physical line, of the Royal Suciety of Sciences, at Gottingen, and the same year he was raised to the dignily of a baronet of Great-Britain. In 1768 he was appointed physician in ordinary to the late princess-dowager of Wales.

After having had the honour to be several times elected into the council of the Royal Society, sir John Pringle was at length, viz, Nov. 30, 1772, in consequence of the death of James West, esq. elected president of that learned body. His election to this high station, though be had so respectable a character as the late sir James Porter for his opponent, was carried by a very considerable majority. Sir John Pringle's conduct in this honourable station fully justified the choice the Society made of him as their president. By his equal, impartinl, and encouraging behaviour, he secured the good will and best exertions of all for the general benefit of science, and true interests of the Society, which in his time was raised to the pinnacle of honour and credit. Instead of splitting the members into opposite parties, by cruel, unjust, and tyrannical conduct, as has sometimes been the case, to the ruin of the best interests of the Society, sir John Pringle cherished and happily united the endeavours of all, collecting and directing the energy of every one to the common good of the whole. He happily also struck out a new way to distinction and usefulness, by the discourses which were delivered by bim, on the annual assignment of sir Godfrey Copley's inedal. This gentleman had originally bequeathed five guineas, to be given at each anniversary meeting of the Royal Society, by the determination of the president and council, to the person who should be the author of the best paper of experimental observations for the ycar. In process of time, this pecuniary reward, which could never be an important consideration to a man of an enlarged and philosophical mind, however narrow his circumstances might be, was changed into the mure liberal form of a gold medal; in which form it is become a truly honourable mark of distinction, and a just and laudable object of ambition. No doubt it was always usual for the president, on the delivery of the medal, to pay some compliment to the gentuman on whom it was bestowed; but the custom of making a set speech on the occasion, and of entering into the history of that part of philosophy to which the experiments, or the subject of the paper related, was firxt introduced by Martin Folkes, esq. The discourses however which he and his succestors delivered, were very short, and were only inserted in the minate-books of the Society. None of them had ever been printed before sir John Pringle was raised to the chair. The first speech that was made by him being much more elaborate and extended than wsual, the publication of it was desired; and with this request, it is said, be was the more ready to comply, as an absurd account of what he had delivered had appeared in a newspaper. Sir John was very happy in the subject of his first discourse. The discoveries in magnetism and electricity had been succeeded by the inquiries into the various species of air. In these inquiries, Dr. Priestley, who had already greatly distinguished himself hy his electrical experiments, and his other philosophical pursuits and labours, took the principal lead. A paper of his, entilled, Observations on different Kiuds of Air, having VoL. II.
been read befure the Society in March 1772, was adjudged to be deserving of the gold raeda!; and sir John Pringle embraced with pleasure the occasion of celebrating the important communications of his friend, and of rco lating with accuracy and filelity what had previously been discovered upon the subject.

It was not intended, we beliove, when sir John's first speech was printed, that the example should be followed: but the second discourse was so well received by the Society, that the publication of it was unanimously requested. Both the discourse itself, and the subject on which it was delivered, merited such a distinction. The coraposition of the second speech is evidently superior to that of the furmer one; sir John having probably been animated by the favourable reception of his first effort. His eccount of the Torpedo, and of Mr. Walsh's ingenious and admirable experiments relative to the electrical properties of that extraordinary fish, is singularly curious. The whole discourse abounds with ancient and modern learniug, and exhibits the worthy president's knowledge in natural history, as well as in medicine, to great advan. tage.
The third time that he was called upon to display his abilities at the delivery of the annual medal, was on a very beautiful and important occasion. This was no less than Mr. Maskelyne's successful attempt completely to establish Newton's system of the universe, by his obscrvations made on the Mountain Schiballien, for fiuding its attraction. Sir John laid hold of this opportunity to give a perspicuous and accurate relation of the several hypothescs of the ancients, wilh regard to the revolutions of the heavenly bodies, and of the uoble discoveries with which Copernicus enriched the astronomical world. He then traces the progress of the grand principle of gravitation down to sir Isauc's illustrious confirmation of it; to which he adds a concise account of Messrs. Bouguer's and Condamine's experiment at Chimboraço, and of Mr. Maskelyne's at Schihallien. If any doubts still remained with respect to the truth of the Newtonian system, they were now completely remnved.

Sir John Pringle had reason to be peculiarly satisfied with the subject of his fourth discourse ; that subject being perfectly congenial to his disposition and studies. His own life had been much employed in pointing out the means which tended not only to cure, but to prevent the diseases of mankind; and it is probable, from his intimate friendship with captain Cook, that he might suggest to that sagacious commander some of the rules which he followed, in order to preserve the health of the crew of bis ship, during his voyage round the world. Whether this was the case, or whether the method pursued by the captain to attain so salutary an end, was the result alone of bis own reflections, the success of it was astonishing; and this celebrated voyager scemed well entitled to every honour which could be bestowed. To him the Socicty assigned their gold medal, but he was not present to receive the honour. He was gone out upon the voyage, from which he never returned: but in this last voyage he continued equally successful in maintaining the bealth of his men.

The learned president, in bis fith annual dissertation, had an opportunity of displaying his knowledge in a way in which it had not bitherto appeared. The discourse took its rise from the adjudication of the prize medal to Mr. Mudge, then en eminert surgeon at Plymouth, on account of his valuable paper, containing Directions for 2 I
making the bent Composition for the Metals of IReflecting Telescopes, tugeilher with a Description of the Process for Grinding, Polinhing, and giving the Great Speculum the true Parabolic Form, Sir John has accurately related a variety of particulars, concerning ibe invention of reflecting telescopers, the subsequent improvements of these instruments, and the state in which Mr. Mudge found them, when he first set about worhing them to a greater perfection, till he had truly realized the expectation of Newton, who, above an hundred years ago, presaged that the public would one day possess a parabolic speculum, not accomplished by mathematical rules, but by mechanical devicis.

Sir John Pringle's sixth and last discourse, to which he was led by the assignuent of the gold medal to myself, on account of my paper entitled, The Force of fired Guispowder, and the luitial Velocity of Cannon Bells, determined by Experiments, was on the theory of gunnery. Though sir John had so long attented the army, this was probably a subject to which he bad heretufore paid very Inttle attention. We cannot however help admiring with what perspicuity and judyment he stated the progreas that was madr, from time to time, it the knowledge of projectiles, and the scientific perfection to which it has been said to be carried in my paper. As sir Jobn Pringle was not one of those who delighted in war, and in the shedding of husan blood, he was happy in being able to show that even the studiy of artillery might be useful to mankind; and therefure this is a topic which be has not forgotten to mention. llere ended our author's disenurses on the delivery of sir Godfrey Copley's medal, and his presidency over the Ruyal Society at the same time, the delivering that medal into iny hand being the last office be ever performed in that capacity; a ceremony which was attended by a greater number of the members, than had ever met together befure upon any uther occasion. Had he been permitted to preside longer in that chair, he would doubtless have found other occasions of displaying his acquaintance with the history of philosophy. But the opportunities which he had of signalizing himself in this respect were important in themselves, happily vuried, and sufficient to gain him a solid and lasting reputation.

Several marks of literary distinction, as we have already seen, had been conferred on sir John Pringle, before lie was raised to the president's chair. But after that ewent they were bestowed upon him in great abundance, having been elected a member of almost all the literary societies and institutions in Europe. He was also, in 1774, appointed physician-extraordinary to the king,

It was at rather a late peried of life when sir John Pringle was chosen to be president of the Royal Society, being then 65 years of age. Considering therefore the great attention that was paid by him to the various and important duties of his office, and the great pains be took in the preparation of his discourses, it was natural to expect that the buriben of his honourable station should grow heavy upon him in a course of time. This burthen, though not increased by any great addition to his life, for he was only 0 years president, was somewhat augmented by the accident of a fall in the area in the back part of his house, from which he received some hurt. From these circumstances some persons have affected to account for his resigning the chair at the time when he did. But sir Juhn I'ringle was naturally of a strong and robust frame and constitution, and had a fair prospect of being well able
to discharge the dutics of his situation for many years to come, had his spirts not been broken by the must cruel barassings and baitings in his office. His resolution to quit the chair uriginated from the disputes introduced into the Society, concerning the question, whether pointed or blunt electrical conducion are the most efficacious in preserving builditgs from the jernicious effects of lightming, and from the cruel circumstances antending those disputes. These drove him from the chair. Such of those circumstances as were open and mamifest to every one, were event of themselves perliaps quite sufficient to drive him to that rewolution. But there were yet others of a more privute nature, which operated still more powrrfully and directly to produce that event; which may probably hervafter be laid before the public.
His intention of resigning however, was disagreeable to his friends, and the most distinguished nembers of the Society, who were many of then perhaps ignorant of the true motive for it. Accordingly, they carnestly solicited him to continue in the chair; but, his resclotion being fixed, be resigned it at the anniversary mecting in 1778 , immeciately on delivering the medal, at the conclusion of his sperch, as mentiuned above.

Though sir John Pringle thus quitted his particular relation to the Royal Society, and did not artend its meetingy so constanily as he lad tormerly done, he still retained his literary conncsions in general. His house continued to be the resont of ingenious and philosophical men, whether of his own country, or from abroad; and he was frequent in his visits to his friends. He was held in partucular csteem by tminent and learned foreigners, none of whom came to England without waiting upon hiro, and paying him the greatest respect. He treated them, in return, with distinguished civility and regard. When a number of gentlemen met at his table, foreigners were usually a part of the company.

In 1780 sir John spent the summer on a visit to Edinburgh; as he did also that of 1781 ; where he was treated with the greatest respect. In this last visit be presented to the Royal College of Physicians in that city, the result of many years labour, being ten folio volumes of Medical and Plysical Obwrvations, in manuscript, on condition that they should neither be published, nor letet ont of the library "f the colleg口 on any account whatever. He was at she same time propuring two other volumes, to be given to the universing, containng the formulas relerred on in his annotations. He relurned again to Londan, and continued for some time his usual course of like, recoving and paying visits tu the mont eninent literary men, but languishing and declining in bis health and vpirits, till the 18 th of January 1782 , when he died, in tie 7 th ycar of his age; the account of his death being erery where received in a manner which showed the high sense that was entertained of his merit.

Sir John Pringle's eminent character as a practical physician, as well as a medical author, is so well known, and so universally acknofledged, that an enlargement upon it cannot be necessary. In the excreise of lis profession be was not rapacioub; being ready, on various occasions, to give hisadvice without pecumary views. The turn of his tnind led him chiefly to the love of science, which he built on the firm bisis of fact. With regard to philusophy in general, he was as avrrse to theory, unsupported by experiments, as he was with respect to medicine in particular. Lord Bacon was his favourite author; and to the method
of investigation recommended by that great man, be steadily adbered. Such being his intellectual character, it will not be thought surprising that be had a dislike to Plato; und that to metaphysical disquisitions he lost all regard in the latter part of his life.

Sir John had no great fondness for poetry : he had not even any distinguished rehish for the immortal Shakespear : at least be scemed too highly sensible of the defects of that illustrious bard, to give him the proper degree of estimation. Sir John had not in his youth beeu neglectful of philological inquiries, nor did he desett them in the last stages of his life, but cultivated even to the last a knowledge of the Greek language. He paid a great attention to the French language; and it is said that he was fond of Voltaire's critical writings. Among all his other pursuits, he never forgot the study of the English language. This be regarded as a matter of so much consequence, that he took uncommon pains with regard to the style of his compositions; and it cannot be denied, that he excelled in perspicuity, correctness, and propriety of expression. His six discourses in particular, delivered at the annual meetings of the Royal Suciety, on uccasion of the prize medals, have been univenally admired as elegant compositions, as well as critical and learned dissertations. And this characteristic of them, seemed to int crease and heighten, from year to year: a circumstance which argues rather an improvement of his faculties, than any decline of tbem, and that even after the accident which it was pretended occasioned his descent from the president's chair. So excellent indeed were these compositions esteemed, that envy used to asperse his character with the imputation of borrowing the hand of another in those learned discourses. But how false such aspersion was, I, and I believe most of the other gentlemen who had the honour of receiving the annual medal from his hands, can fully testify. For myself in particular, I can witness for the last, and perhaps the best, that on the theory and improvements in gunnery, having been present or privy to his composition of every part of it.-Though our author was not fond of poetry, he bad a great affection for the sister art music: of this he was not inerely an admiret, but became sofar a practitionerinit, as to be a performer on the violoncello, at a weekly concert given by a society of gentlemen at Edinhurgh. Besides a close application to medical and philosophical science, during the latter part of his life, he devoted much tine to the study of divinty: this being with him a very favourite and interesting object.

If, from the intellectual, we pass on to the moral character of sir John Pringle, we shall find that the ruling feature of it was integrity: and by this principle he was uniformly aciuated in the whole of his conduct and behaviour. He was equally distiuguished for his sobriety, having been heard to declare, that he had never once in his life been intoxicated with liquor. In his friendships, he was ardent and steady. The intimacies which were formed by him, in the early part of his life, continued unbroken to the decease of the gentlemen with whon they were made; and were kept up by a regular correspondence, and by all the good offices that lay in his power.

With regard to sir John's evternal manner of deportment, he paid a very respectfal attention to those who were honoured with his friendahip and esteem, and to such strangers as came to him well recommended. Foreigners in particular had good reason to lee satsisied with the un-
common pains which he took toshow them every mark of civility and regard. He had however at times somewhat of a dryness and reserve in his behaviour, which had the appearance of coldness; and this was the case when he was nut perfectly pleased with the persons who were introduced to him, or who happened to be in his company. His sense of integrity and dignity would not permit him to adopt that false and superficial politeness, which treats all men alike, though ever so different in point of real estimation and merit, with the same show of cordiality and kinduess. He was above assuming the profession, without the reality of respect.

PRISM, in Creonetry, is a body, or solid, whose two ends are noy plane figures which are parallel, equal, and similar; and its sides, connecting those ends, are paral-Ielugrams.-Hence, every section parallel to the ends, is the same kind of equal and simblar figure as the ends themselves are; and the prism may be considered as genetated by the parallel motion of this plane figure.

Prisins take their several particular names from the figure of their ends. Thus, when the end is a triangle, it is a triangular prism; when a -square, a square prism; when a pentagon, a pentagonal prism; when a hexagon, a bexagonal prism; and so on. And bence the denomination prism comprises also the cube and parallelopipedon, the former being a square prism, and the latter a rectangular one. And even a cylinder maly be considered as a round prism, or one that has an infintte number of sides. Also a prism is said to be regular or irregular, according as the figure of its end is a regular or an irregular polygon.

The axis of a prism, is the line conceived to be drawn length ways through the middle of it, connecting the centre of one end with that of the other end.

Prisms, again, are either right or oblique.
A Righe Prism is that whose sides, and its axis, are perpendicular to its ends ; like an upright tower.

An Oblique $\mathrm{P}_{\mathrm{RI}} \mathrm{sm}$, is when the axis and sides are oblique to the ends ; su that, when set upon one end, it inclines on one side, like an inclined tower.

The principal properties of prisms, are,

1. That all prisms are to one another in the ratio compounded of their blases and heights.
2. Sinilar prisuns are to one another in the triplicate ratio of their like sides.
3. A prism is triple of a pyrmmid of equal base and height ; and the solid content of a prism is found by multiplying the base by the perpendicular lieight.
4. The upright surface of a right prism, is equal to a rectangle of the same height, and its breadth equal to the perimeter of the base or end. And therefore such upright surface of a right prism, is found by multiplying the perimeter of the base by the perpendicular height. Also the upright surface of all oblique prism is found by multipiying the perimeter of the base by the slant height. And if to the upright surface be added the arens of the iwo ends, the sum will be the whole surface of the prism.

Prispm, in Dioptrics, is a piece of glass in form of a triangular prism: which is much used in experiments concerning the nature of light and colours.- The use and phenomena of the prismarise from its sides not being parallel to each other; whence it separntes the rays of light in their passage through it, by consing through two sides of one and the same augle.

The more general of these phenomena are enumerated 212
and illustrated under the article Colour; which are sufficient to prove, that colours do not either consist in the contorsion of the globules of light, as Descartes imagined; nor in the obliquity of the pulses of the ethereal matter, as Hooke fancied; nor in the constipation of light, and its greater or less concitation, as Dr. Barrow conjectured; but that they are original and unchangeable properties of lighs itself.

PRISMOID, is a solid, or body, somewhat resembling a prism, but that its ends are any dissimilar parallel plane figures of the same number ot sides; the upright sides being trapezoids.-If the ends of the prismoid be bounded by dussimilar curves, it is sometimes called a cylindroid.

PROBABILITY of an Evens, in the Doctrine of Chances, is the ratio of the number of chances by which the event may happen, to the number by which it may both happen and fail. So that, if there be constituted a fraction, of which the numerator is the nunber of chances for the event's bappening, and the denominator the number for both happening and failing, that fraction will properly express the value of the probability of the event's happening. Thus, if an event have 3 chances for happening, and 2 for failing, the sum of which being 5, the fraction $\frac{1}{3}$ will properly represent the probability of its happening, and may be taken to be the measure of it. The same thing may be said of the probability of failing, which will likewise be measured by a fraction, whose numerator is the number of chances by which it may fail, and its denominator the whole number of chances both for its happening and failing: so the probability of the failing of the above event, which has 2 chances to fail, and 3 to bappen, will be expressed or measured by the fraction $\frac{3}{\top}$.

Hence, if there be adjed together the fractions which express the probability for both happening and failing, their sum will always be equal to unity or 1 ; since the sum of their numerators will be equal to their common denominator. Aud since it is a certainty that an event will either happen or fail, it follows that a certainty, which may be considered as an infinitely great degree of probability, is fitly represented by uning. If it be required, what the probability is of an event happening in two trials, then we must estimate the probability of its failing twice, which taken from unity will be the probability of its happening. Thus if it was asked what is the probability of a person's casting an ace in two throws with a dic of 6 faces. Here the probability of its failing the finst time is $\frac{1}{6}$, there being 5 sides that may come up without the ace; also the probability of its failing the second throw is the same, therefore $\frac{1}{6} \times \frac{\frac{s}{6}}{\frac{5}{6}}=\frac{2}{\frac{2}{6}}$ the probability of its failing both times, and consequenily $\frac{15}{6}-\frac{48}{86}=\frac{41}{86}$ is the probability of its coming up one time at least in two throws. This circumstance is not readily comprehended by persons unskilled in the doctrine of chanees; for, say they, the probability of its coming up the first time being $\frac{2}{6}$, and the probability of its coming up the second time being also $\frac{1}{8}$, therefore the two chances together must be $\frac{1}{6}+\frac{1}{6}=\frac{1}{4}$. But in this they deceive themselves, since it is not certain that they will have to throw a second time. See Simpson's or Demoivre's Doctrine of Chances ; also Bernoulli's Ars Conjectandi; Monmort's Analyse dé Jeux de Hasard; or M. De Parciru's Essais sur les Probabilites de la Vie humaine. Sce also Chances, Expectation, and Gamiva.

Probability of Life. See Expectation of Life, and L.ive-Annuiter.

PROBLEM, in Geometry, is a proposition in which tome operation or construction is required. As, to bisect a line, to make a triangle, to raise'a perpendicular, to draw a circle through three points, \&c. A problem, according to Wolfius, consists of three parts: The proposition, which expresses what is to be done; the resolution or solution, in which are orderly rehearsed the several steps of the process or operation ; and the demonstration, in which it is shown, that by doing the several things prescribed in the resolution, the thing required is obtained.

Problex, in Algebra, is a proposition which requires some unknown truth to be investigated or discovered; and the truth of the discovery demonstrated.

Problem, Keplet's. See Kerlea's Problem.
Problem, Delerminate, Diophantine, Indeterminate, Limited, Linear, Local, Plame, Solid, Sursolid, and Unlimited. See the adjectives.

Deliacal Problem, in Geometry, is the doubling of a cube. This amounts to the same thing as the finding of two mean proportionals between two given lines: whence this also is called the Deliacal Problem. See Duplicatios.

PROCLE'S, an eminent philosopher and mathematician among the later Platonists, was born at Constantinople in the year 410, of parents tho were both able and willing to provide for his instruction in all the various branches of learning and knowledge. He was first sent to Xanthus, a city of Lycia, to learn grammar: from thence to Alexandra, where the was under the best masters in rhetoric, philosophy, and mathematics: and from Alexandria be removed to Athens, where he attended the younger Plutarch, and Syrian, both of them celebrated philosophers. He succeeded the latter in the government of the Platonic school at Athens; where he died in 485 , at 75 years of age.

Marinus of Naples, who was his successor in the scbool, wrote his life; the first perfect copy of which was published, with a Latin version and notes, by Fabricius at Hamburgh, 1700 , in top; and afterwards subjoined to his Bibliotheca Latina, 1703, in 8vo. Marinus was also author of a learned commentary on Euchd's Data.

Pruclus wrote a great number of picces, and on many different subjects; as, commentaries on phlosophy, mathematics, and grammar; on the whole works of Homer, Hesiod, and Plato's books of the republic: be wrote also on the construction of the Astrulabe: but muny of his pieces are lost; some have been published; and a few remain still in manuscript only. Of ehe published, there are four very elegant hymm; one to the Sun, two to Venus, and one to the Muses. There are commentaries on several pieces of Plato; on the four books of Ptolemy's work De Judiciis Astrorum ; on the frst book of Euclid's Elements; and on Hesiod'a Opera et Dies. There are also works of Proclus on philosophical and astronomical subjects ; particularly the piece De Sphera, which was published, 1620 , in 4 to, by Bainbridge, the Savilian professor of astronomy at Oxford. He wrote also 18 arguments against the Christians, which are still extant, and in which he attacks them on the question, whether the world be eternal ? the affirmative of which he maintains.

The character of Proclus is the same as that of all the later Platonists, who it secms were not less enthusiasts and madmen, than the Christians their contemporaries, whom they resembled in this sespect. Proclus was not reckoned quite orthodox by his own order: be did not adhere so rigorously, as Julian and Porphyry, to the doctrincs and

PRO

principles of his master; "He had," says Cudworth, " some peculiar fatucies and whimsies of his own, and was indeed a confounder of the Platonic theology, and a mingler of mach unintelligible stuff with it."

PROCION, in Astronomy, a fixed star, of the second magnitude, in Canis Minor, or the Little Dog.

PRODUCING, in Geometry, denotes the continuing a line, or drawing it farther out, till it have an assigned length.

PRODUCT, in Arithmetic, or Algebm, is the quantity arising from, or produced by, the multiplication of, two or more numbers $d e$ together. Thus, 48 is the product of 6 multiplied by 8 .-In multiplication, unity is in proportion to one factor, as the other factor is to the product. So 1: 6:: 8: 48.
In algebra, the product of simple quantities is expressed by joining the letters together like a word, and prefixing the product of the numeral coefficients: So the product of a and b is $a b$, of $3 a$ and $4 b c$ is 12abc. But the product of compound factors or quastities is expressed by setting the sign of multiplication between them, and binding each compound factor in a vinculum: so the product of $2 a+3 b$ and $a-4 c$ is $(2 a+3 b) \times(a-4 c)$.
In geometry, a rectangle answers to a product, its length and breadth being the two factors; because the numbers expressing the length and breadth being multiplied tugether, produce the content or area of the rectangle.

The term product, or coutinual product, is also sometimes used when the factors are more than two.

In algebra there are several curious properties relating to the particular forms of the product of certain formulx, which ure of great importance in the theory of numbers, and the indeterminate analysis; the most remarkable of which are as follows:

1. The product of a sum of two squares by double a square, is also the sum of two squares.

For $\left(x^{2}+y^{2}\right) \cdot 2 z^{2}=(x+y)^{2} \cdot z^{2}+(x-y)^{2} \cdot z^{2}$.
2. The product of the sum of twn squares, by the sum of two sqृuares, is itself the sum of two squares.
For $\left(x^{2}+y^{2}\right) \cdot\left(x^{\prime 2}+y^{\prime \prime}\right)=\left\{\begin{array}{r}\left(x x^{\prime}+y y^{\prime}\right)^{2}+\left(x y^{\prime}-x^{\prime} y\right)^{2} \\ \text { or }\left(x x^{\prime}-y y^{\prime}\right)^{2}+\left(x y^{\prime}+x^{\prime} y\right)^{2}\end{array}\right.$
The product may therefore be divided into two squares two different ways. And if this product be again multiplied by the sun of two squares, the product may be divided into two squares four different ways ; and so on.
3. The product of the sum of three squares by the sum of two squares, is the sum of four squares.
For $\left(x^{2}+y^{2}+z^{2}\right) \times\left(x^{h}+y^{n}\right)=$ $\left(x x^{\prime}+y y^{\prime}\right)^{1}+\left(x y^{\prime}-x^{\prime} y\right)^{z}+z^{2} x^{\prime 2}+z^{2} y^{\prime \prime}$.
4. The product of the sum of four squares by double a square, is also the sum of four squares.

For $\left(x^{2}+y^{2}+z^{2}+w w^{2}\right) \cdot 2 z^{2}=$ $z^{2}\left((x+y)^{2}+(x-y)^{2}+(z+w)^{2}+(z-w)^{2}\right)=$ $z^{2}(x+y)^{2}+z^{2}(x-y)^{z}+z^{2}(z+w)^{2}+z^{2}(z-w)^{2}$.
5. The product of the sum of four squares, by the sum of four squares, is itself the sum of four squares.

For $\left(x^{2}+x^{2}+y^{2}+z^{2}\right) \cdot\left(w^{\prime 2}+x^{2}+y^{\prime 2}+z^{\prime 2}\right)$ $=\left(u w v^{\prime}+x x^{\prime}+y y^{\prime}+z z^{\prime}\right)^{2}+\left(w x^{\prime}-x w w^{\prime}+y z^{\prime}-z y^{\prime}\right)^{2}$ $+\left(w y^{\prime}-x \varepsilon^{\prime}-y w^{\dagger}+z x^{\prime}\right)^{2}+\left(w e^{\prime}+x y^{\prime}-y x^{\prime}-z w^{\prime}\right)^{2}$.
6. The two formula $x^{2}+y^{2}+z^{2}$ and $x^{\prime 2}+y^{\prime 2}+2 z^{\prime 2}$ are so related to each other, that double the one produces the other.

For $2 \cdot\left(x^{2}+y^{2}+z^{2}\right)=2 x^{2}+2 y^{2}+2 z^{2}=$ $(x+y)^{2}+(x-y)^{2}+2 z^{2}$; and $2\left(z^{2}+y^{2}+2 z^{2}\right)=$ $2 x^{\prime 2}+2 y^{\prime 2}+4 z^{\prime 2}=\left(x^{\prime}+y^{\prime}\right)^{2}+\left(x^{\prime}-y^{\prime}\right)^{2}+4 z^{\prime 3}$.

The truth of the above theorems will be seen immediately by the developement of each respective formula.

PROFILE, in Architecture, the figure or draught of a building, fortification, or the like; in which are expressed the several heights, widths, and thicknesses, such as they would appear, were the building cut down perpendicularly from the roof to the foundation. Whence the profile is also called the section, and sometimes the orthographical section; and by Vitruvius the sciography. In this sense, profile amounts to the same thing with eleration; and so stands opposed to a plan or ichnography.

Phovile is also used for the contuur, or outline of a Ggure, building, member of architecture, or the like; as a base, a cornice, \&c.

PROGRESSION, an orderly advancing or proceeding in the same manner, course, tenor, proportion, \&c.

Progression is either arithmetical, geometricul, or harmonical.

Arithmerical Progression, is a series of quantities proceeding by continued equal differences, either increasing or decreasing. Thus,

$$
\begin{aligned}
& \text { increasing } 1,3,5,7,9, \& c \text {, or } \\
& \text { decreasing } 21,18,15,12,9, \& c \text {; }
\end{aligned}
$$

where the former progression increases continually by the common difference 2, and the latter decreases continually by the comanon difference 3 .

1. And hence, to construct an arithmetical progression, from any given first term, with a given common difference; add the common difference to the first term, to give the 2 d ; to the 2 d , to give tise 3 d ; tu the 3 d , to give the 4 th ; and so on ; when the series is ascending or increasing: but subtract the common difference continually, when the series is a descending one.
2. The chief property of an arithmetical progression, and which arises immediately from the nature of its construction, is this; that the sum of its extremes, or first and last terms, is equal to the sum of every pair of intermediate terms that are equidistant from the extremes, or to the double of the middle term when there is an uneven number of the terms.

$$
\begin{aligned}
& \text { Thus, } 1,3,5,7,9,11,13 \text {, } \\
& \text { Sums } \frac{13}{14} \frac{11}{14}, \frac{9,}{14} \frac{7 .}{14} \frac{5,}{14} \frac{3,}{14} \frac{1 \text {, }}{14} \text {, } \\
& \text { where the sum of every pair of terms is } 14 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Also, } a, \quad a+d, a+2 d, a+3 d, a+4 d \\
& \text { sums } \frac{a+4 d, a+3 d, a+2 d, a+d, a}{2 a+4 d, 2 a+4 d, 2 a+4 d, 2 a+4 d, 2 a+4 d}
\end{aligned}
$$

3. And hence it follows, that double the sum of all the terms in the series, is equal to the sum of the two extremes multuplied by the number of the terms; and consequently, that the single sum of all the terms of the series, is equal to half the said product. So the sum of the 7 terms, 1 , $3,5,7,9,11,13$, is $(1+13) \times \frac{7}{2}=\frac{14}{8} \times 7=49$. And the sum of the five terms
$a, a+d, a+2 d, a+3 d, a+4 d$, is $(2 a+4 d) \times \frac{1}{8}$.
4. Hence also, if the first term of the progression be 0 , the sum of the series will be equal to half the product of the last term multiplied by the number of terms: i.e. the sum of
$0+d+9 d+3 d+4 d \cdots \cdots(n-1) d=\frac{1}{2} n \cdot(n-1) d$, where n is the number of terms, supposing o to be one of them. That is, in other words, the sum of an arithmetical progression, whether finite or infinite, whose first term is 0 , is to the sum of as many times the greatest term, in the ratio of 1 to 2 .
5. In like manner, the sum of the squares of the terms of such a series, beginning at 0 , is to the sum of as many terms each equal to the greatest, in the ratio of 1 to 3 . And
6. The sum of the cubes of the terms of such a series, is to the sum of as many times the greatest term, in the ratio of 1 to 4.
7. And universally, if every tetm of such a progression be raised to the m power, then the sum of all those powers will be to the sum of as many terms equal to the greatest, in the ratio of 1 to $m+1$. That is,

$$
\begin{aligned}
& \text { the sum } 0+d+2 d+3 d-\ldots-l \text {, }, \text {, } \\
& \text { is to } i m+i m+1 m+i m \ldots \ldots-l \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& a=z-(n-1) d=\frac{2 s}{n}-z=\frac{s}{n}-\frac{n-1}{2} d=\sqrt{ }\left(\left(\frac{1}{2} d+2\right)^{2}-2 d s\right)+\frac{1}{y} d . \\
& \varepsilon=a+(n-1) d=\frac{2}{n}-a=\frac{s}{n}+\frac{n-1}{2} d=\sqrt{ }\left(\left(\frac{1}{2} d-a\right)^{2}+2 d s\right)-\frac{1}{1} d . \\
& d=\frac{t-a}{n-1}=\frac{s-n a}{n-1} \cdot \frac{2}{n}=\frac{n z-1}{n-1} \cdot \frac{2}{n}=\frac{z+a \cdot z-a}{2 s-a-z} .
\end{aligned}
$$

$$
\begin{aligned}
& s=\frac{a+z}{2} n=\frac{a+z}{2} \cdot \frac{x-\alpha+d}{d}=\frac{2 a+(n-1) d}{2} n=\frac{2 x-(n-1) d}{2} n_{n} .
\end{aligned}
$$

And most of these expressions will become much simpler if the firt term be 0 instead of a.

Geometrical Progression, is a series of quantitics proceeding in the same continual ratio or proportion, einher increasing or decreasing; or it is a series of quantitics that are contmually proportional; or which increase by one common multiplier, or decrease by one common divisor; which common multiplier of divisor is called the common ratio. As,
increasing, $1,2,4,8,16, \& c$, decreasing, $81,27,9,3,1, \& c$;
Where the former progression increases continually by the common multiplier 2 , and the later decreases by the comsmon divisor 3.

$$
\begin{aligned}
& \text { Or ascending, } a, r a, r^{2} a, r^{3} a, \& c \text {, } \\
& \text { or descending, } a, \frac{a}{r}, \frac{a}{r^{2}}, \frac{a}{r}, \& c \text {; }
\end{aligned}
$$

where the first term is a, and common ratio r.

1. Hence, the same principal properties obtain in a geometrieal progression, as have been remarked of the aisthmetical one, using only inultiplication in the grometricals, for addition in the arithmencals, and divasion in the former for suburaction in the latter. So that, to construct a grometrical propression, from uny given first term, with a given commun ratio; multiply thae 1 st term continually by the common ratio, fur the rent of the terms when the series is an ascending one; or divide continually by the common ratio, when it is a desce isiling progression.
2. In every geometrical progrension, the product of the extreme ternis, is equal to the product of every pair of the imtermadiate trans that are equidistant from the extremis, and also equal to the square of the middle tern when there is a midule onc, or an uneven number of the terms.

$$
\begin{aligned}
& \text { Thus, 1, 2, 4, 8, 16, } \\
& \text { prod, } \frac{16}{10} \frac{8}{16} \frac{4}{16} \frac{2}{16} \quad \frac{1}{16} \\
& \text { Also } \quad u_{1} \quad r a, r^{2} a, \quad r^{3} a, \quad r^{4} a \text {, } \\
& \text { prod } \frac{r^{\prime}, a}{r^{\prime} a^{2}} \frac{r^{2} a}{r^{2} u^{*}} \frac{r^{2}, r}{r^{2} a^{2}} \frac{r n}{r^{\prime} a^{u}} \frac{a}{r^{\prime} a^{*}}
\end{aligned}
$$

3. The last term of a geometrical progression, is equal
to the first term multiplied, or divided, by the ratio raised to the power whose exponent is less by 1 than the number of terms in the series; so $z=a r^{m-1}$ when the series is an asceuding one, or $z=\frac{0}{j^{*-1}}$, when it is a descending progression.
4. As the suin of all the antecedents, or all the terms except the least, is to the sum of all the consequents, or all the terms except the greatest, so is 1 to r the ratio. For,
if $a+r a+r^{\prime} a+r^{3} a$ be all except the last,
then $r a+r^{2} a+r^{2} a+r^{4} a$ are all except the first; where it is evident that the former is to the latter as 1 to r, or the former multiplied by r gives the latter. So thast, s denoting the last term, a the first term, and r the ratio, also s the sum of ull the terms; then $s-z: s-a:: 1$: r, or $s-a=(s-z) r$. And from this equation all the relations among the four quantities a, τ, r, s, arc easily derived; such as $s=\frac{r z-\frac{a}{r} \frac{a}{1}}{}$; vix, multiply the greatest term by the ratio, subtract the least term from the product, then the remainder divided by 1 less than the ratio, will give the sum of the series. And if the least term a be 0 , which happens when the descending progression is tutiniteIy continued, then the sum is barely $\frac{r z}{r-1}$, As in the infinite progression $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{1} \& c$, where $z=1$, and $r=2$, it is s or $\frac{n}{r-1}=\frac{2}{2-1}=\frac{2}{1}=2$.
5. The first or least term of a geometrical progression, is to the sum of all the terms, as the rallo minus 1 , to the n power of the ratio minus 1 ; that is $a: s:: r-1$: $r^{\prime}-1$.

Other relations among the five quantities a, z, π, π, s, where
a denotes the least term,
a the greatest term,
r the common ratio, n the number of terms,
s the sum of the progression,
are as below ; viz,
$a=\frac{2}{r^{r}-r}=s r-(r-1) s=\frac{r-1}{r^{n}-1}$.

PRO
$s=a r^{n-1}=\frac{a+(r-1)_{s}}{r}=\frac{r-1}{i_{n}-1} s r^{n-1}$

$\left.n=\frac{\log \cdot \frac{r z}{n}}{\log \cdot r}=\frac{\log \cdot \frac{n+(r-1) n}{a}}{\lg \cdot r} \log \cdot \frac{r z}{r-(r-1!}\right)=\frac{\log \cdot \frac{n-\pi}{s-i} \cdot \frac{a}{a}}{\log \cdot r}=\frac{s-a}{s-2}$
$t=\frac{\pi-a}{r-1}=\frac{r^{n}-1}{r-1} a=\frac{r^{n}-1}{r-1}+\frac{x}{r^{2}-1}=\frac{n-\sqrt{2}-a^{n}-\sqrt[V]{a^{m}}}{-\sqrt{2}-\sqrt{a}}$.
And the other values of a, z, and r are to be found from these equatious, viz,

$$
\begin{aligned}
& (s-z)^{n-1} z=(s-a)^{n-1} a \\
& r^{n}-\frac{s}{a} r=1-\frac{s}{a} \\
& r^{n}-\frac{s}{s-1} r^{0-1}=\frac{1}{1-z}
\end{aligned}
$$

Harmenical Progresston, is a continued series of terms in liarmonical preportion, The reciprocals of an arithmetical progression form an barmouical progression. Thus, the reciprocals of the antimetical scries $1,9,3, \psi$, $5,6, \& c$ give $\frac{9}{\mathrm{~T}}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{3}, \frac{1}{8}$, \&c, foran harmonical selies.

Fur other kinds of Progression, see Pmopontion, and Series.

PROJECTILE, in Mechanics, is any body which, tring put into a violent motion by an external force inferessed upon it, is dismissid from the agent, and left to puisue its course. Such as a stone thruwn out of the hand or a sling, an arrow from a bow, a ball from a gun, dxc.

PROJECYILES, the science of the motion, velocity, flight, range, \&cc, of a projectile put into violent motion by sonne external cause, as the force of gunpuwder, \&ec. This is the foundution of gunnery, under which article may be found all that relates peculiarly to that branch.

All bodies, being indifierent as to motion or rest, will necessarily continue in the state they are fut into, except so far as they are retarded, and forced to cliange it by some new cause. Hence, a projectile, pat in motion, must continue eternally to move on in the same right line, and with the same uniform or conslant velocity, were it to meet with no resistance from the medium, nor had any force of gresvity to encounter.
In the first case, the theory of projectiles would be very simple indeed: for there would be nothing more to do, than to compute the space passed over in a givell time by a given constant velocity; or either of these, from the other two being given.

But by the constant action of gravity, the projectile is continually deflected more and more from its right-lined course, whd that with an accelerated velocity; which, being combined with its projectile impulse, causes the body to move in a curvilineal path, with a variable motion, which path is the curve of a parabula, as will be proved below ; and the determination of the range, time of fight, angle of projection, and variable velocity, constitutes what is usually meant by the doctrine of projectiles, in the consmon acceptation of the term.

What is said above bowever, is to be understood of projectiles moving in a non-resisting medium; for when the resistance of the air is also considered, which is enormously great, and which very much impedes the first projectile velocity, the path deviates grcally from the parabola, and the determination of the circumstances of its motion becomes one of the most complex and difficult problems in nature.

PIt
In the first place thercfure it will be proper to consider the common doctrime of progectiles, or that on the parabolic theory, or as depending ouly on the nature of gravity and the projectile motion, as abstracted from the resistance of the medium.

About 300 years ago,-philosophers tuok the line described by a body projected liorizontally, such as a bullet out of a cannon, white the force of the powder greatly exceeded the weight of the bullet, to be a right line, atter which they allowed it became a curve. Nicholas Tartaglia was the first who perceived the mistake, maintaining that the path of the bullet was a curved line through the whole of its extrnt. But it was Gulileo who first determined what particular curve it is that a projectile describes; showing thut the path of a bullet prejected horizontally from an eminence, was a parabola; the vertex of which is the point where the bullet quits the camon. And the sanue is proved gemeraily, in the ad section following, when the projection is made in any direction whatever, via, that the curve is always a parabola, supposing the body moves in a non-visisting mathum, and that gravily acts upon it in linew parallilt to each other. - It is true, thet this is not accurutely the case, because this force always tends to the centre of gravity of the carth; but the inclination of these lines is too trifting to affect the parabolic theory of projectiles.

The Lrues of the' Motion of Proskctines.

1. If heavy body be projected perpendicularly, it will continue to atsend or descend perpendicularly; because both the prajecting and the gravitating force are found in the same line of direction.
II. If body be projected in free space, either parallel to the horizon, or in any oblique darcetion; it will, by this motion, in cunjunction with the action of gravity, describe the curve line of a parabola.

For let the body be projected from A, it the direction AD, with any uniform velocity; then in any equal portions of time it would, by that impulse alone, describe the equal spaces $A B, B C, C D, \& C$ in the line $A D$, if it were not drawn continually down below that line by the action of gravity. Draw be, Cr, DG, \&c, in the direction of gravity, or perpendicular to the borizon; and tahe aE, CP, DG, \&C, equal to the spaces through whicla thetody would descend by its gravity in the same times in which it would unifurmly pass over the spaces AB, AC, AD, \& , by the projectile motion. Then, since by these motions, the body is carried over the space $A B$ in the same time as the space $B B$, and the space ${ }^{A C}$ in the same time as the space $C r$, and the space $A D$ in the same time as the space DC, \&c; therefuri, by the composition of motions, at the end of those times the body
will be found respectively in the points $\mathrm{E}, \mathrm{F}, \mathrm{G}, \& \mathrm{c}$, and consequently the real paih of the projectile will be the curve line aerodec. But the spaces AB, AC, AD, \& C, being described by uniform motion, are as the tumes of description; and the spaces EE, CF, DC, \&C, described in the same times by the acceleraling force ot gravity, are as the squares of the times; consequently the perpendicular descents are as the squares of the spaces in AD,
that is - $\quad-\quad \mathrm{AE}, \mathrm{Cr}, \mathrm{DO}, ~ \& \mathrm{C}$, are respectively proportional to $A A^{2}, A C^{2}, \Delta D^{2}, \& C$, which is the same as the property of the parabola. Therefore the path of the projectile is the parabolic line AEDG \&ec, to which $A D$ is a tangent at the point A.

Hence, 1. The horizontal velocity of a projectie is always the same constant quantity, in every point of the curve ; because the horizontal motion is in a constant ratio to the motion in AD, which is the uniform projectile motion; viz, the constant horizontal velocity being to the projectile velocity, as radius to the cosine of the angle $\mathbf{d A H}$, or angle of elevation or depression of the piece above or below the horizontal line All.
2. The velocity of the projectile in the direction of the curve, or of its tangent, at any point A, is as the secant of its angle aar of direction above the borizon. For the motion in the horizontal direction at being constant, and ar being to $A B$ as radius to the secant of the angle A; therefore the motion at A, in $A B$, is as the secant of the angle A.
3. The velocity in the direction DO of gravity, or perpendicular to the horizon, at any point a of the curve, is to the first uniform projectile velocity at A, as $2 G \mathrm{D}$ to $A \mathrm{D}$. For the times of describing $A D$ and $D G$ being equal, and the velocity acquired by freely descending through po being such as would carry the body uniformly over twice do in an equal time, and the spaces descrited with uniform motions being as the velocities, it follows that the space $A D$ is to the space 2 Da , as the projectile velocity at A is to the perpendicular velocity at σ.
III. The velocity in the direction of the curve, at any point of it, as A, is equal to that which is generated by gravity in a body freely descending through a space which is equal to one-fourth of the parameter of the diameter to the parabola at that point.

Let fa or A a be the beight due to the velocity of the projectile at any point A, in the direction of the curve or tangent $A C$, of the velocity acquired by falling through that height; and complete the parallelogram acDe. Then is $C D=A D$ or AP the height due to the velocity in the curve atA; and CD is also the height due to the perpendicular velocity at D , which will therefore be equal to the former : but, by the last corollary, the velocity at A is to
the perpendicular velocity at D, as $A C$ to $2 C D$; and us these velocities are equal, therefore AC or ad is equal to 2 cr or $2 A B$; and hence AB or $A P$ is cqual to $\frac{5}{3} B$ or $\frac{1}{2}$ of the parameter of the diameter $A B$ by the nature of the parabola.

Hence, 1. If through the point r, the line pl be drawn perpendicular to AP; then the velocity in the curve at every point, will be cqual to the velocity acquired hy falling ilirough the perpendicular distance of the point from the said line PL; that is, a body falling freely through
$P A$, acquires the velocity in the curve at A,

The reason of which is, that the line rL is what is called the directrix of the parabola, the property of which is, that the perpendicular to it, from every point of the curve. is equal to one-fourth of the parameter of the diameter at that point, viz,

$\mathbf{E r}=$	-	-	-
x $\mathrm{D}=$		-	-
$\mathbf{L H}_{\mathbf{H}}=$	-	-	-

2. If a body, after falling through the height ra, which is equal to $A B$, and when it arrives at A if its course be changed, by reflection from a firm plane A1, or otherwise, into any direction $A C$, without altering the velocity; and if ac be taken equal to 2 AP or 2 AB , and the parallelogram be completed; the body will describe the parabola passing through the point D .

3 Brcause $A C=2 A B$ or $2 C D$ or $2 A P$, therefore $A C^{2}=$ 2AP . 2CD or AP, 4CD; and because all the perpendiculars $E P, C D, G B$ are as $A E^{2}, \Delta C^{2}, A G^{2}$; therefore also $A P$. $4 \mathrm{FF}=A E^{2}$, and $A \mathrm{~F} .40 \mathrm{H}=A \mathrm{C}^{\prime}, \& \mathrm{AC}$; and because the rectangle of the extremes is equal to the rectangle of the means, of four proportionals, therefore it is always,

$$
\begin{aligned}
& \text { and } A P: A X:: A E: 4 E Y \text {, } \\
& \text { and } A P: A C: A C: 4 C D, \\
& \text { and } A P: A G:: A C: 4 G A \text {; } \\
& \text { and so on. }
\end{aligned}
$$

IV. Having given the direction of a projectile, and the impetus or alitude due to the first velocity; to determine the greatest beight to which it will rise, and the random or horizontal range.

Let ap be the height due to the projectile velocity at a, or she beight which a body must fall to acquire the same velocity as the projectile has in the curve at A; also ab the direction, and $A H_{\text {the horizon. Upon }}$ AG let fall the perpendicular PQ, and on AP the perpendicular QR; soshall as be equal to the greatest altitude $c v$, and 4 Rq equal to the horizontal range AR.
 Or, having drawn rQ perpendicular to $A G$, take $A G=$ $4 \wedge Q$, and Jraw $G H$ perpeudicular to A1H; then AH is the range.
For by the last cor. - - AP: AO:: AG:4@n,
and by sim. triangles, .. AP:AC:: AQ: $G M$,

$$
\text { or } \triangle P: A G:: 4 A Q: 4 G H \text {; }
$$

therefore $A G=4 A Q$; and, by similar triangles, $A H=$ 4Re.

Also, if v be the vertex of the parabola, then A s or
$A Q=2 A Q$, or $A Q=Q B ;$ consequently $A R=B V$ which is $=\mathrm{Cv}$ by the nature of the parabola.

Hence, 1. Because the angle Q is a right angle, which is the angle it a semicircle, therefore if upon AP as a diameter a semicircle be described, it will pass through the point Q .

2. If the horizontal range and the projectile velocity be given, the direction of the piece so as to strike the object H will be easily found thus: Take $A D=\{A 11$, and draw dQ perpendicular to All, meeting the semicirc' 3 described on the diameter $A P$ in Q and q; then cither $A Q$ or a q will be the direction of the piece. And hence it appears, that there are two directions $A B$ and $A b$ which, with the same projectile velocity, give the sery same horizontal range AB; and these two directions make equal angles qad and qap with am and Ap, because the arc rq is equal to the arc Aq.
3. Or if the range $A A l$ and direction $A B$ be given; to find the altitude ind velocity or impetus: Take $A D=$ fah, and erect the perpendicular DQ meeting $A B$ in Q; so shall DQ be equal to the greatest altitude CV . Also erect AP perpendicular to AH, and QP to AQ; so shall AP be the height due to the velocity.
4. When the body is projected with the same velocity, but in different directions ; ite horizontal ranges aH will be as the sines of double the angles of elevation. Or, which is the same thing, as the rectangle of the sime and cosine of elevation. For $A D$ or RQ, which is $\frac{3}{4} A B$, is the sine of the arc AQ, which measures double the angle QAD of elevation.

And when the direction is the same, but the velocities different, the horizontal ranges are as the square of the velocities, or as the height Ar which is as the square of the velocity; for the sine AD or Re, or $\frac{3}{4} A \mathrm{~A}$, is as the radius, or as the diameter AP.

Therefore, when both are different, the ranges are in the ' compound ratio of the equares of the velocities, and the sines of duuble the angles of elevation.
3. The greatest range is when the angle of elevation is half a right angle, or 45°. For the double of 45 is 90°, which has the greatest sine. Or the radius os, which is $\frac{1}{4}$ of the range, is the greatest sine.

And bence the greatest range, or that at an elevation of 45°, is just double the altitude AP which is due to the velocity. Or equal to 4 ve. And consequently, in that case, c is the focus of the parabola, and An its parameter. And the ranges are cqual at angles equally above and beLow 45°.
6. When the elevation is 15°, the double of which, or 30°, having its sipe equal to half the radius, consquently its range will be equal to A P, or half the greatest range at Vol. II.
the elevation of 45°; that is, the range at 15° is equal to the impetus or height due to the projectile velocity.
7. The greatest altitude $c v$, being equal to $A \mathrm{~B}$, is as the versed síve of double the angle of elevation, and also as Ap or the square of the velocity. Or as the square of the sine of elevation, and the square of the velocity; for the square of the sine is as the versed sine of the double angle.
8. The time of 四ight of the projectile, which is equal to the time of a body falling freely through an or $4 \mathrm{cv}, 4$ times the altitude, is therefore as the square root of the altutude, or as the projectile velocity and sine of the elevation.
9. And hence may be deduced the following ret of theoreins, for finding all the circumstances relating to projectiles on horizontal planes, having any two of them given. Thus, let

$$
s, c, t=\text { sine, cosine, and tang. of elevation, }
$$

$\mathrm{s}, v=$ sine and vers. of double the elevation,
n the horizontal range, T the tirae of flight, v the projectile velocity, is the greatest height of the projectile, $g=16_{r} \frac{1}{3}$ feet, and $a=$ the impetus or the altitude due to the velocity v. Then,
$\mathrm{R}=2 a \mathrm{~s}=4 a s c=\frac{\mathrm{sv}^{\prime}}{2 \mathrm{~g}}=\frac{\mu \mathrm{v}^{\prime}}{6}=\frac{\mathrm{kcT}}{\mathrm{s}}=\frac{\mathrm{kT}}{\mathrm{t}}=\frac{4 \mathrm{H}}{\mathrm{t}}$.
$\mathrm{v}=\sqrt{ } 4 \mathrm{ag}=\sqrt{\frac{2 g R}{5}}=\sqrt{\frac{6 R}{s}}=\frac{R T}{s}=\frac{2 \sqrt{ } \mathrm{kH}}{3}$
$T=\frac{s \mathrm{~V}}{6}=2 s \sqrt{\frac{a}{g}}=\sqrt{ }_{\frac{\prime \mathrm{R}}{\mathrm{g}}}^{\mathrm{g}}=\sqrt{\frac{\mathrm{R}}{\mathrm{g}^{r}}}=2 \sqrt{\frac{\mathrm{H}}{\mathrm{g}}}$.

And from any of these, the angle of direction may be found.
V. To determine the range on an oblique plane; having given the impetus or the velocity, and the angle of direction.

Let $A \mathrm{E}$ be the oblique plane, at a given angle above or below the horizontal plane A11; AO the direction of the piece; and AP the altitude due to the projectile velocity at A.

By the last prop. find the horizontal range an to the given velocity and direction; draw he perpendicular to Af meeting the oblique plane in E; draw ev parallel to the direction AG, and Is parallel to HE; so shall the projectile pass through 1 , and the range on the oblique plane will be A1. This is evident from prob. 17 of the parabulu in my Treatise on Conic Sections, where it is proved, that if A11, A1 be any two lines terminated at the curve, and $1 \mathrm{~F}, \mathrm{HE}$ be parallel to the axis; then is EF parallel to the tangent AG.

Hence, 1. If au be drawn perpendicular to the plane $A \mathrm{~A}$, and $\triangle \mathrm{P}$ be bisected by the perpendicular sto; then 2 K
with the centre 0 describing a circle through A and P, the same will alst pass through q. because the angle Gat, foreved by the talgent 40 and $A 1$, is equal to the angle arg, which
 will therefore stand upon the same are Aq.
2. If there be given the range and velocity, or the impetus, the direction will then be easily found thus: Take $\Delta k=\frac{1}{4} A 1$, draw $k q$ perpendicular to Afl, meeting the circle described with the radius ao ill two points g and y; then $A q$ or Aq will be the direction of the piece. And hence it appears that there are two directions,
 which, with the saine impetus, give the very same range A1, on the oblique plane. And these two directions make equal angles with At and AP, the piane and the perpendicular, because the are $p q=$ the arc $\wedge q$. They also make equal angles with a line drawn from a through s , because the arcs $q=$ the are s q.
3. Or, if there be given the range A1, and the direction $A q$; to find the velocity or impetus. Take $A k=$ $\frac{1}{4} A 1$, and erect $k q$ perpendicular to $A n$ meeting the line of direction in q; then draw $q p$ making the angle $A q \mathbf{F}=$ the angle $A k q$; so shail $A P$ be the impetus, or altitude due to the projectile velocity.
4. The range on an oblique plane, with a given elevation, is directly as the rectangle of the cosine of the direction of the piece above the horizon and the sine of the direction ubove the oblique plane, and reciprocally as the equare of the cosine of the angle of the plane above or beJow the horizon.

For put $s=\sin ., \angle q A 1$ or $A p q$, $c=\cos , \angle q A 11$ or $\sin . \mathrm{PAq}, \quad \quad \quad$ $\mathrm{c}=\cos . \angle A 1 H$ or $\sin . A^{k d d}$ or $A k 7$ or $A q \mathrm{P}$.
Then, in the tri, AP $q, \cdots-c: s:: A P: A q$, and in the tri, Akq, $-\cdots c: c:: A q: A k$, therefore by compos. $-\cdots c^{*}: c s:: A P: A k=\frac{1}{4} A \mathrm{~A}$.

So that the oblique range $A t=\frac{\pi}{c^{3}} \times 4 A \mathrm{P}$.
Hence the range is the greatest when $A k$ is the greatest, that is when $k q$ touches the circle in the middle point s, and then the line of direction passes through s , and bi sects the angle formed by the oblique plane and the vertex. Also the ranges are equal at equal angles above and below this direction for the maximum.
5. The greatest height ov or kg of the projectile, above the plane, is equal to $\frac{\%^{\circ}}{c^{\circ}} \times A \mathrm{P}$. And therefore it is as the impetus and square of the sine of direction above the plane directly, and square of the cosine of the plane's inclination reciprocally.

For $c(\sin , A q P): s(\sin , A P q):: A P: A q$,
and $c(s i n . A k q): s\left(\sin , k_{A q}\right):: A q: k q$,
therefore by comp, $\mathrm{c}^{2}: \mathrm{s}^{4}:: \Delta \mathrm{AP}: \mathrm{kq}$.
6. The time of fight in the curve AII is $=\frac{29}{6} \sqrt{\frac{A P}{8}}$, where $g=16 \mathrm{t}^{\prime}$ reet. And therefore it is as the velocity and sine of direction above the plane directly, and cosine of the plane's inclimation reciprocully. For the tume of describung the curve, is equal to the time of falling freely through or or 4 kq or $\frac{s^{2}}{\mathrm{~m}^{2}} \times A \mathrm{P}$. Therefore, the time being as the square root of the distance, $\sqrt{ } g$: ${ }_{c}^{2 /} \sqrt{A P}:: 1^{\prime \prime}: \frac{24}{c} \sqrt{A P} \frac{1}{\varepsilon}$ the time of flight.
7. From the forcgoing corollaries may be collected the following set of theorems, relating to projectiles made on any given inclined planes, either above or below the horizontal plate. In which the letters denote as before, namely,
$c=$ cos. of direction above the horizon,
$\mathbf{c}=\cos$, of inclusation of the plane,
$s=\sin$. of direction above the plane,
k. the range on the oblique plane,

T the time of flught,
v the projectule velocity,
II the greatest height above the plane,
a the impetus, or alt, due to the velocity v,
$g=16_{T_{s}^{\prime}}$ feet. Then

$\mathrm{v}=\sqrt{ } \cdot \mathrm{ag}=\mathrm{c} \sqrt{\frac{R \mathrm{R}}{i}}=\frac{\mathrm{cc}}{\mathrm{c}} \mathrm{T}=\frac{2 \mathrm{C}}{3} \sqrt{\mathrm{~g}} \mathrm{H}$.
$I=\frac{g}{c} \sqrt{\frac{a}{g}}=\frac{s v}{g c}=\sqrt{\frac{s \mathrm{~s}}{g c}}=2 \sqrt{\frac{H}{g}}$.
And from any of these, the angle of direction may be found.
Of the Path of Prosectiles as depending on the Resistance of the Air.
For a long tine after Galileo, philosophers seemed to be sutistied with the parabolic theory of projectiles, deeming tbe effect of the air's resisitance on the path as of no consequence. In process of time however, as the true philusophy began to dawn, they began to suspect that the resistance of the medium might have some effect on the projectile curve, and they set themselves to consider this subject with some attention.
lluygens, supposing that the resistance of the air was proportional to the selocity of the moving body, concluded that the line described by it would be a hind of logarithmic curve.

But Newton, having clearly proved, that the resistance to the body is not proportional to the velocity itself, but to the square of it, shoms, in his Principia, thut the line a projectile dracribes, upproaches nearer to un hyperbola than a parabola. Schol. prop. 10, lib. 2. Thus if Acia be a curve of the hyperbolic kind, one of whose asymptotes is NX , perpendicular to the horizon $A K$, and the other $1 x$ inclined to the same, where vo is reciprocally as DN^{n}, whose index is n : this curve will nearer represent the path of a projectile thrown in the direction An in the air, than a para-

bola. Newton indeed says, that these hyperbolas are not accurately the curves that a projectile makes in the air: for the true ones are curves which about the vertex are more distant from the asymptotes, and.tn the parts remote from the axis approach tearer to the asyuptotes than these hyperbulas; but that in practice these hyperbolas may be used instead of those nore compounded ones. And if a body be projected from A, in the right line A A1, and al be drawn paralled to the ayymptote sx, and ot a tangent to the curve at the vertex: Then the density of the medium in a will be reciprocally as the tangent A H, and the body's velocity will be as $\sqrt{ } \frac{A H^{*}}{A t}$, and the resistance of the medium will be to gravity, as
all to $\frac{2 n^{2}+2 n}{n+2} \times A 1$.
John Bernoulli constructed this curve by means of the quadrature of some transcendental curves, at the request of Dr. Keil, who proposed this problem to him in 1718. It was also resolved by Dr. Taylur; and another solution of it may be found in Hermann's Phoronomia.

The commentators Le Sieur anil Jacquier say, that the description of the curve in which a projectile tnoves, is so very perplexed, that it can scarcely be expected any deduction should be made from it, either to philosophical or mechanical purposes: vol. 2, pa. 118.

Dan. Bernoulli too proved, that the resistance of the air has a very great effect on the swift motions, such as those of cannon shol. He concludes from experiment, that a ball which ascended only 7819 feet in the air, would huve ascended 58750 feet in vacuo, being near 8 times as high. Comment. Acad. Petr. tom. 2.

Euler has still farther investigated the nature of this curve, and directed the calculation and use of a number of tables for the solution of all cases that occur in gunmery, which may be accomplished with nearly as much expedition as by the common parabolic principles. Memoirs of the Academy of Berlin, for the year 1753.

But how rash and erroncous the old opinion of the inconsiderable resistance of the air is, will easily appear from the experiments of Mr. Robins, who has shown that, in some cases, this resistance to a cannon ball, amounts to more than 20 times the weight of the ball; and $\$ \mathrm{my}$ self, having prosecuted this subject far beyond any former example, have sometimes foond this resistance amount to near 100 times the weight of the ball, viz, when it moved with a velocitv of 2000 feet per second, which is a rate of almost 23 miles in a minute. What errors then may not be expected trom an liypothesis which neglects this force, as inconsiderable ? Indeed it is easy to show, that the path of such projectiles is neither a parabola nor nearly a parabola. For, by that theory, if the ball, in the instance last mentioned, moved in the curve of a parabola, its horizontal range, at 45° elevation, will be found to be almost 24 miles; wheress it often bappens that the bail, with such a velocity, ranges far short of even one mile.

Indeed the fallacy of this hypothesis almost appears at sight, even in projectiles slow enough to have their motion traced by the eye; for they are seen to deacend through a curve masifestly shorter and more inclined to the horizon than that in which they ascended, and the bighest point of their flight, or the vertex of the curve, is much nearer to the place where they fall on tbe ground, than to that from which they were at first discharged. These things cannot for a moment be doubted of by any
one, who in a proper situation views the flight of stones arruws, or shells, thrown to any considerable distance.

Mr. Robins has not only detected the errors of the parabolic theory of gumery, which takes no account of the resistance of the air, but attempts to show how to compute the real range of resisted bodies. But for the method which he proposes, and the tables he has computed for this purpose, see his 'Tracts of Gunnery, pa. 183, \&c, vol. 1; and also Euler's Commentary on the , same, trauslated by Mr. Hugh Brown, in 1777.

There is an otd circumstanee which often takes place in the motion of bodies prajected with considerable force, which shows the great complication and difficulty of this subject; namely, that bullets in their fight are not only depressed beneath their original direction by the action of gravity, hut are also frequently driven to the right or left of that direction by the action of some other force. Now if it were true that bullets varied their direction hy the action of gravity only, then it ought to happen thet the errors in their flight to the right or left of the mark they were aimed at, should increase in the proportion of the distance of the mark from the piece only. But this is contrary to all experience; the same piece which will carry its bullet within an inch of the intended mark, at 10 yards distance, cannut be relied on to 10 inches in 100 yards, much less to 30 in 300 yards.

And this inequality can only arise from the track of the bullet being incurvated sideways as well as downwards; for by this means the distance between the incurvated line and the line of direction, will increase in a much greater ratio than that of the distance; these lines coinciding at the mouth of the piece, and efterwards separating in the manver of a curve from its tangent, if the mouth of the piece be considered as the point of contact.

This is put beyond a doubt from the experiments made by Mr. Robins; who found also that the direction of the shot in the perpendicular line was not less uncertain, falling sometimes 900 yards short of what it did at other times, though there was no visible canse of differmere in making the experiment. And I myself have often experienced n difference of one-fifth or one-sixth of the whole range, both in the deflection to the right or left, and also in the extent of the range, of cannon shot.

If it be asked, what can be the cause of a motion so different from what has been hitherto supposed ? It may be answered, that the deflection in question must be owing to some power acting obliquely to the progressive motion of the body, which power can be no other than the resistance of the air. And this resistance may perhaps act obliquely to the progressive motion of the body, from inequalitirs in the resisted surface; but its general cause is doubtless a whirling motion acquind by the builet about an axis, by its friction ngamst the sides of the piece; for by this motion of rotation, combined with the progressive mootion, each part of the ball's surface will strike the air in a direction very different from what it would do if there was no such whirl; and the obliquity of the action of the air, arising from his cauae, will be greater, according as the rotutory motion of the bullet is greater in proportion to its progressive motiun. Tracts, vol. 3.
M. Euler, on the contrary, attribut \rightarrow this defection of the ball to its figure, and very little to its rotation: for if the ball was perfectly round, theugh its centre of gravity did not coincide with the centre of spontaneuss ro$2 \mathrm{~K}_{2}$
tation, the deflection from the axis of the cylinder, or line of direction sideways, would be very inconsiderable. but when it is not round, it will generally go to the night or left of its direction, and so much the more, as its range is greater. From his reasoning on this subject be infers, that caanon shot, which are made of iron, and rounder and less susceptible of a clange of figure in passing along the cylinder shan those of Iead, are nowe ceriain thun musket shot. 'True P'rinciples of Gomnery investigated, 1777, pa. 304, \&c. And for the expenments on the air's ressatance to all bails and velocitics, with the application to gunnery, see my Tracts, vols. 2 and 3 .

PROJECTION, in Mechauics, the act of giving a projectile its motion.-If the direction of the force, by which the projectile is put in moton, be perpendicular to the horizon, the projection is said to be perpendicular; if parallel to the apparent horizon, it is sitid to be an horizontal projection; and if it make an oblqque anple with the horizon, the projection is oblique. In all caves the angle which the line of direction makes with the horizontal line, is called the angle of elevation of the projectile, or of depression when the line of direction points below the horizontal line.

Projection, in Perspective, denotes the appearance or represcutation of an object on the perspective plane. So, the projection of a point, is a point, where the optic ray passes from the objective point through the plane to the eye; or it is the point where the plane cuts the optic ray. And lience it is easy to conccive what is meant by the projection of a line, a plane, or a sulid.

Projection of the Sphere in Plano, is a representation of the several points or places of the surface of the sphere, and of the circles described upon it, on a suppused transparent plane placed between the eye and the splere, orsuch as they appear to the eye placed at a given distance. For the laws of this projection, see Perspective: the projection of the where being only a particular case of perspective. - The chief use of the projection of the splicre, is in the construction of planispherex, maps, and charts; which are said to be of this or that prijection, according to the several situations of the eye, and the perspective plane, with regard to the meridians, parallels, nud other points or places to be represented.-The must usual projection of inaps of the world, is that on the plane of the meridian, which exhabits a right sphere; the first meridian being the horizin. The next is that on the plane of the equator, which has the pole in the centro, and the meridians the radu of a circle, \&c; which represents a parallel sphere. See Map.

The projection of the splace is usually divided into orthugraphic and stereographic; to which may be added gnomunic.

Orthographic Projnctios, is that in which the surface of the splbere is drawn upon a plane, cuthing it in the iniddle; the eye being placed at an intime distance vertically to ote of the hemisplieres. And

Siereographic Phosection of the sphere, is that in which the surface and circles of the sphere are drawn upon the plane of a great circle, the eye being in the pole of that citcle.

Gnomonical Projection of the Sphere, is that in which the surface of the sphere is drawn upon a plane without side of it, commonly touching it, the eyc boing at the centre of the sphere. See Gxomonical Projection.

Latus of the Orthographic Projection.

1. The tuys coming trom the cye, beug at an infinite distance, and making the prejection, are paraliel to each oher, and perpendicular to the plane of projuction.
2. A right live perpendicular to the plane of projection, is projected ints a point, where that lme meets the said planc.

3 A right line, $\mathrm{a}=\mathrm{AB}$, or CD, not perpendicular, but either patallel or obligue to the plane of the projection, is projected inte a riqht line, as $x p$ or Gn, and is always comprebended between the oxtrome perpendiculars a E and $n r$, or $C G$ und $D n$.
4. The projection of the line $A B$ is the
 greatest, whiti $A A$ is parallel to the plane of the projection.
5. Hence t is evident, that a line parallel to the plane of projection, is projected into a right line equal to itself; but a line that is ublique to the plane of projection, is projected into one that is less than itelf.
6. A plane surface, as ACBD, perpendicular to the plane of projection, is projected into the right line, as $A B$, in which it cuts that plane. - Hence it is evident, that the circle ACBD perpendicular to the plane of projection, passing through its centre, is projected into that dia-
 meter AB in which it culs the plane of the projection. Also any arch us cc is projected into oo, equal to ca, the right sine of that arch; and the complemental are cs is projecterd into os, the versed sine of the same arc ce.

7 A circle parallel to the plate of projection, is projecued into a circle equal to isself, having is centre the same with the centre of the projection, and its radius equal to the cosine of its distance from the plane. And a circle oblique 10 the plane of prejection, is projected intoan ellipsis, whose greater axis is equal to the diameter of the circle, and its less axis equal to deuble the cosine of the obiiquity of the circle, to a radius equal to half the greater axis.

Properties of the Stereographic Projortion.

1. In this projection a right circle, or Gne perpendicular to the plane of projection, and passing ihrough the eye, is projected into a line of half tangents.
2. The projection of all other circles, not passing through the projecting point, whether parallel or oblique, are projected into circhs.

Thus, let aceda represent a sphere, cut by a plane res, passing through the centre 1, perpeadicular to the diameter En, drawn from a the place of the cye; und let the section of the sphere by the plane as be the circle CrDL, whole poles are B and E. Suppose now aciba circle on the sphere to be projected, whome pole most remote from the eye is P; and the visua! rays trom the circle AOD meeting in E , to torm the cone AG Br, of which the triangle $A E B$ is a section through the vertex E, and diameter of the basc AB: then will the Ggure aghf, which is the projection of the circle AOB, be itsell 11 carcle. Hence, the middle of the projected diameter is the centre of the projected circle, whether it be a greai circle or a small one: Also the poles and cuntres of all circles, parallel to the plane of projection, fall in the centre of the projection: And all oblique great circles cut the primitive circle in two points dianctrically opposite.

2./ The projected diameter of any circle subtends an angle at the eye equal to the distance of that circle from its nearest pole, taken on the sphere; and that angle is bisected by a right lime joining the eye and that pole. Thus, let the plane us cut the sphere afeg through its centre 1 ; and let A BC be any oblique great circle, whose diameter ac is projected into ac; and kol any small circle paraflel to ABC, whose diameter $\mathbf{~} \mathrm{L} L$ is projected in $k l$.
 Then the distances of those circles from their pole P, being the arcs An $P, K H P$; and the angles aEc, $k E l$, being the angles at the eye, subtended by their projected diameters, $a c$ and $k l$. It follows that the angle aEC is measured by the arc AHP , and that the angle $k e l$ is mrasured by the are кир; and these angles are bisected by Er.
9. Any point of a sphere is projected at such a distance from the centre of projection, as is equal to the tangent of half the arc intercepted between that point and the pole opposite to the eye, the semidiameter of the sphere being radius. Thus, let cbep be a great circle of the sphere, whose centre is c, $O H$ the plane of projection, cutting the diameter of the sphere in b and B ; also E and c the poles of
 the section by that plane; and a the projection of A. Then $c a$ is equal the tangent of half the are Ac, as is evident by drawing cr equal to the tangent of half that arc, and joining cr.
4. The angle made by two projected circles, is equal to the angle which these circles make on the sphere. Forlet hace and abl be' two circles on a sphere intersecting in $A ;$ \& the projecting point; and rs the plane of projection, in which the point a is projected in a, in the line 1c, the diameter of the circle ace. Also let Dh and ra be tangents to thecircles ACE and ABL. Then will the projected
 angle $d a f$ be equal to the spherical angle bac.
5. The distance between the poles of the primitive circle and an oblique circle, is equal to the tangent of half the inclination of those circles; and the distance of their centres, is equal to the tangent of their inclination; the semidiameter of the primitive circle being radius. For let ac be the diameter of a circle, whose poles are Pande, and inclinetl to the plane of projection in the angle air; and let a, c, p be the projections of the points A, C, r; also let has be the projected oblique circle, whose centre is q.
 Now when the plane of projection becomes the primitive circle, whose pole is i: then is ip equal to the tangent of half the angle Ais, or of half the arch $A F$; and $1 q$ is equal to the tangent of $A F$, or of the angle $\mathrm{TH}^{\boldsymbol{H}}=\mathrm{AIF}$.
6. If through any given point in the primitive circle, an oblique circle be described; then the centres of all other oblique circles passing through that point, will be in a right line drawn through the centre of the first oblique circle, and perpendicular to a line passing through that centre, the given point, and the centre of the primitive circle. Thus, let Gace be the primitive circle, a det a great circle described through D, its centre being B . hex is a right line drawn through in perpendicular to a right line cy passing through n and B and the centre of the primitive circle. Then
 the centres of all other great circles, as FDG, passing through b , will fall in the line uk .
7. Equal ares of any two great circles of the sphere will be intercepted between two other circles drawn on the sphere through the remotest poles of those great circles. Far let paea be a sphere, on which $A G B$ and CFD are two great circles, whose remotest poles are E and P ; and through these poles let the great circle PBEC and the small circle poz be drawn, cutting the great cir-

eles agb and cfo in the points $\mathrm{B}, \mathrm{G}, \mathrm{d}, \mathrm{p}$. Then are the interceptect ares BG and n equal to each other.
8. If hums be drawn from the prosicted pole of any great circle, cutting the peripheries of the projected circle and plate of projection; the mercepted ares of those peripheras are equal; that is, the are $B G=d f$.
9. The rabus of any lesser circle, whose plane is per-p-ndicular to that of the primitive circle, is equal to the tangent of that lesser circle's distance from its pule ; and the secant of that dolance is equal to the distance of the centres of the primative and lesser circle. For let r be the pole, and AB the diameter of a lesser circle, its plane being perpendicular to that of the primitive circle, whose centre is c : then d being the centre of the projected lesser circle, $d a$ is equal to the tangent of the are PA, and
 $d \mathrm{c}=$ the secant of pa. See Strregoraphic Projection.

Mercator's Phosection. See Mercaton, and Chaet. Projection of Globes, \&ec. Sel. Glube, \&ec.
Polar Projection. See Polar.
Projection of Shadous. Nec Suadow.
Projection, or Phojectene, in Building, the outjetting or prominency which the mouldings and members bave, beyoud the plane or naked of the wall, column, \&c.

Monstrous Paosection, Sec Anamorpluisis.
PROJECTIVE. Dialling, a manner of drasing the hour lines, the furniture \&e of dials, by a melhod of projection on any kind of surface whatever, without regard to the situation of those surfaces, either as to declinanion, reclination, or inclination. Ser Dialleng.

PROLATE, ur Oblong Spheroid, is a spheroid produced by the revolution of a sembellipsis abriut its longer diameter; being longess in the direction of that axis, and resembling an egg, or a lemon. It is so calied in opposition to the oblate or short spheroid, which is formed by the rotation of a semellipsis about it, shorter axis; being therefore shorsest in the direction of as invis, or Halled at the poles, and so resembling an wrange, or perhaps a turnip, according to the diguer of flatness; and whech is also the figure of the carth. See SPIEROLD.

PRONONTURY, in Girgraphy, is a rock or high point of land projecting out into the sea. The eviremity of which towards the sea is usually called a Cupe, or Headland.

PRUPORTION, in Arithmetic, \&e, the equabity or similitude of ratios. As the four numbers 4, 8, 15, 30 are proportionals, or in proportion, because the ratio of +to 8 is equal or similar to the ratio of 15 to 30 , buth of them being the same as the ratio of 1 to 2 .

Euclid in the Sth defimition of the Sth book, gives a general definition of four proportiunals, or whith, of fisur terms, the first has the same ratio to the 2d, us the 3 d has to the 41 h , viz. when any equimultiples whatever of the first and third bring taken, and any equimultiples whatever of the $\%$ d 5 and 411 ; if the inultiple of the first be less than that of the 2 d , the tmultiple of the 3 d is also less than that of the 4th; or if the multiple of the first be equal to that of the 2 d , the minliple of the 3 d is also equal to that of the 4th ; or if the inultiple of the first be
greater than that of the 2 d , the multiple of the 3 d is also greater than that of the 4th. And this deffitition is generul for all kithds of maguitudes or quantitics whatever, though a very obscure one.

Also, in the 7th book, E.uclid gives amther definition of proportionals, viz, when the first is the same equimultiple of the 2d, as the $3 d$ is of the +th, or the same part or parts of it. But this defimition appertains ohly to numbers und commensurable quantitios.

Proportion is often cobliounded with ratio; but they are quite different things. For, ratio is properly the relation of two magnitudes or quantitice of one and the same hind; as the ratal of 4 to 8 , or of 15 to 30 , or of 1 to 2; and so implies or respects only two terms or things. But proportion respects four terins or things, or two ratios which have each two terins. Though the middle term may be common to both ratios, und then the proportion is expressed by three terms ouly, as 4, 8, 64, where 4 is to 8 as 8 to 64.

Proportion is also sometimes confounded with progression. In fact, the two often coincide ; the difference between them only consisting in this, that progression is a particular species of proportion, being indeed a continued proportion, or such as has all the terms in the same ratio, viz, the 1st to the 2 t , the 2 d to the 3 d , the 3 d to the 4th, \&c; as the terms $2,4,8,16$, גc ; so that progression is a series or contmuation of proportions.

Proportion is either contmual, or discrete or interrupted.
The proportion is continual when every two adjaceat terms have the same ratio, or when the consequent of each ratio is the antucedent of the next fullowing ratio, and so all the ternus furm a progression; as $2,4,8,16, \mathrm{dc}$; where 2 is to 4 as 4 to 8 , and as 8 to 10 . Ac.

Discrete or interrupted proportion, is whin the consequent of the first rato is ditictent from the antecedent of the $2 \mathrm{~d}, \mathrm{Ac}$; as 2,4 , and $\mathrm{S}, 6$.

Proportion is also either direct or inverse.
Direct Phopmition is when more requires more, or less requires liss. As it will riquire more nen to periorm more work, or theer men for less wiork, in the same time.

Inoerse or Reciprocal Propuntion, is whon more requires less, or less requires more. As it will require more men to perform the sume work in less nme, or tewirmen in bure time. F.入. If 6 men can perturm a piece of work in 15 days, how many men can do the same in 10 days. Ti,en, reciprocally - Rs is to r_{d} so is $\left.6: 9\right\}$ the or inversely - as 10 to 15 so is $6: 9\}$ answer.
Proportion, again, is distinguished into arithmetical, gometrical, and barmonical.

A: utheret cal Propoattos is the equality of two arithtnetical ratios, or differinces. As in the numbers 12, 9, 6 ; whre the difference between 12 and 9 , in the same as the difference belween 9 and $6, v 23$. And bere the sum of the extreme terms is equal to the sum of the means, or to double the single man when there is but one. As $12+6=9+9=18$.

Geonctrica! Proportion is the equaliny between two geomenteal ratios, ur betwern the grotunts of the terms. As in the three $9,6,4$, where 9 is to 6 as 6 is to 4 , thus devoted, $9: 6:: 6: 4$; for $\frac{8}{6}=\frac{6}{4}$, being cach equal $\frac{7}{2}$ or 1! . And in this proportion, the rectangle or product of the extrome terms, is equal to that of the two means, or the square of the single mean when there is but one. For $9 \times 4=6 \times 6=36$.

Hurmonical l'moportion, is when the first term is to
the third, as the difierence between the 1st and 2 d is to the difference belween the 2 d and 3 d ; or, in four terms, when the lst is to the 41h, as the dini-rence belwen the 1 st und 2 d is to the difference between the 3 d and 4 l ; or the reciprocals of an amhmetical propurtion are in harmonical proportion. As $6,4,3$; becuuse $6: 3: 6: 4$ $=2:+-3=1$; or becuuse $\frac{1}{6}, \frac{1}{4}$, $\frac{1}{5}$, are in anthructical proportion, making $\frac{1}{6}+\frac{1}{4}=\frac{1}{2}+\frac{1}{4}=\frac{1}{2}$. Also the four 24, 16, 12, 9 are marmonical proportion, because 24: $9:: 8: 3$.

See Phoportionats.
Compass of l'kopontion, a name by which the French, and some liughsh aushors, call the sector.

Ruie of Profontiox, in Arithmetic, a rule by which a 4 th terin is found in proportion to three giventerms. It is popularly calted the Golden Rule, or Rule of Three.

PROPORTIUNAL, relating to proportion. As, Proportional Compasses, Parts, Scales, Spirals, \&c. See the several terme.

Proportional Compazser, are compassey with two pair of opposite legs, like a St. Audrew's cross, by which any vpace is enlurs-d or diminished in any proportion.

Pronortional Part, is a part of some number that is analogous to sume other part or number; such as the proportional parts in the logarithms, and other tables.

Propontional. Scales, called also logarithmic scales, are the logarithms, or artificial numbers, placed on lines, for the ease and udvantage of multiplying and dividing $\$ c$, by means of compasses, or of sliding rulers. These are in effect so many limes of numbers, as they are calied by Gunier, but made single, double, triple, or quadruple ; beyond which they seldom go. See gunter's Scale, Scale, \&c.

Proportional Spiral. See Spiral.
PROPORTIONALITY, the quality of proportionals. This term is used by Gregory St. Vincent, for the proportion between the exponents of iour ratios.

PROPORTIONALS, are the terms if a proportion ; consisting of two exlremes, which are the first and last terms of the set, and the means, which are the orher terms. These proportonals may be cither urithmeticals, geometricals, or harmonicaly, and in any number above two, and also cibher contmued or discontinued.

Pappus gives this beauliful and simple comparison of the three kinds of propontionals, aritbmetical, geometrical, und harmonical, viz. a, b, c, being the fits, second, and third terms in any such proportion, then
$\left.\begin{array}{l}\text { In the arihmeticals, } a: a \\ \text { in the germetricnls, } a: b \\ \text { in the harmonicals, } a: c\end{array}\right\}:: a-b: b-c$.
in the harmonicals, $a: c$ \}
See Mean Proportional.
Continued propartionals form what is called a progression; for the properties of which se: Progression.
I. Properties of Arithmetical Proporttonals.
(For what respects progressions and mean proportionals of all sorts, sec Meas, and Progression).

1. Four arithmetical proportionals, as $2,3,4,5$, are still proportionals taken inversely, as $5,4,3,2$; or alternately, thus, 2, 4, 3, 5; or inverscly and alterately, thus - $5,3.4,2$.
2. If two arithmeticals be added to the like terms of other two arithmeticals, of the same difference, or arithmetical ratio, the sums will have double the same difference or arithmetical ratio.

So, 5 and 5 , whose difference is 2,
add $\quad 7$ and 9 , whose difference is also 2,
the sums 10 and 14 huve a double diff, viz, 4 . And if to these sums be added two other numbers also in the satne difference, the next sums will have a triple ratio or difference; and to on. Alsn, whateter te the ratios of the ierms that are added, whether the same or different, the sums of the terms will have such arnthmetical ratio as is composed of the suins of the others that, are added.

	3, whose dif. is 2 10, whose dif. is 3 16 , whose dif. is 4 $\overline{31}$, whose dif. is $\overline{9}$.						
7							
12							

On the conirary, if from two arithmeticals there be subtracted others, the difference will have such arithmetical rationas is equal to the differences of those.

So from 12 and 16 , whose dif. is 4
take 7 and 10 , whose dif. is 3
leaves 5 and 6 , whose dif. is $\frac{1}{9}$
Also from 7 and 92 whose dif. is $?$
take $\frac{3}{4}$ and $\frac{5}{4}$, whose dif, is $\frac{2}{4}$
3. Hence, if arithmetical proportionals be multiplied or divided by the same oumber, their difference, or arithmetical ratio, is also multiplied or divided by the same number.

11. Properties of Geometrical Proportionuls.

The propertics relating to mean proportionals are given under the term Meax Proportional; some are alsu given under the article Proportion ; and some additional ones are as below :

1. To find a Sd proportional to two given numbers, or a 4 th proportional to thrie: In the former case, multiply the 9 d term by itself, and divile the product by the lat: and in the latter case, multiply the 2d term by the 3d, and divide the product by the ist.

So $2: 6:: 6: 18$, the 3 d prop, to 2 and $6:$
and $2: 6:: 5: 15$, the 4th prop. to 2,6 , and 5 .
2. If the terms of any geometrical ratio be augmented or diminished by any others in the same ratio, or propor tion, the sums or differences will sthll be in the same ratio or proportion.

So if $a: b:: c: d$,
then is $a: b:: a \pm c: b \pm d:: c: d$.
And if the terms of a ratio, or proportion, be multiplied or divided by the same number, the products and quotients will stll be in the same ratio, or propurtion.

Thus, $a: b:: n a: n b:: \frac{a}{a}: \frac{b}{n}$.
3. If a set of continued proportonnls be either augmented or diminished by the same patt or parts of themselves, the sums or differences will ako be proportionals. Thus if $a, \quad b, \quad c, d$, Ace be propors. then are $a \pm \frac{a}{n}, b \pm \frac{f}{n}, c \pm \frac{c}{n}, \& c$ also propors. where the common ratio is $1 \pm \frac{1}{n}$

And if any single quantity be either augmented or diminished by some part of itself, and the icsult be also increased or diminisbed by the same part of itselt, and this third quantity treated in the same manner, and so on; then shall all these quantities be continued propor-
tionals. So, beginning with the quantity a, and taking always the sth part, then shall
$a, a \pm \stackrel{a}{n}, a \pm \stackrel{2 a}{n}_{n}^{2 a}+\frac{a^{z}}{n^{i}}$, \&ce be proportionals, or $a, a \pm \frac{a}{n},\left(a \pm \frac{a}{n}\right)^{2},\left(a \pm \frac{a}{n}\right)^{3}, \& c$ propors.
the common ratio being $1 \pm \frac{a}{n}$.
4. If one set of proportionals be multiplied or divided by any other set of proportionals, each terin by each, the products or quetients will also be propurtionals.

$$
\begin{aligned}
& \text { Thus, if } a: n a:: b: n b \text {, } \\
& \text { and } c: m c:: d \text { : mid: } \\
& \text { then is ac: maac : : bd : mnbd, } \\
& \text { and } \quad \frac{a}{c}: \frac{m m}{n c}:: \frac{b}{d}: \frac{m}{m b} \text {, }
\end{aligned}
$$

5. If there be several continued proportionals, then whatever ratio the 1 st has to the 2 d , the first to the 3 d shall have the duplicate of the ratio, the 1st to the 4th the triplicate of it, and so on.

So in $a, n a, n^{i} a, n^{3} a, \& c$, the ratio being n;
then $a: n^{2} a$, or 1 to n^{2}, the duplicate ratio,
and $a: n^{3} a$, or 1 to n^{3}, the triplicate ratio, \&c.
6. In three continucd proportionale, the differenee between the $15 t$ and 2 d term, is a mean proportional between the 1 st term and the 2 d difference of all the terms.

Thus, in the three propor. $a, n a, n^{2} a$;

T'erms	Ist difs.	2 d dif.
$n^{2} a$	$n^{2} a-n a$	$n^{2} a-2 n a+a$,
$n a$	$n a-a$	
a	$n a-a$	

then $a: n a-a:: n a-a: n^{9} a-2 n a+a$

Or in the numbers $2,6,18$; | 18 | 12 | 8 the 2d difference ; |
| ---: | ---: | ---: |
| 6 | 4 | 8 |

then $2,4,8$ are proportionals.
7. When four quantities are in proportion, they are also in proportion by inversion, composition, division, \&ce; thus $a, n a, b, n b$ being in proportion, viz. 1.
$a: n a:: b: n b$; then by
2. Inversion $n a: a: n b: b$:
3. Alternation $\quad a: b:: n a: n b$:
4. Composition $a+n a: n a:=b+n b: n b$;
5. Cunversion $a+n a: a:: b+n b: b$;
6. Division $\quad \begin{cases}a-n a: a:: b-n b: b ; \\ a-n a: n a:: & b-n b: n b \text {, }\end{cases}$

111. Properties of Harmonical Proportionals.

1. If three or four numbers in harmonical proportion, be eitber multiplied or divided by any number, the products or quotients will also be harmonical proportionals.

Thus, 6, 3, 2 being harmun. propor.
then 12, 6, 4 are also harmon. propor.
and $\frac{\pi}{2}, \frac{3}{1}, \frac{2}{2}$ are also harmon. propor.
2. In the three harmonical proportionals a, b, c, when any two of these are given, the 3d can be found from the definition of thom, viz, that $a: c:: a-b ; b-c$; for hence
$b=\frac{7 a r}{a+c}$ the harmonical mean, and
$c=\frac{n t}{2 a-b}$ the $3 d$ harmon. to a and b.
3. And of the four harmonicals, a, b, c, d, any three being given, the fourth can be found from the detinition
of them, vis, that $a: d:: a-b: c-d$; for thence the three b, c, d, will be thus found, viz,

$$
b=\frac{20 d-a c}{d} ; c=\frac{2 a d-A}{d} ; d=\frac{a c}{2 a-b}
$$

4. If there be four numbers disposed in order, as 2 , $3,4,6$, of which one extreme and the two uniddle terms are in arithmetical proportion, and the other extreme and the same middle terms are in harmonical proportion; then are the four terms in geometrical proportion: thus,
the three 2, 3, 4 are arithmeticals,
and the three 3, 4, 6 are harmonicals,
then the four 2, 3, 4, 6 are geometricals.
5. If between any two numbers, as 2 and 6 , there be interposed an arithmetical mean 4, and also a harmonical mean 3, the four will then be geometricals, viz, $2: 3:: 4: 6$.
6. Between the three kinds of proportion, there is this remarkable difference; viz, that from any given number there can be raised a continued arithmetical series increasing ad infinitum, but not decteasing; while the harmonical can be decieased ad infinitum, but not increased; and the geometrical adnuits woth both.

PROPOSITION, is either some truth advanced, and shown to be such by demonstration; or sotne operation proposed, and its solution shown. In short, it is something proposed either to be demonstrated, or to be done or performed. The former is a theorena, and the latter is a problem.

PROSTHAPHERESIS, in Astronomy, the difference betwern the truc and mean motion, or between the true and mean place, of a planct, or between the true and equated unomaly; called also equation of the orbit, or equation of the centre, or simply the equation; and it is equal to the angle formed at the planet, and subtended by the excentricity of its orbit. Thus, if s be the suan, and r the place of a planet in its orbit $A P B$, whose centre is c. Then the

Mean anomaly is the $\angle A C P$,
true anomaly is the $\angle A S P$,
dif. of which is the \angle CPs, which is the prosthapheresis; which is so called, because it is sometimes, to be added to, and sometimes to be subtracted from the mean motion, to give the true one; as is
 evident from the figure.

PROTRICTING, or Protraction, in Surreying, the act of plotting or laying down the dimensious taken in the field, by means of a Prutractur, \&ce: Protracting makes one part of surveging.

Protancting-Pin, a fine pointed pin, or newde, fitted into a handle, used to prick offi degrees and minutes from the limb of the pretractor.

PROTRACTOR, a mathematical instrument, used in surveying, for laying down angles on papre, \&c.

The simplest, and most natural protractor cunsists of a semicircular limb ADn (tig. 7, plate 2t) commonly of metal, divided into 150°, and subtended by a diameter AB; in the mudde of which is a small notch C, called the centre of the protractor. And for the convenience of rethoning both ways, the digrees are numbered from the left hand towards the rigbt, and from the right hand towards the left.

But this instrument is made much more commodious by transferring the divisions from the circumference to the
edge of a ruler, whose side EF is parallel to AB, which is easily done-by laying a ruler on the centre c , and over the several divisions on the semicircumference ADB, and marking tbe intersections of tbat ruler on the line EF : so that a ruler with these divisions marked on oue of its sides as abore, and returnel down the two ends, and numbered both ways as in the circular protractor, the fourth or blank side representing the diameter of the circle, is botb a more useful form than the circular protractor, and better adapted for putting into a casc.

To male any Angle with the Protractor.-Lay the diameter of the protractor along tbe given line, which is to be one side of the angle, and its centre at the given angular point ; then make a mark opposite the given degree of the angle found on the limb of the instrument, and, removing the protractor, by a plane ruler laid over that point and the centre, draw a line, which will form the angle sought. In the same way is any given angle measured, to find the number of degrees it contains.-This protractor is also very useful in drawing one line perpendicular to another, which is readily done by laying the protractor across the given line, so tbat both its centre and tbe gotb degree on the opposite edge fall upon the line, also one of the edges passing over the given point, by which then let the perpendicular be drawn.

The Improied Protanctor is an instrument much like the former, only lurnished with a little more apparatus, by which an angle may be set off to a minute.

The chirf addition is an index attached to the centre, about which it is moveable, so as to play frecly and stendily oyer the limb: beyond this limb the index is divided, on both edges, into 60 equal parts of the portions of circles, intercepted by two otber right lines drawn from the centre, so.tbat each makes an angle of 1° witb lines drawn to tbe assumed points from the centre.

To set off an angle of any number of degrees and minutes with this protractor, move the index, so that one of the lines drawn on the limb, from one of the fore-mentioned points, may fall upon the number of degrees given; and prick off as many of the equal parts on the proper edge of the index as there are minutes given; then drawing a line from the centre to that point so pricked off, tbe required angle is thus formed with the given lime or diameter of the protractor.

The best protractors are now made with a vernier, and fine pins, to prick off angles to minutes.

PROVING of Guapowder. See Ephouvette, and Guxponder.

PSEUDO-Stella, any kind of meteor or phenomenon, appearing in the heavens, and resembling a star.

PTOLEMAIC, or Prolomaic, something relating to Ptolemy ; is the Ptolemaic System, the Ptolemaic Sphere, \&c. See Systen, Spuere, \&c.

PTOLEMY, or Ptolomy, (Claudius), a celebrated geographer, astronomer, anil mathematician, was bort at Pelusiuin in Egypt, about the 70th year of the Christian era; and died, it has been said, in the 78th year of his age, and in the year of Christ 147. He taught astronomy at Alexandria in Egypt, where be made many astronomical observations, and composed bis other works. It is certain however that he flourished in the reigns of Marcus Antoninus and Adrian: for it is noted in his canon, that Antoninus Pius reigned 23 years, which shows that he himself survived him; he also tells us in one place, that he made a great many observations on the fixed stars at Alexan-
dria, in the second year of Antoninus Pius ; and in ano ther, that he observed an eclipse of the monn, in the 9th year of Adrian ; from which it is reasonable to conclude that this astronomer's observations on the heavens were many of them made between the years 125 and 140 .

Ptolemy has always been reckoned the prince of astronomers among the ancients, and in bis works has left us an entire body of that science. He has preserved and transmitted to us the observations and principal discoveries of the ancients, and at the same time augmented and ellriched them with his own. He corrected Hipparchus's catalogue of the fixed stars; and formed tables, by which the motions of the sun, moon, and planets, might be calculated and regulated. He was indeed the lirst who collected the scattered and detached observations of the ancients, and digested them into a system ; which be set forth in his Mryaえy इerraw vided into 13 books. He there adopts and exhibits the ancient system of the world, which placed the earth in the centre of the universe; and this has been called after him the P'tolemaic System, to distinguish it from those of Copernicns and Tycho Brahe.

About the year 827 this work was translated by the Arabians into their language, in which it was called Almagestum, by order of one of their kings; and from Arabic into Latin, about 1230, by the encouragement of the emperor Frederic the 2d. There were also other versions from tbe Arabic into Latin; and a manuscript of one, done by Girardus Cremonensis, who flourished about the middle of the 1+th century, which, Fabricius says, is still extant in the library of All Souls College in Onford. The Greek text of this work began to be read in Europe in the 15 th century ; and was first published by Simon Grynæus at Basil, 1358, in follo, with the eleven books of commentarics by Theon, who fourished at Alexandria in the reiga of the elder Theodosius. In 1541 it was reprinted at Ba sil, with a Latin version by George Trapezond ; and again at the same place in 1551, with the addition of other works of Ptolemy, and Latin versions by Camerarius : which last edition, we learn from Kepler, was used by Tycho.

Of this principal work of the ancient astronomers, it may not be improper to give here a more particular account. In general, it may be observed, that it is founded on the hypothesis of the earth's being at rest in the centre of the universe, and that the beavenly bodies, the stars and planets, all move around it in solid orbs, whose motions are all directed by one, which Ptolemy called the primum mobile, or first mover, of wbich he discourses at large. The whole of this great work is divided into 13 books.

In the first book, Ptolemy shows, that the earth is in the centre of those orbs, and of the universe itself, as be understood it: he represents the earth as of a spherical figure, and but as a point in comparison of the rest of tbe heavenly bodies: he then treats of the several circles of the earth, and their distances from the equator; as also of the right and oblique ascension of the heavenly bodies in a right sphere.

In the Id book, he treats of the habitable parts of the earth; of the elcvation of the pole in an oblique sphere, and the various angles which the several circles make with the horizon, according to the different latitude of places : also of the phenomena of the heavenly bodies depending on the same.

In the 3 d book, he treats of the quantity of the year, and of the unequal motion of the sun through the zodiec:
$4 L$
and he here also gives the method of computing the mean motion of the sun, with talles of the same; and also treats of the inequality of days and nights.

In the th book, he ireats of the lunar motions, and their various phenomiena: and gives tables for finding the moon's mean motions, with her latitude and longitude: he discourses largely concerning lunar epicycles; and by comparing the tumes of a great number of eclipses, mentioned by Hipparchus, Calippus, and others, he has computed the places of the sun and monn, according to their mean mothons, from the first ycar of Nabonazar, king of Egypt, to his own time.

In the 5 th book, he treats of the instrument called the astrolabe, and also of the exeentricity of the lunar orbit, and the inequality of the moon's motion, according to her distance from the sun: be also gives tables, and a universal canon for the inequality of the lunar motions: he then treats of the different aspects or phases of the moon, and gives a computation of the diamcter of the sun and moon, with the magnitude of the sun, moon and carils compared together; he states also the different moasures of the distance of the sun and moon, according as they are determined by ancient inathematicians and philusophers.

In the 6th book, he treats of the conjunctions and oppositions of the sun and moon, with tables for computing the mean time when they happen; of the boundaries of solar and lunar eclipses; of the tables and methods of computing the eclipses of the sun and moon, with many other particulars.

In the 7th book, he speaks of the fixed stars; and shows the methods of describing them, in their various constellations, on the surface of an artificial splere or globe: he rectifies the places of the stars to his own time, and shows how different thuse pluces were then, from what they Inad been in the times of 'limucharis, It:pparchus, Aristillus, Calippus, and others: be then lays down a cutalogue of the slurs in each of the northern constellations, with their latitude, tongitude, and magnitudes.

In the 8th book, he gives a like catalogue of the stars in the constellations of the southern hemisphere, and in the 12 signs or constellations of the zodiac. 'This is the oldest catalogue of the stars now extant, and forms the mist valuable part of Ptolemy's works. He then treats of the galaxy, or milky-way; ulso of the planetary uspects, with the rising and setting of the sun, moon, and stars.

In the 9 th book, he treats of the order of the sun, inton, and planets, with the periodical revolutions of the five plauets, Mercury, Venus, Mars, Jupiter, and Saturn; lie then gives tables of the mean motions, beginning with the theory of Mercury, and showing its various phennmena with respect to the earth.

The loth book begius with the theory of the planet Venus, as to its greatest distance from the sun ; of its epieycle, excentricity, and periodical motions; and then treats of the same particulars in the planet Mars.

In the 1Ith book he considers the satne circuinstances in the theory of the planets Jupiter and Saturn. He ulso corrects all the planetary motions from observations made from the time of Nabonazar to his own.

The 12th book treats of the retrogressive motion of the several planets; giving also tables of their stations, and of the greatest distances of Venus and Mercury from she sun.

The 13th book relates to the several hypotheses of the latitude of the five planets ; of the greatest latitude, or inclination of the orbits of the five planets, which are com-
puted and disposed in tables; of the rising and setting of the planets, with tables of them. Then follons a conclusion or summing up of the whole work.

This great work of l'tolcmy will always be valuable on account of the observations be gives ot the places of the stars and planets in former tumes, and according to ancient philosophers and astronomers that were then extant; but principally on account of the large and curious catalogue of the stars, which being compared with their places at present, we thence deduce the true quantity of their slow progressive motion according to the urder of the signs, or of the precession of the equinoxes.

Another great and important work of Ptolemy was, his Geograply, in 7 books ; in which, with his usual sagacity, be scarches out and marks the situation of places according to their latitudes and longitudes; being the first that did so. Though this work must needs fall far short of perfection, for the want of necessary observations, yet it is of considerable merit, and has been very usefut to modern geographers. Cellarius indeed suspects, and he was a very comperent judge, that Ptolemy did not use all the care and application which the nature of bis work required; and his reason is, that the author delivers himself with the same fluency and appearance of certainty, concerning things and places at the remorest distance, which it was inpoissible he could know any thang of, that he does concerning those which lay the nearest to bion, and fall the most under his cognizance. Salmasius had before made some remarks to the same purpose on this work of Ptolemy. The Greek text of this worh was first published by itselfat Bassl in 1533, in 4to: atierward with a Latin version and notes by Gerand Mercator at Amsterdan, 1605; which last ednion was reprinted at the same place, 1618, in folio, with neat geograplacal tathis, by Bertius.

Other works of Ptolemy, though less considerable than these two, are sill extan. As, Libri quatuor de Judiciis Astroruin, sh the first two books of whech Cardan wrote a commentary,-Fructus Labrowim suorum; a kind of suppiement to the former work.- Receusio Chrohologica Regum : this, with another work of Ptolemy, De Hypoi hesibus Planetarum, was published in 1620,410 , by Jobn Bainbrilge, the Savilian professor of astronomy at Uaturd: and Scaliger, Petavius.- Dodwell, and the other chronological writers, have made great use of it.-Apparentize Stellarnm Inerrantium: this was published at Paris by Petasius, with a Latin version, 16\$0, in folio; but from a mutilated copy, the defects of which have sitice been supplind from a perfiet one, which Sir Henty Saville bad communicated to archbishop Usher, by Fabricius, in the 3 f volume of his Bibliothra Greca.-Kilementorum Ilarmmicorun libri tres; published in Greck and Latin, with a commentary by Porphyry the philosopher, by Dr. Wallis at Oxforil, 1682, in 410 ; and atterwards reprinted there, and inserted in the Sd volume of Wallis's works, 1699, in folio.

Mabillon exhibits, in his German Travcis, an effigy of Polemy looking at the stars through an optical tube; which effigy, he says, he found in a manuscript of the 13th century, made by Conradus a munk. Hence some lave fancied, that the use of the telescope was known to Conradus. But this is only matter of mere conjecture, there being no facts or testimodics, nor even probabilities, to support such an upinion. It is rather likely that the tube was nothing more tban a plain open one, employed to strengthen and defend the eye-sight, when looking at par-
ticular stars, by excluding adventitious rays from other stars and objects; a contrivance which no observer of the heavens can ever be supposed to have been without.

PULLEY, one of the five mechanical powers; consisting of a little wheel, being a circular picce of wood or metal, turning on an axis, and baving a channel around its edge or circumference, in which a cord slides and so raises up weights.

The Latins call it trocblea; and the seamen, when fitted with a rope, a tackle. An assemblage of several pulleys is called a system of pulleys, or polyspaston: some of which are in a block or case, which is fixed; and others in a block which is moveable, and rises with the weight. The wheel or rundle is called the sheave or shiver; the axis on which it turns, she gudgeon; and the fixed piece of wood or iron, into which it is placed, is called the block.

Doctrine of the Pulley.-1. If the equal weights r and w hang by the cord EB upon the pulley A , whose block' b is fixed to the beam 211, they will counterpoise each other, just in the same manner as if the cord were cut in the middle, and its two ends hung upon the books fixed in the pulley at A and A, equally distant from the centre,

Hence, a single pulley, if the lines of direction of the power and the weight be tangents to the periphery, neither assibts nor impedes the power, but only changes its direction. The use of the pulfey therefore, is when the vertical direction of a power is to be changed into an horizontal one; or an ascending direction into a descending one; \&k. This is found a good provision for the shfety of the workmen employed in drawing with the pulley. And this change of direction by means of a pulley has this further advantage ; that if any power can exert more force in one direction.than another, we are hence enabled to employ it with its greatest effect; as for the convenience of a horse to draw in a horizontal direction, or such like.
But the great use of the pulley is in combining several of them together; thus forming what Vitruvius and others call polyspasta; the advantages of which are, that the machine takes up but little room, is easily removed, and saises a very great weight with a moderate power.
2. When a weight w hangs at the lower end of the moveable block p of the pulley D, and the cord or goes under the pulley, it is evident that the part o of the cord bears one half of the weight w, and the part $₹$ the other
half of it ; for they bear the whole between them; therefore whatever holds the upper end of eibser rope, sustain one half of the weight ; and thus the power P, which draws the cord \boldsymbol{y} by means of the cord ε, passing over the fixed pulley c, will sustain the weight w when its intensity is only equal to the half of w; that is, in the case of one moveable pulley, the power gained is as 2 to 1 , or as the number of ropes 0 and r to the one rope a.

In like manner, in the case of two moveable pulleys p and 1 , each of these also doubles the power, and produces $a \mathrm{gain}$ of 4 to 1 , or as the number of the ropes Q, M, s, k, sustaining the weight w, to the 1 rope o sustaining the power T ; that is, w is to T as 4 to 1 . And so on, for any number of moveable pulleys, viz, 3 such pulleys producing an increase of power as 6 to $1 ; 4$ pulleys, as 8 to 1: de; each pulley adding 2 to the number. Also the effect is the same, when the pulleys are disposed as in the fixed block x, and the other two as in the moveable block Y; these in the lower block giving the same advantage to the power, when they rise all together in one block with the weight.

But if the lower pulleys do not rise all together in one block with the weight, but act upon one another, having the weight only fastened to the lowest of them, the force of the power is still more increased, each power doubling the former numbers, the gain of power in this case proceeding in the geometrical progression, 1, 2, 4, 8, 16, \& c_{*} according to the powers of 2 ; whereas in the former case, the gain was only in arithmetical progression, increasing by the addition of 2 . Thus, a power whose intensity is equal to 8 lb applied at a will, by means of the lower pulley A, sustain 16lb; and a power equal to 41 b at b, by means of the pulley, will sustain the power of 81b acting at a, and consequently the weight of 161 lb at w ; also a third power equal to 2 lb at c, by means of the pulley c, will sustain the power of 4 lb at $b ;$ and a fourth power of 1 lb at d, by means of the pulley D , will sustaln the power 2 at c, and consequently the power 4 at a , and the power 8 at a, and the weight 16 at w.
S. It is to be noted however, that, in whatever proportion the power is gained, in that very same proportion is the length of time increased to produce the same effict. For when a power moves a weight by means of several pulleys, the space passed over by the power is to the space passed over by the weight, as the weight is to the power. Hence, the smaller a force is, that sustains a
 weight by means of pulleys, the slower is the weight raised; so that what is saved or gained in force, is alwayw spent or lost in time: which is the general property of all the mechanical powers.

Tho usual methods of arranging pulleys in their blocks, may be reduced to two. The first consists in placing them one by the side of another, on the same pin ; the other, in placing them directly under each other, on separate pins. Fach of these methods however is liable to inconvenience; and Mr. Smeaton, to avoid the impediments to which these combinations are subject, proposes to combine these two methods in one. See the Philos. Trans, vol, 47, pa. 494. Some instances of such combinations of pulleys are exhi-

Lited in the following figures; besides which, there are also other varieties of forms.

A very considerablejmprovement in the construction of pulleys has been made by Mr. Jamis White, who has obtained a patent for his invention, and of which he gives the following description. The last of the three following figures shows the machine, consisting of two pulleys Q and k, one fised and the other moveable. Each of these has six concentric grooves, capable of having a line put round them, and thus acting like as many different pulleys, baving diameters equal to those of the grooves. Supposing then each of the grooves to be a distinct pulley, and that all their diameters were equal, it is evident that if the weight 144 were to be raised by pulling at s till the pulleys touch vach other, the first pulley must receive the length of line as many times as there are parts of the line hanging between it and the lower pulley. In the present case, there are 12 lines, $b, d, f, \& c$, hanging between the

two pulleys, formed by jts revolution about the six upper and lower grooves. Hence as much line must pass over the uppermost pulley as is cyual to 12 times the distance of the two. But, from an inspection of the figute, it is evident, that the second pulley cannot receise the full quantity of line by as much as is cqual to the distance between it and the tirst: In like manner, the third pulley receives less than the first by as much as is the distance between the first and third; and so on to the last, which recelves muly $T_{1} \mathbf{t}^{\text {th }}$ of the whele. For this reccives its share of line n from a fixed point in the upper frame, which gives it nothing; while all the others in the sanve frame receive the line partly by turning to mect it, and partly by the line coming th mect them.
supponing now these pulleys to be equal in size, and to move frecly us the line delermines them; it appears evident, from the natury of the system, that the number of their resolutions, and consequently their velocitis, must be in proporition to the number of suspending parts that are between the fixed point abore mentioned, and each pulley, respectively. . Thus the ousermost pulley would go 12 times round in the time that the pulley under which the past n of the line, if equal to it, would revolse only
once ; and the intermediate times and velocities would be n series of arithmetical proportionals, of which, if the first number were 1, the last would always be equal to the whole number of terms. Since then the revolutions of equal and distinct pulleys are measured by their velocities, and that it is possible to find any proportion of velocity, on a single body running on a centre, viz, by finding proportionate distances from that centre; it follows, that if the diameters of certain grooves in the same substance be exactly adapted to the above series (the Jine itself being supposed inelastic, and of no magnitude) the uccessity of using several pulleys in each frame will be obviated, and with that some of the incomeniencies to which the use of the pulley is liable.

In the figure referred to, the coils of rope by which the weight is supported, are representeal by the lines a, b, c Ac $; a$ is the lime of traction, commonly called the fall, which passes over and under the proper grooves, until it is fastened to the upper frame just above u. In practice, however, the grooves are not arithmetical proportions, nor can they be so; for the dianeter of the rope employed must in all cases be deducted from cach term; without which the smaller growses, to which the said diameter bears a larger proportion than to the larger ones, will tend to rise and fiall faster than they, and thus introduce nore defects than thuse which ibey were intended to obsinte.

The principal advantage of this kind of pulley is, that it destroys lateral fiction, and that hind of shaking motion which is so inconseniem in the common pulley. And lest (says Mr. White) this circunstance should give the idea of weakness, I wonld observe, that to have pins for the pulleys to run on, is not the ouly nor jerhaps the beal meshod; but that I sometimes use centres fixed to the pulleys, and revolving on a very short bearing in the side of the frame, by which strength is increased, and triction iery much diminished; for to the latt monem the motion of the pulley is perfectly circuIar: and this very circumatance is the cause of its not wearing out in the ceutre as soon as it would, assivted by the ever increasing irregularities of a gullied bearing. Thuse pulleys, when well executed, apply to jachs and other machines of that nature with peculiar adsantage, both as to the time of going and their own durability; and it is possible to produce a ssstem of pulleys of this kind of six or eight parts only, and adapted to the pockets, which, by means of a skain of sewing silk, or a clue of common thread, will raise upwards of an hundred wight.

As a system of pulleys has no great weight, and lies in a stmall compass, it is eusily carried about, and con be ajplied for raising weights in a great many cases, where other engines cannot be used. But they are subject to a great deal of friction, on the following accounts ; viz, $15 t$, because the diametery of their axes bear a very considerable proportion to their own diametiss 2 d , because in working they are apt to rub against each other, or against the sides of the block; 3dly, because of the stiffess of the rope that goes over and under them. See terguson's Mech. pa. $3 \overline{7}, 4 \mathrm{to}$.
But the friction of the pulley is now reduced to nothing as it were, by the ingenious Mr. Garwett's patent friction rollers, which produce a great saving of labour and expense, as well as in the wear of the machiue, buth
when applied to pullens and to the axles of wheel-carriages. Ilis general pribcyle is this: between the axlo and nave, or centre pin and box, a hollow space is left, to be filled up by solid equal rollers nearly touching each other. These are furnished with axles inserted into a circular ring at each end, by which their relative distances are preserved; and they nre kept parallel by means nf wires fastened to the rings between the rollers, and which are rivetted to them.

The above colttrivance is exbibited in the annexcal figure; where ABCD representy a piece of metal to be inserted into the box or nave, of which E, is the centicpin or axle, and 1 , $1,1, \& c$, mollers of metal having axes inserted in the brazen circle which passes through their centres; and both circles being rivetted together Ly means of bolts passing letween the rollers from one side of the nave to the other; and thus they are always hept sepa-
 rate and parallel.

PUM1', in llydraulics, a machine for raising water, and other fluids.-Pumps ner probably of sery ancient use. Vitruvius ascribes the invention to Ciesebes of Atbens, some shy of Alexandria, about 120 years before Cbrist. They are now of varions hinds. As the Sucking Pump, the Lifting Pump, the Forcing Punp, Ship Pumps, Chain I'umps, scc. By means of the lifting and forcing pumpu, water may be raised to any height, with a sufficient powe r, and an adequate apparatus: but by the suching pump, the water being only raised by the general pressure of the atmosphere on the surface of the well, is limited in its ascent to about 33 or 34 fect ; though in practice it is stldom applied to the raising it much above 28 ; because, from the sariations observed in the barometer, it appears that the air may sumetimes be lighter than 33 teet of water; and whenever that happens, for want of the due counterpoise, this pump will tail in its performance.

The Commpn Sucking Pcmp.-This consists of a pipe, of wood or metal, open at both ends, having a fixed valve in the loner part of it upening upwarits, and a moxeable valve or buchet by which the water is drawn or lifted up. This bucket is just the size of the bore of the pump-pipe, in that past where it works, and leathered round so as to fit it sery close, that no air may pass by the sides of it; the valve bole being in the middle nf the bucket. The buchet is commonly workerl in the upper part of the barrel by a short rod, and anonher fixed ralve placed just below the descent of the buchet. Thus, (fig. 1, pl. 28), A 日 is the pump-pipe, c the lower fixed valse, opening upwards, and D is the bucket, or moving valse, absn ope ning upwards.

In workmig the pump; draw up the bucket n, by means of the pumpr red, having any kind of a landte fixed to it: this draus up the water that is abnve it, or if not, the air ; in enther case the water pushes up the valve c , and eaters to supply the void left betweell c and t , being forced up by the piessure of the atmosphere on the surface of the watce in the well below. Next, the
bucket D is pushed down, which shuts the valve c, and prevents the return if the water dotnwards, which opens the valve D, by which the water ascends above it. And thus, by repeating the strokes of the pump-rod handle, the vulves alternately npen and shut, and the water is drawn up at every stroke, and runs out at the nozle or spout near the tup.

The Lithing Pexp differs frnm the sucking pump only in the disposition of its valres and the form of its piston - frame. This kind of pump is mpresentell in fig. 2, pl. 28; whese the lower ralve n is moveable, being worked up and down with the pump rod, which lifts the water up, and so opens the upper valve c, which is fixed, and permits the water to issue through it, and run out at top. Then as the piston D descemls, the weight of the water above c shuts that valve c, and so presents its return, till that valve be opened again by another lift of the piston D. And so on alternately.

The Forcing Puxp raises the water through the sucker, or lower valve e (fig. $3, \mathrm{pl} .2 \mathrm{H}$), in the same manuer as the suching pump; but as the piston or plunger d has no value ins $1 t$, the water cannot get above it when this is pushed down again; instead of which, a side pipe is inserted between c and b , having a fiacil valse at E opening upwards, through which the water is forced out of the purap by pushing down the plunger D .

To the forcing punp is sometimes adapted an nir ressel, in which the arr being compresent by the water, by its clasticity acts upon the water again, anl forces it out to a great distance, and in a continued stream, intead of hy jets or jerhs. So, Newsham's engine, for extinguishing fires, consists of iwo forcing pumps, which alternately drive water into a close vessel of air, by which means the air in it is condensed, aml compresses the whter so strongly, that it rusles out with great impetuosity and force through a pipe that comes down into it, mahing a continued uniform stream.- 13y means if forcing puaps, water may be raised to any beight whatever above the level of a river or spring; and machines may be contrived to work these punps, cither by a runung strean, a fall of water, or by horses.

Obecrvationt on Phomps,-The force required to work a pump, is equal to the weight of water raisel at each stroke, of rqual to the weipht of water filling the cavity of the pipe, atd its height equal to the length of the stroke made by the piston. Henee if d denete the diameter of the pipe, and l the length of the stroke, both in inches; then is $-7854 d$ 億 the content of the water raised at a stroke, in inches, or $0028 d^{2} t$ in ale gallons; and the weight of it is $\frac{e^{2 l} l}{220}$ ounces or $\frac{d^{2} b}{3520} \mathrm{lb}$. But if the handle of the pump be a lever which gains in the power of p to 1 , the force of the hand to work the pump will be only $\frac{d^{2 t} t}{3520 p} 1 b$, or, when p is 5 for instance, it will be $\frac{d^{\prime \prime} t}{17000}$ lb. And all these over and above the friction of the moving parts of the pump.

Ceseber's I'varp, acts both by suction and by pression. Thus, a brass cylinder ABCO (fig. 5, pl. 28), furnished with a valve at L , is placed in the water. In this is fitted the piston $K>M_{\text {, made }}$ of green wood, which will not swell in the water, which is adjusted to the aperture of the cylinder with a covering of leathrr, but without any valve. Another tube $\times 11$ is fitted on at 11 , with a valve I opening upwards, - Now the piston being taiscd,
the water opens the valve L , and rises into the cavity of the cylinder. - When the piston is depressed again, the valve 1 is upened, and the water is driven up through the tube 1 nN . This was the pump used among the aocients, and that from which the others have been deluced. Sir Samuel Morland has enclataured to increase its force by lessening the frictom; which he has done in a great degree. There are various kinds of pumps used in ships, for throwing the water ont of the hold, and on other occasions, as the chain punip, \& c.
A Table by which the Quantity and Weight of Water in a Cylindtucal Bure of any given Diameter and Perpendicular Height, may be found; and consequently, the Degree of Power that will be requisite to work any Hydraulic Engine. By Janes Febouson, f. res.

$\begin{gathered} \text { Fiet } \\ 11 l_{6} \text { bi } \end{gathered}$	Dianmer of the Cshindrical Baec ove Inch.		
	Quantity of Wacre is Cabere inchas.	Wriplut of Water in Troy Gunces.	In Avoirdupots Oances.
1	94:477N1	+9712350	54541539
2	18.8895362	99424680	109083078
3	$28.27+3{ }^{5}+5$	14.9137030	$16^{\circ} 3624617$
4	37.6991124	$19788+9360$	21.8166156
5	47-1238905	24.8561700	$27 \cdot 2707695$
6	56.5486086	99.8 .274040	32.7249234
7	65.973667	34*986380	$38 \cdot 1790773$
8	75.3982248	397698720	$43 \cdot 6.332312$
9	84×2330029	41.7411060	49.0873851

The numbers to the right hand from the points in each column are decimals.

For tens of feet bigh, remove the decimal points one place forward; for hundreds of feet, two places; for thousands of feet, threv places; and so on.

Then, multiply the suins by the rquare of the diameter of the given bore ; and the products will be the quantity of water in the pipe, in cubic inches, and in troy and uvoirdupois ounces.

Exasple.-Qu. The suantity and Weight of Water in an apright Pipe whose Bore is 10 Inches in Diameter, and its Height 208 Feet ?-The Square of 10 is 100.

Feet high. 200		Troy Ounces. $99+24680$	
8 -	75.39822	3976897	43.63323
208	196035384	0157	640
Multiply	100	100	100
Aus.	1960	$103401 \cdot 57$	

Which number of cubic inches being divided by 231 (the number of cubic inches in a wine gallon) gives $848{ }^{\circ}{ }^{\circ}$. fur the number of gallons of water in the pipe: and the respective weights, $103401-377$ and $113446 \% 41$, being divided by 12 and by 16 , give 8616_{10}^{8} for the number of trey pounds, and $7090{ }_{\mathrm{r}^{4} 0}^{6}$ for the number of avoirdupois pounds of water. The power of an engine equal to the weight will just balance the waler; but the engine must have as much more power as will be sufficient to overcome th- fitiction of ith worhing parts.-In pumps, it matters not whint the diameter of any part of the bore be, besides that part in which the piston or bucket worky ; for, the power requisite to work them will be the same as if the whole bore was of shat diameter throughout.

Air-PtMe, in Pneumatics, is a machine, by means of which the air is cmpted out of vesels, and a kind of vacuum produced in them. For the particulars of which, see Air-Pump.

PUNCHEON, a measure for liquids, containing f of a tun, or a hogslerad and $\frac{4}{4}$, or 84 gallons.

PUNCHINS, or P'uxchtons, in Building, short pieces of timber placel to support some considerable weight.

PUNCTATED Hyperbola, in the higher geometry, an hyperbola, whose conjugatu oval is infinitely small, that is, a point.

PUNCTUM ex Comparatione, is cither focus, in the ellipse or hyperbola; so calked by Apollonius, because the rectangle under two abscisses inade at the focus, is equal to one-fourth part of what he calis the figure, which is the square of the conjugate asis, or the rectangle under the transicrse and the parameter.

I'unctux Duplex, double point, in the higher geometry, a point where two branches of a curve intersect. See Curvf, Lemisiscate, \&c.

PURBACH (Georoe), a very eminent mathematician and astronomer, was born at Purbuch, a town upon the confines of Bavaria and Austria, in 1423, and cducated at Vienna. He afterwards visited the most celcbrated universties in Gurmany, France, and Italy; and found a particular fricrid and patron in Cardinal Cusa at Rome. Returning to Vienna, he was appointed mathematical professor, in which office be continued till his death, which happened in $1+61$, in the $\$ 9 t h$ year of his age only, to the great loss of the learned world.

Purbach composed a great number of pieces, on mathematical and astrononical subjects; and his fame brouglit many atudebts to Vienna, and among them, the celebrated Regiomontanus, betwern whom and Purbach there subsisted the strictest frieudship and union of studies till the death of the latter. These two celebrated mathematicians laboured together to improve every branch of learning, by all the means in their power, though astronony scems to have been tho favou. rite of both; and had not the immature death of Purbach prevented his further pursuits, there is no doubt but that, by their joint industry, astronomy would have been cultivated to a very great degree. That this is not merely surmise, may be learnt from those improvements which Purbach actually did make, to render tho study of it more easy and practicable. His firs essay was, to amend the Latin translation of Ptolemy's Almagest, which had been made from the Arabic version; which he did, not by the help of the Greek text, for he was unacquainted with that language, but by drawing the most probable conjectures from a strict attention to the sense of the author.

He then proceeded to other works, and among them, he wrote a tract, which he entitled, An Introduction to Arithmetic ; then a treatise on Gnomonics, or Dialling, with tables suited to the difference of climates or latitudes; also a small tract concerning the Altitudes of the Sun, with a table: also, Astrolabic Canons, with a table of the parallels, proportioned to every degree of the equinoctial.

After this, he constructed Solid Spheres, or Celestial Globes, and composed a new table of fixed stars, adding the longitude by which every star, since the time of Ptolemy, had increased. He also invented various other instruments, among which was the Gnomon, or Geometrical Square, with canons and a table for the use of it.

He not only collected the various tables of the Primum Mobile, but added new ones. He mado very great improvements in Trigonometry, and by iutroducing the table of Sines, by a decimal division of the radius, be quite
changed the appearance of that science: he supposed the radius to be divited into $600,00 t 0$ equal parts, and compuied the sines of the arcs, for every ten manutes, in such equal parts of the radiue, by the decmanal moration, instead of the duodecimal one delivered ly the Gireshs, and preserved even by the Araboans till our auther's bue ; a prosject whach was complesed by his friend Regiomontanus, who computed tie sines to every minute of the quadrant, in $1,000,000$ th parts of the radius.
llaving propuredilie tables of the fixed stars, be next underteok to rethem those of the planets, and constructed sonue entircly new ones. Having tumbed his tables, he wrote a kind of Perpetual Almanac, but chietly tor the moon, answering to the periods of Meton und Cathppus; also an Almanac for the Pianets, or, as Regiomontanus afterwards called it, an Ejhemeris, for many years. But observing that there were some planets in the heavens at a great distance from the places where they were described to be in the tables, particularly the sun and noon (ane eclipses of which were obucred frounuenly to happen very dotferent from the times predictea), the npplied bumself to constiuct new tables, particularly adapted to eclipses ; which were long athen tamus tor their exactiess. To the same tume may be referred his homshong that celebrated work, cmuled, A New Theory of tine Planets, which Regiomontanus nfiernards publiwhed the first of all the works executad at has bew prouting batuse.
PURE. Hyperboia, is an Hyperbola without any oval, node, cuap, or conjugate puint ; which buppens through the imponibulty of two of its rinits.

Puke Muthemutics, Pruposition, 2hadratics, \&c. See the severat articles.

PURIIINt:S, in Architecture, those pieces of timber that her acrows the ratiers on the insile, to keep them from sinking in the madde of their length.

PYII I.III), a sotid having any plane figure for its base, and its sides triangles whese verlices ail meet in a point at the top, called the sertex of the pyranid; the base of each triangle being the sides of the plane base of the pyramid. - The number of triangles is equal to the number of the sides of the base; and a cone as a round pyramid, or one having an infinise number of sides. - The pyramid is also denommated uccording to the figure of its base, being triangular when the base is a triangle, quadrapgular when a quadrangle, \&c.

The aris of the pyramid, is the line drawn from the vertex to the centre of the base; and when this axis is perpeuticular to the buse, the pyramid is said to be a right one ; otherwise it is oblique.

1. A pyramid may be conceived to be generated by a line moved about the vertex, and so carried round the perimeter of the base.
2. All pyramids having equal bases and altitudes, are equal to one another: whatever may be the figures of their bases.
3. Every py ramid is equal to one-third of the circumscribed prism, or a prism of the same base and altitude ; and therefure the solid content of the pyramid is found by multiplying the base by the perpendicular altitude, and taking $\frac{1}{3}$ of the product.
4. The upright surface of a pyramid, is found by adding together the areas of ult the triangles which form that surface.
5. If a pyramid be cut by a plane parallel to the base,
the section will be a plane figure simitar to the base; and these two figures will be in proprotion to cheh other as the squarts of themr distances trom the vertex of the pyramud.
6. The coure of gravity of a pyramad is dissant from, the vertex ${ }_{3}$ of the axis.
Frustum of a Prkamid, is the part lefi at the bottom whell the top is cut of by a plane parallif to the base.

The sulid content of the frustum of a pyranid is found, by first adding into one sum the areas of the two ends and the mean proportional between thetn, the Sd part of whech sum is a nedtum section, or it is the base of an equal prism of the same altitude; and themiore this medium area or section multiplied by the ahtitude gives the solid cuntent. Sis, if a denote the atea of one end, a the area of the other end, and h the height; then $\frac{f}{f}(A+a+$ $\sqrt{A} a)$ is the medium area or secton: and $f(A+a+$ $\sqrt{ } A a) \times h$ is the suhd content.
PYBamids of Egypt, are very numerous; but the most remarkable anc the three pyranids of Mcmphis, or, as they are now called, of Ghesa or Gize. These are square pyramids, and the greatest of them measures 700 feet on each side of the base, and the oblique laeight or slant side masures the same; and its base covers, or stands upon, nearly 11 acres of ground. It is thought by some that these pyramids ware dergned and ubed as gnomons, fur astronomical purposes; and it is remarkable that "their four sides are accurately in the direction of the four cardinal poins of the compass, east, west, morth, and south.

PYKAMIDAL Numbers, are the sums of polygosal numbers, collected aiter the same manner as the polygonal numbers themelves are found from arithmetical pugressions. These are particularly called First pyramidals. The sums of first pyramidals are calied secund pyramidats; and the sums of the 2 d are 3 il pyramidals; and so on. Particularly, those arising from triangular numbers, are called Prome Triangular Pyramidals; those arisug from panlagonal numbers, are called Prime Pentagunal Pyranidals; and so on.
The numbers $1,4,10,20,35, k c$, $\left.\begin{array}{l}\text { formed by adding the tri- } \\ \text { angulars }\end{array}\right\} 1,3,0,10,15, \& c$, are usually called simply by the name of pyramidals; and the general formula for finding them is $n \times \frac{n-1}{3} \times \frac{n-2}{3}$; so the 4 th pyramidal is found by substituting 4 for n; the Sth by substituting 5 farn; \&c. See Fiourate Numbers, and Polyuonal Numbers.

I'IRAMIDOID, is sometimes used for the parabolic spindle, or the solid formed by the rotation of a semiparabola about its base or greatest ordinute. See Panabolic Spindle.

PYROMETER, or fire-measurer, a machine for measuring the expansion of solid bodies by heat. Musschenbroek was the first inventor of this instrument; though it has since reccived several improvements by other philosuphers. He las given a table of the expansions of the defferent metals, with various degrees of heat. Having prepared cylindric rods of iron, steel, copper, brass, tin, and lead, he exposed them first to a pyrometer with one flame in the middle; then with two flames; then successively with three, four, and five flames. The effects were as in the following Table, where the degrees of expansion arc marked in parts equal to the 12500 th part of an inch.

P Y R
[
964
\}
PYR

Exyamina of	Iren	Steel	Cupp	Ithe,	Tim	Lest
By I flame	89	8.5	89	110	153	155
$\left.\begin{array}{c} \text { Hy flames } \\ \text { placed close } \\ \text { together } \end{array}\right\}$	117	133	115	220		974
$\left.\begin{array}{c} \text { By \& Hanes at } \\ 2 \text { if melhesdis- } \\ \text { tant } \end{array}\right\}$	109	94	92	141	S19	963
$\left.\begin{array}{l} \text { By } 3 \text { flames } \\ \text { clone together } \end{array}\right\}$	142	168	193	275		.
By 4 dlames close together	211	270	270	361		
By 5 tlames	230	310	310	377		

Tin casily melts when beated ly two flames placed close together; and lead with three flames close together, when they burn long.

It hence apjears that the expansinn of any metal is in a less degree than the number of flames: su two flames give less than a double expansion, three thames less than a triple expansion, and so on, slways more and mote helow the ratio of the number of flames. And the flames placed together cause a greater expansion, than with an interval between them.
For the construction of Muschenbroch's pyroneter, with alterations and improvements upon it by De sagnliers, sce Desag. Exper. Philus. vol. 1, pa. 421 ; see also Musschenbroek's translation of the Enperiments of the Academy del Cimento, printed at Leyden in 1731; and fer a Pyrometer of a new construction, by which the expansions of metals in boiling fluids may be examined and compared with Fahrenhert's hermometer, see Mussch. Introd. Phalos. Nat. 4to, 1762 , val. 2, pa. 610.

But as it has been observed, that Musschenbrock's pyrometer was liable to some objections, these have been removed in a great measure by Ellicott, who has given a description of his improred py rometer in the Philos. Trans. numb.445. This instrument measures the expansions to the 7200 th part of an inch; and by means of tt, Mr. Ellicott found, on a medium, that the expansions of bars of different metals, as marly of the same dimensions as possille, by the same degree of lieat, were as below:

Gold	Silver	Brans	Corper	Iron	Steel	Lad
73	103	95	89	60	56	149

The great differcuce between the expansions of iron and brass, has been applied with good success to remove the irregularities in pendulums arising from heat. Pbiloy. Trans. vol. 47, pa. 485.

Mr. Grabam used to measure the minute expansions of metal bars, by advancing the point of a micrometer serew, till it senstbly stopped against the ead of the bar to be measured. This screw, being smatl and very lightly hung, was capable of agreement within the 3000 or 4000 th part of an inch. And on this general principle Mr. Smeaton contrived his pyrometer, in which the measures are determined by the contact of a piece of metal with the point of a micrometer-screw. This instrument makes the expansiuns sensible to the 2345 th part of an inch. And when it is used, buth the instrument and the bar to be measured are immerged in a cistern of water, heated to any degree, up to boiling, by means of lamps placed under the cistern; and the water communicates the same degree of heat to
the instrument and bar, and to a mercurial thermometer immerged in it, for aserraiting that ategres.

With this in rometre Mr. Sineuton made seseral experiments, which are arranged in a table; and he remarhs, that there result agrees very well with the proportions of expansions of several metaln given by Mr. I.tlicott. The following table shows how much a hoot in lengith of each metal expands by an increase of heat corresponding to 180° of Fabrenhein's thermometer, or to the difierence: between the temperatures of therzing and Loihig water, expressed in the 10000 h part of an mich.

18. Speculum metal - 232
13. Spelter solder, viz 2 parts brass and 1 zinc 247
14. Fine pewter . - - - 274
15. Grain tin - - 298
16. Soft solter; viz lead 2 and tin I
17. Tine 8 parts, with tin 1, a little hammered

- 301

18. Lad - - - 323
19. Zinc or spelter - - 353
20. Zinc hamtered half an inch per foot 373

For a further account of this instrument, with its use, see Plilus. Trans. vol. 48, pa. 598.

Mr. Ferguson has constructed, and described a pyrometer (Lect. on Mechanics, Suppl. pa. 7, Ato), which makes the expansion of metals by heat visule to the 45000th part of an inch. And another plan of a pyrometer has lately been invented by M. Delic, in consequence of a hint suggested to him by Mr. Rameden: for an account of whict, with the proncijle of its construction and use, both in the comparative measure of the expansions of bodics by leeat, and the measure of their absolute expansion, as well as the experiments made with it, see M. Beluc's elaborate essay on pyrometry \& c , in the Philos. Trans. vol. 68, pa. 419 \&c.

Other accurate and ingenious contrivances, for the measuring of expansions by beat, have been made by Mr. Ramsden; which he has successfully applied in the care of the measuring rods and chains lately employed, by General Roy and Col. Williams, in measuring the base on Hounslow Heath, AC; which determine the expansions, to great minuteness, for each degree of the thermometer. See Philus. Trans. 1785, \&c.

I'YROPHORLS, the name unually given to that substance by some called black phosphorus; being a chemical preparation posessing the singular property of kindling spontaneously when exposed to the air ; which was accidentally tiscovered by M. Momberg, who prepared it of alum and human feres. Though it has simee been found, by the son of M. Leuncri, that the frecs are not necessary to it, but that honey; sugar, fluur, and any animal or vegetable matter, may be used instead of the fices; and M. De Suvigny has shown that most vitriclie
salts may be substituted for the alum. See Priestley's Obser. on Air, vol.3, Append. pa. 386, and vol. 4, Λ ppend. pa. 479.

PYROTECHNY, the art of fire, or the science which teaches the application and management of fire in several operations. Pyrotechny is of two kinds, military and chemical.

Military Prootechxy, is the science of artificial fireworks, and dive-urns, teaching the structure and use both of those employed in war, as gunpowder, cannon, shells, carcasses, mines, fusecs, 8 c ; and of those made for annusement, as rockets, stars, serpents, \&c.-Some call pyrotecliny by the nane artillery; though that word is usually confined to the instruments employed in war. Others choose to call it pyrobology, or rather pyruballogy, or the art of missile fires. - Wolfius has reduced pyrotechny into a kind of mixed mathematical art. Indeed it will not allow of geometrical demonstrations; but be brings it to tolerable rules and reasons; whereas it had formerly been treated by authors at randonn, and without regard to any reasons at all. See the several articles Cansos, Gunfowiner, Rocket, Shelif, \&c.

Chemical Prrotecury, is the art of managing and applying fire in disullations, caicinations, end other operations of chemistry. Sume reckon a third kind of pyrotechoy, viz, the art of fusing, refining, and preparing metahs.

PYTHAGORAS, one of the most celebrated philosophers of antiquity, was born about the 47 th Olympiad, or 590 years before Christ. Wis father's principal resideuce was at Samos, tut being a travelling merchant, his son Pythagoras was born at Sidon in Syria ; but soon returining home again, our philosopher was brought up at Samos, where he was educated in a manner that was answerable to the great hopes that were conceived of him. He was called " the youth with a fine bead of hair ;" and Irom the great qualities that soon appeared in him, he was regarded as a good genius sent into the world for the benefit of mankind.

Samos however afforded no philosophers capable of satisfying his thirst for knowledge; and therefore, at 18 years of age, he resolved to travel in quest of them elsewhere. The fame of Pherecydes drew him first to the island of Syros: from hence be weut to Miletus, where be conversed with Thales. He then travelled to Phernicia, and stayed some time at Sidon, the place of his birth; and from bence be passud into Egypt, where Thales and Solom had beco before him.

Having spent 25 years in Fgypt, to acquire all the learning and knowledge he could procure in that country, he travelled with the same view through Chaldea, and visited Babylon and India, Returning after some time, he went to Crete; and from hence to Sparta, to be instructed in the laws of Minos and Lycurgus. He then returned again to Samos; but finding it under the tyranny of Polycrates, he quitted it again, and visited the several countries of Greece; passing through Peloponnesus, he stopped at Phlius, where Leo then reigned, who was much surprised with his eloquence and wisdom.

From Peloponnesus be went into laly, and passel some time at Heracles, and at Tarentum, but made his chief residence at Crolon; where, after reforming the manners of the citizens by preaching, and establishing the city by wise and prodent counsels, he opened a school to display the treasures of wisdom and lcarning he possessel. It is

Vol. II.
not to be wondered, that he was soon attended lyy a crowed of disciples, who repaired to him from different parts of Greece and Italy.

He gave his scholars the rules of the Egyptian pricsts, and inade them pass through the austerities which he himself had endured. He at first enjoined them a five years silence in the sebool, during which they were only to hear; after which, Icave was given them to start questions, and to propose doults, under the caution however, to say;" " not a little in many words, but much in a few." Having gone through their probation, they were obliged, before they ware admitted, to bring all their forture into the comnion stock, which was managed by persons chosen on purpuse, and called aconomists, and the whole community had all things in common.

The desire of concealing their mysteries induced the Egyptians to make use of three kinds of styles, or ways of expressing their thoughts; the simple, the hieroglyphical, and the symbolical. In the simple, they spoke plainly and intelligibly, as in common conversation; in the bicroglyphical, they concealed their thoughts under certam images and characters; and in the symbolical, they explained them by short expressions, which, under a sense plain and simple, included another wholly figurative. Pythagoras borrowed these three different ways from the Eqyptians, in all the instructions be gave; but chiefly imitated the symbolical style, which he thought very proper to inculcate the greatest and must important truths : for a symbol, by its doublescuse, the proper and the Gigurative, teaches two things at once; and nothing pleases the mind more, than the double image it represents to our vicw.

In this manner Pythagoras delivered many excellent things concerning God and the human soul, and a great variety of precepts, relating to the conduct of life, both political and civil; be made also some considerable discoveries and advances in the arts and sciences. Thus, among the works ascribed to him, there are not only books of physic, and books of morality, like that contained in what are called his Golden Verses, but treatises on politics and theolony. All these works are lost : but the vastness of bis mind appears from the wonderful things be performed. He delivered, as antiquity relates, several cities of Italy and Sicily from the yoke of slavery; he appeased seditions in others; and he softened the manners, and brought to temper the most savage and unruly spirits, of several people and tyrants. Phalaris, the tyrant of Sicily; it is said, was the only one who could withstand the remonstrances of Pythagoras; and he it seems was so enraged at his discourses, that he or dered bim to be put to death. But though the lectures of the philosopher could raake no impression on the tyrant, yet they were sufficient to reanimate the Sicilians, and to put them upon a bold action. In short, Phalaris was killed the same day that he had fixed for the death of the philosopher.

Pythagoras had a great veneration for marriage; and therefore himself married at Croton a daughter of one of the chief men of that city, by whom he had two sons and a daughter: one of the sons succeeded his father in the school, and became the master of Empedocles: the daughter, named Damo, was distinguished both by ber learning and her virtues, and wrote an excellent commentary upon Homer. It is also related, that Pythagoras bad given ber some of his writings, with express commands 2 M

P Y T

not to impart them to any but those of his own family; to which Damo was so scrupulously obedient, that even when she was reduced to extreme poverty, sbe refuscd a great sum of money for them.

From the couniry in which Pythagaras thus settled and gave his instructions, his society of disciples was called the ltalic sect of philosophers, and their reputation continued for some ages afterivarils, when the Academy and the Ly carum united to obscure and swallow up the Italic sect. Pyihagoras's disciples regarded the words of their master as the oraches of a god; his authority alone, though unsupported by renson, passed with them for reason itself: they looker on him as the most perfect image of God among men. His house was called the temple of Ceres, and his court-yard the temple of the Muses: and when be went into towns, it was said he went thither, " not to teach men, but to heal them."

Pythagoras howiver was persecuted by bad men in the latter years of his life; and some say he was killed in a tumult raised by them against him; but according to vthers, he died a naturul death, at 90 years of age, about 497 ycars before C'hrist.

Besides the high respect and veneration the world has always had for Pyilhagoras, on account of the eveellence of his wisdom, his morality, his theology, and politics, he was renowmed as learned in all the sciences, and a considerable inventor of many things in them; as arithmetic, geometry, astronomy, intsic, \&c. In arithmetic, the common multiplication table is, to this day, still called Pythagoras's table, In geometry, it is said he invented many theorems, particularly these three; 1st, Only threo polygons, or regular plane figures, can fill up the space about a point, viz, the equilateral triangle, the square, and the hexagon: 2 d , The sum of the three angles of every triangle, is equal to two right angles: Sd , In any right-angled triangle, the square on the longest side is equal to both the squares on the two shorter sides: for the discovery of this last theurem, some authors say he offered to the gods a hecatomb, or a sacrifice of a hundred oxen; Plutarch bowever says it was only one ox, and even that is questioned by Cicero, as inconsistent with his doctrine, which forbade bloody sacrifices: the more accurate therefore say, he sacrificed an ox made of thour, or of clay ; and Plutarch evrn doubts whether such sacrifice, whatever it was, was made for the said theorem, or for the area of the parabola, which it was said Pythagoras also found out.

In astronomy his inventions were many, and great. It
is said he discovered, or maintained the true system of the world, which places the sun in the centre, and makes all the planes revolve about him; and from him it is to this day called the old or Pythagorean system ; and is the same as that revived by Copernicus. He first discovered, that Lacifer and Hesperus were but one and the same, being the planet Venns, though formerly thought to be two different stars. The invention of the obliquity of the zodiac is likewise ascribed to him. He first gave to the world the name Ksruas, Koomos, from the order and beauty of all things comprehended in it; asserting that it was made according to musical proportion: for, as he held that the sun, by him and his followers termed the fiery globe of unity, was seated in the midst of the universe, and the earth and planets moving around him, so he beld that the seven planets had an harmonious motion, and their distances from the sun corresponded to the musical intervals or divisions of the monochord.

Pythagoras and his followers held the transmigration of souls, making them successively occupy one body after another: on which account they abstained from flesh, und lived chiefly on vegetables. This he probably learnt in India.

Prtinagoras's Table, the same as the multiplicationtable; which see.

PyThagorean, or Pxthagomic, Syatem, among the ancients, was the same as the Cupernican system among the moderns. In this system, the sun is supposed at rest in the centre, with the carth and all the planets revolving about him, each in their respective orbits. See System.

It was so called, as having been maintained and cultivated by Pythagoras, and his fullowers; not that it was invented by him, for it was much older.

Pythagorean Theorem, is that in the 47 th proposition of the first book of Euclid's Elements ; viz, that in a right-angled triangle, the square of the longest side is equal to the sum of both the squares of the two shorter sides. It has been said that Pythagoras offered a hecatomb, or sacrifice of 100 oxen, to the gods, for inspiring him with the discovery of so remarkable a property.

PITHAGORLANS, a seet of ancient phitosophers, who followed the doctrines of P'sthagoras. They were called the Italic sect, from the circumstance of his baving setuled in ltaly. Out of his school procreded the greatest philosophers and Iegislators, Zaleucus, Charondas, Archytas, Ac. See the article Pithagoras.

PIXIS Noutica, the scaman's compass.

QUA

QUADRAGESIMA, a denomination given to the time of lent, from its consisting of about 40 days; commencing on ssh-wednesday.

Quadiacerstma Sunday, is the first sunday in lent, or the first sunday after ash-wednenday.

QUADRANGI.F., or Quadmangulanfigure, in Geonctry, is a plane figure having four angles; and consequently four sides also.- To the class of quadrangles beling the square, parallelogram, trapezium, rhombus, and rhumboides.-A square is a regular quadrangle; a trapezium an irregular one.

Q U A
QCADRANT, in Geometry, is either the quarter or 41h part of a circle, or the 4 th part of its circumference; the arch of which therefore contains 90 degrees.

Quadrant also denotes a mathematical instrument of great use in astronomy and navigation, for tahing the altitudes of the sun and stars, as also taking angles in surveying, heightseand-distances, kc - - This instrument is variously contrived, and furnished with different apparatus, according to the various uses it is intended for; but they have all this in common, that they consist of the quarter
of a circle, whose limb or arch is divided into $90^{\circ} \mathrm{kc}$. Some have a plummet suspended from the centre, and are furnisbed either with plain sights, or a telescope, to look through.

The principal and most useful quadrants, are the common Surveying quadrant, the Astrunomical quadrant, Adamy's quadrant, Cole's quadrant, Collins's or Sutton's quarrant, Davis's quadrant, Gunter's quadrant, hadley's quadrant, the Horodictical quadrant, and the Sinical quadrant, \&cc. Of these, the two most deserving of notice, are Hadley's quadrant, and the mural or astronomical quartrant.

1. The Common, or Surbeging Quadramt, is the inatrument the use of which may be seen iu my Mensuration, in the section on heights-and-distances.
2. The Astronomical Quaduant, is a large one, usually made of brass or iron burs; having its limb er (fig. 3 pl . 29) accurately divided, either diagonally or otherwise, into degrees, minutes, and seconds, if room will permit, and furaished either with two pair of plain sights or two telescopes, one on the side of the quadrant at $A \mathrm{~h}$, and the other, CD, moveable about the centre by means of the screw o. The dented wheels I and n serve to direct the instrument to any object or phenomenna. -The application of this useful instrument, in taking observations of the sun, planets, and fixed stars, is obvious; for being turned horizontally on its axis, by means of the telescope $\Delta \mathrm{n}$, till the object is seen through the moveable telescope, then the degrees \&cc cut by the index, give the altitude \&c required.
3. Cole's Quadmant, is a very uscful instrument, invented by Mr. Benjamin Cole. It consists of six parts, viz, the staff AB (6g.11, pl.29); the quadrantal arch DE; three vaties, A, B, C; and the vernier rg. The stafl is a bar of wood about 2 feet long, an inch and a quarter broad, and of a sufficient thickness to prevent it from bending or warping. The quadrantal arch is also of wood; and is divided into degrees and 3d parts of degrees, to a radius of about 9 inches; and to its extremities are fitted two radii, which meet in the centre of tho quadrant by a pin, about which it easily moves. The sight-vane A is a thin piece of brass, near 2 inches in height, and one broad, set perpendicularly on the end of the stafi A, by means of two screws passing through its foot. In the middle of this vane is drilled a small hole, through which the coincidence or meeting of ilse horizon and solar spot is to be viewed. The horizon-vane s is about an inch broad, and two inches and a half high, having a slit cut through it of near en inch long, and a quarter of an inch broad; this vane is fixed in the centre pin of the instrument, in a perpendicular position, by means of two screws passing through its foot, by which its position with respect to the sight-vane is always the same, their angle of inclination being equal to 45 degrees. The shade-vane c is composed of two brass plates; one of which serves as an arm, and is about $4 \frac{4}{}$ inches long, and f of an inch broad, being pinned at one end to the upper limb of the quadrant by a serew, about which it has a small motion; the other end lies in the arch, and the lower edge of the arm is directed to the middle of the eentre-pin: the other plate, which is properly the vane, is about 2 inches long, being fixed perpendicularly to the other plate, at about balfan inch diatence from that end next the arch; this vane may be used eitber by its slasefe, or by the solar spot cast by a convex lens placed itt it. And because the wood-work is
often subject to warp or twist, therefore this vane may be rectified by means of a screw, so that the warping of the instrument may occasion no error in the observation, which is performed in the foliowing manner: Set the line a on tbe vernier against a degree on the upper limb of the quadrant, and turn the screw on the backside of the limb forward or backward, till the hole in the sight-vane, the centre of the glass, and the sunk spot in the horizon-vane, lic in a right line.

To find the Sun's Altitude by this instrument. Turn your back to the sun, holding the staff of the instrument with the right hand, so that it he in a vertical plane passing through the sun; upply one eye to the sight-vane, looking through that and the borizon-vane till the horizon be seen; with the left hand slide the quadrantal arch upwards, till the solar sput, or shade, cast by the shade-vane, fall directly upon the spot or alit in the horizon-vane ; then will that part of the quadrantal arch, which is raised above 6 or s (accurding as the observation respects either the solar spot or shade) show the altitude of the sun at that ime. But for the meridian altitude, the observation must be continued, and as the sun approaches the meridian, the sea will appear through the horizon-vane, which completes the observation ; and the degrees and minutes, counted as before, will give the sun's meridian altitude; or the degrees counted from the lower limb upwards will give the whith distance.
4. Adams's Quadrant, differs only from Cole's, just described, in having an horizontal vane, with the upper part of the limb lengthened ; so that the glass, which casts the solar spot on the horizon-vane, is at the same distance from the horizon-vane as the sight-vane at the end of the index.
5. Colliar's or Sutton's Quadaast, is a stereographic projection of one quarter of the sphere between the tropics, on the plane of the ecliptic, the eye being in its north pole; and fitted to the latitude of Lindon. The lines running from right to left, are parallels of altitude 1 and those crossing them are azimuths. The smaller of the two circles, bounding the projection, is one quarter of the tropic of Capricorn; and the greater is a quarter of the tropic of Cancer. The two ecliptics are drawn from a point on the left edge of the quadrant, with the characters of the signs upon them ; and she two horizons are drawn from the same point. The limb is divided both into degrees and time; and by having the sun's altitude, the hour of the day may here be found to a minute. The quadrantal arches next the centre contain the calendar of montis; and under them, in another arch, is the sun's declination. On the projectionare placed sevcral of the most remarkable fixed stars between the tropics; and the next below the projection is the quadrant and line of shadows.
6. Davis's Quaprant, the same as the Backstafy; which see.
7. Gunner's Quadrant, (fig. 6, pl. 29), sumetimes called the Gumner's Square, is used for elevating and pointing cannon, mortars, \&c, and consisty of two branches either of wood or brass, between which is a quadrantal arch divided into 90°, and furnished with a thread and plummet.- The use of this instrument is very easy; for if the longer branch, or bar, be placed in the mouth of the piece and it be clevated till the plummet cut the degree necessary to hit a proposed object, the thing is lone. - Sometimes on the sides of the longer bar, 2 M 2
are noted the division of dhameters and weights of iron balls, as also the bores of picces.
8. Gunter's Quadrant, so called from its inventor Edmund Gunter (fig. 4, pl. 29) besides the apparatus of other quadrants, has a stereographic projection of the sphere on the plane of the equinoctial ; and also a crlendar of the months, next to the divisions of the limb; by which means, besides the common purposes of other quadrants, several uscful questions in astronomy, \&c, are cesily resolved.

Use of Gunter's 2uadrant--(1) To find the sun's meridian altitude for any given day, or conversely the day of the year answering to any given meridian altitude. Lay the thread to the day of the month in the scale next the limb; then the degree it cuts in the limb is the sun's meridian altitude. And, contrariwisc, the thread being set to the meridian altitude, it shows the day of the month.
(2) To find the hour of the day. Having set the bead, which slides on the thread, to the sun's place in the ecliptic, obscrve she sun's altitude by the quadrant; then if the bead be laid over the same in a limb, it will fall upon the hour required. On the contrary, laying the bead on a given bour, having first rectified or set it to the sun's place, the degree cut by the thread on the limb gives the altitude. - The bead may be rectified otherwise, by bringing the thread to the day of the month, and the bearl to the hour-line of 12 .
(3) To find the sun's declination from his place given : and the contrary. Bring the bead to the sun's place in the ecliptic, and move the thread to the line of declination ह., so shall the bead cut the degree of declination required. On the contrary, the bead being adjusted ta a given declination, and the thread noved to the ecliptic, it will cut the sun's place.
(4) The sun's place being given, to find the right ascension; or the contrary. Lay the thread on the sun's place in the ecliptic, and the degree it cuts on the limtb is the right ascension sought. And ihe converse.
(5) The sun's altitude being given, to find his azimuth; and the contrary. Rectily the leead for the time, as in the second article, and observe the sun's altitude; bring the thread to the cotuplement of that altitude; then the bead will give the aximuth sought, among the azi-muth-lines.
9. Hadleg's Quadrant, (fig.7, pl. 29) so called from its inventor John Hadley, esq. is now universally used as the best of any for nautical and other ubservations. It seems the first idea of this excellent iustrument was suggested by Dr. Hooke ; for Dr. Sprat, in his Hlistory of the Royal Society, pa. 246, mentions the invention of a new instrument for taking angles by reflection, by which means the sycat once sees the two objects both as touching the same point, though distant alinost to a semicircle; which is of great use for making exact observations at sea. This instrument is described and illastrated by a figure in Hooke's Posthumuus Works, pa. 503. But as it admitted of only one reflection, it would not answer the purpose. The matter however was at last effected by sir lame Newton, who communicated to Dr. Halley a paper of his own writing, containing the description of an instrument with iwo retlections, which soon alter the dector's death was found among his papers by Mr. Jones, by whom it was communicated to the Royal Society, and it was published in the Philos. Trans. for the
year 17+2. How it happened that Dr. Halley never mentioned this in his lifetime, is difficult to accoum for ; more especially as Mr. Hadley had described, in the Transac. for 1731, his instrument, which is constructed on the vame principles. Mr. Hadley, who was well acquainted with Sir Isaac Newton, might have beard him say, that Dr. Hooke's proposal could be effected by means of a double reflection; and perhaps in consequence of this hint, he might apply bimself, without any previous knowledge of what Newton had actually done, to the construction of his instrument. Mr. Godifrey too, of Pennsylvania, had recourse to a similar expedient; for which reason some gentlemen of that colony have ascribed the invention of this excellent instrument to him. The truth may probably be, that each of these geutlemen discovered the method independent of one another. Ses Trans, of the American Society, vol. 1, pa. 21 Appendix.

This instrument consists of the following particulars: 1. An octant, or the sith part of a circle, ABC. 2. An index D_{2} 3. The speculuin E. 4. Two horizontal glasses, F, G. 5. Two screens, k and k. 6. Two sight-vanes, it and I . -The octant consists of two radii, AB, AC, strengtheued by the braces L., M, and the arch BC ; which, though containing only 43°, is nevertheless divided into 90 primary divisions, each of which stands for degrees, and are numbered $0,10,20,30, \$ c$, to 90 ; beginning at each end of the arels for the convrnience of numbering torith ways, either for alsitucles or zenith distances: ala each degree is subtivided inter minutes, by means of a vernier. But the number of these divisions varies with the size of the instrument.

The index 1 , is a flat bar, moveable about the centre of the instrument; and that part of it which slides over the graduated asth, BC, is open in the middle, with Vernier's scale on the lower part of it; and underneath is a screw, serving to fasten the index against any division.

The speculum E is a piece of flat glass, quicksilvered on one side, set in a bruss box, and placed perpendicular to the plaue of the insirument, the middle part of the former coinciding with the centre of the latter: und because the speculum is fixed to the index, the position of it will be alisered by the moving of the index atong the arch. The rays of an observed object are received on the xpeculum, anil from thence riflectell on one of the horizon glasses, Y or G ; which are two small pieces of look-ing-glass placed on one of the limbs, their faces being turned obliquely to the speculum, from which they receive the rellected rays of objects. The glass r has only its lower part silvered, and set in brass-work; the upper part being left transparent to view the horizon. The glass a has in its middte a transparent slit, through wbich the horizon is to be seen. And because the warping of the materials, and other accidents, may distend them from their true situation, there are three screws passing through their feet, by which they may be easily replaced.

The screens are two pieces of coloured glass, set itt two square brass frames \mathbf{K}, \mathbf{k}, which serve as screens to take off the glare of the sun's rays, which would otherwise be too strong for the eye; the one is tinged much deeper than the other; as they both move on the saine centre, they may be both or either of thein used: in the situation they have in the figure, they serve for the hori-zon-glass r; but when they are wanted for the herizonglass 0 , they must be taken from their present situation, and placed ou the quadrant above 0 .

The sight-vanes are two pins, H and 1 , standing perpendicularly to the plase of the instrument: that at n having a bole in it, opposite to the transparent slit in the borizon-glass G ; the wther, at I , has two boles ill it, the one opposite to the midelle of the transpurint part of the horizon-glass F , and the other rather lower than the quick-silvered part: this vane has a piece of brass on the back of it, which moves round a centre, and serves to cover citlier of the holes.

Of the Observations.- Thacre are two kinds of observa. tions to be made with this instrument: the one is when the bach of the observer is turned tostards the object, and therefore called the back ubservation; the other when his face is turned towards the object, which is called the foreobservation.

To Rectify the Instrument for the Fore-observation.Slacken the screw in the middle of the bandle behind the giass V ; and bring the index close to the button A; hold the instrument in a vertical position, with the arch downwards; look through the right-hand bule in the vane 1 , and through the transparent part of the glass y, for the horizott; and if it lie it the tame right line with the image of the horizon seen on the silvered part, the glass F is rightly adjusted; but if the two horizontal lines disagree, turn the screw which is at the end of the handle backward or forward, till thrse lines coincide; then fasten the middle screw of the handle, and the glass is rightly adjusted,

To take the Sar's Altitude by the Fore-obsersation,Having fixed the screens above the horizon-glass $F_{\text {, }}$, and suited them proportionally to the strength of the sun's rays, turn your face towards the sun, holding the instrument with your right hand, by the braces 2 and m , in a vertical position, with the arch downward; place your eye clove to the right-hand hole in the vane 1 , and view the borizon through the transparent part of the horizonglass F, at the same time moving the index 15 with the left hand, till the reflex solar spot coincides with the line of the horizon; then the degrees counted from c, or that end next your boily, will give the sun's altitude at that time, observing to auld or subtract 16 minutes according as the upper or lower edge of the sun's reflex image is made use of.

But to get the sun's meridian altitude, being what is wanted for finding the lutitule; the ebservations must be continued; and as the sun approaches the meridian, the index D must be continually moved towards B , to maintain the colacidence between the rellex solar spot and the horizon; and consequently as long as this motion can maintain the same coincidence, the observation must becontinued, till the sun has reached the meridian, ald begins to descend, when the coincidence will require a retrograde inotion of the index, or towards c; then the obvervation is finished, and the degrees counted as before will give the sun's meridian altitude, or those from B will give the zenith distance; observing to add the semi-diameter, or 16, when his lower edge is brought to the horiznn; or to subtract 16, when the horizun and upper edge coincide.

To take the Altitude of a Star by the Foreobservation.Through the vane t, and the transparent slit in the glass 6 , look directly to the star; and at the same time move the index, till the image of the horizon hebind you, beeing reflected by the great speculum, be sen in the sil.
vered part of 0 , and meet the star; then will the index show the degrees of the star's altitule.

To Rectufy the Instrument for the Back-obsersetion.Slacken the screw in the middle of the handle, behind the glass c ; turn the button h on one side, and bring the index as many degrees before 0 as is equal to double the dip of the horizon at your height above the water; hold the instrument vertical, with the arch downward; look through the loole of the vane 11 ; and if the horizon, seen through the transparent slit itt the glass G, coincide with the image of the borizon seen in the silverell part of the same glass, then the glass o is in its proper pusition; but if not, set it by the handle, and fasten the screw as before.

To take the Sinn's Altitude by the Back-obseroation.Put the stem of the screens, K, K, into the hole r, and in proportion to the strength or fuintness of the sun's rays, let either one or both or neither of the frames of those glasses be turned close to the face of the limb; bold the instrument in a vertical position, with the arch downward, by the braces L aud M , with the left hand; then turn your back to the sun, and put one eye close to the hole in the vane n, observing the horizon through the transparent sht in the horizon glass 6°; with the right hand move the index p , till the reflected innge of the sun be seen in the silvered part of the glass 0 , and in a right line with the horizon; swing your body to and fro, and if the observation be well made, the sun's image will be observed to brush the horizon, and the degrees reckoned from c, or that part of the arch furthest from your body, will give the sun's mltitude at the time of observation; observing to add 16^{\prime}, for the sun's semidiameter, if the sun's upper edge be used, or subtract the same for the lower etige.

The directions just given, for taking alcitudes at sea, would be sufficient, but for two corrections that are necessary to be made before the altitude can be accurately determined, vix, one on account of the observer's eye being raised above the level of the sea, and the other on account of the refraction of the atroosphere, especially in small altitudes. The following tables show the corrections to be made on both these accounts.

TABLE 1. Dip of the Hutiman of the Sea.		TABLE II. Refractions of she Stars \&e in Altiturle.			
Height of the Evr.	Dip off the Ho rizen.	Appar. Altitude in Deg.	Refracrion.	Appar. Alriude. in Deq.	Refraction.
Fel. 1	$0^{*} 57^{\prime \prime}$	0°	$33^{\prime \prime} 0^{\prime \prime}$	11°	$4^{\prime} 47^{\prime \prime}$
2	121	4	503.5	12	423
3	139	$\frac{1}{4}$	2822	15	330
5	28	,	24.99	20	235
10	31	2	1835	25	22
15	342	3	1436	30	138
90	416	4	1151	35	121
23	$4+6$	5	954	40	18
30	314	6	899	45	0.57
35	539	7	720	50	048
40	$6 \quad 2$	8	629	60	033
45	624	9	548	70	021
50	6.44	10	515	80	010

General Rules for these Corrections.

1. In the fure-observations, add the sum of both corrections to the observed zenili distance, for the true zenith distance: or subtract the said sum from the observed altitude, for the true one. 2. In the back-observation, add the dip and subtract the refraction for altitudes; and for zenith distances, do the conirary, viz, subtract the dip, and add the refraction.

Example. By a back-observation, the altitude of the sun's lower edge was found ly Hadley's quadrant to be $25^{\circ} 12^{\prime}$; the cye bcing sofeet above the horizon. By the tables the dip on 30 feet is $5^{\prime} 14^{\prime \prime}$, and the refraction on $25^{\circ} 12^{\prime}$ is $2^{\prime} \mathbf{1}^{\prime \prime}$. Henco

Appar. alt, lower limb	25°		
Sun's semidiametcr, sub.	0	$1{ }^{1}$	0
Appar, alt. of centre	24	50	0
Dip. of horizon, ald	0	5	14
	23	1	14
Refraction, subtract	0	2	1
True alt. of centic	26	59	13

In the case of the moon, busides the true corrections above, another is to be made for her parallaxes. But for all these particulars, see the Requisite Tables for the Nautical Almanac, also Robertson's Navigation, vol. 2, pa. 340 \&c, edit. 1780.
10. Horodictical Quadrant, a pretty commodious instrument, which is so called from its use in telling the hour of the day. Its construction is as follows. From the centre of the quadrant c, (fig. 5, pl. 29), whose limb $A B$ is divided into 90°, describe seven concentric circles at any intervals; and to these add the signs of the zodiac, in the order represented in the figure. Then, applying a ruler to the centre \mathbf{c} and the limb AB, mark upon the several parallels the degrees corresponding to the altitude of the sun, when in them, for the given hours; connect the points belonging to the same bour with a curve line, to which add the number of the hour. To the radius ca fit a couple of sights, and to the centre of the quadrant c tie a thread with a plummet, and on the thread a bead to slide.
11. Sinical Quadrant, is one of tome use in Navigation. It consists of sceveral concentric quadrantal arches, divided into 8 equal parss by means of radii, with parallel right lines crossing each other at right angles. Now any one of the arclies may represent a quadrant of any great circle of the sphere, but is chiefly used for the horizon or meridian. The chief use of the sinical quadrant, is to form upon it triangles similar to those made by a ship's way with the meridians and paraliels; the sides of which triangles are measured by the equal intervals between the concentric quadrants and the lines x and $s, ~ e$ and $w: ~ e v e r y ~ 5 t h ~ l i n e ~$ and arch being made derper than the rest. Now suppose a ship has sailed 150 leagues north-east-by-north, or making an angle of $33^{\circ} 45^{\prime}$ with the north part of the meridian: liere are given the course and distance sailed, by which a triangle may be formed on the instrument similar to that made by the ship's course; and bence the unknown parts of the triangle may be found.

Sutton's Quadrant. Sec Colling'i Quadrant.
12. Quaduantr of Altitude, (6g. 9, pl. 29) is an appendix to the artificial globe, consisting of a thin slip of brass, the length of a quarter part of one of the great
circles of the globe, and graduated. At the end, where the division terminates, is a nut riveted on, and furnished with a screw, by means of which the instrument is fitted on the meridian, and moveable round upon the rivet to all points of the horizon, ns represented in the figure referred to. Its use is to serve as a scale in measuring altitudes, amplitudes, azimuths, \&c,

QUADRANTAL Triangle, is a spherical triangle, which has one side equal to a quadrant or quarter part of a circle.

QUADRAT, called also Geometrical Square, and Line of Shadous: it is often an additional member on the face of Gunter's and Sutton's quadrants; and is chiefly useful in taking heights or depths. See my Mensuration, the chap. on altimetry and longimetry, or beights-and-distances.

QUADRATIC Equations, in Algebra, are those in which the unknown quantity is of two dimensions, or raised to the 2d power. Quadratic equations are either simple, or affected, that is compound.

A Simple Quadeatic equation, is that which contains the 2d power oully of the unknown quantity, without any other power of it: as $x^{4}=25$, or $y^{4}=a b$. And in this case, the value of the unknown quantity is found by barely extracting the square root on both sides of the equation: thus, in the equations above, it will be $x=$ ± 5, and $y= \pm \sqrt{ } a b$; where the sine of the root of the known quantity is to be taken either plus or minus, for cither of these may be considered as the sign of the value of the root x, since either of them, when squared, raake the same square, $(+3)^{2}=25$, and $(-5)^{2}=25$ also; and hence the root of every quadratic or square, has iwo values.

Compound or affected Quadratica, are those which contain both the 1st and 2d powers of the unknown quantity: as $x^{2}+a x=b$, or $x^{\text {th }}-a x^{n}= \pm b$, where n may be of any value, and then x^{n} is to be considered as the root or unknown quantity.--Affected quadratics are usually distiuguished into three forms, according to tho signs of the terms of the equation :

$$
\begin{aligned}
\text { Thus, } 1 \text { st form, } x^{2}+a x & =b, \\
2 \mathrm{~d} \text { form, } x^{4}-a x & =b, \\
3 \mathrm{~d} \text { form, } x^{2}-a x & =-b .
\end{aligned}
$$

But the method of extracting the root, or finding the value of the unknown quantity x, is the same in all of them. And thet method is usually performed by what is called completing the square, which is done by taking half the coefficient of the 2 d term or single power of the unknown quantity, then squariag it, and adding that square to hoth sides of the equation, which makes the unknown side a complete square. Thus, in the equation $x^{2}+a x=b$, the coefficient of the 2d term being a, its half is $\frac{1}{2} a$, the square of which is $\frac{1}{4} a^{2}$, and this added to both sides of equation, it becomes $x^{3}+a x+\frac{1}{4} a^{3}+=\frac{1}{4} a^{2} b$, the former side of which is now a complete square, and the scond a known quantity.
The square being thus completed, its root is next to be extracted; in order to which, it is to be observed that the root on the unknown side consists of two terms, the one of which is always s the square root of the first term of the equation, and the other part is $\frac{1}{2} a$ or half the cuefficient of the second term : thus then the root of $x^{2}+a x+\frac{1}{4} a^{4}$ the first side of the completed equation being $x+\frac{i}{i} a$, and the root of the other side $\frac{1}{4} a^{2}+b$ being $\pm \sqrt{ }\left(\frac{1}{8} a^{4}+b\right)$,

Q UA
QU
The most distinguished of these quadratices are, those of Dinostrates and of Tschirnhausen for the circle, and that of Mr. Perks for the hyperbola.

Quadratrix of Dimostrates, is a curve A and by which the quadrature of the circle is effected, ihough not geometrically, but only mechanically. It is so called from its inventor Dinostrates; and the genesis or description of which is as follows: Divide the quadrantal arc axa into any number of equal parts, in the
 points $\mathrm{s}, n, n, \alpha c$; and also the radius Ac into the same number of parts at the points $p, p, p, \& c$. To the points $\mathrm{N}, n, n, \& c$, draw the radii $\mathrm{cx}, \mathrm{cn}, \& \& \mathrm{c}$; and from the points \mathbf{P}, μ, $\& \mathrm{C}$, the parallels to CB, as $\mathrm{PM}, \mathrm{Pm}, \mathrm{d} \mathbf{C}$: then through all the points of intersection draw the curve $\triangle \mathrm{MmD}$, and it will be the quadratrix of Dinostrates.

Or the same curve muy be conceived to be described by a continued motion, by concewing a radius ex to revolve with a uniform motion about the centre c , from the position ac to the position BC ; at the same time a ruter PM moves uniformly parallel towards ca; then the two uniform motions being ro repulated thas the radius and the roler shall arrive at the provition BC at the same time; for thus the continual intersection $\mathrm{m}, m, \& \mathrm{c}$, of the revolving radius, and moving ruler, will describe the quadratrix of Dinostrates. Hence,

1. For the Eyuation of the 2uadratrix: Since, from the relation of the uniform motions, it is always, AB:AN : $A C: A P$; therefore if $A B=a, A C=r, A P=x$, and $\mathrm{AN}=z$, it will be $a: z:: r: x$, or $a x=r z$, which is the equation of the curce.

Or, if y denote the sine $\mathbf{\Sigma E}$ of the arc an, and $y=\mathrm{PN}$ the ordinate of the curve $A M$, its absciss AP being x; then, by simutar triangles, CE : CP : : EK : PM , that is, $\left(r^{r} \sqrt{ }\right.$ $\left.s^{1}\right): r-x:: s: y$, and hence $y \sqrt{ }\left(r^{2}-s^{2}\right)=(r-x) s$, the equation of the curve. And when the relation between $A B$ and $A N$ is given, interns of that between $A C$ and AP, bence will be expressed the relation between the sine an and the radius CB , or a will be expressed in tetms of r and x; and consequently, the equation of the curve will be expressed in terms of r, x, and y only.
2. The base of the quadratrix CD is a third proportional to the quadrant A A und the radius $A C$ or $C B ;$ i. C. CD: CB $:: C B: A B$. Hence the rectification and quadrature of the circle.
3. A quadrantal are by described with the centre c and radius CD, will be equal in length to the radius CA or CB.
4. cor being a quadrant inseribed in the quadratrix $A M D$, if the base CD be $=1$, and the circular arc $\mathrm{dc}=x_{\text {; }}$; then is the area CPMD $=x-\frac{1}{9} x^{2}-$ $\frac{1}{225} x^{5}-\frac{2}{6615} x^{7}$ \&c. Sce Quadrature. Also Emerson's Curse Lines, pa. 16.

Quapmataix of Techimhausen, is a transcendental curve $A M \mathrm{mB}$ by which the quadrature of the circle is also effected. This was invented by M. Tschirnhausen, and its genesis, in imitation of that of Dinostrates, is as follows: Divide the quadrant $A N B$, and the radius $A C$,
each into equal parts, as before; and from the points $P, p, \& e$, draw the lines PM, pm, Nc, parallel to $\mathrm{Cs} ;$ also from the points $\mathrm{x}, n, \& \mathrm{C}$, the lines. Nm, nm, \&ce, parallel to the other radius $A C$; so shall all the intersections $\mathrm{N}, \mathrm{m}, \& \mathrm{c}$, be in the curve of the quadratrix A Mmb.

Noxs for the Equation of this 2uadratrix; it is, as befor ${ }^{\text {en }}$, $A B: A N:: A C: A P$, or $a: z:: r: x$ or $a x=r=$.

Or, because here $y=\mathrm{pm}=\mathrm{sx}=\mathrm{s}$; therefore s, as before, expressed in terms of r and x, gives the equation of this quadratrix in terms of r, x, and y, and that in a simpler form than the other. Thus, from the nature of the circle and the construction of the quadratrix, it is
 where A, B, c, \&c, are the preceding terms; which is the equation of the quadratrix of Tschirnlausen.

By either quadratrix, it is evident that an arc or ungle is easily divided into three, or any other number of equal parts; viz, by dividing the corresponding radius, or part of it, into the same number of equal parts: for an is always the same part of $A B$, that $A P$ is of $A C$.

QUADRATURE, in Astronomy, that aspect or position of the toon when she is 90^{2} distant from the sun. Or, the quadratures or quarters are the two middle points of the moon's orbit between the points of conjunction and opposition, viz, the points of the 1st and 3d quarters; at which times the moon's face shows half full, being dichotomized or bisected.
The moon's orbit is more convex in the quadratures than in the syzygirs, and the greater axis of her orhit passes through the quadratures, at which points also she is most distant from the earth.-In the q quadratures, and within 35° of them, the apses of the moon go back wards, or move in antecedentia ; but in the syzygies the contrary. When the nodes are in the quadratures, the inclination of the moon's orbit is greatest, but least when they are in the syzygies.

Quadrature Lines, or Lines of Quadrature, are two lines often placed un Gunter's sector. They are marked with the letter Q, and the figures 5, 6, 7, 8, 9, 10 ; of which 9 denotes the side of a square, and the figures denote the sides of polygons of $5,6,7, \& c$ sides. Also s denotes the semidiameter of a circle, and 90 a line equal to the quadrant or 90° in circumference.

Quaduature, in Geometry, is the squaring of a figure, or reducing it to an equal square, or finding a square equal to the area of $i t$. The quadrature of rectilineal figures falls under common geometry, or mensuration; as amounting to no more than the finding their areas, or superficies; which are in effect their squares: which was fully effected by Euclid.

The Quadanture of Curves, that is, the measuring of their areas, or the finding a rectilineal space equal to a proposed curvilineal one, is a matter of much deeper speculation; and makes a part of the sublime or higher geometry. The lunes of Hypocrates are the first curves that were squared, as far as we know. The circle was attempted by Euclid and others before him: be showed indeed the proportion of one circle to another, and gave a good method of approximatigg to the area of the circle; by de-

scribing a polygon between any two concentric circles, however nuar their circumferences might be to each other. At that time the conic sections were admitted into geometry, and Archimedes, periectly, for the first time, squared the parabola, and be determined the relations of spheres, spheruids, and conoids, to cylinders and cones; und by pursuing the method of exhaustions, or by means of in:seribed and circumscribed polygons, he approximated to the periphery and area of the crecle; showing that the diancter is to the circumference nearly as 7 to 22, and the area of the circle to the square of the diameter as 11 to 14 nearly. Archimedes also determined the relation between the circle and ellipse, as will as that of their similar parts: and it is probable also that he attempted the hyperbola ; but it is not likely that he met with any success, since approximations to its area are all that can be givell by the various methods that have since been invented. Besides these figures, he left a trentise on a spiral curve; in which he determined the relation of its area to that of the circumscribed circle; atso the relation ot their sectors.

Several other eminent men among the ancients wrote upon this subject, both before and after Euclid and Archimedes ; but their attempts were usually confined to particular parts of it, and made according to methods not essentially different from theirs. Among these are to be reckoned Thales, Anaxagorns, Pythagoras, Bryson, Antiphon, Hippocrates of Cbios, Plato, Apollonius, Philo, and Pholemy; most of whom wrote upon the quadrature of the circle; and those after Archimedes, by his method, usually extended the approximation to a further degree of accuracy.

Many of the moderns have also prosecuted the same problem of the quadrature of the circle, after the same methods, to still greater lengths; such are Vieta, and Metius ; whose ratio between the diameter and the circumference, is that of 113 to 355 , which is within about
$\frac{3}{3}$ of the true ratio; but above all, I.udolph van Ceulen, or Culogne, who, with an amazing degrec of industry and patience, by the same methods, extended the ratio to 36 places of figures, making the ratio to be that of 1 to $3 \cdot 14159,26533,89793,23846,26433,83279,50288$ + or 9 -

Of this labour, which was rather the exercise of patience than his ingenuity, he was so proud, that, after the example of the profound geometrician of Syracuse, with respect to the sphere and cylinder, he requested it might be inscribed on his tombstone, and it is said that this monument of his patient industry is still to be serth in one of the towns of Flanders. Willebrode Snell, the editor of Van Cculen, also made serveral additions to what had been previously done on this subject. Ile discovered and published in his work, entitled Cyclometrix, the method of expressing, by an approximate proportion, and a very simple calculation, the magnitude of any are; and he made use of this method in examining the calculation of Van Ceulen, which he found to be correct. By this method he also calculated a series of both inscribed and circumseribed polygons, beginuing with the decagon, and always doubling the number of sides, until the number was 5242880 ; and ranged the results of his computations in a table, for the purpose of detecting the falsity of any pretended quadrature of the circle. The cele-
brated Huygens, when very young, enriched this measure of the circle with several new theorems; and successfully combated the protended quatrature of Gregory St. Vincent, a Jesuit of the Netherlands, who announced his discovery as only wanting a few calculations to render it complete, but which be dexterously forgot to perform. James Gregory and Leibnitz, about the same time, discovered, independent of each other, a very simple series for expressing the length of an arc of a circle, and which was first given in a letter of the 15th of February 1671, from Gregory to Mr. Collins. If a be an arc, its tatagent, and r the radius, then
$a=t \times\left(1-\frac{t^{2}}{3 r^{2}}+\frac{r^{2}}{3 r^{2}}-\frac{f}{7 r^{2}}+\frac{p}{9 r^{2}}-\& \mathrm{c}\right)$. But
the are must not be assumed greater than half a quadrant, otherwise the series will nut converge. Dr. Halley also discovered a simple series for expressing the arc of 30°; which is, $a=\sqrt{ } 1 \times\left(1-\frac{1}{3.3}+\frac{1}{3.3^{2}}-\frac{1}{7.3^{2}}+\frac{1}{9.3 .}-8 c\right)$; and which converges very quickly, and being multiplied by 12 , gives the whole circumference, Mr. Sharp, an Eulglish mathematician, in 1699 , undertook the quadrature of the circle for his own private amusement, and deduced it from twa different series, by which the truth of it was proved to 72 places of figures. But Mr. John Machin, professor of astronomy in Gresham College, discovered another very expeditious series for expressing the length of the circumference of a circle, depending on the differcnces of arcs, the tangents of which have certain relations to each other, and thus extended Mr. Sharp's number to 100 places of figures. And M. De Lagny, a French mathematician, continued this computation to 128 places of figures ; on which Montucla has obwerved, that, " if we suppose a circle, the diameter of which is a thouand millions of times greater than the distaice between the sun and the earth, the crror in the circumference would be a thousand millions of times less than the thickness of a hair." Nay, it is even possible to surpass this, and Euler has pointed out the method of accomplishing it, in the Transactions of the Imperial Academy of Sciences nt Pitersburg; but any thing farther than what has been done, could only be considered as superfluous labour. I have also given several series for the same purpose, which converge much easier and quicker than any others; some of wllich may be seen in my Mensuration, and more especially in my 'Tracts, vol. 1, pas 268.

While these, and other mathernaticians, were extcuding the approximative methods for finding the circumference and area of the circle, some trere endeavouring to obtain, and even assertiug that they had obtained, their true measures ; at the same time others were denying the possibility of exhibiting the true ratio. Mr. James Gregory undertook, in 1668 , to demonstrate the absolute imposisibility of the quadrature of the circle. Tbis he did by a very ingenious method of reasoning, which might deserve to be better examined. However it did not meet with the approbution of Mr. Huygens; which produced a very warm dispute between these two geometricians. Mr. Gregory gave also some ingenious methods for approaching near to the ineasure of the circle, and event to that of the hyperboln. Dr. Barrow and several other persons have also attempted the demonstration of the same impossibility, with various degrees of suc-

Vol. II.
cess. Of this latter opinion was the celibrated 1r. Barrow, who in his mathematical lecture, observes, that the radius and circumference of a circle are lines of such a nature as to be not only incommensurablé in length and square, but also in cule, biquadrate, and all bigher powers to infinity. But, notwithstanding the attempts of Dr. Barrow, uad many other celebrated mathematicians, to prove the absolute impossibility of resolving this intercsting problem, they bave been as unsuccessful on this head as those who have endeavoured to find its true quadrature. Legendre, however, in the fourth note prefixed to his Geometry, has proved that the ratio of the circumference to the diameter, and its square, are irrational numbers. Besides the efforts above enumerated, which were made principally hy men of great talents, many other vain attempts at squaring the circle have been made by men of less acquirements than vanity, who have endeavoured to persuade us that they had discovered the true quadrature of the circle, which so many able mathematicians had so loug sought in vain; and whose pretensions, like falling stars, attracted notice for a moment, and then, like them, sank into eternal oblivion. The first among the moderns who pretended to have solved this problem, was Cardinal de Cusa. He rolled a cylinder over a plane, till the point which first was in contact with it touched it again; and then, hy a train of reasoning, wholly destitute of geometrical precision, be endeavoured to determine the length of a line thus described; but he was easily refuted by Regiomontanus about 1465. Near a century sfter, Orontius Finaus attracted notice by his parallogisms on this subject; but the fallacy of his reasoning was clearly shown by Prter Nunez, and J. Borelli, The celebrated Juseph Scaliger also ranks under this class; who haying no great esteem for geometricians, be endenvoured to show thern his superiority, in undertaking, hy way of amusement, the quadrature of the circle, and seriously imagined that he had obtained it; but Vieta, Clavius, and others, found no difficulty in refuting him. Iongoinontanus, the celebrated Danish astronomer, was also of the number who asserted he had obtained a finite ratio between the diameter and circumference, which was exactly 1 to $3 \cdot 14185$." And our countryman, Mr. Hobbes, also rendered himself remarkable as a member of this class, but his pretensions were refuted by Dr. Wallis. Oliver de Serres weighed a circle; and a triangle equal to the equilateral inscribed triangle, and believed that the one was exactly double of the others; but. a very little knowledge of the subject would have been sufficient to bave shown him, that the double of this triangle is the hexagon inscribed in the same circle. It would be tedious and uninteresting to go through the bitory of all these pretended quadratures, the authors of which would at this day liave been totally unknown, had they not erected a monument to their own ignorance and vanity, by attemipting that which they were totally unacquainted with. We shall, however, for the amusement of the reader, fornish him with a few more anecdotes on thls head, in order to show to what a degree of enthusiasm some have suffered themselves to be carried in their erroneous specalations. One Mathi** lon, who from being a manufacturer of stuts at Lyons, commenced geometer, claimed the merit of having solved this problem, and deposited 1000 crowns as a reward for the person who should prove that his solution was not
correct; which was done by M. Nicole, a member of the French Academy of Sciences, who gave the reward to the Geneval Hespatal at Lyons; and a similar circumstance happened some tume afterwards: a Frenchman anmounced the quadralure of the carcle, and chatlenged the whole world to refute him; and deposited 10,000 livres for uny person who should do it. 'This grand problem he reduced to the mechanical process of divering a circle into quadrants, and then turnagg these with thear angles outwards, so as to form a square, which be asserted to be equal to the circle. Three persons claimed the reward, and the cause was tried at the Chatelet of Paris; but the judges thought a person's fortune ought not to be diminished on sccount of the error of his judgmeat, unless they were prejudicisl to society: whereon the king decreed that the propusal should be void : and the Academy of Sciences recominended him to study the clements of geonetry; but still he fancied that future ages would blush for the injustice that was done him. M. Ie Robberges de Vausenville, in a work, entitled, "Consultation sur la Quadrature du Cercle," inquires of a mathematician if the quadrature of the circle would net be obtained if sny means were devised for finding the centre of gravity of a sector of a circle in coramon parts of the radius and the circumference of the sarae curcle; the meaning of this last clause is not clear, but it may be observed that when this can the done without the are being one of the terms, the business will be accom: plished.

The preceding examples, one might suppose, would be sufficient for deterring men from tarther pursting this bopeless speculation; yet such is the weakness and vanity of some pretenders to science, that hopes are stull entertained by thero of obtaining the solution within very narsow limits. We bave an instance of this infatuation in Signor Rossi, an Italian attorney, who visited Londun about five years ago, to claim the reward of his ingenuity in squaring the circle ; but, unfortunately, it rested upon the supposition that the side of a square is to its diagonal as 5 to 7 , or in other words that 49 is equal to 30 ; he was, notwithstanding, very much dissatisfied at not receiving the reward he fancied himself entitled to, and returned with a perfect conviction that the English had not done him justice. See ma Translation of Montucla's Recreations, vol. 1, pa. 299, \&c, 2d edition.

But though a definite quadrature of the whole circle was never yet given, nor of any aliquot part of it ; yet certain other portions of it have been squared. The first partial quadrature was given by Hippocrates of Chios; who squared a portion called, from its figure, the Lune, or Lunule; but this quadrature has no dependence on that of the circle. And some modern geometricians have found the quadrature of any portion of the lunc taken at pleasure, independently of the quadrature of the circle ; though still aubject to a certain restriction, which prevents the quadrature from being perfect, and what the geometricians call absolute and indefinite. See Lume. And for the quadrature of the different kinds of curves, see their meveral particular names.

Quadratures by Pluxions. - The mosi general method of quadratures yet discovered, is that of Newton, by ineans of fuxions, and is as follows, AC being any curve to be squared, $A B$ an absciss, and BC an ordinate perpendicular to it , also be another ordinate inde-
finitely uear to the former. Putting $A B=x$, and $B C=y$; theu is $\mathrm{b} b=x$ the fluxim of the absciss, and $y x=c b$ the flaxion of the area ABC sought. Now let the value of the ordinate y be found in terms of
 the absciss x, or in a function of the absciss, and let that function be calted x , that is $\mathrm{y}=\mathrm{x}$; then substituting x fur y in $y x$, gives $x \dot{x}$ the fluxion of the area; and the tluent of this, being taken, gives the area or quadrature of $A B C$ as required, for any curve, whateser its nature may be.
Fir. Suppose, for example, ac to be a common parabola; then its equatiun is $p z=y^{2}$, where p is the parameter; which gives $y=\sqrt{ } p r$, the value of y in a function of x, and is what is catled x above; bence the a $y \dot{x}=\dot{x} \sqrt{p r}=p^{\frac{1}{2}} x^{\frac{1}{2}} \dot{x}$ is the fluxion of the area ; and the flumt of this is $\frac{i^{\frac{1}{2}} p^{\frac{1}{2}}}{\frac{3}{2}}=\frac{3}{3} x \sqrt{p x}=\frac{3}{3} x y=\frac{2}{3}$ of the circumseribing rectangle 8 D ; which therelore is the quadrature of the parabola.

Again, if ac be a circle whose diameter is d; then its equation is $y^{2}=d x-x^{2}$, which gives $y=\sqrt{ }\left(d x-x^{2}\right)$, and the tluxion of the area $y \dot{x}=i \sqrt{ }\left(d x-x^{4}\right)$. But as the fluent of this cannot be found in finite terms, the quantiyy $\mathcal{V}\left(d x-x^{2}\right)$ is developed or throwit into a senes, and then the fluxion of the area is $y \dot{x}=x_{v}{ }^{\prime}\left(d x-x^{7}\right)$ $=\dot{x} \sqrt{ } d x \times\left(1-\frac{x}{2 d}-\frac{x^{n}}{2.0 d^{j}}-\frac{1.3 x^{3}}{2.4 .6 d^{2}} \& c\right)$; and the fluent of this gives $x \sqrt{ } d x \times$
$\left(\frac{2}{3}-\frac{1}{3} \cdot \frac{x}{4}-\frac{1}{4.7} \cdot \frac{x^{\prime}}{d^{2}}-\frac{1.3}{4.6 .9} \cdot \frac{x^{2}}{d^{2}} \& c\right)$ for the general expression of the area arc, Now when the space becones a semicircle, x beconess $=d$, and then the series abuve becones $d^{4}\left(\frac{2}{3}-\frac{1}{3}-\frac{1}{4.7}-\frac{1.3}{4.6 .9} \mathrm{dc}\right)$ for the area of the semicircle whose diameter is d.
In spirals CAR, or any curves referred to a centre C; putting $y=$ any radius $\mathbf{c n}, x=3 n$ the arc of a circle described about the centre c, at any distance $\mathrm{Cs}=a$, and cmr another ray indeffinitely near cer : then $\frac{1}{5} \mathrm{cN} . \mathrm{s} n=\frac{1}{2} a x=\mathrm{cx} n$, and by sim. fig. $\mathrm{CN}^{2}: \mathrm{CH}^{2}$ or $4^{2}: y^{2}:$: $\operatorname{c\times n}: \frac{y^{\prime} x}{2 a}=\mathrm{cer}$ the fluxion of the area described by the revolsing
 ray $\mathbf{c r}$; then the tluent of this, for
any particular case, will be the quadrature of the spiral. So if, for instance, it be Archimedes's spiral, in which x : y in a constant ratio, suppose as m: n, or my $=n r$, and $y^{2}=\frac{n^{\prime} x^{2}}{m^{*}}$; bence then CRr $=\frac{\frac{N}{}^{*} \dot{x}}{2 a}=\frac{n^{0} x^{\prime} x}{2 r m^{6}}$ the fluxion of the area; the fluent of which is $\frac{n^{2} s^{3}}{6 a n^{4}}=\frac{x y^{*}}{60}$, the general quadrature of the spiral of A rchimedes.

QUADRIBLE., Squarable.
QUADRILATERAL, or Quadrilaterar. Figure, is a figure comprehended by four ripht lines; and having consequently also four angles; for which reason it is otherwisp called a quadrangle. The general term yuadriateral comprebends these several particular apecies or figures, viz, the square, parallelogram, rectangle, rhombus, rhomboides, and crupezum. If the opposite sudes
be parallel, the quadrilateral is a parallelogram. If the parallelogram bave its angles right ones, it is a reetangle; if oblique, it is an oblique one. The rectangle hasing all its sides equal, becomes a square; and the oblique parallelogram baving all its sides cqual, is a rhombus, but if only the opposites be equal, it is a rhonibuides. All other forms of the quadrilateral, are trupeziutus, including all the irregular shapes of it.

The sum of all the four angles of any quadrilateral, is equal to 4 right angles. Also, the two opposite angles of a quadrilateral inseribed in a circle, taken thgesher, are equal to two rigbt angles. And in this case the rectangle of the two diagonals is equal to the sum of the two rectangles of the opprisite sides. For the properties of the particular species of quadrilaterals, see their respective names, Square. Rictasgle, Pahallelooram, Rhomsus, Hhomsoides, Thapexive, and Trapreoid.

QUADRIPARTITION, is the dividing by 4 , or into four equal parts.

QUADRUPLE, is four-fold, or something taken four times, or multiplied by 4.

QUALITY, denotes zenerally the property or affection of some being, by which it affects our senses in a certain way, \&c.

Senable Qualities are such as are the more immediate object of the senses: as figare, taste, colour, smell, hardness, \&c.

Occult Qualifies, among the ancients, were sueb as did not admit of a rational solution in their way.

Dr. Kicil demonstrates, that every quality which is propagated in orbem, such as light, heat, cold, odour, \&ce, has its efficacy or intensity either increased, or decreased, in a duplicate ratio of the distances from the centre of radiation inversely. Sio at double the distance from the earth's centre, or from a luminnus or hot body, the weight or light or heat, is but a sth part ; and at 3 times the distance, they are 9 times less, or a 9 th part, ice.

Sir Isaac Newton lays it down as one of the rules of philosophizing, that those qualities of bodies that are incapable of being intended and remitted, and which are found to obtain in all bodies on which experiment could ever be tried, are to be esteemed universal qualities of all bodies.

Quality of Curcature, in the bigher Geometry, is used to signify its form, as it is more or less inequable, or as it is varied more or less in its progress through diffesent parts of the curve. Newton's Method of Fluxions, pa. 75 : and Maclaurin's Fluxions, art. 369.

QUANTI'TY, denotes nny thing capable of estimation, or mensuration ; or which, being compared with another thing of the same kind, may be said to be either greater or less, equal or unequal to it. Mathematics is the doctrine or science of quantity.

Physical or Natural Quantity, is of two kinds: 1st, that which nature exbibits in matter, and its extension; and 2 dly , in the powers and properties of natural bodies ; as gravity, motion, light, heat, cold, density, \&kc. Quantity is popularly distinguished into continued and discrete.

Continued Quantity, is when the parts are connected together, and is commonly called magnitude; which is the object of geometry.

Discrete QUAMtitit, is when the parts, of which it
consists, exist distinctly, and unconnectesl; which makes what is called multitude or number, the ubject of aritlsmetic.
The netion of continued quantity, and its difference from discrese, appears to some without foundation. Mr. Machin cousiders all mathematical quantity, or that for which any symbol is put, as nothing eloe but number, with regard to some measure, which is considered as 1; for that we hnow nothing preciecly how moch any thing is, but by means of number. The notion of continued quantity, without rigard to some measure, is indistinct and confused; and inough sonse spacies of such quantery, considered pliysically, tiasy be described by motion, as lines by the motion of points, and surfaces by the motion of lines ; yet the mangnitudes, or mathematical quantities, are not made by the motion, but by numbering according to a meusure. Philor. Trans, wumb, 447, pia. 228.

Quantity of Action. Sce Action.
Quantity of Curoature at any point of a curve is determined by the circle of curvature at that puist, and is reciprocally proportiotul to the radius of curvature.

QUantitr of Matter in any bolly, is its measure arising from the joint consideration of its mapnitude and density, being expressed by, or proportional to the protduct of the two. So,
if x and m denote the magnitude of two bodies, and D and d their detisities;
then DM and $d m$ will be as their quantitics of matter.
The quantity of matter of u body is best discovered by its absolute weight, to which it is always proportionul, and by which it is measured.

Quantity of Mution, or the Monentum, of any body, is its measure arising from the joint consideration of its quantity, and the velocity with which it moves. So,
if q denote the quantisy of matter,
and v the velocity of any body ;
then q_{0} will be its quantity of motion.
Quantities, in Algebra, arc the expressions of indefnite numbers, that are usually represented by letters. Quantities are property the subject of algebra; which consists in the computation of such quantities.

Algebraic quantities are cither given and known, or else they are unknown and sought. The given or known quantities are usually represented by the first letters of the alphabet, as $a, b, c, d, c, \& c$, and the unknown or required quantities, by the last letters, as z, y, x, w, \&c. and also indeterminate, or such as may be assurned nt pleasure, by some of the middle letters, as m, n, p, \&c.

Again, algebraic quantitics are either positive or nega-tive.-A positive or affirmative quantity, is one that is to be added, and has the sign + or plus prefixed, or understood; as $a b$ or $+a b$. And a negative or privative quantity, is one that is to be subtracted, and has the sign or minus prefixed; as $-a b$.

QUAR'T, a measure of capacity, being the quarter or 4th part of some other measure. The Englisb quart is the sth part of the gullon, and contains two pints. The Roman quart, or quartarius, was the sth part of their congius. The French bad, besides their quart or pot of two pints, various other quarts, distinguished by the whole of which they are quarters ; as quart de muid, and quart de boisseau.
$2 \mathrm{~N}_{2}$

QUARTER, the 4th part of a whole, or one part of an integer, which is divided into four equal portions.

Quarter, in weights, is the 4 th part of the quintal, of hundred weight; and so contains 28 pounds.

Quarter is also a dry measure, containing of corn 8 bashels striked; and of coals the 4 th part of a chaldron.

Quarter, in Astronomy; the inoon's period, or lunation, is divided into 4 stages or quarlers, each containing between 7 and 8 days. The first quarter is from the new moon to the quadrature; the second is from thence to the full moon, and so on.

Quarter, in Navigation, is the quarter or sth part of a point, wind, or shumb; or of the distance between two points \&c. The quarter contains an arch of $2^{\circ} 48^{\prime}$ $45^{\prime \prime}$, being the 4 th part of $11^{\circ} 15^{\prime}$, which is one point.
Quarter Round, in Architecture, is a term used by the workmen for any projecting moulding, whose contour is a quarter of a circle, or nearly so.

QUARTILE, an aspect of the planets when they are at the distance of 3 signs or 90° from each other: and is denoted by the character \square.

QUEUE d'Aronde, or Suallou's Tail, in Fortification, is a detached or outwork, whose sides spread or open towards the campaign, or draw narrower and closer' towards the gorge. Of this kind are cither single or double tenailles, and some horn-works, whose sides are not parallel, but are narrow at the gorge, and open at the head, like the figure of a swallow's tail. On the contrary, when the sides are less than the gorge, the work is called contre Queue d'arontle.
Queue d'Aronde, in Carpentry, a method of jointing, called also dove-tailing.
QUICKSILVER, the same as Mercury ; which see.
QUINCUNX, in Astronomy, is that position, or aspect, of the planets, when distant from each other by ${ }^{3} \mathrm{~T}^{2}$ ths of the whole circle, or 5 signs out of the 12 , that is 150 degrees. The quincunx is marked Q, or $V c$.

QUINDE:CAGON, is a plane figure of 15 sides, and consequently the same number of angles. When those are all equal, it is a regular quindecagon, otherwise not. Euclid shows bow to inscribe this figure in a circle, prop.

16, lib. 4. And the side of a regular quindecagon, so inscribed, is equal in power to the half ditterence between the side of the equilateral tuiangle, and the side of the pentagon; and also the difference of the perpendiculan let fall on boith sides, taken together.
QUINQUAGESIMA.Sunday, is the same shroveSunday, and is so called as being about the 50th day before Easter, being indeed the 7 th Sunday before it. Anciently the term quinquagesima was used for Whitsunday, and for the 30 days between Enster and Whitxunday; but to distinguish this quinquagesima from that before Easter, it was called the paschal quinquagesima.

QUINQUEANGLED, or Quinqueangular, consisting of 5 angles.

QUINTAL, the weight of a hundred pounds, in most countries; but in England it is the hundred weight, or 112 pounds. Quintal was also formerly used for a weight of lead, iron, or other common metal, usually equal to a hundred pounds, at 6 score to the huudred.

QUINTILE, in Astronomy, an aspect of the planets when they are distant the 5th part of the zodiac, or 72 degrees; and is marked thus, c, or o.

QUINTUPLE, 5 times as much as another thing-
QUOIN, in Architecture, an angle or corner of stone or brick walls. When these sland out beyond the rest of the wall, their edges being chamierred off, they are called rustic quoins.

Quois, in Artillery, is a loose wedge of wood, which is put in below the breech of a cannon, to raise or depress it more or less.

QUOTIENT, in Arithmetic, is the result of the operation of division, or the number that arises by dividing the dividend by the divisor, showing bow often the latter is contained in the former. Thus the quotient of 12 divided by 3 is 4 ; which is usually thus disposed, or expressed, S) 12 (4 the quotient, or thus $12 \div 3=4$ the quotient, or thus $\frac{1 / 2}{3}$, like a vulgar fraction; all these nevaning the same thing.-In division, as the divisor is to the dividend, so is unity or 1 to the quotient ; thus $3: 12:: 1: 4$ is the quotient.

R.

R A D

Radiant Point, or Radiating Point, is any point from which rays proceed. Every radiant point diffuses innumerable rays in all directions: but those rays are only visible from which right lines can be drawn to the pupil of the eye; because the rays are all in right fines. All the rays proceeding from the same radiant continually diverge; but the crystalline collects or reunites them again.

RADIATION, is the casting or shonting forth of rays of light as from a centre--Every visible body is a radiating body; it being only by means of its rays that it affects the eye. - The surface of a radiating or visible body, may be conceived as consisting of radiapt points.

$R A D$

RADICAL Sign, in Algrbra, the sign or character denoting the root of a quantity; and is this, $\sqrt{ }$. So $\sqrt{ } 2$ is the square root of 2 , and $\sqrt[2]{2}$ is the cube root of 2, \&c.

KADIOMETER, a name which seme writers give to the radius astronomicus, or Jacob's staff. Sce ForeStapp.

RADIUS, iu Geometry, the semidiameter of a circle ; or a right line drawn from the centre to the circum-ference.-lt is implied in the definition of a circle, and it is apparent from its construction, that all the radii of the same circle are equal.-The radius is sometimes called, in trigonometry, the sinus totus, or whole sine.

Radives, in the Higher Goometry. Radius of the Evoluta, Radius Osculi, called also the Radius of comcavity, and the Radius of curvature, is the right line $\mathbf{c b}$, representing a thread, by whose evolusion from off the curve AC, upon which it was wound, the curve AB is formed. Or it is the radius of a circle having the same curvature, in a givell point of the curve at B , with that of the curve in that puint. Sce Corvatual and Evolute, where the method of
 finding this radius may be sern.

Radius dismomicus, an instrument usually called Jacub's staff, the Cross-staff, or Fore-staff.

Radius, in Mechanics, is applied to the spokes of a wheel; because issuing like rays from its centre.

Radies, in Optics. Sie Ray.
Radius Vector, is used for a right line drawn from the centre of force at any curve in which a body is supposed to thove by a centripetal force, to that pont of the curve where the borly is supproed to be. In the elliptical orbit of a planet, het $a=$ the greater semiaxis ; a $e=$ distunce from the centre to the for us, or $e=$ excentricity for the greater semiaxis $1,0=$ true anomaly, and $w=$ excentric anomaly; then the radius vector r is expressed by either of the following formula, $r=a(1+c \cos , u)$ or $r=\frac{a\left(1-r^{\circ}\right)}{1-t \cos \cdot}$.

RADIX, or Roof, is a certain finite expression or function, which, being evolved or expanded according to the rules proper to its form, produces a series. That finite expression, or radix, is also the value of the infinite series. So $\frac{1}{3}$ is the radix of $\cdot 3333 \& \mathrm{sc}$, because $\frac{1}{3}$ being evolved or expanded, by dividing 1 by 3 , gives the infinite series $\mathbf{3 3 3 3}$ \&cc. In like manner, the radix

$$
\begin{aligned}
& \text { of } 1-r+r^{2}-r^{2}+r^{4} \& c \text { is } \frac{1}{1+r^{2}} \text {, } \\
& \text { of } 1-\frac{1}{2}+\frac{1}{4}-\frac{1}{1}+\frac{1}{16} \& c \text { is } \frac{1}{1+\frac{1}{2}} \\
& \text { of } 1-1+1-1+1 \text { \&c is } \frac{1}{1+1} \text {, } \\
& \text { of } 1-2+4-8+16 \text { \&c is } \frac{1}{1+2} \text {, } \\
& \text { of } \frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{16}+\frac{1}{32} \& c \text { is } \frac{1}{1+1} \text {, } \\
& \text { of } 1+x+x^{3}+x^{3}+x^{4} \text { \&cc is } \frac{1}{1-x} \text {, } \\
& \text { of } 1+2 x+3 x^{2}+4 x^{3}+5 x^{4} \& c \text { is } \frac{1}{(1-x)^{3}} \\
& \text { of } 1+\frac{x^{3}}{2}+\frac{3 x^{4}}{4}+\frac{3 x^{4}}{16}+\frac{35}{18 x^{2}} \& \mathrm{kc} \text { is } \sqrt{\frac{1}{1-x^{2}}}
\end{aligned}
$$

See my Tracts, vol. 1, tracts 7 and 8.
RAFTERS, in Architectare, are pieces of timber which stand by pairs on the raising-piece, or wall plate, aml meet in an angle at the top, forming the roof of a building. These commonly rise at 45°, and meet in a right angle at top; and then the roof is said to be of a true pitch.

RAIN, water that descends from the atmosphere in the form of drops of a comiderable size. Rain is appasently a precipitated cloud; as clouds are nothing but vapours raised from moisture, waters, \&c. By this circumstance it is distinguished from dew and fog: in the former of which the drops are so small that they are quite invisible; and in the latter, though their size be larger,
they seem to have very little more specific gravity than the atmosphere itself, and may therefore be reckoned hollow spherules rather than drops.

It is universally agried, that rain is produced by the water previously absorbed by the heat of the sun, or otherwise, from the terraqueous globe, into the atmosphere, as vapours, or vesiculx. These vesicula, baing specifically lighter than the atmosphere, are buoyed up by it, till they arrive at a region where the air is in a just balance with them; and there they float, till by some new agent they are converter into clouds, and thence either into rain, snow, hail, mist, or the like.

But the agent in this formation of the clouds into rain, and even of the sapours into clouds, has been much controverted. Most philosophers will have it, that the cold, which constantly uccupics the superiur regions of the air, chils and condenses the vesicula, at their arrival from a warmer quarter ; congregates them together, and occasions several of them to coalesce intu little nuasses : and thus their quantity of matter increasing in a higher proportion than their surface, they becone an overioad to the thin air, and so desecnd in rain.

Dr. Derhain nccounts for the precipitation, from the vesicule being full of air; when they meet with a colder air than that they contain, this is then contracted into a less space: und consequently the watry shell or case becomes thicher, so as to become heavier than the air, \&c.
But this separation cannot be ascribed to cold, since rain often takes place in very warm weather. And though we should suppose the cendensition owing to the cold of the higher regions, yet there is a remarkable fact which will not allow us to have recourse to this supposition: for it is certain that the drops of rain increase in size considerably as they descend. On the top of a hill for instance, they will be small and inconsiderable, forming only a drizzling shower; but half way down the hill it is much more considerable; and at the bottom the drops will be very large, descending in an impetuous rain. Which shows that the atmosphere condeuscs the vapours as well where it is warm as where it is cold.

Others allow the cold only a part in the action, attributing to the wind a considerable part of the agency: alleging, that a wind blowing against a cloud will drive its vesicula upon one another, by which means several of them coalescing as before, will be enabled to descend; and that the effect will be still more considerable, if two opposite winds blow togetber towards the same place: they add, that clouds already formed, happening to be aggregated by fresh accessions of vapour continually ascending, may tbence be enabled to descend.

Yet the grand cause, according to Rohault, is still behind. That author conceives it to be the heat of the air, which, after continuing for some time near the earth, is at length carried up on high by a wind, and there thawing the snowy villi or flocks of the half-frozen vesicula, it reduces them into drops; whicb, cualescing, descend, and have their dissolution perfected in their progress through the lower and wariner stages of the atmosphere.

Others, as Dr. Clarke, \&c, ascribe this descent of the clouds rather to an alteration of the ammocphere than of the vesiculae; and suppose it to arise from a díminution of the spring or clastic force of the air. This clasticity, which depends chiefly or wholly on the dry terrene exhelations, being weakened, the atmosphere sinks under ite
burden ; and the cloods fall, on the common principle of p.enipitation.

Now the small vesiculas, by these or any other causes, being once upon the descent, will continue to descend notwithstanding the iucrease of resistance they every moment meet with in their progress through still denser and denser parts of the atmosphere. For as tbey all tend toward the same paint, viz, the contre of the carth, the farther they fall, the more coalitions will they make; and the more coalitions, the more matter will there be under the same surfuce; the surface only increasing as the squares, but the solidity as the cubes of the diameters: and the more matter under the same surface, the less friction or resistance there will be to the same unatter.

Thus then, if the causes of rain happen to act early enough to precipitate the ascending vesiculas, before they are arrived at any considerable leight, the coaltions beng few in so short a descent, the drops will be proportionalily small; thus forming what is called dew. If the vapours prove inore copions, and rise a little higher, there is produced a mist or fog. A little higher still, and they produce a small rain, \&c. If they ncither meet with cold nor wind enough to conderse or dissipate them; thry form a lisavy, thick, dark sky, which lasts sometimes several days, or even weeks.

But later writers on this part of philosophical science have, with greater show of truth, considered rain as an electrical phenomenon. Signior Beccaria counts rain, hail, and show, among the effects of a moderate electricity in the atmosphere. Clouds that bring rain, he thinks are produced in the same manner as thunder clouds, only by a moderate electricity. He describes them at large; and the resemblance which all their phenomena bear to those of thunder clouds, is very striking. He notes several circumstances attending rain whhout lightining, which render it probable that it is produced by the same cause as when it is accompanied with lightning, Light has been seen arnong the clouds by night in rainy weather; and even by day rainy clouds are sonetimes seen to have a brightness evideutly independent of the sun. The unifortrity with which the clouds are spread, and with which the rain falls, be thnuks are evidences of a uniform cause like that of elcetricity. The intensity also of electricity in his apparatus usually corresponded very nearly to the quantity of rain that fell in the same time. Sometimes sll the phenomena of thunder, lightning, hail, rain, snow, and wind, have been observed at one time; which shows the connection they all have with some commen cause, Signior Beccaria therefore supposes that, previous to raill, a quantity of electric matter escapes out of the carth, in some place where there is a redundancy of it; and in its ascent to the bigher regions of the atmosphere, collects and condocts into its path a govent quantity of vapours. The same cause that collects, will condense them more and more; till, in the places of the nearest intervals, they come almost into contact, so as to form small drops; which, uniting with others as they fall, come down in the form of rain. The raia will be heavier in proportion as the electricity is more vigorous, and the clouil approaches more nearly to a thunder cloud: \&c. Sce Lettere dell Elettricismo; and Priestley's Hist. \&cc of Electricity, vul, 1, pa. 427, \&c, 8vo. And for further accounts of the plienomena of rain, \&c, sec Babometer, Eivaporathon, Omzuometer, Pluviameter, Vapour, \&c. Sce also the 'Izeory of Rain, by Dr. James Hutton, art 2, vol. 1. of Transactions of the Royal Society of Edinburgh.

Saantity of Rain. As to the general quantity of rain that falls, with its proportion in severul pluces at the same time, and at the same place in tliflerent tunes, there are many observations, journals, dece, in the Philus. 'Trans., the Memons of the Fronch Academy, \&sc.

It has been ascertained by ubectration, that the neean annual quantity of ram is groatest at the equator, where it decreases gradaally towards the poles. Thus, at

Philos. Mag. vol 44, pa. 3io. Hence it appears that the quantity of rain is influenced generally by the beat of the climate. But it is also much influenced by parricular local causes and circumstances, as affected by hills and mountains, and by the vicinity of seas, \& c , as further appeary by the following tables and observatuons. Thus on measuring the rain that falls annually, its depth, on a medium, in several placess, is fuund as in the following table:

Mean Annual Depth of Rain for seceral Places.

Ruantity of Rain fallen in seteral Years at Paris and Upminster.

Medium 2uantity of Rain at London, for averal Yeurs, from the Philos. Trans.

See also the Meteorological Journal of the Royal Society, published annually in the Philus. Trans. and the anticie Pluvtameter or Omanometer.
It is reasonably to becxpected, and all experience showi, that the thost rain falls in places near the sea coast, and less and li's as the places are situated more inland. Some differencrs also arise from the circumstances of hills, vallose, \&c. So when the quantity of rain fallen in one year at London, is 20 inclus, that on the western coast of Eingland will often be twice as much, or 40 inehes, or more. Those winds also bring most rain, that bluw from the quarter it which is the most and tuearest sea; as our west and sonth-west winds.

It is also found, by the pluviameter or rain-gage, that, in any one place, the more rain is collected in the in-
atrument, as it is placed nearer the ground ; without any appearance of a difference, between two places, on account of their difference of level above the sea, provided the itlstrument is but as far from the ground at the one place as at the other. These effects are remarked in the Philos. I'raus. for 1769 and 1771 , the former by D_{i}. Heberden, and the lather by Mr. Daines Barrington. Dr. Heberden says," A comparisun having been made between the quantity of rain, which fell in two places in London, about a mile distant from one another, it was found, that the rain in one of them constautly exceeded that in the other, not only every month, but almost every time that it rained. The apparatus used in each of them was very exact, and both made by the same artist; and upon exarnining every probable cause, this unexpected variation did not appear to be owing to any mistake, but to the constant effect of some circumstance, which not being supposed to be of any moment, had never been attended to. The raingage in one of these cascy was fixed so high, as to rise above all the meighbouring chimneys; the other was considerably below them ; and there appeared reason to believe, that the difference of the quantity of rain in these two places, was owing to this diflerence to the placing of the vesel in which it was received. A funnel was therefore placed ubove the higheat chimueys, and another on the ground of the garden belonging to the same house, and there way found the same dinference between these two, though placed so near one another, which there had been between them, when placed at similar heights in different parts of the town. After this fact was sufficiently ascertained, is was thought proper to try whether the difference would be greater at a much greater height; and a rain-gage was therefore placed upon the square part of the roof of Westminster Abbey. Here the quantity of rain was observed for a twelvenionth, the rain being measured at the end of every month, and care being taken that nowe should evaporate by passing a very long tube of the funtul into a bottle through a cork, to which it was exactly fitted. The tube went down very near to the bottom of the bottle, and therefore the rain which fell into it would spon rise above the end of the tube, so that the water was no-where open to the air except for the small space of the area of the tube: and by trial it was found that there was no sensible evaporation through the tube thus fitted up.-The following table shows the resulf of these observations.
From July the 7 th 1766, to July the 7th 1767, there fell in a rain-gage, fixed

1766.	Beluw the top of a house.	Upon the top of a houne.	$\begin{aligned} & \text { Upan Wesk- } \\ & \text { minster Abley. } \end{aligned}$
From the 7 th 10	Inches.	Inches.	Inches.
the end of July	\$.591	3.210	2-311
Augast	$0 \cdot 558$	0.479	\} 0.508
September	0.421	0.344	c 0.508
October	2.304	2.061	1.416
November	1.079	0.842	0.692
December	$1 \cdot 612$	1258	0994
1767, January	2.071	1.455	1.095
Fobruary	2.864	$2 \cdot 494$	1.38.5
March	1-507	$1 \cdot 303$	0-587
April	$1 \cdot 137$	1.213	0.9 .94
May	2.432	$1.7+5$	1.142
June July 7	1.997 0.395	1.426 0.309	\} 1.145
July 7	0.395	0.309	(1)

By this table it appears, that there fell below the top of a bouse above a fitth part more rain, than what fell in the same space above the top of the same house; and that there fell upon Westminater Abbey not much above one hulf of what was found to fall in the same space below the tops of the houses. This experiment has been repemted in other places with the same result. What may be the cause of this extraordinary difference, has not yet ${ }^{t}$ been discovered; but it may be useful to notice it, in order to prevent that error, which would frequently be committed in comparing the rain of two places without attending to this circumstance."

Such were the observations of Dr. Heberden on frst announcing this circumstance, viz, of different quantities of rain falling at differeut heights above the ground. Two yeurs afterwards, Daines Barrington Esq. made the following experiments and observations, to show that this effict, with respect to different places, respected only the several lieights of the imstrument above the ground at those places, without regard to any real difference of level io the ground at those places.

Mr. Barrington caused two other rain-gages, exactly like those of Dr. Heberden, to be pluced, the one upon mount Retaig, in Waler, and the other on the plane below, at abuut half a mile's distance, the perpendicular height of the mountain being 450 yarde, or 1350 feet; each gage being at the same height above the surface of the ground at the two stations.

The results of the experiment ere as below:

1770.	Bentom of the mountaib.	Top of the munutain.
From July 6 to 16	$\begin{aligned} & \text { Inches. } \\ & 0709 \end{aligned}$	Inches. 0.648
July 16 to 29	$2 \cdot 185$	2.184
. July 29 to Aug. 10.	0610	0.656
Sept. 9 both bottles had run over. Sept. 9 to 30	3.234	2-464
Oct. 17. both bottles had run over.		
Oct. 17 to 22	0.747	0.885
Oct. 22 to 29	1.281	1.388
Nov. 20 boih bottles were broken by the frost.	8.766	$8 \cdot 165$

"The inference to be drawn from these experments," Mr. Barrington observes, "seems to be, that the increase of the quantity of rain depends upon its nearer proximity to the earth, and scarcely at all on the height of places, provided the rain-gages are fixed at about the same distance from the ground.
"Possibly also a much controverted point between the inhabitants of mountains and plains may receive a solution from these experiments; as in an adjacent valley, at least, very nearly the same quantity of nin appears to fall within the same period of time as on the neighbouring mountains."

Dr. Heberdeu also adds the following note. "It may not be improper to subjoin to the foregoing aecount, that, in places where it was first observed, a different quantity of raiu would be collected, according as the rain-gages were placed above or below the tops of the neighbouring buildings ; the rain-gage below the top of the house, into which the greater quantity of rain had for several years been found to fall, was abore 15 feet above the level of the
otber rain-gage, which in another part of London was placed sbove the top of the house, and into which the lesser quantity always fell. This difficence therefore does not, as Mr. Barrington justly remarks, depend on the greater quantity of atmosphere, through which the rain descends: though this has been supposed by some, who have thence concluded that this appearance might readily be solved Sy the accumulation of more drops, in a descent, tbrough a great depth of atmosphere."

The quantity of rain that falls at Bombay is sery extraordinary. The following register of the quantity fallen there in 8 successive years, is extracted from the Monthly Magazine for 1796 , pa. 99.

From this abstract it appears, that the sainy season commences about the beginning of June, and ends in the 2d week of October; and that July is the most rainy month, the general average of July being 22.7 inches, or above one-third of the whole. The heaviest rain that fell during these 8 years, was in 1782, on July 19, 6 inches, 20 th, $5 \cdot 6,21$ st 6.4 .

RAINBOW, Iris, or simply the Bow, is a meteor in form of a party-coloured arch, or semicircle, exhibited in a rainy sky, opposite to the sun, by the refraction und reflection of his reys in the drops of falling rain. There is also a secondary, or fainter bow, usually scen investing the former at some distance. Among naturatists, we also read of lunar rainbows, marine ruinbows, \&c.

The rainbow, Sir Isaac Newton observes, never appears but where it rains in the sunsbine; and it may be represented artificialiy, by contriving water to fall in small drops like rain, through which the sun shining, exhibits a bow to the spectator placed between the sun und the drops, especially if there be disposed beyond the drops some dark body, as a black cloth, or such like.

Some of the ancients, as appears hy Aristote's tract
on Meteors, knew that the rainbow was caused by the refraction of the sun's light in drous of falling rain. Long afterwards, one Fletcher of Broblaw, in a treatuse which be published in 1571, endeavoured more particularly to account for the colours of the rainbow by means of a double refraction, and one reflection. But he imagined that a ray of light, atter entering a drop of rain, and suffering a refruction, both at its entrance and exit, was afterwards reflected from another drop, before it reached the eye of the spectator. It seems he overlooked the reflection at the further side of the drop, or else he imagined that all the bendings of the light within the drop would not make a sufficient curvature, to bring the ray of the sun to the eye of the spectator. But Antonio de Dominis, Bishop of Spalato, about the year 1590, whose treatist De Radiis Visûs et Lucis was published in 1611 by J. Bartolus, first advanced, that the double refraction of Fletcher, with an intervening reflection, was sufficient to produce the colours of the sainbow, and also to bring the rays that formed them to the eye of the spectator, without any subsequent reflection. He distinctly describes the progress of a ray of light entering the upper part of the drop, where it suffers one refraction, and after being by that thrown upon the back part of the inner surface, is from thence reflected to the luwer part of the drop; at which place undergoing a second refraction, it is thereby bent so as to come directily to the eye. To verify this hypothesis, be procured s small globe of solid glass, and viewing it when it was exposed to the rays of the sun, in the same manner in which be had supposed the drops of rain were situated with respect to thein, he actually observed the same colonrs which lie liad scen in the true rainbow, and in the same order. Thus this author showed how the interior bow is formed in round drops of rain, viz, by two refractions of the sun's rays and one reflection betwern them; and he likewise showed that the exterior bow is formed by two refractions and two sorts of reflections between them in each cirop of water.

The theory of A. de Doinnis was adopted, and in some degree improved with respest to the exterior bow, by Descartes, in his treatise on Meteors; and indeed he was the first who, by opplying mathematics to the investigntion of this surprising apprarance, cver gave a tolerable theory of the rainbow. Philosuphers were however still at a loss when they endeavonred to assign reasots for all the particular colours, and for the order of them. Indeed nothing but the doctrine of the different refrangibility of the rays of light, a discovery which wis rempred for the great Newton, could furnist a cumplete solution of this dificulty.

Ir. Barrow, in his Lectiones Opticar, at Lect. 12, n.14, says, that a friend of his (by whom we are to understand Mr. Newton) communicnled to him a method of deterinining the ungle of the rainbow, which was binted to Newton by Slusius, without mahing a table of the res fractions, as Descartes did. The ductor shows the method; as also several other matters, at n. 14, 15, 16, relating to the ruinbow, worthy the genius of those two erainent men. But the sulgect was given more perfictly by Newton afterwards, viz, in his Optics, prup. 9; where be mukes the breatith of the interior bow to be nearly $2^{\circ} 15^{\prime}$, that of the texterior $3^{\circ} 40^{\prime}$, their distance $8^{\circ} 25^{\prime}$, the greatest semidiametrr of the interior bow $42^{\circ} 17^{\prime}$, and the least of the enterior $50^{\circ} 42^{\prime}$, wben their colvurs appear strong and perfect.

The doctrine of the rainbow may be illustrated and confirmed by experiment, in several different ways. Thus, by hanging up a glass globe, full of water, in the sunshine, and viewing it in such a posture that the rays which come from the globe to the eye, may include an angle either of 42° or 50°. with the sun's rays ; for ex. if the angle be about 42°, the spectator will see a full red colour in that side of the globe opposite to the sun. And by varying the position so as to make that angle gradually less, the other colours. yellow, green, and blue, will appear successively, in the same side of the globe, and that very bright. But if the angle be made about 30°, suppose by raising the globe, there will appear a red colour in that side of the globe towards the sun, though somewhat faint; and if the angle be made greater, as by raising the globe still higher, this red will cbange successively to the other colours, yellow, green, and blue. And the same chauges are observed by raising or depressing the eye, while the globe is at rest. Newton's Optics, pt. 2, prop. 9, prob. 4.

Again, a similar bow is often observed among the waves of the sea (called the marine rainbow), the upper parts of the waves being blown about by the wind, and so falling in drops. This appearance is also seen by moonlight (called the lunar rainbow), though seldom vivid enough to render the colours distinguishable. Also it is sometimes seen on the ground, wheq the sun shines on a very thick dew. Cascades and fountains ton, whose waters are in their fall divided into drops, exhibit rainbows to a spectatior, if properly situated during the time of the sun's shining; and even water blown violently out of the mouth of an observer, standing with his back to the sun, never fails to produce the same phenomenon. The artificial rainbow inay even be produced by candlelight on the water which is ejected by a small fountain or jet d'eau. All these are of the same nature, and they depend on the same causes; some account of which is as follows.

Let the circle ${ }^{\text {won }}$ qepresent a drop of water, or a globe, upon which a bean of parallel light falls, of which let th represent a ray falling perpendicularly at a, and which consequently either passes through without refraction, or is reflected directly back from Q: suppose another ray \mathbf{k}, incident at \mathbb{k}, at a distance from a ; then this will be refracted according to a certain ratio of the sines of incidence and refraction to each other, which in rain water is as 529 to 396 , to a point L , whence it will be in part transmitted in the direction Lz aud in part reflected to x, where it will again in part be reflected, and in part transmitted in the direction mp , being inclined to the line described by the incident ray in the angle top. Anotber ray $A x$, still farther from A , and consequently incident under a greater angle, will be refracted to a

Vol. 11 .
point \boldsymbol{r}, slill farther from Q, whence it will be in part roflected to G, from which place it will in part enserge. forming an angle $A X R$ with the incident $A N$, greater than that which was formed between the ray MP and its incident ray. Ant thus, while the angle of incidence, or distance of the point of incidence from n , inereases, the distance between the point of reflection and Q, and the angle formed between the incident and emergent reflected rays, will also increase ; that is, as far as it depends on the distance from B: but as the refraction of the ray tends to carry the poimt of reflection towards Q, and to diminish the angle formed between the incident and emergent reflected ray, and that the more the greater the distance of the poiut of incidence from g , there will be a certain point of incidence between A and w, with which the greatest possible distance between the point of reflection and Q, and the greatest possible angle between the incijent and emergent reflected ray, will correspond. So that a ray incident nearer to a shall, at its emergence after reflection, form a less angle with the incident, by reason of its more direct reflection from a point nearer to a; and a ray incident nearer to w , shall at its emergence form a less angle with the incident, by reason of the greater quantity of the angles of refraction at its incidence and emergence. The rays which fall for a considerable space in the vicinity of that point of incidence with which the greatest angle of emergence corresponds, will, after emerging, form an anglo with the incident rays differing iusensibly from that greatest angle, and consequently will proceed nearly parallel to each other; and those rays which fall at a distance from that point will emerge at various angles, and consequently will diverge. Now, to a spectator, whose back is turned towards the radiant budy, and whose eye is at a considerable distance from the globe or drop, the divergent light will be scarcely, if at all, perceptible; but if the globe be so situated, that those rays that emerge parallel to each other, or at the greatest possible angle with the incident, may arrive at the eye of the spectator, he will, by means of those rays, behold it nearly with the same splendour at any distance.

In like manner, those rays which fall parallel on a globe, and are emitted after two reflections, suppose at the points F and 0 , will emerge at 14 parallel to each other, when the angle they make with the incident $A x$ is the least possible; and the globe must be seen very resplendent when its position is such, that those paralled rays fall on the cye of the spectator.

The quantitics of these angles are determined by calculation, the proportion of the sines of incidence and refraction to each other being known. And this proportion being different in rays whith produce dififerent colours, the angles must vary in each. Thus it is found, that the greatest angle in rain water for the least refrangible, or red rays, emitted parallel after one reflection, is $42^{\circ} y^{\prime}$, and for the mont refrangible or violet rays, emitted parallel after one reflection, $40^{\circ} 17^{\prime}$; likewisc, after two reflections, the least refrangible, or red rays, will be emitted nearly parallel under an angle of $50^{\circ} 37^{\prime}$, and the most refrangible, or violet, under an angle of $54^{\circ} 7^{\prime}$; and the intermediate colours will be emitted nearly parallel at intermediate angles.

Suppose now, that o is the spectator's eye, and or a line drawn parallel to the sun's rays, $\mathbf{S E}, \mathbf{8 F}, \mathbf{5 0}$, and $\mathbf{5 H}$; and let PO\&, POT, POG, POI be angles of $40^{\circ} 17^{\prime}, 42^{\circ} \mathbf{q}^{\prime}$, $50^{\circ} 57^{\prime}$, and $54^{\circ} 7^{\prime}$ respectively; then these angles turued 20
about their common side or, will with their other sides $\mathrm{og}, \mathrm{OY}, \mathrm{OG}, \mathrm{OH}$, describe the verges of the two rainbows,

as in the figure. For, if $\mathbf{x}, \mathrm{F}, \mathrm{o}, \mathrm{H}$ be drops placed any where in tbe conical superficies described by O8, of, on, ou, and be illuminated by the sun's rays $8 \mathrm{se}, \mathrm{sy}, \mathrm{s} 0$, sll ; the angle seo being equal to the angle poe, or $40^{\circ} 17^{\prime}$, will be the greatest angle in which the most refrangible rays can, after one reflection, be refracted to the eye, and therefore all the drops in the line of must send the most refrangible rays most copiously to the eye, and so strike the sense with the derpest vielet colour in that region. In like manner, the angle aro being equal to the angle por, or $42^{\circ} 2^{\prime}$, wilt be the greatest in which the least refrangible rays after one reflection can emerge out of the drops, and therefore those rays must come most copiously to the eye from the drops in the line or, and strike the sense with the deepest red colour in that region. And, by the sume argument, the rays which have the intermediate degres of refrangibility will come most copiously from drops between E and F , and strike the senses with the intermediate colours in the order which their degrees of refrangibility require; that is, in the progress from e to y, or from the inside of the bow to the outside, in this order, violet, indigo, blue, greent, yellow, orange, red. But the violet, by the mixture of the white light of the clouds, will appear faint, and inclined to purple.

Again, the angle soo being equal to the angle roc, or $50^{\circ} 57^{\circ}$, will be the least angle in which the least refrangible rays can, after two reflections, emerge out of the drops, and therefore the least refrangible rays munt come must copiously to the eye from the drops in the line og, and strike the sense with the deepent red in that region. And the angle sho being equal to the angle Pon , or $54^{\circ} 7^{\prime}$, will be the least angle in which the most refrangible rays, after two reflections, can emerge out of the drops, and therefore those rays must comeraost copiously to the eye from the drops in the line onf, and strike the sense with the decpest violet in that region. And, by the same argument, the drops in the regions between \boldsymbol{a} and \mathbf{m} will strike the sense with the intermediate colonrs in the order which their degrees of refrangibility require ; that is, in the progress from 0 to 11 , or from the inside of the bow to the outside, in this order, red, orange, yellow, green, blue, indigo, and violet. And since the four lines oz, of, of, ont, may be situated any where in the above-mentioned conical superficies, what is said of the drops and colours in these lines, is to be underntood of the drops and colours every where in those superficies.

Thus there will be made two bows of colonrs, an inturior and stronger, by one reflection in the drops, and an
exterior and fainter by two; for the light becomes fainter by every reflection; and their colours will he in a contrary order to each other, the red of both bows bordering upon the space or, which is betwcen the bous. The breadth of the interior bow, 上op, measured across the colours, will be $1^{\circ} 15^{\prime}$, and the breadth of the exturior won, will be $3^{\circ} 10^{\circ}$, also the distance between them Gor, will be $8^{\circ} 33^{\prime}$, the greatest semidameter of the innermost, that is, the angle por, being $42^{\circ} 2^{\prime}$, and the least semidiameter of the outermost put being $50^{\circ} 57^{\prime}$. These are the measures of the bows as they would be, were the sun but a point; but by the breadih of his disc, the breadth of the bows will be increased by half a degree, and their distance diminished by as much; so that the breadth of the inner bow will be $2^{\circ} 13^{\prime}$, that of the outer $3^{\circ} 40^{\prime}$, their distance $8^{\circ} 23^{\prime}$; the greatest semidiancter of the interior bow $42^{\circ} 17^{\prime}$, and the least of the exterior $50^{\circ} 42^{\prime}$. And such are the dimeusions of the bows in the heavens found to be, very nearly, when their culours appear strong and perfect.

The light which comes through drops of rain by two refractions without any riflection, ought to appear strongest at the distance of about 26 degress from the sun, and to decay gradually both ways as the distance from the sun increases and decreases. And the same is to be understood of light transmitted through spherical hailstoncs. If the hail be a little flatted, as it often is, the light transmitted auay grow so strong at a little less distance than that of 26^{8}, as to form i halo about the sun and moon ; which halo, when the stones are duly figured, may be coloured, and then it must be red within, by the least refrangible rays, and blue without, by the most refrangible ones.

The light which passes through a drop of rain after two refractions, and three or more reflections, is scarce strong enough to cause a sensible bow.

As to the dunension of the rainbow, Descartes first determined its diameter by a tentative and indirect method; laying it down, that the magnitude of the bow depends on the degree of refraction of the fluid; and assuming tbe ratio of the sine of incidence to that of refraction, to be in water as 250 to 187 . But Dr. Halley, in the Philos. Trans, number 267, gave a simple direct method of determining the diameter of the rainbow from the ratio of the refraction of the fluid being given ; or, vice versa, the diamerer of the rainbow being given, to deternine tbe refractive power of the fluid. And Dr. Halley's principles and construction were furtber explained by Dr. Morgan, master of Clare 11all, Cambridge, in lis Dissertation on the Rainbow, among the nutes upon Robault's System of Ptilosophy, part 3, chap. 17.

From the tbeory of the rainbow, all the particular phenomena of it are easily deducible. Hence we see, 1 st, Why the iris is always of the same breadth; because the intermediate degrees of refrangibility of the rays between red and violet, which are its extreme colours, are always the same.

2dly, Why the bow shifts its situation as the eye does; and, according to the popular phrase, flies from those who follow it, and follows those that fly from it; the colonred drops being disposed under a certain angle, about the axis of vision, which is different in ditierent places : whence also it follows, that every different spectator sees a different bow.

3dly, Why the bow is sometimes a larger portion of a
circle, sometimes a less: its magnitude depending on the greater or less part of the surface of the cone, above the surface of the earth, at the time of its appearance; and the higher the sun is, the less will be the rainbow.

4thily, Why the bow never appears when the sun is abovo a certain altitude; the surface of the cone, in which it shouid be seen, being lost in the ground at a lintle distance from the eye, when the sun is above 42° high.

5 thly, Why the bow never appears greater than a semicircle, on a plane; since, be the sun never to low, and even in the horizon, the centre of the bow is still in the line of aspect ; which in this case runs along the earth, and is not at all raised above the surface. Indeed if the spectator be placed on a very considerable eminence, and the sun in the horizon, the line of aspect, in which the centre of the bow is, will be considerably raised above the horizon. And if the eminence be very high, and the rain near, it is penssible the bow may be an eutire circle.

Gthly, How the bow may chance to appear inverted, or the concave side turned upwards; via, a cloud happening to intercept the rays, and prevent their shining on the upper part of the arch: ill which case, only the lower part appearing, the bow will seem as if turned upside down; which has probably been the case in several prodigies of this kind, related by authons.

Lanar Rain bow. The moon sometimes also exhibits the phenomenon of an iris, by the refraction of her rays in the drops of rain in the night-time. Aristotle says, he was the first that ever observed it; and adds, it is never seen but at the time of the full moon; her light at other times being too faint to affect the sight after two refractions and one reflection. The lunar iris has all the colours of the solar, very distinct and pleasant ; only fainter, both from the different intensity of the rays, and the different disposition of the medium.

Marine Ralysow. This is a phenomenon sometimes observed in a much agitated sca ; when the wind, sweeping part of the tops of the waves, carries them up; so that the sun's rays, falling upon them, aro refracted, \&ce, as in a common shower, and there paint the colours of the bow. These bows are less distinguishable and bright than the common bow: but then they exceed as to numbers, there being sometimes 20 or 30 seen together. They appear at noon day, and in a position opposite to that of the common bow, the concave side being turned upwards, as indeed it ought to be.

RAIN-Gage, an instrument for measuring the quantity of rain that falls. It is the same as Ombrometer, or Pluviameter; which see.

RAKED Table; or Rakıng Table, in Architecture, a member hollowed in the square of a pedestal.

RAM, in Astronomy. See Arivis,
Ram, Batlering. See Battering Ram.
Rans-Horvs, in Fortification, a name given by Belidor to the tenatiks.

RAMPART, or Rampier, in Fortification, a massy bank or elevation of earth around a place, to cover it from the direct fire of an enemy, and of sufficient thickness to resist the efforts of their cannon for many days. It is formed into bastions, curtains, \&c.

Upon the rampart the soldiers continually keep guard, and the pieces of artillery are planted for defence. Also, to shelter the men from the enemy's shot, the outside of the rampart is built higher than the rest, i. e. a parapet is rased upon it with a platform. It is encompassed with a
moat or ditch, out of which is dug the earth that forrns the rampart, which is raised sloping, that the carth may not slip down, and having a berme at bottom, or is otherwise fortified, being lined with a facing of brick or stone.

The height of the rampart need not be more than 3 tathome, this being sufficient to cover the houses from the battery of the caunon; neither need its thickness be mure than 10 or 19 , unless more carth come out of the ditch than can otherwise be bestowed. - The ramparts of hulfmoons are the better for being low, that the small fire of the defendants may the better reach the bottem of the ditch ; yet they must be so high as not to be commanded by the covert-way.

Rampart is also used, in civil architecture, for the void space left between the wall of a city and the houses. This is what the Romans called l'omorrium, where it was forbidden to build, and where they planted rows of trees for the people to walk and amuse themselves under.

RAMSDEN (Jesse), r.R.s. an excellent optician and mechanist, was born at Hulifax in Yorkshire, 1750; and died at Brighthelmstone, Nov, 5, 1800. He served his apprenticeship in bis native place, to the trade of a hotpresser; after which, about 1751, he came to London, and applied himself to engraving. In the course of this employment, mathematical instruments were often brought to him to be engraved, which induced bim to try his genius in that way; and with such success, that by the year 1763 he made instruments for several of the best artists. Soon after his coming up to London, he married the daughter of Mr. Dollond, the celebrated optician in St. Paul's Cburch-yard; by which means he was introduced to the knowledge of a profession in which his genius enabled him to excel, and attract the approbation of the public, in the same manuer as his private worth endeared him to society. In 1763 be opened a shop in the Haymarket; but in 1775 he removed to Piccadilly, where he carried on lusiness till his death.

Mr. R. greatly improved Hadley's quadrant, or sextant; and he invented a curious machine for dividing mathematical instruments; for which discovery be received a premium from the board of longitude. He also improved the construction of the theodolite, as well as the barometer for measuring the heights of mountains. The pyrometer for measuring the dilatation of bodies by heat, also employed his talents; and he made many important discoveries and improvements in optics. But his astronomical instruments appear to have been the principal of his works. He improved the refracting micrometer, as also the tramsit instrument and quadrant. He procured a patent for an improved equatorial. His mural quadrants were excellent, and much sought for.-Mr. Ramsden was cbosen a fellow of the Royal Socicty in 1786. - Bring always of a slender frame of body, as well as of delicate constitution, in his latter years his health gradually declined; to recruit which, be had retired to Brightinelmstone, where he died as before observed.

RAMUS (Peter), a celebrated French mathematician and philosopher, was born in 1515, in a village of Vermandois in Picardy. He was descetded of a respectable family, which had been reduced to extreme poverty by the wars and other inisfortnnes. His own life too, says Bayle, was the sport of forture. In his infancy he was twice attacked by the plague. At an early age, a thirst for kesming urged him to go to Paris; but he was soon forced by poverty to leave that city. He retarned to it again as soon
as he could ; but, being unable to support himself, he left it a second time; yet his passion for study was so violent, that notwithstanding his bad success in the two former visits, he ventured on a third. He was maintained there some months by one of his uncles; after which he was obliged to become a servant in the college of Navarre. Here be spent the day in waiting on his masters, and the greatest part of the night in study.

After baving finished classical learning and rhetoric, he went through a course of philosophy, which took him up three years and a balf in the schools; but the thesis, which he made for his master-of-arts degrees, offended every one; for he maintained in it, that all that Aristotle had advanced was false; and he gave very good answers to the objections of the professors. This success encouraged him to examine the doctrine of Aristotle more closely, and to combat it vigorously: but he confined himself chiefly to his logic. The two first books be published, the one entitled, Institutiones Dialectica, the uther Aristotelica Animadversiones, occasioned great disturbances in the university of Paris. The professors there, who were adorers of Aristotle, ought to have refuted Ramus's books, if they could, by writings and lectures: but instead of confining themelves within the just bounds of academical wars, they prusecuted this anti-peripatetic before the civil magistrate, as a man who was going to sap the foundations of religion. They raised such clamours, that the cause was carried before the parliament of Paris: but, perceiving that it would be examined equably, his enemics by their intrigues took it from that tribunal, to bring it before the king's council, in 1543. The king ordered, that Ramus and Anthony Govea, who was his principal adversary, should choose two judges each, to pronounce on the controversy, after they should have ended their disputation: while be bimself appointed a deputy. Ramus appeared before the five judges, though three of them were his declared enemies. The dispute lasted two days, and Govea had all the advantages he could desire; llamus's books being prohibited in all parts of the kingdom, and their author sentenced not to teach philosophy any longer; upon which his enemies triumphed in the most indecent manners.

The year after, the plague made great havoc in Paris, and forced most of the students in the college of Presle to quit it; but Ramus, being prevailed on to teach in it, soon drew together a great number of auditors. The Sorbonne attempted in vain to drive him from that college; fur he held the headship of that house by arrèt of parliament : and through the patronage and protection of the cardinal of Lorrain, be obuained from Henry the 2d, in 1547, the liberty of speaking and writing, and the regal professorship of philosophy and eloquence in 1351. The parliament of Paris had, before this, maintained bim in the liberty of joining philosophical lectures to those of eloquence ; and this arrêt or decree had put an end to several prosecutions, which hamus and his pupils hadsuffered. As soon as he was made regius professor, he was fired with a new zeal for improving the sciences, notwithstanding the hatred of his enemies, who were never at rest.

Ramus bore at that time a part in a very singular affair. About the year 15.50 , the royal proiessors corrected, among other abuses, that which bad crept into the pronunciation of the Latin tongue. Some of the clergy followed this regulation; but the Sorbonnists were much offinded at it as an innovation, and defended the old pronunciation with great zeal. Things at length were carried
so far, that a minister, who had a good living, was very ill treated by them; and caused to be ejected from his benefice for having pronounced quisquis, quanquam, according to the new way, instead ot kiskis, kunkam, according to the old. The minister applied to the parliainent; and the royal professors, wioh Ramus among them, fearing he would fall a viction to the credit and authority of the faculty of divines, for presuming t" pronotnce the Latin tonsue according to their regulations, thought it incumbent on them to assist him. They accordingly went to the court of justice, and reprisented in such strong terms the indignity of the prosecution, that the minister was cleared, and every person had the liberty of pronouncing as he pleased.

Ramus was bred up in the Catholic religion, but afterwards deserted it. He first began to discover his new principles by removing the inages from the chapel of bis college of Presle, in 1552. On this account such a persecution was raised against him by the religionsts, as well as Aristotelians, that he was driven out ot his professorship, and obliged to conceal himself. For that purpose, with the king's leave he went to Fontainblcau; where, by the help of books in the king's library, he prosecuted geve metrical and astronomical oludies. As soon as his enemies found out his retreat, they renewed their persecutions; and he was forced to conceal himself in several other places. In the oncan time, his curious and excellent collection of books in the college of Presle was plundered: but atter a peace was concluded in 1563, between Charles the gib and the Protestants, he agaiu took possession of his employment, maiutained himself in it with vigour, and was particularly acalous in protnoting the study of the mathematics.

This continued till the second civil war in 1567, when he was forced to leave Paris, and shelter himself among the Hugonots, in whose army be was at the battle of St. Denys. Peace having been concluded some montlis after, he was restored to his professorship; but, foreseeing that the war would soon break out again, he did not care to venture himself in a tresh storm, and therefore obsained the king's leave to visit the universitics of Germany. He accordingly undertook this journey in 1568, and received great huonours wherever he came. He returned to France, aiter the third war in 1571; and lost his life miserably, in the massacre of St. Bartholomew's day, 1572, at 57 years of age. It is said, that he was concealed in a granary during the tumult; but discovered and dragged out by some peripatetic doctors who liated him; who, after stripping ham of all his moncy under pretence of preserving his life, gave him up to the assassins, who, after cutting his tbroat and giving him many wounds, threw him out of the window ; and his bowels gushing out in the fall, some Aristotelian scholars, encouraged by their masters, spread them abrout the streets; then dragged his body in a most ignominious manner, and threw it tuto the river.

Ramus was a great orator, a man of universal learning, and endowed with very fine qualitits. He was sober, temperate, and chaste. He ase but little, and that of botled. meat; and drank no wiue till the latter part of his life, when it was prescribed by the physicians. He lay upon straw ; ruse early, and studied hard all day;'and led a single life with the utinost purity. He was zealous for the protestant religion, but at the same time a litule obstinate, and given to contradiction. The protestant ministers did not love him much, for be made bimself a kind of head
of a party, to change the discipline of the protestant churches: bis design was to introduce a democratical government in the church, but this design was traversed, and defeated in a national synod. His sect flourished however for some time atterwards, spreading pretty much in Scotland and England, and stall more in Germany.

He publislied a great many books; but inathematics was chefly obliged to him. Of this kind, bis writings were principally these following:

1. Scholarum Mathematicarum libri 31.
2. Arithnctice libri duo-Algebre libri duo.-Geometilix libri 27.

These were greatly enlarged and explained by Schoner, and published in 2 volumes 4 to. There were several editions of them; mine is that of 1627 , at Franktort-The geometry, which is chiefly practical, was translated into Euglish by William Bedwell, and published in 4to, at London, 1636.
3. Ilc published also a singular book on geometry, being the 15 buoks of Euclid; containing only the definitions, and general enunciations of the propositions, without diagrams or demonstrations. In a kind of preface, he says he thinks it better for the teacher to suppress these. Paris, 1558, 4to, fol. 44.

RANDUM-SHot, is a shot discharged with the axis of the gun elevated above the horizontal or point-blank direction.

Random, of a shot, also sometimes mrans the range of it, or the distance to which it goes at the first grazt, or where it strikes the ground. See RanaE.

RANGE, in Gunnery, sometimes means the path a shot flies in. But more usually

Range meaus the distance to which the shot flies when it strikes the ground or other object, called also the amplitude of the shot. But range in the term in present use.

Were it not for the resistance of the air, the greatest range, on a horizontul plane, would be when the shot is discharged at an angle of 45° above the horizon; and all other ranges would be the less, the more she angle of elevation is above or below 45°; but so as that at equal distances above and below 45°, the two ranges are equal to each other. But, on account of the resistance of the air, the ranges are altered, and that in different proportions, both for the different sizes ot the shot, and their different velocitics : so that the greatest range, in practice, always lies below the elevation of 45°, and the more below it as the shot is smaller, and us its velocity is greater; thus the smallest balls, discharged with the greatest velocity in practice, range the farthest with an edevation of 30^{3} or under, while the largest shot, with very small velocities, range farthest with nearly 45° clevation; and at all the intermediate degrees in the ofher cases. See Projectiles.

RARE., in Plysics, is the quality of a body that is very porous, whose parts are at a great distance frmm one another, and which contains bue little roatter under a great magnitude. In which sense rare stands opposed to dense.

The corpuscular philosophers, viz, the E.picureans, Gassendists, Newtonians, acc, assert that some budies are farer than others, in virtue of a greater quantity of pores, or of vàcuity lying between their parts or particles. The Cartesians hold, that a greater rarity only consists in a greater quantity of materia subtilis contained in the pores. And lastly, the Peripatetics contend, that rarity is a new quality superinduced on a body, without any dependerice on either vacuity or subtile matter.

RAREFACTION, in Physics, the rendering a body rarer, that is bringing it to expand or occupy mure room or space, without the accession of new matter: being thus opposed to condensation. The moreaccurate writers restrict the term rarefaction to that kind ofexpansion which is effected by means of heat: and the expansion from other causes they term Dilatation; if indeed there be other causes; for though some philosophers bave attributed it to the action of a repulsive principle in the mater itself; yet from the many discoveries concerning the nature and properties of the electric fluid and fire, there is great reason to believe that this repulsive principle is no other than clementary firc.

The Cartesians deny any such thing as absolute rarefaction: extension, according to then, constituting the essence of matter, being obliged to hold all extension equally full. Hence they make rarefaction to be no other than an accession of fresh, subtile, und insensible matter, which, entering the palts of bodies, sensibly distends them.

It is by rarcfaction that gunpowder has its effect; and to the same μ rinciple also no owe colipiles, therinometers, \&c. As to the air, the degrec to whelh it is rarefiable exceeds all imagination, experience baving shown it to be far above 10,000 tines more than the usual state of the atmosphere; and as it is found to be above 1500 times denser in gunpowder than the atmosphere, it follows that experience hus found it differ by about 15 millions of times. Perhaps indeed its degree of expanston is absolutely beyond all limits.

Such immense rarefaction, Newton observes, is inconceivable on any other principle than that of a repelling force inherent in the air, by which its particles mutually fly from one another. This repelling force, be observes, is much more cousiderable in air than in other bodies, as being generated from the most fixed bodies, and that with much difficulty, and scarcely without fermentation; those particles being always found to fiy from each other with the greatest force, which, when in contact, cohere the most firmly together. See Air.

On the rarefaction of the air is founded the useful method of measuring altitudes by the barometer, in all the cases of which, the rarity of the air is found to be inversely as the force that compresses it, or iuversely as the weight of all the nir abore it at any place.

RARITY, thinness, subtiety ; the contrary to density.
RATCH, or Rasif, in Cluek-Work, a kind of wheel having 12 fangs, which serve to lift up the detents every bour, to make the clock strike.

RATCHETS, in a Watch, are the small teeth at the bottom of the fusee, or barrel, that stop it in winding up.

RATIO, accurding to Euclid, is the habitude or relation of two magnitudes of the same kind in respect of quantity. So the ratio of 2 to 1 is double, that of 3 to 1 triple, \&ec. Several mathematicinns have found fault with Euclid's definition of a ratio, and others hate as nuch defended it, especially Dr. Barrow, in bis Mathematical Lectures, with great skill and learning.

Ratio is sometiacs confuunded with proportion, but very improperly, ay being quite different things; for proporion is the similitude or equality or identity of two ratios. So the ratio of 6 to 2 is the same as that of 3 to 1 , and the ratio of 15 to 5 is that of 3 to 1 also; and therefore the ratio of 6 to 2 is similar or equal or the same with that of 15 to 5 , which constitutes proportion, being thas expressed, 6 is to 2 as 15 to 5 or thus $6: 2:: 15: 5$,
which means the same thing. So that ratio exists between two terms, but proportion between two ratios or four terms.

The two quantities that are compared, are called the Terms of the ratio, as 6 and 2; the first of these 6 being called the Antecedent, and the latter $\boldsymbol{2}$ the Consequent. Also the Iudex or Exponent of the ratio, is the quotient of the two terms: so the inilex of the ratio of 6 to 2 is $\frac{6}{8}$ or 3 , and which is therefore ralled a Triple ratio.

Woltius divides ratios into Rational and Irrational.
Kational Ratto is that which can be expressed betwren two rational nuinbers; as the ratio of 6 to 2 , or of $6 \sqrt{ } 3$ to $2 \sqrt{3}, 3$ to 1 . And

Irrasional Ratio is that which cannot be cexpressed by that of one rational number to another; as the ratio of $\sqrt{6}$ to $\sqrt{2}$, of of $\sqrt{ } / 3$ to ront $\sqrt{ } 1$, that is $\sqrt{ } 3$ to 1 , which cannot be evpressed in rational numbers.

When the two terms of a ratio are equal, the ratio is mid to be that of Equality; as of 3 to 3 , whose index is 1, denoting the single or equal ratio. But when the terms are not equal, as of 6 to 2, it is a Ratio of Inequality.

Further, when the antecedent is the greater term, as in 6 to 2 , it is said to be the Ratio of Greater Inequality: but when the antecedent is the less term, as in the ratio of 2 to 6 , it is said to be the Ratio of less Inequality. In the former case, if the less term be an aliquot part of the greater, the ratio of greater incquality is said to be Multiplex or Multiple: and the catio of the less inequality, Sub-multiple. Particularly, in the first case, if the exponent of the ratio be 2, as in 6 to 3 , the ratio is called Duple or Double; if 3, as in 6 to 2, it is Triple; and so on. In the second case, if the ratio be \ddagger, as in 3 to 6 , the ratio is called Subduple; if f, as in 2 to 6 , it is Subtriple; and so on.

If the greater term contain the lcss once, and one aliquot part of the same over; the ratio of the greater inequality is called Superparticular, and the ratio of the less Subsuperparticular. Particularly, in the first casc, if the exponent be $\frac{3}{\frac{3}{2}}$ or $1 \frac{1}{3}$, it is called Sesquialterate; if $\frac{4}{4}$ or $1 \frac{1}{\frac{1}{2}}$, Sesquitertial ; \&c. In the oober case, if the exponent be $\frac{3}{3}$, the ratio is called Subsesquialterate ; if $\frac{1}{2}$, it is subsesquitertial.

When the greater term contains the less once and several aliquot parts over, the ratio of the greater inequality is called Superparticus, and that of the less inequality is Subsuperpartiens. Particularly, in the former case, if the exponent be $\frac{f}{}$ or 1 , the ratio is called Superbipartienstertias ; if the espernent tee $\frac{7}{\text { for }} 13$, Supertripartiens quartas; if $\frac{2, i}{9}$ or $1 \frac{4}{9}$, Superqualripurticns septimas; \& c. In the latter case, if the expment lo the reciprocals of the former, or $\frac{1}{3}$, the ratin is called Subsuperhipartiens tertins; if \ddagger, Subsupertripartiens quartas; if $\frac{7}{T T}$, Subsuperguadripartices *ptimas; \&c.

When the greater teron contains the less several times, and some one part over; the rutio of the greater inequality is called Vulaplex-superparticular ; and ibe ratio of the less inequality is called Submultiplex subsuperparticular. Particulasly, in the furmer case, if the exponent be \boldsymbol{j}_{3} or 24, the ratio is called Dupla sesquialtera; if $\mathbf{4}$ or $3 f$. Tripla st squiquarta, \&cc. In the latter case, if the expunent be $\frac{?}{5}$, the ratio is called Subdupla subsesquialtera ; il T_{1}^{4}, Suberipla subsesquiquarta. \&c. Lastly, when the greater terin contains the less several times, and several aliquot parts over ; the ratio of the greater inequality is called Multiplex superpartiens; that of the less inequa-
lity, Submultiplex subsuperpartiens. Particularly, in the furiner case, if the exponent be $\frac{\frac{3}{8} \text { or } 2 \frac{2}{2} \text {, the ratio is called }}{}$ Dupha superbipartiens tertias; if ${ }^{2 / 3}$ or $S \frac{4}{5}$, Tripla superbiquadripartiens septimas, \&c. In the latter case, if the expunent be $\frac{2}{2}$, the ratio is called Subdupla subsuperbipartiens terthas; if $\frac{7}{75}$, Subtripla subsuperquadripartiens septimas ; \&ce.

These are the various denominations of rational ratios, names which are very necessary to the reading of the ancient nuthors; though they occur but rarely among the modern writers, who use instead of them the smallest nuineral terms of the ratios ; such as 2 to 1 for duple, and 3 to 2 for sesquialterate, \&sc.

Compound Ratio, is that which is made up of two or more other ratios, viz, by multiplying the exponents together, and so producing the compound ratio of the product of all the antecedents to the product of all the consequents. Thus the compound ratio of 5 to 3 ,

$$
\text { and } 7 \text { to } 4 \text {, }
$$

$$
\text { is the ratio of } \ldots . .35 \text { to } 12 \text {. }
$$

Particularly, if a ratio be compounded of two equal ratios, it is called the Duplicate ratio ; if of three equal ratios, the Triplicate ratio; if of four equal ratios, the Quadruplicate ratio; and so on, according to the powers of the exponents, for all Multiplicate ratios. So the several multiplicate ratios of
the simple ratio of = 3 to 2 , are thus, viz,
the duplicate ratio-- $9: 4$,
the triplicate ratio $-27: 8$,
the quadruplicate ratio $81: 16$, \&c.
Properties of Ratios. Some of the more remarkable propertics of ratios are as follow :

1. The like multiples, or the like parts, of the terms of a ratio, have the same ratio as the terms themselves. So $a: b$, and $n a: n b$, and $\frac{a}{n}: \frac{b}{n}$ areall the same ratio.
2. If to, or from, the terms of any ratio, be added or subtracted either their like parts, or their like multiples, the sums or remainders will still have the same ratio. So $a: b$, and $a \pm n a: b \pm n b$, and $a \pm \frac{a}{n}: b \pm \frac{b}{n}$ arc all the same ratio.
3. When there are several quantities in the same continued ratio, $a, b, c, d, e, \& c$; whatever ratio the first has to the 2 d ,
the 1st to the 3 d has the duplicate of that ratio,
the 1st to the 4 th has the triplicate of that ratio,
the lst to the sth has the quadruplicate of it,
and so on. Thus, the terms of the-continued ratio being $1, r, r^{2}, r^{3}, r^{4}, r^{5}$, Ac, where each term has to the following one the ratio of 1 to r, the ratio of the 1 st to the 2 d ; then $1: r^{2}$ is the duplicate, $1: r^{3}$ the triplicate, $1: r^{2}$ the quadruplicate, and so on, accurding to the powers of $1: r$.

Fur other properties see Proportion.
To appoximate to a Rstio in swaller Terms,-Dr. Wallis, in a small tract at the end of Horrux's works, treats of the nature and solution of this problem, but in a very tedinus way; and he has prosecuted the same to a great length in his Algebra, chap. 10 and 11, where he particularly applies it to the ratio of the diameter of a circle to its circumference. Mr. Huygens too has given a solution, with the reasons of it , in a much shorter and more hatuml way, in his Descrip. Autorn. Planet. Opera Reliqua, vol. 1, pa. 174. The same has also Mr. Cutes, at the be-
gimning of his Harmon. Mensurarum. And several other persons have done the same thing, by the same or similar method.

The problem is very useful, for expressing a ratio in small numbers, that shall be near enough it practice, to any given ratio in large numbers, such as that of the diameter of a circle to its circumference. The principle of all these methots, consists in reducing the ternus of the proposed ratio into a sorriss of what are called continued fractions, by dividing the greaterterm by the less, and the less by the rensinder, and so on, always the last'divisor by the last remainler, after the manner of findugg the greatest common measure of the zwo terms; then connecting all the quotients \&ce together in a serits of continued fractions; and lastly collecting gradually these fractions together one after another. So if $\frac{\pi}{a}$ be any fraction, or the exponent of any ratio; then dividing thus, a) b (c

$$
\begin{aligned}
& \overline{d)} \frac{f}{f)}{ }^{(c} \frac{d}{h h} \frac{f(i}{k) h}(l \\
& \frac{k c c_{0}}{k}
\end{aligned}
$$

gives $c, e, g, i, \& c$, for the several quotients, and these, formed in the usual way, give the approximate value of the given ratio in a series of continued fractions; thus,

$$
\frac{b}{a}=c+\frac{1}{c}+\frac{1}{b}+\frac{1}{1}+\& c
$$

Then collecting the terms of this serics, one after another, so many values of $\frac{f}{a}$ are obtained, always nearer and nearer; the first value being c or $\frac{c}{1}$, the next
$c+\frac{1}{e}=\frac{c e+1}{e}=\frac{n}{\mathrm{~B}}$,
the Sd value $c+\frac{1}{6}+\frac{1}{g}=c+\frac{1}{\frac{g e+1}{g}}=c+\frac{g}{g c+1}=$
$\frac{g \mathrm{ge}+\mathrm{e}+\mathrm{g}}{g e+1}=\frac{(c e+1) g+c}{g e+1}=\frac{k g+c}{g g+1}=\frac{0}{v}$; in like
manner,
the 4 th value is $\frac{c 1+A}{L_{1}+B}=\frac{g}{y}$;
the 5 th value is $\frac{E l+C}{F t+D}=\frac{G}{\mathbf{H}} ; \& c$.
Hence comes this general rule: Having found any two of these values, runltiply the terms of the latter of them by the next quatient, and to the two products add the corresponding terms of the former value, and the sums will be the terms of the mext value, \&c.

For example, let it be required to find a series of ratios in lesser numbers, constantly approaching to the ratio of 100000 to $31+159$, or nearly the ratio of the diameter of a circle to its circumference. Here first dividing, thus,
100000) $3 t 4159(3=c$

$$
\begin{aligned}
& d=14159) \frac{100000}{(7=e} \begin{array}{l}
887) 14159(15=g \\
h=85 b) \frac{887}{\Delta c}(1=i, \& c .
\end{array} .
\end{aligned}
$$

there are obtained the quotients $3,7,15,1,25,1,7,4$. Hence 3 or $\frac{3}{1}=c$, the 1st value;
$\frac{c+1}{\epsilon}=\frac{3.9+1}{3.7}=\frac{22}{7}=\frac{A}{B}$, the 2 d value $;$ $\frac{4 t+t}{\mathrm{Bg}+\mathrm{t}}=\frac{22.25+3}{3.15}+\frac{93.1}{106}=\frac{c}{\mathrm{D}}$, the 3 d value; $\frac{c t}{\mathrm{Bi}}+\frac{1}{+14}=\frac{335.1+.32}{106.1+7}=\frac{359}{113}=\frac{\mathrm{E}}{\mathrm{F}}$, the + th value; and so on; where the successive continual approximating values of the proposed ratio are $\frac{3}{1}, \frac{22}{9}, \frac{033}{166}, \frac{335}{1.35}, 8 \mathrm{c}$; the 2 d of these, viz, $\frac{22}{2}$, being the approximation of Archimedes ; and the $4 t h$, viz, $\frac{335}{153}$, is that of Metius, which is very near the truth, being equal to - - 3.1 .15929 , the more accurate ratio being - . $3 \cdot 1+15927$.

The Dinctrine of Ratios and Proportions, as delivered by Euclid, in the fifth book of bis Elements, is considered by most persons as very obscure and objectionable, particularly the defuition of proportionality; and several ingenous men have indeavoured to elucidute that snbject. Among these, the Rev. Dr. Abram Robertson, of Oxtord, profes. of Astron. printed a noat little paper there in 1789, for the use of his classes, being a demonatrationt of that definition, in 7 propositions, the substance of which is as follows. Ile first premises this advertiscment:
"As demonstratuons depenting upon proportionality persate every branch of mathematical science, it is a matter of the highes: importance to establish it upon clear and indsputable principles. Most mathematicians, both ancient and modern, have been of opinion that Euchd has fallen short of his usual perspicuity in this particular. Some have questioned the truth of the defintion upon which he has founded it, and alnoust all who have admitted its truth and validity have objected to it, as a definition. The uuthor of the jollowing propositions ranks himself amongst objectors of the last-memiuned description. He thinks that Euclid must have founded the definition in question upon the reasoning contaned in the first six demonstrations bere given, or upon a similar train of thinking ; and in his opimiou a detinition ought to be as simple, or as free from a multiplicity of conditious, as the subject will admit."

He then lays down these four definitions:
"1. Ratio is the relation which one magnitude has to another, of the same kind, with respect to quantity."
" 2 If the first of four magnitudes be exactly as great when compared to the second, as the 3 d is when compared to the fourth, the first is said to have to the secood the same ratio that the third has to the fourth."
" 3. If the tirst of four manuitudes be greater, when compared to the second, than the third is when compared to the fourth, the first is said to have to the second a greater ratio than the thrd bas to the fourth."
" 4. It the first of four magnitudes be less, when compared to the secund, than the third is when compared to the fourth, the tirst is suid to bave to the second a less ratio than the third, has to the fourth."

Dr. Robertson then delivers the propusitions, which are the following:
"Prop. 1. If the first of four magnitudes have to the second, the same ratio which the thiril bas to the fourth; then, if the first be equal to the second, the third is equal to the fourth; if greater, greater ; if less, less."
"Prop. 2. If the first of four magnitudes be to the second us the third to the fourth, and if any equimultiples whatever of the first and third be taken, and also any
equimultiples of the second and fourth; the multiple of the first will be to the multiple of the second as the multiple of the third to the multiple of the fourth."
"Prop. 3. If the first of four magnitudes be to the second as the third to the fourth, and it any like aliquot parts whatever be taken of the first and third, and any like aliquot parts whatever of the second and fourth, the part of the first will be to the part of the second as the part of the third to the part of the fourth."
"Prop. 4. If the first of four magnitudes be to the second as the third to the fourth, and if any equimultiples whatever be taken of the first and third, and any whatever of the second and fourth; if the multiple of the first be equal to the multiple of the second, the nultiple of the third will be equal to the multiple of the fourth; if greater; greater; if less, less."
"Prop. 5. If the first of four magnitudes be to the second as the third is to a magnitude liss than the fourth, then it is possible to take certain equimultiples of the first and third, and certain equimultiples of the second and fourth, such, that the multiple of the first shall be greater than the multiple of the second, but the inultiple of the third nit greater than the multiple of the fourth."
"Prop.6. If the first of fuur magnitudes be to the second as the third is to a magnitude greater than the fourth, then certain equimultiples can be taken of the first and third, and certain equimultiples of the second and fourth, such, that the multiple of the first shall be less than the multiple of the second, but the multiple of the third not less than the multiple of the fourth."
" Prop. 7. If any equimultiples whatever be taken of the first and third of four magnitudes, and any equimultiples whatever of the second and tourth; and if when the multiple of the first is less than that of the srcond, the multiple of the third is also less than that of the fourth; or if when the multiple of the first is equal to that of the second, the muitiple of the third is also equal to that of the fourth ; or if when the multiple of the first is greater than that of the second, the multiple of the third is also greater than that of the fourth: then, the first of the four magnitudes shall be to the second as the third to the fourth."

And all these propositions Dr. Rubertson demonstrates by strict mathematical rensoning.

Ratio, Section of. See Section of a Ratio.
RATIONAL, in Arithmetic \&c, the quality of numbers, fractions, quantities, \&c, when they can be expressed by common numbers; in contradistinction ta irrational or surd ones, which cannot be expressed in cammon numbers. Suppose any quantity to be 1 ; there are infinite other quantities, some of which are conmensurable to it, either simply, or in power: these Euclid calls Rational quantities. The rest, that are incommensurable to 1, he calls Irrational quantities, or Surds.

Rational Hosizom, or True Horizon, is that w hose plane is conceived to pass through the centre of the earth; and which therefore divides the globe into two equal portions or hemispheres. It is called the fational borizon, because only conceived by the understanding; in opposition to the sensible or apparent horizon, or that which is visible to the ey.

RAVELIN, in Fortification, was anciently a flat bastion, placed in the middle of a curtain. But

Ravelix, is now a detached work, composed only of two faces, which form a salicnt angle usually without
flanks; being a triangular work resembling the point of a bastion with the flauks cut off. It is raised before the curtain, on the counterscarp of the place; and scrving to cover it and the adjacent flanks from the direct fire of an enemy. It is also used to cover a bridge or a gate, and is always pluced without the moat.-There are also double ravelins, which surve to defend each other; being so called when they are joined by a curtain.- What the engineers call a ravelin, the mien usually call a demilune, or balfmoon.

RAY, in Grometry, the same as Rapies.
Ras, in Optics, a beam or line of light, propagated from a radinat point, throngh any medium. If the parts of a ray of light lic all in a straight line betwern the radiant poitt and the cye, the ray is said to be Direct: the laws and properties of which mahe the subject of Optics. - If any of them tre turned out of that direction, or bent in their passage, the ray is said to be Refracted.-If it strike on the surface of any botly, and be thrown off again, it is said to be Reflected.-In each case, the ray, as it tally eibher directly on the eye, or on the point of rettection, or of refraction, is sad to be Incident.

Again, if seversl ray; be propagated from the radiant object equidistantly from oue another, they are called Parallel rays. If they come inclining towards each other, they are called Converging rays. And if they go continually receding from each other, they are cullwd Diverging rays.

It is from the different circumstances of rays, that the several kinds of bodies are distinguished in optics. A body, for example, that diffuses its own light, or emits rays of its own, is called a Radiating or Lucid or Luminous body. If it only reflect rays which it receives from another, it is called an Illumituated body. If it only transmit rays, it is called a Transparent or Translucent body. If it intercept the rays, or refuse them passage, it is called an Opaque body.

It is by means of rays reflected from the several points of illuminated objects to the eye, that these become visible, and that vision is performed ; whence such Rays are called Visual rays.

The rays of light are not homogeneous, or similar, but differ in all the properties we know of; viz, refrangibility, reflexibility, and colour, and even beat. It is probably from the different refiangibility that the other differences have their rise; at lenst it apperars that those rays which agree or differ in this, do so in all the rest. It is not however to be understood that the property or effect called colour, exists in the rays of light themselves; but from the different sensations the differently disposed rays excite in us, we call them Ifed rays, Yellow rays, \&c. Each beam of light however, as it comes from the sun, seems to be compounded of all the hinds of rays mixed together; und it is only by splitting or separating the parts of it, that these different sorts become observable; and this is done by transmitting the beam through a glass prism, which refraoting it in the passage, and the parts that excite the different colours having different degrees of refrangibility, they are thins sparated from one another, and exhibited each apart, and appearing of the different colours.

Besides refrangibility, and the other properties of the rays of light already ascertained by observation and experiment, sir I. Newton suspects they may have many more; particularly a power of being inflected or bent by
the action of distant bodies; and those rays which differ in refrangitility, he conceives likewise to differ in flexibility.

These rays he suspects may be very small bodies enntted trom shining substances. Such bodies may have all the conditions of light: and there is that action and reaction between transparent bodies and light, which very much resembles the attractive furse between other bodies. Nothing more is required for the production of all the various colpors, and all the degrees of refrangibility, but thant the rays of light be bodies of different sizes ; the least of which may make violet the weakist and darkest of the colours, and be the most easily diverted by refracting surfaces from its rectilinear course; and the rest, as they are larger and lurger, may make the stronger and more lucid colours, Whe, green, yellow, and red. See Colour, Light, Revhaction, Rerlection, Inflection, Converaing, Diverging, \&c, \&c.

Among other qualities of rays, it has been found by experiment, that there is a great difference in the beating power of solar rays. From Dr. Herschel's experiments it appears, that this heating power increases from the middle of the spectrum to the red ray, and is greatest beyond it, where the rays are invisible. Hence it is inferred that the vays of light and caloric nearly accompany each other, and the latter are in ditferent proportions in the ditferent coloured rays. They are casily separated from each other; as when the sun's rays are transmitted through a transparent body, the rays of light pass on seemingly undiminisbed, but the rays of caloric ane intercepted. When the sun's rays are dirceted to an opaque body, the rays of light are reflected, but the rays of calosic are absorbed and retained. This is the case with the moon's light, which, however much it be concentrated, is not accompatied with heat. It has also been shown, that the different rays of light produce different chemical effects on the metallic salts and oxyds. These effects increase on the opposite direction of the spectrum, from the heating power of the rays. From the middle of the spectrum, towards the violet end, they become more powerful, and produce the greatest effect bryond the visible rays. From these discoveries it appears that the solar rays are of three kinds: 1. Rays which produce heat; 2. Rays which produce colour; and 3. Rays which deprive metallic substances of their oxygen. The first set of rays is in the greatest nbundance, or are most powerful towards the red end of the spectrum, and are least refracted. The 2 d set, or thone which illuminate objects, are most powerful in the middle of the spectrum. And the 3 d , set produce the greatest effect towards the violet end, where the rays are most refracted. The solar rays pass through transparent bodies, withnut beating them. The annosplere, for instance, receives no increase of beat by trannitting the sunts rays, till these rays are reflected from other bodies, or are communicated to it by bodies which have absorbed them. This is also proved by the sun's rays being transmited through convex lenses, producing a high degree of trmperature when they are concentrated, but giving no increase of heat to the glass itself. By this method the bent which proceeds from the sun can be greatly increaserl. Indecil, the intensity of heat produced in this way is equal to that of the lottest furnace. This is done, either by reflecting the sun's rays from a concave polished mirror, or by concentratinz or collecting them, by the refractive power of consex lenses, und directing the rays, thus concentrated, on the combustible buty.

Vol. II.

Reflected RA rs, those rays of light which are refected, or thrown back again, from the surfaces of bodies upon which they strike. It is found that, in all the rays of light, the angle of reflection is equal to the angle of fncidence.

Refracted Rays, are those rays of light, which are bent or broken, in passing out of one medium into anotber.

Pencil of Rays, a number of rays emitted foum a poitut of ana object, and diverging in the form of a conc.

Principal Ray, in Perspective, is the perpenilicular biistance briween the eye and the vertical plane or table, as it is sometumes named.

Ray of Curvatare. See Radius of Cunvature.
REAUMER (hene-Antoine-Fekchatit, Sheur de), a respectable French phalosopher, was born at Rochetle in 16s3. After the usual course of school education, he was sent to Poitiers to study phitosophy, and, in 1699, to Buurges to study the law, the profission for which he was intended. But philosuphy and nathematics has.e.f very carly been his fuvourite pursuits, he quitted the law, and repaired to Paris in 1700 , to puisuc those sciences to the best advantage; and here bis character procured hun a scat in the acadeny in the year 1708; which he held till the time of his death, which bappened the 18th of November 1737, at $i+$ years of age.

Reaumur soon justified the choice that was made of him by the academy. He made inummerable cbservations, and wrote a great number of pieces on the various branches of natural philosuphy. His History of Insects, in 6 vols. quarto, at Pal is, is his principal work. Another edition was printed in Holland, in 12 vols. 12010 . He made also great and useful discoverics concerning iron; showing how to change common wrought iron into stecl, how to soften cast iron, and to make works in cast iron as fine as in wrought iron. His labours and discoveries on this subject were rewarded by the duke of Orleans, regent of the kingdom, by a pension of 12 thousand liveres, equal to about 5001 . sterling; which however he would not accept but on condition of its being put under the name of the academy, who might enjoy it after his death. It was owing to Reaumur's endearours that there were established in France manufactures of tin-plates, of porcelain in imitation of china-ware, \&c. They owe to him also a new thermometer, which bears his name, and is pretty generally used on the continent, while that of Fahrenlieit is used in England, and some few other places. Reaumur'n thermometer is a spirit one, having the freezing point at 0 , and the boiling point at 80 .

Reaumur is esteemed an exact and clear writer; and there is an elegance in his style and manner, which is not commonly found among those who bave made only the sciences their stuly. He is represented also as a man of a most a riable disposition, and with qualities to anake him beloved as well as admirel. He left a great variciy of papers and natural curionities, which be br weathed to the Academy of Sciences.- The works publishied by bin, are the following :

1. The Art of changing Forged Iron into Steel; of Sofiening Cast Irm; wal of maling works of Cast lron, as fine as of Wrought Irom. Paris, 1722,1 vol. in 4to. 2. Natural listery of lasects, 6 vols. in + to.

His temorry printed in the volumes of the Academy of Scereces, are very numerous, nmounting to upwards of a hondred, and on various subjects, from the year 1708 to 1763 , several papers in almost cvery volume.

RECFEIVER, of an Air. Puinp, is part of its apparatus ; being a glass vessel placed on the top of the plate, uut of which the air is to be evhausted.

RECESSION of the Equinores. Sce Precesston.
RECDPIROCAL, in Arthmetic, \&e, is the quotient arising by dividing 1 by any number or quantity. So, the reciprocal of 2 is $\frac{1}{2}$; of S is 1 , and of a is $\frac{t}{a}$, \&c. Hence, the reciprocal of a vulgar fraction is fenuel, by basely making the nutnerator and the denominatur mutually
 $\frac{3}{3}$; of $\frac{a}{i}$, is $\frac{8}{4}$, Ac. Hence also, any quantity being multiplied by its reciprocal, the product is always equal to unity or 1: so $\frac{1}{4} \times \frac{2}{5}=\frac{2}{2}=1$, and $\frac{1}{3} \times \frac{1}{2}=\frac{6}{6}=1$, and $\frac{a}{b} \times \frac{b}{a}=\frac{a b}{d A}=1$.

See a large talite of reciprocals of numbers, in my Tractv, vol. 1, at the end, also a method of finding them, pa +63 .

Rretproca. Figures, in Geonetry, are such as have the anteredents sind consequents of the same ratio in both figures. Sit, it the two rectangles be and Bn , if $A B ; D C:: B C: A E$, then those rectangles are reciprocal figures; and are also equal.

Prctrrocal Proportion, is when, in four quantitics, the two latter terms have the reciprocal ratio of the two
 former, or are proportional to the reciprocals of them. Thus, 24, 15, 5, 8 form a reciprocal proportion, because y'f: $\boldsymbol{r}^{\mathbf{\prime}}: \mathbf{5}: 5: 8$, or $15: 24:: 5: 8$.
Reciprocal Ratio, of any quantity, is the ratio of the reciprocat of the quantity.

Recterocally, One quantity is reciprocally as another, when the one is greater in proportion as the pither is less; or when the the is proportienal to the reciproeal of the other. So a is recipiocully as b, when a is always proportional to $\frac{1}{t}$. Like as in the mechanic powits, to perform any cficet, the lets the power is, the groater must be the time of performitg it : or, the it is said, what is grined in power, is lost in lime. Sou that, if p denote any power or agent, and t the tiaze of ins perforruing any given service; then p is as $\frac{t}{t}$, and t is as $\frac{1}{p}$; that is, p and t are reciprocally proportionals to each other.
RECIPROCITY of prime numbers, a certain law that obtains with regard to the remainders of the formula $\frac{\frac{0-0}{n}}{n}$ and $\frac{n^{\frac{m+1}{m}}}{n}$, when n and m are both primes, first demonstrated by Legendre, and on which lie hus founded the demontration of several curious numerical propositions. These remainders, for the sake of abridgement, may be written ($\frac{m}{n}$) and $\left(\frac{n}{m}\right)$; that is, $\left(\frac{m}{n}\right)$ representing the remainders of $\frac{\frac{m-1}{n}}{n}$, and ($\frac{n}{m}$) representing the remainders of $\frac{n^{m}-\frac{1}{m}}{m}$. Then there always subsists such a relation between these two expressions, that one being given, the other is immediately determined. For
whatever may be the form of m and n, provided they are hut both of the form $4 a-1$, we shall always have $\left(\frac{n}{m}\right)=\left(\frac{m}{n}\right)$; and if they are both of the form $4 a-1$, then will $\left(\frac{n}{m}\right)=-\left(\frac{m}{n}\right)$. It is not expected we should here enter upon the investigation of this theorem, but the reader who wishes to sce the demonstration, will find ample gratification by consulting the work above alluded to.

RECKONING, in Navigation, is the estimating the quantity of a ship's way; or of the course and distance rut. Or, more generally, a ship's rechoning is that account, by which it may at any time be known where the ship is, and consequently on what course or courses she must steer to gain her intended port. The reckoning is usually perforined by keeping an account of the courses stcered, and the dotance run, with any accidental circumstances that occur. The courses steered are observed log the compass; and the distances run are estimated from the rate of running, and the time rull upon each course. The rate of running is measured by the log, from thene to time; which however is liable to great irngularities. Anciently Vitrusius, for measuring the rate of sailing, advised an axiv to be passed through the sides of the ship, with two large hearls protending out of of the shap, including whels touching the water, by the revolution of which the space passed over in a given time is nowared. And the same has been since recommended by Snell.

Rechonivg, Dead. Sre Dead Reckoning.
RECLINATION of a Mane, in Dialling, is the angular quantity which a dial plane leans backwards, from an exactly upright or vertical plane, or from the zenith.

RECLINER, or Reclining Dial, is a dial whose* plane reclines from the perpendicular, that is, leans beckwards, or from you, when you stard before it.

Reclixer, Declining, of Dectining Reclinisg Diat, is one which nether stands perpertadicularly, wor opposite to one of the cardinal points.

RECOIL, or Rebound, the resilition, or fying backward, of a body, especially a fire-arm. This is the motion by which, on explosion, it starts or flies backwards; and the cause of it is the resistance of the ball and the impellitig force of the powder, which acts equally on the gun and on the ball. It has bern commonly said by authors, that the monentum of the ball is cqual to that of the gun with its carriage together ; but this is a tmistake; for the latter mornentum is nearly equal to that of the ball and half the weight of the powder together, moving with the velocity of the ball. So that, if the gun, and the ball with half the powder, were of equal weight, the piece would recoil with the same velocity as the ball is discharged. But the beavier any body is, the less will its vrlocity be, to have the same momentum, or forse ; and therefore so many times as the cannon and curriage is heavier than the ball and half the powder, just as many tincs will the volocity of the inll be greater than that of the gun; and in the same ratio nearly is the length of the barrol before the charge, to the quantity the gun recoils in the time the ball is passing along the bore of the ghu. So, if a 24 pounder of 10 feet long be 6400 lb wright, and charged with 8 lb of powder; then, when the ball quits the piece, the gun will have recoiled

RECORDE (Ronert), a learned physician and mathematician, was born of a good family in Wales, and flourished in the reigus of Henry the 8th, Edward the fith, and Mary. There is no account of the exact tume of his birth, though it must have been early in the 16th century, as be was entered of the university of Oxford about the year 1525, where he was elected fellow of Allsouls collcge in 1531. Making physic bis profession, he went to Cambridge, where be was hunoured with the degree of ductor in that faculty, in 1545, and was highly esteerned by all who knew hill, for his great knowledge in several arts and sciences. He afterwards returned to Oxford, where, as he had done before he went to Cam. bridge, he publicly taught arithinetic, and other branclies of the mathematics, with great applause. It seens he afterwards repaired to London, and it has been said he was physician to Edward the fith and Mary, to which princes he dedicates some of his bouks; and yet he ended hix days in the fleet, where he was contined for debt, in the year 1558 , at a very inmature agr. See other curious particulars of this author in my Tracts, vol. 2, pa. 243.

Recorde published several mathematical books, which are mostly in dialogue, betweell the master and sebolar. They are as follow:

1. The Patheray to Knoulledge, containing the first Principles of Gcometre, as they may moste aptly be applied unto practise, bothe for use of Instrumentes Geunctricall and Astronomicall, and also for Projection of Plattes much necessary for all sortes of men. Lond. 4to, 1551.-This work, the author says, is the first book on Geometry ever printed in the English language.
2. The Ground of Arts, teaching the perfect worke and practice of Arithmeticke, both in whole numbers and fractions, after a more casie and exact forme then in former time hath beene set forth, 8 vo. 1552 . - It would seem however that there inust have been some earlier edition than this, or another like work, since the author, in the dedication of his Geometry, or Pathway, Jan. 1551, says that he has "allready set forth somwhat of Arith-metike."-This work went through many editions, and was correeted and auginented by several other persons; as Girst by the famous Dr. John Dee; then by John Mellis, a schoolmaster, 1590 ; vext by Robert Norton ; then by Robert Hartwell, practitioner in mathematies, in London; and lastly by R. C. and printed in 8vo, 1623.
3. The Cassle of Knowledge, containing the Explication of the Sphere bothe Celestiall and Materiall, and divers other things incident therelo. With sundry pleasaunt proofes and cerraine newe demonstrations not written befure in ally vulgare workers. Lond, folio, 1556.
4. The Whetstone of Wiuce, which is the seconde part of Arithmetike: containing the Extractirm of Rootes : the Cossike Practise, with the rules of Equation: and the woorkes of Surde Nombers. Lond. 4to, 1357.-For an analysis of this work on Algebra, with an account of what is new in it, sevevol. 1, under the article Alegebita.

Wood says be wrote also several pieces on physic, anatomy, polities, and divinity; but I know not whether they were ever published. And Sherburne says that he published Cosmographias Sagogen; also that he wrote a book. De Arte facicndi Horologrum; and another, De UsuGloborum, \& deStatu Temporum; which I have never seen.-In the end of the proface to the Geometrical Theorems, in The Pathway to Knowledge, he sets down a list
of many other books, partly mathematical and partly other subjects, which he says he had written, but not then published.

RECTANGLE, in Geometry, is a right-angled parallelogram, or a right-angled quadrilateral figure.

If from any point 0 , linus be drawn to all the four

angles of a rectangle; then the sums of the squares of the lines drawn to the opposite curuers will be equal, in whatever part of the plane the point o is situated ; viz, $O A^{2}+O D^{2}=O B^{2}+O C^{2}$. For wher properties of the rectangle, see Paralielogras; for the rectangle being a species of the parallelugram, whatever properties belong to the latter, must equally hold in the former.

For the Aren of a Rectancie., Maltiply the length by the breadth or height. Otherwise; Multiply the product of the two diagonals by half the sine of their angle at the intersection.

That is, $A B \times A C$, or $A D \times B C$ $x \frac{1}{1} \sin \angle x=$ area. A rectangle, as of two lines $A B$ and $A C$, is thus
 denoted, $A B \times A C$, or $A B . A C$; or els the rectangle of, or under, AB and ac.

Rectangee, in Arithmetic, is the same with product or factum. So the rectangle of 3 and 4 , is 3×4 or 12 ; and of a and b is $a \times b$ or $a b$.

Rectangled, Rifit-angled, of Rectangetar, is npplied to figures and soluds that have at least one right angle, if not more. So a right-angled triangle has one right angle: a right-angled parallelogram is a rectangle, and has four right angles, Such nlso are squares, cubers, and paralleloppedons. Solids are also said to be rectangular with respect to their situation, vix, when their axis is perpendicular to their base; as right cones, pyramids, cylinders, \&c.
The ancients used the phrase Rectangular Section of a Cone, to denote a parabula; that conic section, before Apollonius, being only considered in a cone hasing its vertex a right angle. And hence it was, that Archimedes enitled his book of the quadrature of the parabola, by the name of Rectanguli Coni Scetio.

RECTIFICATION, in Geometry, is the finding of n right line equal to a curve. The rectificution of curves is a branch of the higher geometry, in which the use of the inverse method of fluxions is particularly uneful. This is a problem to which all mathematicians, both ancient and modern, have paid the greatest attention, and particularly as to the rectification of the circle, or finding the length of the circumference, or a right line eqnal to it; but hitherio without the pericteflict; on this ulso depends the qualrature of the circle, since it is demone strated that the area of a circle is cqual to a right-angled triangle, of which one of the sides atoutt the right augle is the radius, and the other cqual to the circumference ; but it is much to be frared that neithel the one nor the other will ever be accomplished. Innumerable appioximations however have been made, froin Archimedes, dowa
to the matbematicians of the present day. See Cincle, and Circumrebence.
'The first person who gave the rectification of any curve, was Mr. Neal, son of Sir Paul Neal, as we find at the end of Dr. Wallis's 'Treatioe on the C'issoid; where hasays, that Mr. Neal's rectification of the curse of the monirubical parabola, was published in Joly or Augurt, 1657. Two years atter, viz, ill 165\%, Vian Ifurcat, in Holland, also gave the rectification of the same curse; as may be scen in Schooten's Commentary on Descartes's Geonuctry.

The most comproliensive method of rectification of curves, is by the inverse method of fluxions, which is thus: Let acc be any curve line, As an absciss, and BC

a perpendicular ordinate; also be another ordinate indefintely near to nc ; and $\mathrm{c} f$ drawn paraliel to the abscoss $A \mathrm{~B}$. Put the abociss $\mathrm{AB}=x$, the ordinate $\mathrm{BC}=y$, and the curve $A C=z$; then is $\mathrm{c} d=\mathrm{s} b=\dot{x}$ the fluxion of the abuciss $A B$, and $c d=j$ the fluxion of the ordinate $\mathrm{ac}, \mathrm{also} \mathrm{ce}=\boldsymbol{z}$ the fluxion of the curve AB. Hence, because cod may be considered as a plane right-angled triangle, $\mathrm{cc}^{2}=\mathrm{cd}^{2}+c a^{2}$, or $\dot{x}^{2}=\dot{x}^{2}+y^{2}$; and therefore $\dot{z}=\sqrt{ }\left(x^{2}+f^{2}\right)$; which is the lluxion of the length of any curve; and consequently, out of this equation expelling either \dot{x} or \dot{y}, by mucans of the particular equation expressing the nature of the curve in question, the fluents of the resulting equation, being then taken, will give the length of the curve, in finite terms when it is rectifiable, otherwise in an infinite serics, or in a lugarithaic or exponential \&e expression, or by means of some other curve, \&c.

Ex. 1. To reetify the common parabola.-In this case, the equation of the curve is $2 a x=y^{\text {, }}$, where a is half the parameter. The fluxion of this equation is $a \dot{x}=y \dot{y}$, and hence $x^{4}=\frac{y^{\prime} y^{3}}{a^{*}}$; this being substituted in the general equation $\dot{\varepsilon}=\sqrt{ }\left(\dot{x}^{4}+\dot{y}^{2}\right)$, it becomes $\dot{z}=\frac{\left.\dot{j} \sqrt{\prime}^{\prime} e a+v y\right)}{a}$; the correct fluents of which give $z=\frac{y \sqrt{(1 a a}+y(y)}{2 a}+\frac{I}{} a$ \times byp. \log. of $\frac{y+\sqrt{\prime} a+y(y)}{a}$, which is the length of the curve ac, when it is a parabola.

And the same might be expressed by an infinite series, by expending the quantity $\sqrt{ }(a a+y y)$. See my Men: suration, pa. 271 , 4th edition.

Ex. 2. To rectify the Circle.-The equation of the circle may be expressed either in terms of the sine, or versed sine, or tangent, orsecant, \&kc, and the radius. Let therefore the radus of the circle be DA or $\mathrm{DC}=\mathrm{r}$, the versed sine $\mathrm{A} B=$ x, the right sine $\mathrm{Bc}=y$, the tangent $\mathrm{ce}=f$, and the secant $\mathrm{DE}=s$; then, by the nature of the circle, we have these equations, $y^{\prime}=2 r x-x^{2}=\frac{r^{3} t^{3}}{r^{2}+r^{2}}=\frac{s^{\prime}-r^{\prime}}{t^{2}} r^{2}$; and by means of the fuxions of these equations, with the general equation $\dot{x}^{\prime \prime}=\dot{x}^{4}+\dot{y}^{2}$, are obtained the following fluxional forms for the fluxion of the curve, the thent of any one of which will be the curve itself, vir,

$$
\dot{i}=\frac{\dot{r}}{\left.\sqrt{2 r x}-x x^{2}\right)}=\frac{r \dot{y}}{\sqrt{\left(r^{\prime}-y^{\prime}\right)}}=\frac{r^{\prime} i}{r^{\prime}+r^{\prime}}=\frac{r^{\prime}}{\sqrt{\left.r^{2}-r^{2}\right)}}
$$

Hence the value of the curve, from the fluent of each of these, gives the four following forms, in series, viz, putting $d=2 r$ the diame ter, the curse is, z,
$=\left(1+\frac{x}{2 \cdot 0 d}+\frac{3 r^{2}}{2 \cdot 4 \cdot \sqrt{d^{d}}}+\frac{3 \cdot 3 x^{2}}{2 \cdot 4 \cdot 6 \cdot 7 d^{t}} \& \mathrm{c}\right) \sqrt{ } d v$,
$=\left(1+\frac{t^{\prime}}{2 \cdot 3 r^{*}}+\frac{3 y^{\circ}}{2 \cdot 4 \cdot 3 r^{t}}+\frac{3 \cdot 3 y^{*}}{2 \cdot 4 \cdot 0 \cdot 71^{\circ}} \delta c\right) y$,
$=\left(t-\frac{r^{\prime}}{33^{0}}+\frac{c}{3 r^{0}}-\frac{c}{2 r^{0}}+\frac{c}{9 r^{\circ}}-\& \mathrm{c}\right) t$,
$=\left(\frac{p r}{s}+\frac{x^{2}-r^{2}}{2 \cdot 3 x^{2}}+\frac{\left.3 x^{2}-r^{2}\right)}{2 \cdot 4 \cdot s 0^{3}}+\& c\right) r$.
See my Mensur. 4th edit. pa. $91 \& \mathrm{c}$, also most treatises on Fluxions.

- It is evident that the simplest of these series is the third, or that which is expressed in terms of the tangent. It will therefore be the properest form to calculate an example by in numbers. And for this purpose it will be convenient to assume some are whose tangent, or at least its square, is hnows to be some small sumple number. Now the arc of 45° it is known has its tangent equal to the radius; and therefore, taking the radius $r=1$, and consequently the tangent of 45° or $t=1$ alsc, in this case the arc of 45° to the radius 1 , or the qualrant to the diameter 1 , will be $=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{9}$ $+\frac{1}{0} \&$. But as this s.ries converges very slonly, some smaller arch must be taket, that the series may converge faster; such as the arc of 30°, whose tangent is $=\sqrt{\frac{1}{3}}$ $=* 5773502$, or its square $t^{*}=\frac{\ddagger}{}$; and hence, after the first term, the succeeding terms will be found by dividing always by 3, and these quentients divided by the absolute numbers $3,5,7,9, \& c$; and lastly adding every other term together into two sums, the one the sum of the positive ternos, and the other the sum of the nagatise ones, then lastly the one sum taken from the other leaves the length of the are of 30°, which is the 12 th part of the whole circumference when the radius is 1 , or the 6th part when the diameter is 1 , and consequently 6 times that are will be the length of the whole circumference to the aliameter 1; therefore multiply the 1st term $\nabla^{\prime} ;$ by 6 , and the product is $\sqrt{ } 1^{6}$ or $\sqrt{12}=3.464101 t i ;$ beace the operation will be cuaveraisntly made as follows:

Various other sefies for the rectification of the circle may
be seen in difticrent parts of my Mensuration. See also my Tracts, vol. 1, Tr, 17 and 18.

RECTIFIER, in Navigation, is an instrument used for determining the variation of the compass, in order to rectify the ship's course. It conststs of two circles, cither laid upon, or let in to one unother, and so fastened together in their centres that they represent two compasses, the one fixed, and the other moveable. Each is divided into 32 prints of the compass, and 360°, and numbered both ways, from the norib and the south, ending at the cast and west in 90°. The fixed compass represents the lorizon, in which the north, and ull the other points, are liable to variation. In the contre of the moveable compass is fantened a silk thread, long enough to reach the outside of the fixed compass, except when the instrunent is made of wood, in which case an index is used instend of the thrcad.

rectifling of Curves. Sre Rectipication.

Rectirying of the Ginbe or Sphere, is a previous adjustincut of it, to prepare it for the solution of problems. This usually consists in placing it in the same postion as the true spliere of the world has at some certain tinte proposed: which is done first by elevasing the pule above the horizon as tuuch as the latitude of the place is, then bringing the sun's place for the given day, found in the ecliptic, to the graduated side of the brass or general meridian, next move the hour-index to the upper hour of 12 , so shall the globe be rucufied for noon of that day; and if the globe be tutned about thl the hour-index peint at any propused bour, then is the globe in the real position of the carih at that tinc, if the whole globe be set in the north and south position by means of the compass.

RECTILINEAL, Rectilineaik, or Right-lined, is the quality or nature of figures that are bounded by right lines, or formed by right lines.

RECLRRING Scrics, is a series constituted in such a manarr, that huving taken at pleasure any number of its terms, each following term shall be related to the same number of precedng terms accorrling to a constant law of relation. See Recurring Series.

Recuraing Decimals. Ser Repetend.
RED, in Physics, or Optics, one of the sirople or primary colours of nutural bodies, or nather of the rays of light. - The red rays are the least refrangible of all the rays of light. And hence, as Newton supposes the different degrees of refrangibility to arise from the differemt magnitudes of the luminous particles of which the rays consist ; therefore the red rays, or red light, is concluded to be that which consists of the largest particles. See Colour, and Ligut.-Authors distinguish three general kinds of red: one bordering on the blue, as colombine, or dove-colour, purple, and crimsun; another bordering on yellow, as flame-colour and orange; nnd between these extremes is a medium, which is that which is properly called red.
redans, or Redant, or Redent, in Fortification, is a kind of work indented like the teeth of a saw, with salient and re-entering angles; to the end that one part may flank or defend another. It is called also Saw-work, and Indented work.-Redans are often used in fortifying of walls, where it is not necessary to be at the expense of building bastions; as when they stand on the side of a river, or a marsh, or the sca, \&c. But the fault of such fortification is, that the besiegers from one battery
may ruin both sides of the tenaille or front of a place, and make an assault without fiar of being enfiladed, since the defences are ruined.-The parapet of the corridor also is fiequently redented, or carned on by the way of redans.

REDOU1BT, or RFDOUTK, in Forlification, a small fort, without any defence but in front, wed in trenches, lines of circuinvallation, contravallation, and approach, as also for the lodging of corps de garde, and to defend passanges.

A Detuched Redount, is a kiyd of work resembling a ravelin, with Hlanks, placed beyond the glacis-lt is made to occupy some spot of ground which thight be advantageous to the bericgers; and also to oblige the enemy to open his trenches farther off than he would otherwise do.

Rl.DUCING Scale, or Surveying, Scale, is a broad thin slip of box, or ivory, hasity several lmes and scales of equal parts upon it; used by surveyors for turning chains and luaks into roods and acres, by inppection. They use it also to reduce maps and draughts from one dimension to unother.

REDLCTION, in general, is the bringing or clanging some thing to a different form, state, or detwomination.

Reduction, in Arifhmetic, is commenly understood of the changing of money, weights, or measures, to other denominations, of the same value; and it is of two kinds, Resluction Descendug, which is the cbanging a number to its equivalent value in a lower denomination; as pounds into shillings or pence: and Rediuction Ascending, which is the changing numbers to ligher denominations; as pence to shillings or pounds. Sce the books on arithmetic.

Reduction of Fructions. Sec Fraction, and Decinal.
Rencetion of Equations, See Eedaton.
Reductios of Carzes. Suc cerve.
Reductios of a Figure, Design, or Draught, is the making a copy of it, cither larger or smaller than the original, bui still preactsing the form and proportion.

Figures and plans are riduced, and copied, in various wayb; as by the pentagraph, and propontional compasses. See Pentagrapi, and Proportional Compasses. The best of the other methods of reducing are as below.

To reduce a simple Rectilinear Figure by Lines.
Choose a point \mathbf{P} any ulicre about the given figureA BCDE, either within it, or without it, or it one side or angle; but near the middle is best. From that point \mathbf{P} draw lins through all the angles; un one of which take pato pa in the proposed proportion of the scales, or linear dunensions; then draw ab parallel to AB, bc to nc, \& C ; so shall abede be the rednced figure suught, either greater or smaller than the original.

To Reduce a Figure by a Scale.-Measure all the sides, and diagonals, of the figure, as ABCDE, by a scale; and lay down the same measures respectively, from another scale, in the propurtion required.

To Reduce a Map, Devign, or Figure, by Squarcs. Sec Sunvering, art. 2l.

Rebuctuos to the Esliptic, in Astronomy, is the difterence between the argumey of latitude, av NP , and an are of the ecliptic $s u$, interepted between the place of a planct, abd the mode. -To bind this reduction, or diference; in the right-angled spherical triangle XPs, are given the angle of inclination, and the argument of latitude NP; to find wr; then the dif. between xp
 and NR is the refluction sought.

REDUNDANT Hyperbola, is a curve of the bigher kind, so called because it exceeds the conical hyperbola in the number of legb; being a trtple hyperbola, with 6 hyperbolic legs. Sec Newton's Enum. Lin. tertin Ordisis, nomina formarum, Ac.

RE-ENTERING Angle, in Fortification, is an angle whose point is turned inwards, or towards the place.
REFLECTE:D Ray, or Vision, is that which is made by the reflection of light, or by light first received upon the sorface of some bady, and thence reflected agaiu. Sre Ray, Vishon, and leybection.
REFLEC"TING; Circle, or Serwicircle, an ingenious and useful instrutneat, adapted to the purposes of surveys, especially those: of the milhtary kind, in forming sketches in the practice of reconnottering.
This instrument is the inseution of sir Howard Douglas Bart. Iecutenant-governor of the senior departinent of the Hoyal Military Colloge, at Farnham; and which, with the many usefol tegulations and good managrment of the cullege, are so miny veritications of the proansing hopes indicated by his talents and regolar good conduct in the Royal Mil, Acad. at Wuolwich, where sir lloward received his military education.

The instrument combincs the effect of a Hadley's qua. drant and of a protractor, together ; or it combines the measuring principle with a circular protractor, in such a manner, that the index or limb of the instrument shall dce scribe the wollole of the measured angle. By thas contrisance, the angles tahen in the field, nasy be protracid at once, in their real magnitude, on she shetch, without the trouble of reading off the degrece. It is therefore particulariy uselin in surveying, to determine the true stuations of objects, at the same time that the ground is sketched.

To the radion or limb of a semicircular, or circular, protracter, anc (pl. 31, fig. 2), is fixed the inclex plass DL ; and the horizon glass FG is fixed on a bar, 111 , which has a motion on the centre k. This bar slides on a pin o, attached to the himb or redius carrying the index ghos; the pin being adjusted so, that there shall be no sppareat index-error, and exactly in the sane circle- with the point $\mathbf{\kappa}$: the proneipal thab will then describe the whole angle mes sured.

Thus the new reffecting circle, or semircircle, is dividid into $360^{\circ}, 1 \times 0^{\circ}$, instead of the double number, as it the reprating circle, and the length of the are of the latter is eytal to that of a sextant, whose radius is the length of the sliding bar, that is, the diameter of the circle. A vernicr
is applied to read off with accuracy. A 4 -inch plotting or duggonal scale of 1 mile, divided into yards, is engraven on the fixed limb of the instrument; by help of which all the cases of trigonometry can be solved by construction,

To those acquainted with the common seatant, the use of the ruflecting senicircle will be obvious. The eye is applied to the end of the bar Q: the iustrument is held in the right hand, by the end of the fixed limb, and is directed so that the left, or direct object, is sew through the unsilvered part ot the horizon glass. Apply the thumb of the left hand to the end of the moveable limb, and turn it till the other object is seen reflected in the Jower part of the horizon glass; then pas is the measured angle, which can be protracted at once, placing the centre n over the station.-'She errors or mistakes arising from reading off in a hurry, are thus avoided ; the operations of protracting the points, and sketching the features of the ground, are combined; and the sketch much sooner completed.
m is a small screw, to adjust the horizon glass perpendicular to the plane of the instrument; and N is another small screw, behind the index glass, 10 adjust it parallel to the borizon glass, when the sernier cuts 0 digree on the arc.

For other idstruments of reflection, sec Circular Instrument.

REFLECTING, or Feplexive, Dial, is a kind of dial which shows the hour by means of e thin piece of lookingglass plate, duly placed to throw the sun's rays to the top of a cielng, on which the hour-lines are drawn.

Revlecting Telencope, is one in which the rays, from the object to be viewed, are first reccived on a speculum, or polished reflecting surface, of a proper form, thence to another speculum, and so to the ege. See Tizlescorr.,

REfle:CTiON, or Reflexion, in Mechanics, is the return, or regressive motion of a moveable body, occasioned by the resistance of another budy, which hinders it from pursuing its former course of direction.

Reflection is onnceived, by the latest and best authors, as a motion peculiar to elastic bodies, by which, after striking on others which they cannot remove, they recede, or turn back, or aside, by their elastic power. On this principle it is asserted, that there onay be, and is, a priod of rest between the incidence and the reflection; since the reflected motion is not a continuation of the other, but a new motion, arising from a new cause or principle, viz, the power of elasticity.

It is one of the great laws of reflection, that the angle of incidence is equal to the angle of reflection; i, e. that the angle which the direction of motion of a striking berly makes with the surface of the body struck, is eyual to the angle made between the same suriace and the direction of motion after the stroke. See Incibexca and Percuss10\%.

Reflection of the Rays of Ligh, like that of other bodiss, is their motion after being reflected from the surfaces of bodies. The reflection of the rays of light from the surfaces of bodies, is the means by which those burties become visible. And the disposition of bodies to reflect this or that kiad of rays most copionsly, is the caus. of their bring of this or that colour. Also, the reflection of light, from the surfaces of mirrors, nakes the subject of cutoptrics.

The reflection of light, Newton has shown, is not effected by the rays striking on the very parts of the bodies;
but by some power of the body equally diffused throughout its whule surface, by which it acts upun the ray, attracting or repelling it without any real inmediate contact. This power be alse show, is the same by which, in other circumstances, the rays are refracted; and by which they are at first emitted from the lucid bedy.

Dr. Priestley says, it is not more prohable, that the rays of light are transmitted from the sun, with an unifurm dispuasition to be reflected or refracted, nccording to the circumstances of the bodise on which they impinge; and that the transmission of swote of the rays, apparently under the same circumstances, with others that are reflected; is owing to the minute vibralions of the small parts of the surfaces of the mediums through which the rays pass; vibrations that are independent of action and reaction between the bodies and the particle* of light at the time of their inapiogeing, the ugh probably excited by the action of preceding rays. Hist. of Light and Colours, ph.309.

Newion concludes bis uccount of the reflectioti of light with observing, that it luht be reflected not by inplingeing on the solid parts of bisies, but by some other priaciple. it is probabile that as many of ins rays as impinge on the solid parts of bodies are not riflected, but sutieri and lost in the beries. Uiherwise, he sass, we must yupperse two kinds of reflection; for should all the rays be weflected which impinge on the internal parts of clear water or crystal, those substancer would ralber have a ciovely colour, than a clear transparency. To twake lwolies look black, it is necessary that many rays be stopped, retained and lust in them; and it dress not seem probable that any rays can be stopped and stitled in them, which dor not iis pinge on their parts: and bence, he says, we may understand, that bodies are much more rare and poreus than is commonly believed. However, M. Bouguir disputes the fact of light being suffed or lost by impingeing on the sulid purts ot bodies.

Replection, in Catoptrics, is the return of a ray of light frosn the polished surface of a speculum or mirror, as driven thence by some power ressding in it. The ray thus returned is called a reflex or reflicted ray, or a ray of reflection ; and the point of the speculum where the my commences, is calied the point of reffection. Thus, the ray $A B$, procecding from the radiant A, and striking on the point of the speculum B , being returned thence to c , вe represents the reflected ray, and a the print of reflection; in respect of which, 1 в re-
 presents the inculent auy, or ray of incidence, and B the point of incidence; also the angle CBr is the angle of reflection, and ABD the angle of incidence; where de is the reflecting surface, or at lenst a tangent to it at the point s . Though sone count the angle of incidence and of reflection from the perpendicular av.

General Lates of Reflectiox.-1. When a ray of light is refeeted from a speculum of any form, the angle of incidence is always equal to the aagle of rellection. This law obtains in the percussions of all kinds of hodies ; and consequently must do so in those of light; the proof of which may be seen at the urticle Incioexce. This law is confirmed also by experiments on all bodies: and on the rays of light in this manner: A ray from the sun falling on a murror, in a dark rootn, through a small hole, will be seen to rebound, so as to make the angle of reflection equal to the angle of incidence. And the same may
be shown in various other ways: thus ex. gr. placing a semicircle dye on a mirror de, its centre on B , and its limb or plane perpendicular to the speculum ; then assuining equal ares dG and ent ; place an object in 4 , and the eye in c : then will the object be seen by a ray reflected from the puint n. But by covering B , the object will cease to be serm.
II. Every point of a speculum refiects rays falling on it, from every point of an ebject.
III. If the cye C and the radiant point a change places, the point will continue tu radiate upon the eye, in the same course or path as before.
IV. The phane of reflection is perpendicular to the surface of the speculum; and it passes through the centre in spherical specula.

Reflection of the Moon, is a term used by some authors for what is otherwise called her variation; being the 3 d inequality is her motion, by which her true place out of the quadratures differs from ber place awice equated.

Heflection is also used in the Cupernican system, for the dissance of the pole from the burizon of the disc ; which is the same thing as the sun's declination in the P'tolemaic system.

Rfflectolris Curik. See Reflectoire Curve.

RE:I LEXIBILITY of the Rays of Light, is that property by which they are disposed to be reflected. Or, it is their disposition to be turned back into the same medium, from any other medoum on whose surface they fall. Hence these rays are said to be more or less reflexible, which are returned back more or less casily under the same incidence. Thus, if light pass out of glass into air, and by being inclined noore and more to the common surface of the glass and air, begins at length to be totally reflected by that surfice, those kinds of rays which at like incidences are reflected must copiously, wr the rays which by being inclined begin soonest to be totally rethected, are the most reflexible rays.

That rays of light are of diffirent colours, and endued with different degrees of reflexibility, was tirst discovered by sir I. Newton ; and it is shown by the following experiment. Applying a prism dFe to the aperture e of a

darkened room, in such manner that the light be reflected from the base in G; the siolet rays are seen first reflected into na; the other rays continuing still refracted to tand K. After the violet, the blue are all raflected; then the green, \&e.-Hence it appears, that the duferently coloured rays difler in degree of reflexiblity. And Jrom otherexperiments it appears, that those rays which are most Inflexible, are also most retrangible.

RFFFLUX of the Sea, is the ebbing of the water, ne its return from the shore; being so called, becanse it is the opposite motion tu the flood or flux. See Tides.

REFRACTED Angle, ur Augle of Refraction, in Optics, is the angle which the tefracted ray makes with the refracing surface; or sometimes it denotes the complement of that, or the angle it makes with the perpendicular to the nod surface.

Rerbactev Dials, or Refracting Dials, are such as show the hour by means of some refracting transparent fluid.

Refracted Ray, or Ray of Refraction, is a ray after it is brok'il or bent, at the common surfince of two different mediums, where it passes from the one into the other. See Ray, and Refraction.

Refracting Telescope, is one by which the rays from an object are transmites to the eye through certain lenses of a proper furm. Sec Tenescope.

REFR ICTION, in Mechanics, is the deviation of a moving body fron its direct course, by reason of the different density of the mediuin it moves in; or a flexion and change of determination, occasioned by a body's passing obliquely out of one medium into anuther of a different density.

Thus, a ball A, moving in the air in the line AB, and falling obliquely on the surface of the water $C D$, does not proceed straight in the same direction, as to E , but deviates or is deflected to F. Again, if the ball move in water in the line AB, and fall obliquely on a surface of air $\mathbf{C D}$, it will in this case also devate from the same continued direction BE, but the contrary way, and will go to a , on the other side of it. Now the seflection in either case is culled the Refraction, the refraction being towards the denser surface BD in the former case, but from it in the latter.

These nfractions are supposed to arise from hence; that the ball urriving at n , in the first case finds more resistance or oppostion on the oine sitle o, or from the side of the water, than it did from the side \mathbf{P}, or that of the air; and in the latter more resistance from the side \mathbf{P}, which is now the side of the water, than the side 0 . which is that of the air. And su for any other diff-rent media : a vistble instance of which is uften perceived in the falling of shot or shells into the earth, us clay \&ec, when the perforation is. found to sime a little upwards, toward the surface. Howeser, another reason is ussighed for the refraction of the rays of light, whase refraclions lie the contrary way to thone above, as will be seen in what follows, viz, that water by its grenter attraction accelerates the motion of the rays of light more than air does.

Refraction of laght, in Optics, is an inflection or deviation of the rays from their rectilinear course on passing obliquely out of one needium into anotber, of a different density. That a body may be refracted, it is necessary that it should fall obliquely on the second me-
dium : in perpendicular incidence there is no refraction. Yet Voscius and Snell imagined they had observed a perpendicular ray of light undergo a , refraction; a perpendicular object appearing in the water nearer than it really was: but this was attributing that to a refraction of the perpendicular rays, which was owing to the divergency of the oblique rays after refraction, from a nearer point. Yet there is a manfest refraction even of perpendicular rays found in island crystal.

Rohault adds, that though an oblique incidence be necessary in all other mediuns we know of, yet the obliquity must not exceed a certain degree ; if it do, the body will not penetrate the medium, bui will be retlected, instead of being refracted. Thus, cannon-balls, in sea engagements, lalling very obliquely on the surface of the water, are obsersed to bound or rise from it, and to sweep the men from off the enemy's decks. And the satne thing huppens to the little stones with which childrun rake their ducks and drakes along the surface of the water. The ancients confounded refraction with reflection; and it was Newton who first tuught the true difference between them. He shows however that there is a good deal of analogy between them, and particularly in the case of light.

The laws of refraction of the reys of light in mediums differently terminated, i. e. whose surfaces are plane, colncave, and convex, make the subject of Dioptrics. By refraction it is, that convex glasses, or lenses, collect the rays, magnify objects, burn, \&c; and hence the foundation of nicroscopes, telescopes, dec.-And by refraction it is, that all remote objects are seen out of their real places; particularly, that the beavenly bodies are apparently bigher than they are in reality. The refraction of the air has many times so uncertain an influence on the places of celestial objects, near the horizon, that wherever refraction is concerned, the conclusions deduced from observations that are much affected by it, will always remain doubtful, and sometimes too precarious to be relied on. See Dr. Bradley in Philos. Trans, number 485.

As to the cause of refraction, it does not appear that any person before Descertes attempted to explain in: this he undertook to do by the resolution of forces, on the principles of mechanics; in consequence of which, he wus obliged to suppose that light passes with more ease through a dense medium than a rare one; thus, the ray AC filling obliquely' on a denser medium at \mathbf{c} is supposed to be acted on by two forces, one of them impelling it in the diruction A1, and the other in AK, which alone can be effected by the change of medium; und since, after the ray has entered the denser medium, it approaches the perpendicular Cl , it is plain that this force must have recrited an increase, while the other connnued the same.

The first person who questioned she tiuth of this explanation of the causc of refruction, was Fermat: he asserted, contrary to Descartis, that light suffers greater resstance in water than in air, and greater in glasa shan in water ; and he manutained that the rusistance of diflerent mediums, with respect to light, is in proportion to their densities. IAibniz also adopted the same seneral idea; and shey reasnocd on the subject in the following mauner. Nature, say they, accomplishes her ends by the shortes! methodx ; and therefore light ought to pass from one poibt to another, either by the shontest course, or by that in which the least time is required. But it is plain that the path in which light passes, when it falis
obliquely on a denser medium, is not the most direct or the shortest; and therefore it must be that in which the least time is spent. And whereas it is demonstrable, that light falling obliquely upon a deuser medium (in order to take up the least time possible, in passing from a point in one medium to a point in the other) must be refracted in such a manner, that the sine of the augles of iscidence and refraction must be to one another, as the different facilities with which light is transmitted in those medums; it follows that, since light approaches the perpendicular when it passes obliquely fromi air into water, the facility with which water suffers light to pass through it_{4} is less than that of the air; so that the light meets with greater resistance in water than in air.

This method of arguing from final causes could not satisfy philosophers. Dr. Smith observes, that it agrees only to the case of refraction at a plane surface; and ibat the hypothesis is altogether arbitrary.

Dechales, in explaining the law of refraction, supposes that every ray of light is composed of several smaller rays, wbich adhere to one another; and that they are refracted towards the perpendicular, in passing into a denser medium, because one part of the ray meets with more resistance than another part; so that the former traverses a smaller space than the latter; in consequence of which the ray must necessarily bend a little towards the perpendicular. This hypothesis was adopted by the celebrated Dr. Berrow, and indeed some say, he was the author of it. Now on this bypothesis it is plaill, that mediums of a greater refractive power, must give a greater resistance to the passage of the rays of light, than mediums of a less refractive power; which is contrary to fact.

The Bernuullis, both father and son, have attempted to explain the cause of refraction on mechanical princtples; the former on the equilibrium of forces, and the latter on the same principles with the supposition of etbereal vortices: but neither of these liypotheses has gained much credit.
M. Mairan supposes a subtle fivid, filling the pores of all bodies, and extending, like an atmosphere, to a small distance beyond their surfaces; and then he supposes that the refraction of light is nothing more than a necessary and mechanical effect of the incidence of a small body in those circumstances. There is more, be says, of the refracting fluid, in water than in air, more in glass than in water, and in general more in a dense medium than in one that is rarer.

Maupertuis supposes thut the course which every ray takes, in passing out of one medium into an ther, is that which requires the least quantity of action, which depends on the velocity of the body and the space it passes over; so that it is in proportion to the sum of the products arising from the spaces multiplied by the velucitues with which bodies pass over them. From this principle he delluces the necessity of the sine of the angle of incidence being in a constant ratio to that of refraction; and alus all the other laws relating to the propagation and reflection of light.

Dr. Smith (in his Optics. Remarks, p. 70) observes, that all other theories for explaining the reflexion and refraction of fight, except shat of Niwton, suppose that it strikes upon bidies and is resisted by them; which bas never beell prosed by any deduction from experience. On the contrary, it appears from various considerations, Voi., 11 .
and might be shown by the obscrvations of Mr. Molyneux and Dr. Bradley on the parallax of the fixed stars, that their rays are not at all impeded by the rapid motion of the earth's atmosphere, nor by the object-ghass of the telcscope, through which they pass. And by Newton's theory of refraction, which is grounded on expenence only, it appears that light is so far from being resisted and retarded by refraction into any dense medium, that it is swifter there than in vacus in the ratio of the sine of incidence in vacuo to the sine of refraction into the dense medium. Priestley's Hist. of Light, \&c, p. 102 and 333.
Newton shows that the refraction of light is not performed by the rays falling on the very surface of bodics; but that it is effected, without any contact, by the action of some power belonging to bodies, and extending to a certain distance beyond their suifaces; by which same power, acting in other circunstances, they are also emitted and reflected.

The manner in which refraction is performed by mere attraction, without contact, may be thus accounted fier: Now suppose 41 the boundary of two mediums, N and 0 ; the first the rarer, ex. gr. air; the second the denser, ex. gr. glass; the attraction of the mediums here will be as their densities. Suppose ps to be the distance ta which the attracting force of the denser medium exerts itself within the rarer. And let a ray of light A_{a} fall obliquely on the sur-
 face which separates the mediums, or rather on thesurface $p s$, where the action of the second and more resist ing medium commences ; then as the ray arrives at a, it. will begin to be turned out of its rectilinear course by a superior force, with which it is attracted by the medhum 0 , more than by the medium s; hence the ray is bent out of its right line in every point of its passage between p_{s} and RT , within which distance the attraction acts; and therefore between thrse lines it describes a curve $a \mathrm{a} b$; but beyond RT, being out of the sphere of attraction of the medium N, it will proceed uniformly in a right line, according to the direction of the curve in the point b.

Again, suppose N the denser and more attracting medium, o the rarer, and rit the boundary as before; and let nt be the distance to which the denser medium exerts its attractive force within the rarer: then even when the ray has passed the point B , it will be within the sphere of the superior atraction of the denser medium ; but that attraction acting in lines perpendicular to its surface, the ray will be continually drawn from its straight course BM perpendicularly towards 131 : thus, having two forces or directions, it will have a compound motion, by which, instead of am , it will descrite am, which will in strictness be a curre. Lasily, afier it has arrived at m, being out of the inlluence of the mediun N, it will persist uniformiy, in a right line, in the direction in which the extremity of the curve leaves it.-Thus we sere baw refraction is perfurmed, boih towards the perpoudicular DE, and from it.

Refaaction in Dieptrics, is the inflexion or bending of the ruys of light, in passing the surfaces of gluases, lens? 2 Q
and other transparent bodies of different densities. Thus, a ray, as $\dot{A} B$, falling obliquely from the radiant A, upon a point B , in a diaphannus surface \mathbf{H}, rarer or denser than the medium along which it was propagated from the radiant, bas its direction there altered by the action of the new medium ; and instead of proceeding to m, it deviates, as for ex. to c.

This deviatioh is called the Refraction of the ray ; RC the Refracted ray, or Line of Refraction; and e the Point of Refraction - The line AB is also called the Line of Incidence; and in respect of t, s is also called the Point of Incidence. The plane in which both theincident and refracted ray are found, is calletl the Plane of Refraction; also a right liue ge drawn in the fefracting medium perprindicular io the refracting surface at the point of retraction B , is called the Axis of Refraction; and its continuation va along the inediun throngb which the ray falls, is called the Avis of lucidence.-Further, the anglo A8s, made by the incident ray and the refracting surface, is usurlly called the Augle of Incidence; and the angle ABD, between the incident ray and the nxis of incidence, is the Angle of Inclination. Morever, the angle $m \mathrm{sc}$, between the refracted and incident rays, is called the Angle of Refraction; and the angle car, between the refracted ray and the axis of refracion, is the Refracted Angle. But it is also very common to call the angles ABD and caE, made by the perpendicular with the incident and refracted rays, the Angles of Inciducice and Refraction.

Genital Laiss of Revkaction.-I. A ray of light in its passage out of a rarer metium into a denser, ex. gr. out of air into, water or into glass, is refracted towurds the perpendicular, i. e. towards the axis of refraction. Hence, the refracted angle is less than the angle of inclination; and the angle of refraction less than that of incidence; as they would be equal were the ray to proceed straight from A to m .
11. The ratio of the sines of the angles $A B D, C B E$, made by the perpendicular with the incident and refracted rays, is a constant and fixed ratio; whatever be the obliquity of the incident ray, the mediums remaining. Thus, the refraction out of air into water, is nearly as 4 to 3 , and into glass it is nearly as 3 to 2 . As to air in particular, it is shown by Newton, that a ray of light, in traversing quite through the atmosplere, is refracted the same as it would be, were it to pass with the same obliquity out of a vacuum immediately into air of equal density with that in the lowest part of the atnosphere.

It appears, from Ptolemy's Optics, that he was well acquainted with the phenomena of the refraction of light, in passing from one medium to another; but he knew neither the law nor the exact quantity of it, though he made some experiments on it. Vitello, who collected the knowledge of the ancients on this subject, and their experiments, gave a false law for the comparison of the effect, ermneously stating that the angles of incidence and reflexion are always in a constant ratio.

The true law of refraction was first discovered by Willebrord Snell, professor of mathematics at Leyden; who found by experiment that the cosecants of the angles of incidence and refraction are always in the same ratio. It was commonly attributed however to Descartes; who, having seen it in a ms. of Snell's, first published it in his Diopırics, without naming Snell, as Huygens asserts; Descartes having only altered the form of the law, from
the ratio of the cosecants, to that of the sines, which is the same thing.
It is to be observed however, that as the rays of light are not all of the same degree of refrangibility, this constant ratio must be different in different kinds: so that the ratio mentioned by authors, is to be understood of rays of the mean refrangibility, i. e. of green ruys. The difference of refraction between the lesst and most refrangible rays, that is, between violet and red rays, Newton shows, is about the $3^{2} \frac{5}{5}$ of the whule refraction of the mean refrangible; which difference, he allows, is so small, that it seldom needs to be regarded.

Different trausparent substances have indeed very different degrees of refraction, and those not according to any regular law ; as appears by many experiments of Newton, Fuler, Hawksbee, \&c. See Newton's Optics, 3d edit. pa. 247; Hawksbee's Experim. pa. 292; Act. Berlin. 1762, pa. 302; Priestley's Hist. of Light \&c, pa. 479

Whence the different refractive powers in different fluids arise, has not been determined. Newton shows, that in many bodies, as glass, crystal, sclenites, pseudo-topaz, \& c, the refractive power is indeed propurtinnable to thrir densities; while in sulphureous bodics, ns camphor, linseed, and olive oil, amber, spirit of turpentine, \&cc, the power is 2 or 3 times greater than in other bodies of equal density; and yet even these have the refractive puwer with respect to each other, nearly as their densitics. Water has a refractive power in a medium degree between those two kinds of substances; while salts and vitriols have refractive powers in a middle degree betwern those of earthy sutstances and water, and accordingly are composed of those two kinds of matter. Spirit of wine has a refractive power in a middle degree between those of water and oily substances; and accordingly it aeems to be composed of both, united by fermentation. It appears therefore, that all budies seeni to have their refractive powers nearly proportional to their densities, excepting so far as they partake more or less of sulphureous oily particles, by which those powers are altered.

Newton suspected that different degrees of heat might have some effect on the refractive power of bodies; but his method of determining the general refraction was not sufficiently accurate to ascertain this circumstance. Euler's method however was well adapted to this purpose: and from tis experiments he infers, thet the focal distance of a single lens of glass diminishes with the heat communicated to it; which diminution is owing to a change in the refractive power of the glass itself, which is probably incrensed by beat, and dinninished by cold, as well as that of all other translucent substances.

From the law above laid down it follows, that one angle of inclination, and its corresponding refracted angle, being found by observation, the refracted angles corresponding to the several other angles of inclination are thence casily compured. Now, Kahnius and Kircher have found, that if the angle of inclination be 70°, the refracted angle, out of air into glass, will be $38^{\circ} 30^{\prime}$; on which principle Zabnius has constructed a table of those refractions for the several degress of the angle of inclination; a specimen of which here follows:

R E F

Angle of Inclination.	Refrated Angle.			Angle of Refraction.		
1°	$0{ }^{\circ}$	40^{\prime}	$5^{\prime \prime}$	0°	19^{\prime}	53"
2	1	20	6	0	39	54
3	2	0	4	0	59	56
4	2	40	5	1	19	55
5	3	20	3	1	39	57
10	6	39	16	3	20	44
20	13	11	35	6	48	25
30	19	29	29	10	30	31
45	28	9	19	16	50	41
90	41	$5{ }^{5}$	40	48	8	20

Hence it appears, that if the angle of inclination be less than $90^{\text {² }}$, the angle of refraction out of air into glass is almost $\$$ of the angle of inclination; and therefore a ray is refracted to the axis of refraction hy almost a third part of the quantity of its angle of inclination. Aud on this principle it is that Kepler, and most other dioptrical writers, demonstrate the refractions in glasses; though in estirating the law of these refractions he followed the exaruple of Albazen and Vitello, and sought to discover it in the proportion of the angles, and not in that of the sines, or cosccants, as discovered by Snell.

The refractive powers of several substances, as determined by different philosophers, may be seen in the following tables ; in which the ray is supposed to passout of air into each of the substances, and the annexed numbers show the ratio to unity or 1 , between the sines of the angles of incidence and refraction.

1. By Sir Lsaac Newton's Observations.

Air	-	-	0.9997
Rain water	-	-	1.3358
Spirit of wine	-	-	1.3698
Oil of vitriol	-	-	1.4285
Alam	-	-	1-4577
Oil of olive	-	-	1.4666
Burax	-	-	1.4667
Gum arabic	-	-	1.4771
Linseed oil	-	-	1.4814
Selenites	-	-	1.4878
Cainphor	-	-	$1 \cdot 5000$
Dantzick vitriol	-	-	1-5000
Nitre	-	-	1.5238
Sal gem	-	-	1.5455
Glass	-	-	1.5500
Amber	-	-	1.5556
Rock crysal	-	-	1-5620
Spirit of turpenti		-	$1 \cdot 5625$
A yellow pseudo-	topaz	-	1.6429
Island crystal	-	-	1.6666
Glass of antimony		-	1.8889
A diamond			2.4390
2. By Mr. Hawksbee.			
Water	-	-	1.3359
Spirit of honey	-	-	1.3359
Oil of amber	-	-	1.3377
Human urine	-	-	$1 \cdot 3419$
White of an egg	-	-	1.3511
French brandy	-	-	1.3625
Spirit of wine	-	-	1.3721
Distilled vinegar		-	1.3721
Gum ammoniac	-	-	1.3723
Aqua regis	-	-	1.3898

REF

III. When a ray passes out of a denser medium into a rarer, it is refracted from the perpendicular, or from the axis of refraction.

This is exactly the reverse of the 2d law, and the quantity of refraction is equal in both cases, or buth forwards and backwards; so that a ray would take the same course back, by which another passed forward, viz, if a ray were to pass from a by B to c , another would pass from c by B to A. Heace, in this case, the angle of refraction is greater than the angle of inclination. And mlso, if the angle of inclination be less than $30^{\circ}, \mathrm{MBC}$ is ncarly equal to $\$$ of MBE ; therefore MBC is of CBE ; cunsequently, if the refraction be out of glass into air, and the angle of inclination less than 30°, the ray is refracted from the axis of refraction by almost the half of the angle of inclination. And this is the other dioptrical principle used by most authors after Kepler, to demonstrate the refractions of glasses.

If the refraction be out of air intoglass, the ratio of the sines of inclination and refraction is as 3 to 2 , or more accurately as 17 to 11; if out of air into water as 4 to 3 ; therefore if the course be the contrary way, viz, out of glass or water into air, the ratio of the sines will be, in the former case as 2 to 3 or 11 to 17, and in the latter as 3 to 4. So that, if the refraction be from water or glass into air, and the angle of incidence or inclination be greater than about $48 \frac{1}{2}$ degrees in water, or greater than about 40° in glass, the ray will not be refracted into air; but will be reflected into a line which makes the angle of reflection equal to the angle of incidence; because the sines of $48 \$$ and 40° are to the radius, as 3 to 4 , and as 11 to 17 nearly; and therofore, when the sine has a greater proportion to the radius than as above, the ray will not be refracted.
IV. A ray falling on a curve surface, whether concuve or convex, is refracted after the same manner as if it fell on a plane which is a tangent to the curve in the point of incidence. Because the curve and its tangent bave the point of contact common to both, where the ray is refracted.

Lame of Repraction in Plane Surfaces.

1. If parallel rays, $A B$ and $C D$, be refracted out of one transparent medium into another of a different density, 2 Q $_{2}$
they will continue parallel after refraction, as azd Dr . Hence a glass that is plane on both sides, being turned either directly or obliquely to the sun, dec, the light passing through it will be propagated in'the sume manner as of the glass wore away.

2. If two rays CD and $\mathbf{C P}$, proceeding from the same radiant c, and falling on a plane surface of a different density si that the puinds of refiaction D and r be equally dislant from the perpendicular of incidence GK, the refracted rays Dr and PQ have the same virtual focus, or the same point of dispersion g.-Hence, when refracted rays, falling on the eyeplaced out of the perpendicular of incidence, are either equally distant from the perpendicular, or very near each other, they will flow upon the eye as if they came to it from the point a; consequently the point c will bescen by the refracted rays as in fo. And hence also, if the eve be placed in a dense medium, objects in a rarer will appear more remote than they nre; and the place of the image, in any case, may be determined from the ratio of refraction : Thus, to fishes swimning under water, objects out of the water must appear farther distant than in reality they are. But on the con;rary, if the eyeat a be placed in a rarer medium, then all object G placed in a denser, appears, at c , nearer lhan it is; and the place of the image way be determined an any given case by the ratio of refraction; and thus the oottom of a sessel full of watcr is raised by refraction a third part of its depth, with respect to an eye placed perpendicularly over the refracting surface; and thus also fishes and other bodies, under water, appear nearer than they really are.
3. If the eye be placed in a rarer medium ; then an object seen in a denser, by a ray refracted in a plane surface, will appear larger than it really is. But if the cye be in a denser medium, and the object in a rarer, the objert will appear less than it is. And in each case, the apparent magnitude EQ is to the real one En, us the rectangle cK.GL to GK.CL, or in the compound ratio of the distance $c \pi$ of the point to which the rays tend before refraction, from the refracting surface DP , to the distance EK of the eye from the same, and of the distance GL of the object EH from the eye, to its distance C_{L} from the point to which the rays tend before refraction.-Hence, if the object be very remote, cL will be physically equal to 6L; and then the reat maguitude zL is to the apparent magnitude FL, as oK to CK, or as the distance of the eye ϵ from the refracting plane, to the distance of the point of convergence y from the spme plane. And hence also, objects under water, to an eyc in the air, appear larger than they are ; and to fishes under water, objects in the air appear less than they are.

Lawe of Repiaction in Spherical Surfaces, both concave and conver.

1. A ray of light $\mathbf{D E}$, parallel to the axis, after a single refraction at E , meets the axis in the point F , beyond the centre c.
2. Also in that case, the semidiameter cs or cs will be to the refracted ruy Er , as the sine of the angle of iefraction to the sine of the angle of inclination ack. But the distance of the focus, or point of concurrence from the centre, $\mathbf{c r}$, is to the refracted ray EF, is the sine of the refracted angle to the sine of the augle of inclination.

3. Hence also, in this case, the distance BY of the focus from the refracting surface, must be to Cr its distance from the centre, in a ratio greater than that of the sine of the angle of inclination to the sine of the refracted angle. But those ratios will be nearly equal when the rays are very mar the axis, and the angle of inclinanon sex is only of a few digrees. And when the refraction is out of air into glass, then

For rays near the axis,	
ar:yc::3:2,	For more distant rays,
$\mathbf{B r}:$ rc $>\mathbf{3}: 2$,	

$\mathrm{BC}: \mathrm{nF}:: 1: 3$. $\mathrm{BC}: \mathrm{B} \boldsymbol{y}<1: 3$.
But if the refraction be out of air into water, then

$$
\begin{array}{c|c}
\text { For rays near the axis, } & \text { For more distant rays, } \\
\text { BY: yC: }: 4: 3, & B F: E C \geqslant 4: 3, \\
\text { BC: PF:: } 1: 4, & B C: B Y<1: 4 .
\end{array}
$$

Hence, as the sun's rays are parallel as to sense, if they fall on the sorface of a solid glass sphere, or of a spliere full of water, they will not meet the axis witlin the sphere : so that Vitello was mistaken when be imagined that the sun's rays, falling on the surface of a crystalline sphere, were refracted to the centre.
4. If a ray ue fall parallel to the axis $7 \boldsymbol{A}$, out of a rarcr medium, on the concave spherical surface BE of a denser one; the refracted ray ex wilt diverge from the point of the axis F, so that F w will be to Fc , in the ratio of the sinc of the angle of inclination, to the sine of the refracted angle. Consequently ys to FC is in a greater ratio than that; unless when the rays are very near the axis, and the angle ace is very moll, for then ris will be to fe nearly in that ratio. And hence, in the cases of refraction out of air into water or glass, the ratios of BC, BF and CF , will be the sanc as specified in the last article.
5. If a ray pe, parallel to the axis rC, pass out of a denser into a rarep spherical convex medium, it will diverge trom the asis after refraction; and the distance yc of the point of dispersinn, or of the virtual focus y, froin the centre of the sphere, will be to its semidiameter CE or CB, as the sine of the refracted angle is to the sine of the angle of refraction; but to
 the portion of the refracted ray drawn back, VE , it will bein the ratio of the sine of the refracted angle to the sine of the angle of inclination. Consequently rc will be to FB , in a greater ratio than this last: unless when the rays DE fall very ncar the axis $\mathbf{y c}$, for then yc to yB will be very nearly in that ratio.

Hence, when refraction is out of glass into air; then, Fur rays near the axis,

$$
\begin{array}{l|l}
Y C: Y B: S: 2, & Y C: Y B>B: 2, \\
B C: B Y: 1: 2 . & B C: B Y>1: 2 .
\end{array}
$$

For more distant rays,

But when the refraction is out of water inte air; then,

6. If the may ne fall parallel to the axis cr, from a denser medium, upon the surface of a spherically concave rarer one ; the refracted ray will meet with the axis in the point F , so that the distance cy from the centre, will be to the retracted pay FE, as the sine of the refracted angle, to the sine of the angle of inclination. Consequently rc will be to FB , in a greater ratio than that above rountioned: unless when the rays are very near the axis, for then rc is to Fs very nearly in that ratio ; and the tbree YB, FC, sC ure, in the cases of air, water, and glass, in the numeral ratios as specified at the end of the last article. See Wolfus, Elem. Matbes. tom. 3, pa. 179 \&c.

Refraction in a Glass Priom.

ABC being the transverse section of a prism; if a ray of light defall obliquely upon it out of the air; instead of proceeding straight on to \mathbf{r}, being refracted towards the

perpendicular 18, it will decline to 0 . Again, since the ray to, passing out of glass into air, falls obliquely on Bc, it will be refracted to m , so as to recede from the perpendicular co. And hence arise the various phenomena of the prisin. See Colovr.

Repraction in a Conder Lam.

If parallel rays, AB, CD, E. fall on the surface of a convex lens x az (the last fig. above) ; the perpendicular ruy AB will pass unrefracted to K , where emerging, as before, perpendiculaily, into air, it will priceed straight on to 0 . But the rays CD and $E p$, falling obliquely out of air into glass, at D and F , will be refracted towards the axis of refraction, or towards the perpendiculars at D and F , and so decline to Q and P : where emerging again obliquely out of the glass into the surfice of the air, they will be refracted from the perpendicular, and proceed in the directions $\mathbf{Q e}$ and $\mathbf{P G}$, meeting in \mathbf{c}. And thus also will all the other rays be refracted so as to meet the rest near the place c. See Focus and Lens.- Hence the great property of convex glasses; viz, that they collect parallel rays, or make them converge into a point.

Repraction in a Concade Lens.

Paraltel rays AB, CD, BF, falling on a concave lens CBHIMK, the ray AB falling perpendicularly on the glass at s , will pass unrefracted to x ; where, being still perpendicular, it will pass into the eir to $\mathbf{2}$, without refraction. But the ray CD , falling obliquely on the surface of

the glass, will be refracted towards the perpendicular at D, and proceed to v; where again falling obliquely out of the glass upon the surface of air, it will be refracted from the perpendicular al q, and proceed to v. After the same manner the nay R.P is firsi reiracted to Y, and thence to Z. - Hence the great property of concave glasses; viz, that they disperse parallel rays, or make shem diverge. Sce Less.

If Remefraction in a Plane Glast.

If parallel rays $\mathrm{Ey}, \mathrm{GH}, \mathrm{ik}$, (the last fig. above) fall obliquely on a plane glass $A B C D$; the obliquity being the same in all, by reason of their parallelism, they will be all equally refracted towards the perpendicular; and accordingly, being still parallel at $m, 0$, and Q, they will pass out into the air equally refracted again from the perpendicular, and still parallel. Thus will the rays ev, on, and ik , at their entering the glass, be inflected towards the right; and in their going out as much inflected to the left; so that the first refraction is here undone by the second, thereby causing the rays on their emerging from the glass, to be parallel to their fint direction before they entered it; though not so as that the object is seen in its true place; for the ray uq, being produced back again, will hot coincide with the ray Ik, but will fall to the right of it ; and this the more as the glass is thicker; bowever, as to the colvur, the second refraction docs really destroy the first. See Colour.

Refraction in Abronomy, or Revraction of the Stare, is an inflexion of the rays of those luminaries, in passing through our atmusphere; by which the apparent altitudes of the heavenly bodies are increased. This refraction arises from hence, that the atmosphere is unequally dense in different stages or regions ; rarent of all at the top, und densest of all at the bottom; which inequality in the same medium, makes it equivalent to several unequal mediums, by which the counse of the ray of light is continually beht into a continued curve line. See Atmospherf.-And Sir Isanc Newton has shown, that a ray of light, in passing from the highest and rarest part of the aunospherc, dowu to the lowest and densest, undergoes the same quantity of refraction that it would do in passing immediutely, at the same obliquity, out of a vacuum into air of equal density with that in the lowest part of the atmosphere.

The effect of this refraction may be thus conceived. Suppose zv a quadrant of a vertical circle described from the centre of the earth T , under which is AB a quadrant of a circle on the surface of the earth, and G a a quadrant of the surface of the atnosphere. Then suppose se a ray of light emitted by a star at s, and falling on the atmo-
 sphere at E: this ray coming out of the etbereal medium, which is much rarer than our air, or perhaps out of a perfect vacuum, and falling on the surface of the atmosphere, will be refracted towards the perpendicular, or inclined down more towards the earth; and since the upper strata of air are rarer than thuse near the earth, and becomes still denser as they appronch the earth's surface, the ray in its progress will be cominually refracted, so as to arrive at the eye in the curve line EA. Then supposing the right line ar to be a tangen to ite arch al A, the ray will enter the eye at A in the direction of Ar; and therefore the star will appear in the heavens at $Q_{\text {. }}$ instead of s, higher or nearer the renith than it really is.-

REF

Hence arise the phenomena of the crepusculum or twilight; and hence also it is that the noon is sometimes seen eclipsed, when she is really below the horizon, and the sun above it.

That there is a real refraction of the stars \&c, is deduced not only from physical considerations, and from arguments a priori, and a similitudine, but also from precise asıronomical observation: for there are numberless observations by which it eppears that the sun, moon, and stars rise much sooner, and appear higber, than they should do according to astronomical calculations. Hence it is argued, that as light is propugated in right lines, no rays could reach the eye from a luminary below the hortzon, unless tiby were defected out of their course, at their entrance into the atmospbere: and therefure it appears that the rays are refracted in passing through the atmosphere.

Hence the stars appear higher by refraction than they really are; so that to bring the observed or apparent altitudes to the true ones, the quantity of refraction must be subtracted. And hence, some of the ancients, as they were not acquainted with this refraction, 'reckoned their altitudes tou great, so that it is no wonder they sometimes committed considerable errors. Hence also, refraction lengithens the day, and shortens the night, by making the sun appear above the horizon a little before his rising, and a little after his setting. Refraction also makes the moon and stars appear to rise sooner and set later than they really do. The apparent diameter of the sun or moon is about 32^{\prime}; the horizontal refraction is about 33^{\prime}; whence the sun and moon appear wholly above the horison when they are entirely below it. Also, from observations it appears that the refractions are greater nearer the pole than at lesser latitudes, which causes the sun to appear some days above the horizon, when he is really beLow it; doubtless from the greater density of the stmosphere, and the greater obliquity of the incidence.

Stars in the zenith are not subject to any refraction; and those in the horizon bave the greatest of all; the refraction continually decreasing from thence to the aenith. All which follows from bence, that in the first casc, the rays are perpendicular to the inedium; in the second, their obliquity is the greatest, and they pass through the largest space of the lower and denser part of the air, and through the thickest vapours; and in the third, the obliquity is continually decreasing.

The air is condensed, and consequently refraction is increased, by coll ; for which reason it is greater in cold countries than in hot ones. It is also greater in cold weather than in hot, in the same country; and the morning refraction is greater than that of the evening, because the air is rarefied by the heat of the sun in the day, and condensed by the coldness of the night. Refraction is also subject to some small variation at the same time of the day in the finest weather.

At the same altitudes, the sun, moon, and stars all undergo the same refraction : for at cqual altitades the incident rays have the same inclinations; and the sines of the refracted angles are as the sines of the angles of inclination, \&ce.

Ptolemy, Albazen, and Vitello, were all acquainted with this refraction, having given many observations on it, though imperfect on the score of accuracy. But Tychn Brahé, who deduced the refractions of the suo, moon, and stars from good observations, and whose table of the refractions of the stars is not much different from those of

Flamsteed and Newton, except near the horizon, makes the solar refractions about 4^{\prime} greater than those of the fixed stary, and the lunar refractions also sometimes greater than those of the stars, and sometimes less. But the theory of refractions discovered by Snell, was not fully understood in his time.

Tbe horizontal refraction, being the greatest, is the cause that the sun and moon appear of an oval form at their rising and setting; for the lower edge of each being more refracted than the upper edge, the perpendicular diameter is shortened, and the under edge appears more flatted also. - Hence also, if we take with an instrument the distance of two stars when they are in the same vertical and near the borizon, we shall find it considerably less than if we measure it when they are botb at sucb a beight as to suffer little or no refraction; because the lower star is more elevated than the bigher. There is also another alteration made by refraction in the apparent distance of stars: when two stars are in the same almacanar, or parallel of declination, their apparent distance is less than the true; for since refraction makes each of them bigher in the aximuth or vertical in which they uppear, it must bring them into parts of the vertical where they come nearer to each other; because all vertical circles converge and weet in the zenith. This contraction of distance, according to Dr. Halley (Philos. Trans. numb. 368) is at the rate of at least one second in a degree; so that, if the distance between two stars in a pasition parallel to the horizon measure 50°, it is at most to be reckoned only $29^{\circ} 59^{\prime} 30^{\prime \prime}$.

The quantity of the refraction at every altitude, from the horizon, where it is greatest, to the zenith where it is nothing, hus been determined by observation, by many astrobomers; those of Dr. Bradley and Mr. Mayer are nearly alike, and have been used by most astronomers. Doctor Bradley, from his observations, deduced this very simple and general rule for the refraction r at any altitude a whatever; vis, as rad. 1 : cotang. $a+3 r:: 57^{\prime \prime}$; $r^{\prime \prime}$ the refraction in seconds; that is, refr. $r=57^{\prime \prime} \times$ cot. $(a+3 r)$, or, which is the same, refr. $r=57^{\prime \prime} \times$ tan. ($2-3 r$), where z is the zenitb distance.

This rule, of Dr. Bradley's, is adapted to these states of the barometer and thermometer, viz,
eitber 29.6 inc. barom. and 50° ihermometer,
or 30 - barom, and 55 thermometer,
for both which states it answers equally the same. But for any other states of the barometer and thermometer, the refraction abovefound is to be corrected in this manner, viz, by either of the two following rules, the first of them given by Dr. Maskelyne, and the 9d by Dr. Brinkley.

$$
\text { Refrec. }=\frac{b}{236} \times \tan .(z-3 r) \times 57^{\prime \prime} \times \frac{400}{330+t^{\prime}}
$$

Refrac. $=\frac{t}{20.6} \times$ tan. $(5-3 \cdot 2 r) \times 56^{* 1} \cdot 9 \times \frac{500}{430+6}$
Where $b=$ altitude of barometer in inches,
$t=$ height of Fabrenheit's thermometer in deg. $r=57^{\prime \prime} \tan . z$ the appar, zenith dist.
From Dr. Bradley's rule, $r=57^{\prime \prime} \times$ cot. $(a+3 r)$ was computed the table of mean astronomical refractions, given in pa. 1 of Dr. Maskelyne's requisite tables.
M. Laplace gave also a rule for the refractions, in vol. 4 of bis Mecanique Celeste. He first assumed it of the same form as Dr. Bradley's, viz, $r=m \times \cot$ ($a+$ nr) $=m \times \tan .(z-n r)$, with general coefficients on and n, to be determined by comparing this general formula with

R EF
Mr. Mayer says his rule was deduced from theory, and when reduced from French measure and Reaumur's thermometer, to English measure and Fahrenbeit's thermometer, it is this,
 rected for both barometer and thermometer: where the letters denote the same things as before, except A, which denotes the angle whose tangent is $\frac{\sqrt{ }(1+002480)}{17 \cdot 14 \text { s11.a }}$.

Mr. Simpson too (Dissert. pa. 46 dc) ingeniously determined hy theory the astronomical refractions, from which he formed this rule, viz, As 1 to 9986° or as radius to sine of $86^{\circ} 58^{\prime} 30^{\prime \prime}$. (or rather $\psi^{\prime \prime}$,) so is the sine of any given zenith distance, to the sine of an arc; then $\frac{8}{\text { rr }}$ of the difference between this arc and the zenith distance, is the refraction sought for that zenith distance. And hy this rule Mr. Simpson computed a tahle of the mean refractions, which are not much different from those of Dr. Bradley and Mr. Mayer, being uniformly a few seconds less in every case.

Besides the above, the public have been favoured with other rules, deduced from numerous observations, made by Ste. Groom hridge, esq. of Blackbeath, a gentleman of fortune, who very laudably amuses himself, and benefits science, by cultivating the practice of astronomy. The results of extensive serics of observations on astronomical refractions, he has given in two volumes of the Philos. Trans. hoth in general rules and large tables of results, differing but very little from those above inseried, and that chiefly in the refractions very near the horizon. In the former volume, viz that for the year 1810 , Mr. Groombridge's rule for the mean refraction is $58^{\prime \prime} \cdot 1192 \times$ tang. ($z-3 \cdot 3625 r$), where z is the zenith distance, and r an assumed near value of the refraction. Butafter numerous other observations, especially on stars at very low altitudes, in the vol. for 1814, Mr. G. by further corrections, reduces the rule to this form, viz, the incan refraction $=58.132967 \times$ tang. $(2-3.6342956)$; from which he has calculated an extensive table of refractions, for every 10^{\prime} of altitude; accompanied with other tables, showing the corrections on account of the difference of the barometer and thermometer from their mean states.

It is evident that all ohserved altitudes of the heavenly bodies ought to be diminished by the numbers taken out of the foregoing tables. It is also evident that the refraction diminishes the right and oblique ascensions of a star, and increases the descensions: it increases the northern declination and latitude, but decreases the southern: in the eastern part of the heavens it diminishes the longitude of a star, but in the western part it increases the same.

Repraction of Altitude, is an arc of a vertical circle, as $A B$, by which the altitude of a star $A C$ is increased hy the refraction.

Repraction of Ascension and Descension, is an are de of the equator, hy which the ascension and descension of a star, whether right or oblique, is increased or diminished by the refraction.

Repractiox of Declination, is an arc by of a circle of declination, by which the declination of a star da or Ex is increased or diminished by refraction.

Repraction of Latitude is an are ac of a circle of latitude, by which the latitude of a star AB is increased or diminished by the refraction.
Repuaction of Longitude, is an are in of the ecliptic, by which the longitude of a star is increased or diminished by means of the refraction.

Terreatrial Repaction, is that by which terrestrial objects appear to be raised higher than they really are, in observing their altutudes. The quantity of this refraction is estimated by Dr. Maskelyne at one-tenth of the distance of the object observed, expressed in degrees of a great circle. So, if the distance be 10000 fathoms, its 10 th part 1000 fathoms, is the fiOth part of a degree of a great circle on the carth, or 1 ', which therefore is the refraction in the altitude of the object at that distance. (Hequisite Tables, 1766, pa. 132).

But M1. Legendre is induced, he says, by several experiments, to allow only ${ }^{3} f^{\text {th }}$ part of the distance for the refraction in altitude. So that, on the distance of 10000 fatboms, the 14 th part of which is 714 fathoms, he allows only $\mathbf{4 4 ^ { \prime \prime }}$ of terresirial refraction, so many being contained in the 714 fathoms. See his Memoir concerning the Trigonometrical operations, \&c.

Agnin, M. Delambre, an ingenious French astronomer, makes the quantity of the terrestrial refraction to be the 11th part of the areh of distance. But the English measurers, Col. Edw. Williams, Capt. Mudge, and Mr. Dalby, from a multutude of exact observations made by them, determine the quantity of the medium refraction to be the 12th part of the said ditance. The quantity of this refraction, however, is found to vary considerably, with the different states of the weather and atmosphere, from the 15th part of the distance, to the 9th part of the same; the medium of which is the 12th part, as afove mentioned.

Some whimsical effects of this refraction are also related, arising from pecaliar situations and circumstances. Thus, it is said, that any person standing by the side of the river Thames at Greenwich, when it is high-water there, can see the cattle grazing on the lsle of Dogs, which is the marshy meadow on the other side of the river at that place; but when it is low water, he cannot see any thing of them, as they are hid from his view by the land wall or bank on the other side, which is raised higher than the marsh, to keep out the waters of the river. This curious effect is probably owing to the moist and dense vapours, just above and rising from the surface of the water, being raised higher or lifted up with the surface of the water at the time of high tide, through which the rays pass, and are the more refracted.

In like manner, Calais sometimes is seen from the sea side at Dover.

And wher inore extraordinary circumstanees have leen communicated in the fullowing letier from an ingenious triend, Mr. Juhn Andrews.
An account of some remarkable appearances arising from Terrestrial Refraction.
In the year 1792, at Traine, near Modbury, in Devon, for the purpose of obtaining an improved prospect from the garden, a railed platform was crected among the branches of a large spreading laurel tree, to which was givea the name of The: Laurel Mount.- It was furnished with chairs, \&xc, wid had in' venble stafis, made convenient for risting a iclescope al different slevations, so as to form a kind of obarrvatory, fur vicwing both celeatial and terforial objects.-Sone time after its erection, it was unex-
pectedly discovered that the pinnacles and flag-slaff, on the tower of Maker Church, west of Plymouth Sound, (where signals are made of the ships which pass by that harbour,) might be seet with a telescope, just appearing above the horizon, distance from hence about 12 miles. This object, being frequently looked at, was perceived to appear at certain times higher than usual ; and some of the parapet of the tower (below the pinnacles) was evidently seen above the horizon, which was not ihe case in general; and which, being considered as a curious and remarkable circumstance, occasioned the object to be more frequently and more attentlvely observed. It was found that the morning was the time best suited for these appearances, which in certain instances were much more remarkable and striking than in others; and that not only the tower, but the scenery of the country, at different distances between it and the place of observation, was in like manner afficted by the peculiar state of the atmo-sphere.-The figures on the plate (plate 30), with the references underneath, will belp to explats the following descriptions.

The first instance of this sort occurred on the 9 th of January 179t, a little after sunrise; the weather bright, with hard frust, and thick hoary incrustations-At this time half or more of the shaft of the tower appeared conspicuously above the horizon; its height and appearance frequently varying; sometimes the pinnacles were scarce discernible, and the whole budy seemed to be solid; when presently the pinnacles would begin to appear again, as if growing suddenly out of the body of the tower, and shooting up to a greater length than they are of in reality. The horizon itself was also subject to the like matations, and the trees in Mount Edgcumbe Park, (which is just below the tower,) were sometimes more and sometimes less elevated, and sometimes not visible at all. The intervening scenery assumed the appearance represented in the 3 d figure on the plate; objects before concealed by the horizon were elevated considerably above it. Among these was a conical ohject, suppursed then to be a large edifice; and which was, in two journeys for that purpose, searched for in vain; but, being afierwards seen again, from the Mount, altertd in size and shape, was found, on a third journey, to be a mow of hay, and was the means of ascertaining the shuation of the range of ground at cc , whereon it stood, which might not have bren easily done otherwise. It was therefore an object of some importance, and is shown in the S^{d} drawing at g . The enlargement of the prospect was so sery singular and striking, as to seem almost as if produced by enchantment.

At this lime another plenomenoal was observed, which I could scarce belicve to be real, till on the 27th of September foll wing it was confirmed by another instance. This was a flucluating appearance of two horizons, one above the ohher, with a complete vacancy between them, like what is sometimes observed in looking through an uneven pane of glass. On the day last metilioned, abuut 6 in the morning, the horizon beng perfectly cluar, the pinnacles of the tower were observed to have a taller appearance than ordinary; and at about half an hour past 6 , a flag being housted on the staff, (which is considerably higher than the pimmacles,) the luter apprared to reach farther up towards the fag than they usually did. They also continually varied their appearance, being sometimes longer and sometincs shorter, and sometimes ot unequal lengths; and at utber times they could not be seen at all,
though the flag still continued visible, and was seemineiy unaffected. In one of these intervals (of the pinnucles disappearing), the horizon at $c c$ being perfectly clcar, 1 began to discern over it n faint stratum of vapour, the upper boundarg of which (nnevenly terminated) passed just below the flag, which seemed as if in a kind of insulated state. Soon afierwards the stratum extended itself higher, and the flag also became invisible; but in a little while the whole appeared again, when the parapet, pinnacles, and staff, seemed all to huve a long and tall appearance, and the flag also to be altered in form from what it had before the extension of the stratum. Not long after this I observed the intervening horizon ccbegin to be sumewhat obscured, the wind probably wafting the stratum of vapour over it, and this oloscurity increasing extended itself over all the ground at c C , which, (as well as the tower, \&c) 1 then conceived to have a higher elevation than before. The vopour continuing to increase, it became so dense at 40 minutes after 7 , as to hide all those objects from my sight, though the bill b, and other parts of the horizon, remained exceeding clear.

Another very promarkable instance was observed on the 6 ih of January 1795, at which time the elevation of the objects was equal to tbat represented in the Sd drawing, and the phenomenon of the double borizun very distinctly observed both by my brother and myself. The npperarancos were continually varying alad intermitting, but not mpidly, so that sufficient time was aftorded for ascertaining their reality heyond a doube. The vacant line of separstion (having the appearance of a whitish stratum of vapour), would ofiell mercase its breadth, so as to efface entirely the uppermost of the two horizous; forming then a kind of dent or gap in the remaining horizon; which horizon, at the extremities of the vacancy, seemed to be of the same licight as the upper horizon was before its being effaced. This vacancy (continually varying in length as well as breadth), was several times scen to approach and take in the tower, and immediately to admit an apparent view of the whole or the most part of its body (like that in the third drasing), which was not the case before; exactly, to all appearance, ns if it had opened a gap for that purpose in the intercepting gronnd. This phenomenon excited great surprise, and secined to be inexplicable.

A great many other observations were made in the year 1794 and 1795 , and ininutes thereof taken, but the above were the most remarkable. The certaiuty of the phenomena being fully confirmed, less attention was thought necessary, and no further memorandurns have been made. After some years the observatory getting into decay, and becoming dangerous, it was taken down, and bath not been since renewed.

In the course of these observations it was remarked that a hoar from, or that kind of dewy mapour which in a sufficient degree of cold occasions a hoar frost, accompanied by an uir rather calnt than otherwise, seemed requisite for the elevation of the objects; and that a dry frost, however intense, especially if attended with wind, had no tendeney to produce it. Indeed, in several instances of that sort, I have observed the objects very sensibly depressed below their usual pitch. I know at present no other instance of the double borizon having been observed, exeept by Mr. Isaac Dalby; who (as appears by Phil. Trans. for 1795, pa. 587) noticed an appearance of that sort about nine months before I did.
The telescnpe made use of was a 3-foot refractor of DolVol. II.

Iond's, of tlie sort with long polyannal tabes of wood. What served ine for a micrumeter (and from which the acale on the plate was deduced) was a notyhed bar, inade of a prece of fite screw, filed flat, and laid ucross the forns of the cye-glayu.-Its salue was ascettained by computing the distance of the stars y and δ Coroner, which was found to be the exient of the telescoupe's field of view. The quantities of eievation are to be understood as judged of by comparing the sbjecis among each other ; for having un graduated instrument or level to which the telesetpe could be uttached, and the abjects not being sufficiently distinguishable without in , I had no means whercby to determine their absolute elevation in respect of the horizon.

As tar as the mere elevation of objects is conerined, the phenoruena seem not difficult to be accounted for; but the double horizon, and especially the preuliar circuinstances observed on the 6th of January 1795 , uppear not easy to be explained. They furnish two materal questions; first, whether the separation is effected by the refracting matter elevating the upper, or depressing the lower visible horizon ? and, secondly, why the apparent vacuncy, or gap, described as above, did not cause the tower to disappear, as well as the horizon which intercepted it ? My own idea at present is, that the appenrance of the lower horizon is effected eiber by depression, or else by the mass of refracting matter, which, causes the elevation, detaching itself from the ground, so as to admit of the natural (unrefracted) horizon being seen below it, the the same time that an elevated one is risible through its body. I also conceived it possible that the lengthened appearance of the tower (then observed) might have arisen from the connexion of two images thereof, viz, the upper and the lower ; baving noticed something similar in the instance of a tree, partly intercepted by the ridge of a boulding, and viewed through an irregular spot (wbich seems to me to be a bubble) in the glass of a window: and probably an attentive observation of objects seen through such irregularities in glass, may help to illustrate all its different phenomena. The tower being a bodly of an uniforin breadth, a deception of the sort alluded to is not perceivable; but perbaps would have been manifest had the ohjeet been of the pyramidical form, as many steeples are. And, as the distance of the tower, beyond the intercepting ground at c, is unly aboat 3 miles, it seems rather extraordinary that the difference of their absolute clevations should be sufficient to bring so much of the tower into view. At the times of these extraordinary refractions, is was a sharp white frost, with a calm hazy atmosphere.

Modbury, 3d Jan. 1815.
Joun Andrews.
See the representations in plate 30 , of the appearances, in three different states of the atmosphere, with the explanations of them.

The following curions instance of refraction was given in the Sd vol. of the Trans, of the American Philos. Trans. by Mr. Andrew Ellicott, at Pittsburg, Nov. 5, 17 57, from observations at Lake Erie,-On the evening of Sept. 12, there was a fine caurora borealis. The next day was cloudy; but without rain. About noon, the low peninsula, called Presque-isle, which, at its then distance of 25 miley, is commonly invisible, was descried from the borders of the lake, cotsiderably clevated above the horizon ; and, viewed through a telescope, the branches of the trees could be plainly discorered. It is very singular that the penimsula was frequently seen doution the images, one above the other, separating and coinciding repeatedly, like those ob 2R
served in shifting the index of a Godfrey's quadrant. In the evening it began to blow a fresh breczo; which, in the following days, incriased into a most violent hurricane. These distinct facts afford some data for the investigation of the curiuus plenomenon which sailons term Looming. We may offer the following attempt at an explication. It is easy to perceive that, owing to the successive increase of rarity at different heights in the atmosphere, the rays of light, transmitted from a distance, are invariably bent towards the surface of the earth, and therefore bestow on objects an apperent elevation. If this progression of rarity be, from some accidental cause, augmented, the refraction, and its consequent effect, must then become proportionully greater; and this actually takes place in the case under consideration. The lucid complexion of the sky, and the storm which commonly ensucs, conspire to indicate that, at no great height, the nir is replete with humidity. The double appearance above described may be owing to two fluctuative strata of air, differently charged with moisture, and occasioned probably by opposite currents.

The following is the substance of a letter, on a similar subject, from W. Lathm, esq. inserted in the Philos. Trans, of 1798.-On the 26th of July, 1797, about 5 o'clock afternoon, while sitting in his room at Hastinge, on the parade, close to the sen shore, nearly fronting the south, Mr. Latham's attention was excited by a number of people running down to the sea side. On inquiring the reason, he was informed that the coast of France was plainly to be distinguished by the naked cye. He immediately went down to the shore, and whs surprised to find that, even without the assistance of a telescope, he could plainly tee the cliffis on the opposite const ; which, at the very nearest part, are between 40 and 50 miles distant, and are not to be discerned from that low situation by the aid of the beat glasses. They appeared to be only a few miles off, and seemed to extend for some leagues along the coast. Mr. L. pursued his walk along the shore, close to the water's edge, conversing with the sailors and fishermen on the subject. At first these could not be persunded of the reality of the appearance; but soon became so fully convinced, by the cliffs gradually appearing more elevated, and approaching nearer, as it were, that they pointed out, and named to him, the different places they had been aecustomed to visit; such as the Bay, the Old Head or Man, the windmill \&c, nt Boulogne, St. Vallery, and other places on the coast of Picardy; which they afterwards confirmed, when they viewed them through thear teliscopes. Their remarks were, that the places appeared as near as if they were sailing at a small distance into the harbour.
Having indulged his curiosity on the shore for near an hour, during which time the cliff appeared to beat some times more bright and near, at others more faint and distant, but never outof sight, Mr. L. went upon the eastern cliff or bill, which is of a considerable height, when a most beautiful scene presented itself to view; for he could at once see Dengeness, Dover cliffs, and the French coast, all along from Calais, Boulogne, \&c, to St. Vallery; and as some of the fisbermen affirmed, as far to the westward even as Dieppe. By the telescope, the French fishing-boats were plainly to be seen at anchor; and the different colours of the land upon the heights, together with the buildings, were perfectly discernible, This curious phenomenon continued in the highest splendour till past 8 o'clock (though a black cloud totally obr scured the face of the sun for some time) when it gradually vanished.

The day was extremely hot, 76° at 3 afternoon, and the three preceding days remarhably fine and clear. Not a breath of wind was stirring the whole of the day; but the small pennons at the mast-heads of the fishing-boats in the harbour were in the manning at all points of the compass. -Mr. L. was, a few days afterwards, at Winchelsea, and at several places along the coan, where he was informed that the above phenomenon had been equally visuble.The cape of land called Dengeness, which extends nearly 2 miles into the sea, and is about 16 mile distant from Hastings, in a straight linc, appeared as if quite cluse to it, as did the finhing-buats, and other vessels which were sailing between the two places.

Similar and still more extraordinary instaners of atmospherical refraction have been since described in different volumes of the Philos. Trans. for the years 1795,1797, 1799, 1800 \&c, by Mr. Dalby, Ciap. Huddart, Sir Heary Englefield, Mr. Latham, Mr. Viace, and Dr. W ollaston. Mr. Huddart first noticed a distinet image, inverted beneath the object itself; and described several such appearances, accompanied with an optical explanation, remarking that the lowest strata of the air were at the time endued with a weaker refractive power, than others at a small elevation. Mr. Viace has given an instuace where erect, as well as inverted images, were visible above, instead of beneath, the objects themselves; anal, by tracing the progress of the rays of light, in a manner similar to Mr. Huddart's, concludes that these phenomenn arose from unusual variations of increasing density in the lower strata of the atmosphere. In the vol. for 1795, Mr. Dalby mentions having seen the top of a hill appear delached; for the sky was seen under it. In this case, as well as in the preceding, says Dr. W., it is probable that inversion took place, and that the lower half of the portion detached was an inverted image of the upper, as the sky could only be seen beneath it hy an inverted course of the rays.

Since the causes of such peculimerities of terrestrial refraction had not received so full an explanation as might be wished, Dr. Wollaston has endeavoured, 1st, To investigate theoretically the successive variations of increasing or decreasing density to which fluids in general are linble, and the laws of the refractions occasioned by them. 2dly. To illustrate and confirm the truth of this theory by experiments with fluids of known density. And Instly, to ascertain, by trial on the air itself, the causes and extent of those variations of its refractive density, on which the inversions of objects, \&cc, nppear to depend. See vol. 90, or my Abridgement, vol. 18, p. 667.

In a lite letter from Mr. Dalby he snys, he repeatedly observed, when measuring the base on King's Sedgemoor, those extroordinary refractions. The moor is several miles in length, and as level as the sea. When the sun shone out after a shower of rain, he placed a telescope cn the top of the front wheel of a carriage, and then the cattle grazing on the moor, at the disuance of 4 or 5 milcs, agpeared through the telescope in their proper shapes and position, without any inversion; but when the telescope was laid on the box near the axle, at about 2 feet below the top of the wheel, or 2 feet from the ground, he saw the inverted images of the catile complete. Suppose, says he, a look-ing-glass laid on a table before you; thet if you conceive fies, or mice, or any small animals, to be walking on tho glass, you will have a perfict idea of the nppearance. (See an idea of it represented, plate xxxi, fig. 1). It was curious to see cows and horses with their backi downwards,
walking foot to foot against others above. The lower or reflected images were as bright and well defined, as the upper or real objects. In moving the telescope from the top of the wheel, down towards the axle, the first change observed, was the lengthening of the auimals' legs; afterwards, before the complete inversion took place, the appearances were so singularly fantastical, that it is impossible to describe them.

The inversion, above mentioned, is evidently the effect of reflection from atratum of dense vapour; for I never could perceive athy thing of the kind but when the sun shone out immediately after a shower of rain, and the evaporation was copious. Such refractions and reflections will account for those strange appearances noticed by some travellers while they were crossing the extensive flats in Arabia and Egypt.

A similar ghenomenon Mr. Dalby observed while he was crossing, in a small boat, from MuttonCove, Plymouth Dock, to the Passage-house below Mount Egdecumbe. He says, "When my eye was brought down to the edge of the bout, about a foot from the surface of the water, the summit of the distant rock called the Mewer-stone, in Plymouth harbour, appeared totally detached, or lifted up, from the lower part. This proves that the vapour rising froin the sen must have had a great refractive power near the surface; for no apparent separation took place when the eye was 2 or 3 feet from the water."

REFRANGIBILITY of Light, the dispasition of the rays to be refracted. And a greater or less refrangibility, is a disposition to be mure or less refracted, in passing at equal angles of incidence into the same merlium. -That the rays of light are differently refrangible, is the foundation of Newton's whole theory of light and colou rs; and the truth and circumstances of the principle be evinced from such experiments as the following.

Let eg represent the window-shutter of a dark room, and F a hole in it, through which the light pases, from the luminous object s , to the glass prism ABC within the room, which reiracts it towards the opposite side, or a screen, at PT, where it appears of an oblong form; its length being about 5 times the breadth, and exhibiting the various colours of the rainbow ; whereas without the interposition of the prism, the ray of light would have pruceeded on in its first direction to D . Hence then it follows, 1. That ibe rays of tight are refrangible. This appears by the ray being refracted from its original direction. 5 HD , into another, ur or ut, by passing through a different inedium.-2. That the ray $s x$ it is a compound one, which, by means of the prism, is decompounded or soparated into its parts, 11r, иT, \&cc, which it hence appears are all endued with diflerent degrees of refrangibility, as they are transmitted to all the intermediate points from T to r , and there painting all the different culours.-From this, and a great variety of other experi-
ments, Newton proved, that the blue rays aro more refracted than the red ones, and that there is likewise unequal refraction in the intermediate rays; and upon the whole it appears that the sun's rays have not all the same refrangibility, and consequently are not of the same nature. It is also observed that those rays which are-most refrangible, are also most reflexible. Sce Revlextmility ; also Newton's Optics, pa. 22 \& k c. 3d edit.
The difference between refrangibility and reflexibility was first discovered by Sir Iswac Newton, in $1671-2$, and communicated to the Royal Society, in a letter dated Feb. 6 of that year, which was pubhshed in the Philos. Trans, nuinb. so, pa. 3075 ; and from that time it was viadicated by lim, from the objections of several persons; particularly Pardies, Mariotte, Linus or Lim, and other gentlemen of the English college at Liege; and at length it was more fully laid down, illustrated, and confirmed, by a great variety of experiments, related in his escellent treatise on Optics.

But further, as not only these colours of light produced by refraction in a prism, but also those reflected from opaque bodirs, have their different degrees of refrangibility and reflexibility; and as a white light arises from a mixture of the several coloured rays together, the same great author concluded that all homogeneous light has its proper colour, corresponding to its degree of refrangibility, and not capable of being changed by any reflections, or any refractions; that the sun's light is composed of all the primary colours ; and that all compound colours arise from the mixture of the primary ones, \&c.
The different degrees of refrangibility, he conjectures to arise from the different magnitude of ibe particles coinpusing the different rays. Thus, the most refrangible rays, that is the red ones, he suppones may consist of the largest particles; the least refrangible, i.e. the violet rays, of the smallest particles; and the intermediate rays, yellow, green, and blue, of particles of intermediate sises, Sec Coloux.

Dr. Ilerschel has made many ingenious observations and experiments on the different degrees of refrangibility of the sun's rays; from wbich it appears, that beside the seven coloured rays of light which formed the basis of Newtor's theory, there are other rays that are perfectly colourless; a selmmary of which experiments is given under the article Sun, in treating of the nature of his rays. See Sun.

For the inethod of correcting the effect of the different refrangibility ol the ruys of light in glasses, see Aazaration and Terescope.

REGEL, or Rigel, a fixed star of the first magnitude ${ }_{2}$ in the left foot of Orion.

regiomontanus. See John Muller.

REGION, of the Air or Atmosphere. Authors divide the atmosphere into three stages, called the upper, middle, and lower regions.-The lowest region is that in which we breathe, and is bounded by the reflection of the sun's rays, that is, by the beight to which they rebound from the earth.-The middic region is that in which the clouds reside, and where meteors are formed, \&c ; cxtending from the extremity of the lowest, to the tops of the highest mountains.-The upper regiun commences from the tops of the mountains, and reaches to the utmost limits of the atmosphere. In this region there pro2R2
bably reigns a perpetual cquable calinness, clearness, and serenity.

Elementary Region, according to the Aristotelians, is a sphere ternainated by the concuvity of the moon's orb, comprebending the carth's atmosphere,

Eihereal Region, is the wholt extent of the universe, comprising all the heavens with the orbs of the fixed stars and other celestial bodies.

Reglon, in Geography, a country or particular division of the earth, or a tract of land mhabited by people of the same nation.

Refions of the Moom. Modern astronomers divide the noon into several regions, or provinces, to each of which they give its proper name.

Regions af the Sea, are the two parts into which the *hole depth of the sen is conceived to be divided. The upper of these extends from the suriace of the water, down as low as the rays of the sun can pierce, and extend their influence; and the lower region extends from thence to the botton of the sea.

Sublierramean Regsoss. These are three, into which the earth is divided, at differem depths belon the surface, according to different degrecs of cold or warmth; and it is imagined that the 2d or middlemost of these regions is the coldest of the three.

REGIS (Petes Sy Lvais), a French philosophef, and great propagator of Cartesianisis, was born in Agenois 1632. He studied the languages and philosophy under the Jesuits at Cahors, and afterwards divinity in the university of that town, being designed for the church. His progress in learuing whs so uncummon, that at the end of four years be was offered a doctor's degree wilhout the usual charges; but he did not think it became him till he should study also in the Sorbonne at Paris. He accordingly repaired to the capital for that purpose; but be soon became disgusted with theology; and, as the philosophy of Descartes began at that tite to become popular through the lectures of Rohault, he conceived a taste for it, and gave himself up entirely to its doctrines. Having, by attending those lectures, and by close study, become an adept in that philosophy, he went to Toulouse in 1665 , where he gave lectures in it himself. Having a clear and fluent manner, and a happy way of explaining his subject, he drew many persons to his discourses; the magistrates, the litermi, the ecclesiastics, and the very women, who all now affected to renounce the ancient philosophy.

In 1671, he received at Montpellier the same applauses for his lectures as at Toulouse. Finally, in 1680 he returned to Paris; where the concourse about him was such, that the sticklers for Peripateticism began to be alarmed. These applying to the archbishop of Jaris, he thought it expedient, in the name of the king, to put a stop to the lectures; which accordingly were discontinued for several months. Afterwards bis whole time was spent in propagating the new philosophy, both by lectures, and by publishing books; and in defence of bis system, he had disputes with Huet, Du Hamel, Malbranche, and others. Ilis works, though abounding with ingemuity and learning, have been ueglected in consequeuce of the great discoveries and advancenent in philosophic knowledge that has been since made. -He was chosen a member of the Academy of Sciences in 1699; and died in 1707, at 75 years of age.

His works, which he published, are,

1. A system of Philosophy; containing Logic, Mes taphysics, and Morals: in 1690, 3 vols in tto. being a compilation of the different ideas of Descartes.-It was reprinted the year after at Ainsterdam, with the addition of a Discourse on Ancient and Modern Philosophy.
2. The Use of Reason and of Faith.
3. An Answer to Huct's Censures of the Cartesian Philosophy; and an Answer to Du Hamel's Critical Reflect tions.
4. Some pieces against Malbrauche, to show that the apparent magnitude of an object depends soldy on the magnitude of its image, traced on the retima.
5. A small piece on the question, Whether Pieasure makes our present Happiness?

REGRESSion, or Retrogradation of Carves, \&c. See Retboeradation.

REGULAR Figure, in Geometry, is a figure that is both equilateral and equiaugular, or having all its sides and angles equal to one austher.- For the dimensions, properties, \& c, of regular tigures, see Pourcox:.

Rricular Body, called also, Plutonic Body, is a body or alid comprehended by like, equal, and regular plane figures, and whose solid ungles are all egual. The plane figurr's by which the solid is contained, wre the firces of the solid. Aud the sides of the planc figures ate the edges, or linear sides of the solid.

There are only five regular solids, viz,
The tetraedron, or regular triangular pyramid, baving 4 triangular faces;

The bexacdron, or cubc, having 6 square faces;
The octaedron, having 8 triangular faces;
The dudecuedrun, baving 12 pentagonal faces;
The icosaedron, having 20 triangular faces.
Hesides these five, there can be no other regular bodies in nature.

Priob. 1. To construct or form the Regular Solids - Set the method of descriting these figures under the article Body.
2. To find either the Surface or the Solid Content of any of the Regular Bodies.-Multiply the proper tabular area or surface (taken from the following table) by the square of the linear edge of the solid, for the superficirs. And multiply the tabular solidity, in the last column of the table, by the cube of the linear edge, for the sulid content.
Surfaces and Solidities of Regular Bodies, the Side being unity or 1 .

No. nf sides.	Name.	Surface.,	Sulidity.
4	Tetraedron	1.7320308	0.1178313
6	Hexaedron	6.0000000	1.0000040
8	Octaedron	3.4641016	0.4714045
12	Dodecaedron	20.6457788	7.6631189
20	Icosaedron	$8.660: 340$	2.1816950

3. The diameter of a splere being given, 10 find the side of any of the Platonic borlirs, that may be either inscribed in the sphere, or circumscribed about the sphere, or that is equal to the sphere.
Multiply the given diameter of the sphere by the proper or corresponding number, in the following inlle, ant swering to the shing sought, and the product will be the side of the Platonic body required.
4. Ptolemy's Almagest, the first book, in Greek, with

The dism. of a sphere leing I, the aide of a	That may be inscrilied is the epliese, is	That may be cir cumseritied about the sphuce, is	That is equal to the spbere, is
Tectaedron	$0 \cdot 8164.97$	$2 \cdot 44948$	$1 \cdot 6+417$
Hexaedron	0.577350	1.00000	0.88610
Octiedrun	0.707107	1-22474	1.03576
Dodecaedron	$0 \cdot 525731$	$0 \cdot 66158$	062153
Icossterlfon	0.356822	$0 \cdot 44903$	040883

4. The side of any of the five Platonic bodies being given, to find the diameter of a sphere, that may either be inscribed in that budy, or circumscribed about it, or that is equal to it.-As the respective number in the table above, under the tille, inscribed, circumscribed, or equal, is to 1 , so is the side of the given Platonic budy, to the diameter of its inscribed, circurnscribed, or equal aphere.
5. The side of any one of the five Platonic bodies being given; to find the side of any of the other four bedies, that may be equal in solidity to that of the given body.As the number under the title equal in the last column of the table above, aganst the given Platonic body, is to the number under the same title, agninst the body whose side is sought, so is the side of the given Platonic body, to the side of the body sought.
Sec demonstratinus of many other properties of the Platonic bodies, in my Mensuration, part 3 sect. 2 pa. 183, \&e, the edition.

Regulab Curve. Sep Curve,

HEGLLATOR of a Wach, is a small spring belonging to the balance, serving to adjust the going, and to make it go cither faster or slower.

HEGULUS, in Astronomy, a star of the first magnitude, in the constellation Leo ; called also, from its situation, Cor Leomis, or the Lion's Heart; by the Arabs, Albabor; and by the Chaldeans, Kalbeleced, or Karbeleceid; from ate opinion of ats influencing the affairs of the heavens; as Theon observes.-The longituile of Regulus, us fixed by Flamsteed, is $25^{\circ} 31^{\prime} 81^{\prime \prime}$, and its latitude $0^{\circ} 26^{\prime} 38^{\prime \prime}$ north. See Leo.

HEINFORCE:, in Gunnery, is that part of a gun next the breech, which is made stronger to resist the force of the powder. There are usually two reinforces in each picce, called the first and second reinforce. The second is somewhat smaller than the first, because the inflamed powder in that part is less strong.

Retwrober Rings of a cannon, are flat mouldings, like iron hoops, placed at the breech end of the first and second reinforce, prnjecting beyond the rest of the metal about a quarter of an inch.

REINHIOLD (Fitasmus), an eminent astronomer and mathematician, was born at Salfeldt in Thuringia, a province in Upper Saxony, the 11th of October 1511. He studied mathematics under James Milichi at Wittemberg, in which university he afterwards became professor of those sciences, which be taught with great applause; and after writing a number of useful and learned works, he thed tbe 19th of February 1553, at 42 years of age only. His wrininge are chiefly the fullowing:

1. Theoriz nova Planclarum G. Purbuchii, augmented and illustrated with diugrams and Scholia; in Svo, 1548 ; und again in 1580.-18 this work, among other things worthy of notice, lie teaches (pa. 75 and 76) that the sentre of the lunar epicycle deccrites an oval figure in each monthly period, and that the orbit of Mercury is aloo of the same oval figure.
a Latiu version, and Scholia, explaining the more ob scure passages; in $8 v 0,1549$.-At the end of pa. 123 he promises an edition of '1 beon's Commentaries, which are very useful for understanding Ptolemy's meaning; but his incoature death prevented Reiuhold from giving this and other works which he had projected.
2. Prutenica Tabule Colestium Motuum, in 4to, 1551 ; again in 1571; and also in 1585.-Reinhold spent seven years labour on this work, in which he was assisted by the munificence of Albert, duke of Prussis, whence the tables had tieir name: lie compared the observations of Copernicus with those of Ptolemy and Hipparchus, whence he constructed these new tables, the uses of which he has fully explained in a great number of precepts and canous, forming a complete intruduction to practical astronomy.
3. Primus liber Tabularum Directionum ; to which are added, the Canon Facundus, or Table of Tangeuts, to every minute of the quadrant; and New Tables of Ctimates, Parallels and Shadows, with an Appendix, containing the second Book of the Cawon of Directions; in 4to, 1554.-Rcinhold here supplies what was omitted by Regiomontanus in his Table of Directions, \&e; showing the finding of the sines, and the construction of the tangents, the sines bcing found to every minute of the quadrant, to the radius $10,000,000$; and he produced the Oblique Ascensions from to degrees to the ead of the quadrant. He teaches alsn the use of these tables in the solution of spherical problems.

Reinhuld prepared likewise an edition of many other works, which are enumerated in the Emperor's Privilege, prefixid to the Pruteaic Tables. Namely, Ephemerides for several years to come, computed from the new tables. Tables of tbe Rising and Sctting of severul Fixed Stars, for many different climates and times. The illustration and eatablishment of Chronology, by tbe eclipses of the Juminaries, and the great conjunctions of the planets, and by the appearance of comets, \&c. The Ecclesiassical Calendar. Tbe History of Years, or Astronomical Calendar. Isagoge Spherica, or Elements of the Doctrine of the Primum Nobile. Hlypotyposes Orbium Calestium, or the Theory of Planets. Construction of a New Quadrant. The Doctrine of Plane and Spherical Triangles. Commentarics on the work of Copernicus. Also Commentaries on tbe 15 books of Kiuclid, on Ptoleray's Geography, and on the Opties of Albazen the Arabiau. He also made many Astronomical Olscervatious, but with a wooden quadrant, which observations were seen by Tycho Brale when he passed through Wittemberg in the jear 1575 , who wondered that so great a cultivatur of astronomy was nit fornished with better instruments.

Reinhold left a son, named also Frasmos after himself, an eninent wathematicion and physician at Salfelds. He wrote a small work in the (ierman language, on Subterraucan Gcometry, printed in 410 ut Eirfurt 1575.-He wrote also concerning the New Star which appeared in Cassiopeia in the year 15i2; with an Astrological Prognostication, published in 1574, in the Gernan lnomuage.

RELAIS, in Fortification, a Freucb term, the same with bernee.

HELATION, in Mnthematics, is the linbitude or respect of quantities of the same hiud to each other, with regard to their magnitude ; more usually called RatioAnd the equality, identity, or sameness of two such relations, is called proportion.

Relation, Iaharmonical, in Musical Composition, is that whose exirenes form a false of unnatural interval, incapable of being sung.-This is otherwise called a false selation, and stands opposed to a just or truc one.

Relative Grarity, Levity, Morion, Necesvity, Placc, Spute, Time, Velocity, Δc. Sie the several substantivis.

RLSLIEV'O, in Arebitecture, denotes she sally or projecture of any ornament.

HEMAINDER, is the difference betweentwo quantities, or that which is left after sublracting one from the other,
hendering, ia Building. Sev Pargeting.
repeating Circle. See Circula in insumenta.
REPELLING Power, in Physics, is a certain power or faculty, residing in the minute particles of natural bodies, by which, under certain circumstances, they mutually fly from each other: being the reverse or opposite to the attractive power. Newton shows, from observation, that such a force does really exist; and he argues, that as in algebra, where positive quanninies cease, there neganive ones begin; so in physics, where the attructive furce ceases, there a repelling force must begin.

As the repelling power seems to arise from the same principle as the attractive, only exercised under different cireumstances, it is governed by the same laws. Now the attractive power we find is stronger in small bodies than in great ones, in proportion to the masses; theref,re the repelling is so too: and as the rays of light are alie noost minute bodies we know of ; therefore their repelling force must be the greatest. It is computed by Newton, that the uttractive force of the rays of light is above 1000000000000000 , or one thousapd mitlion of millions of times stronger than the force of gravity on the surface of the carth: hence arises that inconceivable velocity with which light must move to reach from the sun to the earih in litile more than 7 ininutes of time. For the rays emittel from the body of the sun, by the vibrating motion of its parts, are no sooner got without the sphere of attraction of the sun, than they come within the action of the repelling power.

The elasticity or springiness of budies, or that property by which, after having their figure altered by an exiernal force, they return to their former shape again, follows from the repelling power. See Repulsion.

REPERCUSSION. Sec Replection.
REPETEND, in Arithnetic, denotes ihat part of an infinite decimal fraction, which is continually repeated ad infinitum. Thus in the numbers $2 \cdot 13$ is 13 Ac , the figures 13 are the repetend, and marked thus i3.-These repetends chiefly arise in the reduction of vulgar fractions to decimals. Thus, $\frac{f}{f}=0.333 \& c=0.3$; and $\frac{1}{6}=0.1666$ $\& c=1 \cdot 16 ;$ and $\frac{1}{4}=0 \cdot 142857142857 \& c=0 \cdot 142857^{\circ}$. Where it is to be observed, that a point is set over the figure of a single repetend, and over the first and last figure when there are several that repeat.

Repetends are cither Single or Compound.
A Single Repetesp is that in which only one figure repeats ; as $0 \cdot \dot{3}$, or $0 \cdot \dot{6}, \& c$.

A Compound Reretend, is that in which two or mure figures are repeated; as $\cdot \mathbf{i 3}$, or -213 , or -142×57.

Similar Repeten ds are such as begin at the same place, and consist of the same number of figures: as $\cdot 3$ and $\cdot 6$, or $1 . \dot{34} 1$ and $2 \cdot \dot{1} 5 \dot{6}$.

Discimilar Repetends begin at different places, and consist of an unequal number of figures.

To find the fasite Value of any Repetend, or to redace it to a vilgar fiaction. Take the given repeating figure or figures for the numerator: and for the denominator, take as many 9 's as tiere arc recurring tigures or places in the given repetend.
So $\cdot \dot{3}=\frac{3}{9}=\frac{1}{3}$; and $\cdot 0 \dot{5}=0 \frac{5}{9}=\frac{3}{90}=\frac{1}{16}$;
and $\cdot \dot{2} \dot{3}=\frac{123}{999}=\frac{11}{333}$; and $2 \cdot \dot{6} \dot{3}=2 \frac{63}{99}=2 \frac{7}{11}$;
and $\cdot 0$ ' $94405^{\circ}=\frac{594405}{9999990}=\frac{17}{290} ; * c$.
Hence it follows, that every such infinite repetend has a certain determinate and finite value, or can be exprossed by a terminate vulgar fraction. And consequently, that an infinite decimal which does not repeat or circulate, cannot be completely expressed by a fiunte vulgar fraction.

It may further be observed, that if the numerator of a vulgar fraction be 1 , and the denominator any prime number, except 2 and 5 , the decimal which shall be equal to that rulgar Iraction, will always be a repetend, beginning at the firt place of decimals; and this repetend must tuecossarily be a subauduple, or an aliquot pait of a number expressed by as many 9 's as the repetend has figures; that is, if the repetend have six figures, it will be a submuluple of D99999; if tour figures, a submultiple of 9999; \&c. Whence it follows, that if any priane number be culled p, the seties 99998 c , produced as far as is necessury, will aluays be divisible by p, and the yuatient will be the sepetend of the decimal traction $1 \div p$.

The same is also true of any odd number whatever that is not divisuble by 5 ; and for any repetend as well as 9. That is, uny odd nunter, not divisible by 5 , is a divisor of any repetend digit carried to a sufficiont number of places, and thene will never exceed the number expressed by the dicisor.

It is also a curious circumatance, that all fractions wbose denominators are the same, are expressed indecimuls by repetends which bave the sume effective figures, though varied in their position. Thus,

$$
\begin{aligned}
& \frac{1}{y}=142857 \quad 142857 \text {, \&c. } \\
& \frac{3}{7}=-285714285714, \& c \text {. } \\
& t=-428571428571, d c \mathrm{c} \text {. } \\
& \begin{aligned}
& 4=571428 \\
& \hline
\end{aligned} \\
& \begin{array}{l}
=714285714285, ~ \& e . \\
0=837142857142, \& c .
\end{array}
\end{aligned}
$$

RESIDUAL Figure, in Geometry, the figure remaining after subtracting a less from a greater.

Residual Root, is a root composed of two parts or members, only contected together with the sugn - or minus. Thus, $a-b$, or $5-3$, is a residual root; and is so called, because its true value is no more than the residue, or difference between the parts a and b, or 5 and 3 , which in this case is 2 .

RESIDUUM of a Charge, in Electricity, first discovered by Mr. Gralath, in Germany, in 1746, is that part of the charge that lay on the uncoated part of a Leyden phial, which does not part with all its electricity at once; so that it is ufterwards gradually diffused to the coating.

Rr.Sistance, or Resisting Force, in Physics, any power which acts in opposition to another, so as to destroy or diminish its effect.

There are ditferent kinds of resistance, arising from the various natures and propertics of the resining bodies, and governed by various laws; as, the resistance of solids, the resistance of fluids, the resistance of the air, \&c. Of each of these in their order, as below.

Resistance of Solids, in Mechanics, is the force with which the quiescent parts of solid bodirs oppose the motion of others contiguous to them. Of these, there are two kinds. The first, where the ressuting and the resisted parts, i.e. the moving and quiescent bodies, are only contiguous, and do not cohere; constttuting sepurate bodies or masses. This resistance is what Leibuitz culls Resistance of the surface, but which is more properly called Friction: for the laws of which, see the articie Faiction.

The 2 d case of resistance, is where the resistung and resisted parts are not only contiguous, but cobere, being parts of the same contunued busly or mass. This resistance was first considered by Gialileo, and may properly be called Renitency,-As to what regards she resistance of bodies when struck by others in motion, see Peacusslow, and Collision.

7heory of the Resistance of the Fibres of Solid Bodies. To conceive an idea of this resistance, or renitency of the parts, suppose a cylinifrical body suspended vertically by one end. Here all its parts, being heavy, tend downwards, and endeavour is separate the two contiguous planes or surtaces where the body is the weakest; but all the parts of them resist this separation by the force with which they cohere, or are bound together. Here then are two opposite powers; viz, the weight of the cylinder, which tends to break it; and the force of cohesion of the parts, which resists the fracture.

- If now the base of the cylinder be increased, without increasing its length; it is evident that both the resistance and the weight will be increased in the same ratio as the base; and bence il appears that all cylinders of the same matter and length, whutever their bascs be, have an equal resistance, when vertically suspended.

But if the length of the cylinder be increased, without increasing its base, its weight is increased, while the resistance or strength contimues unaltered; consequently the lengthening bas the effect of weakening it, or increases its tendency to break.

Hence, to find the greatest length a cylinder of any matter may have, when it just breaks with the addition of another given weight, we need only take any cylinder of the same matter, and fasten to it the least weight that is just sufficient to break it; and then consider how much it must be lengthened, so that the weight of the part added, togetber with the given weight, may be just equal to that weight, and the thing is done. Thus, let I denote the first length of the cylinder, c its weight, g the given weight the lengthened cylinder is to bear, and wo the least weight that breaks the cylinder I, also x the length sought; then as $t: x:: c: \frac{c x}{t}=$ the weight of the longest cylinder sought; and this, together with the given weight g, must be equal to c tugether with the weight w; bence then
$\frac{c x}{l}+g=c+w$; therefore $x=\frac{r+w-z}{c} t=$ the whole length of the cylinder sought. If the cylinder must just break with its owa weight, then is $g=0$, and in that case $x=\frac{c-w}{c}$ lis the whole length that just breaks by its own weight. By this means Galileo found that a copper-wire, and of consequence any other cylinder of copper, might be extended to 4801 braccios or fathoms of 6 feet each.

If the cylinder be fixed by one end into a wall, with the axis horizontally; the force to break it, and its resistance to iracture will here be both differeut; as both the weight to cause the fracture, and the resistance of the fibres to
oppose it, are combined with the effects of the lever; for the weight to cause the fracture, whether of the beam alone, or combined with an additional weight hung to it, is to be supposed collected into the centre of gravity, where it is considered as acting by a lever equal to the distance of that centre beyond the face of the wall where the cylinder or other prism is fixed; and then the product of the said whole weight and distance, will be the momentum or force to break the prism. Agnin, the resistance of the fibres may be supposed collected into the centre of the transverse section, and all acung there at the end of a lever equal to the vertical semodiameter of the section, the lowest point of that diameter being immoveable, and about which the whole diameter turns when the prisin breaks; and bence the product of the adliesive force of the fibres multiplied by the said semidiameter, will be the momentum of resistance, and which must be equal to the former monentum when the prism just breaks.

Hence, to find the length a prism will bear, fixed so horizontally, before it breaks, either by its own weight, or by the addition of eny adventitious weight; take any length of such a prism, and load it with weights till it just break. Then, put
$l=$ the length of this prism,
$c=$ its weight,
$w=$ tho weight that breaks it,
$a=$ distunce of weight w,
$g=$ any given weight to be borne,
$d=$ its distance,
$x=$ the length required to break.

Then $l: x:: c: \frac{c x}{l}$ the weight of the prism x, and $\frac{\pi x}{l} \times f x=\frac{e x^{2}}{2 \ell}=$ its momentum; also $d g=$ the momentum of the weight g; therefore $\frac{c^{2}}{2 l}+d g$ is the momentum of the prism x and its added weight. In like manner $t c l^{+} a^{w}$ is that of the former or short prism and the weight that brake it ; consequently
$\frac{a^{2}}{a t}+d g=\frac{1}{2} c l+a w$, and $x=\sqrt{ } \frac{a w+\mid d-d_{k}}{t} \times 2 l$ is the length sought, that just breaks with the weight g at the distance d. If this weight g be nothing, then $x=\sqrt{ } \frac{a s+1 d}{c} \times \mathscr{d}$ is the length of the prism that just breaks with its own weight.

If two prisms of the same inatter, having their bases and lengths in the same proportion, be suspended borizontally ; it is evident that the greater bas more weight than the lesser, both on account of its length, and of its base; but it has less resistance on account of its length, considered as a longer arm of a lever, and has only more resistance on account of its base; therefore it exceeds the lesser in its momentum more than it dows inits resistance, and consequently it must break more casily.

Hence appears the reason why, in making sinall machines and models, people are apt to be mistaken as to the resistance and strength of certain horizontal pieces, whens they come to execute their designs in large, by observing the same proportions as in the small.

When the prisin, fixed vertically, is just about to break, there is an equilibrium between its posituve and relative weight; and consequently tbose two opponite powers are to each other reciprocally as the arms of the lever to which they are applied, that is, as half the diameter to half the axis of the prism, On the other hand, the resistance of a
body is alvays equal to the greatest weight which it will just sustain in a vertical ponition, that is, to its absolute weight. Therefore, substitutug the absolute weight for the resistance, it appears, that the aboolute werght of a body, suspended horizontally, is to its relative weight, as the distance of its ceatre of gravity from the fixed piont or axis of motion, is to the distance of the centre of gravity of its base from the same.

The discovery of this important truth, at least of an equivalent to t, and to which this is reducible, we owe to Gatileo; in whose sybtem of resistance, bowever, Mariotte mude an ingenious remark, which gave birth to a new system. Galilen supposes that where the buty breaks, all the fibres break at once; so that the buely miways resistn with its whole absulute force, or the whole force that all its fibres have in the place where it breoks. But Mariotte, finding that all bodics, even glass itbelf, bend belore they break, shows that fibres are to the considered as so many litule bent springs, which never exert their whole force, till stretched to a cortain point, and never break till entirely unbent. Hence those nuasest the fulcrun of the lever, or lowest point of the fracture, are stretched less than those farther off, and consequently employ a less part of their force, and break later.
l'his comideration only takes place in the horizantal situation of the body: fur in the vertical, the fibres of the base all break at once; so that the abolute seight of the body must exceed the united resitance of all its tibers; a greater weight is therefore requised here thato in the hue rizental sthation, that is, a greater woighe is reguired to overcome their unitel resistance, than to overcume their several resistances one after another.

Varignon bas improved on the system of Mariotte, and shown that to Gahleo's system, it adds the consideration of the centre of percussion: for in each system, the section, where the budy breahs, moves on the axis of equilibrium, or line at the lower extremity of the same section; but in the second, the bibres of this section are continually stretching more and more, und that in the same ratio, as they are situated farther and farther from the axis of equilibrium, and consequently are still exerting a greater and greater part of their whole force.

These unequal extensions, like all other firess, must have some common centre where they are uniter, making equal effurts on each sile of it: and as thry are precssely in the same proportion as the velucities which the several points of a tod moved circularly would have to one another, the centre of extension of the section where the body breaks, must be the same as its centre of percussion. Gahleo's hypothesis, where fibres stretch equally, and break all at once, corresponds to the case of a rod moving parallel to itseli;, where the centre of extension or percussion does not appear, as being confounded with the centre of gravity.

Hence it follows, that the resistance of bodies in Mariotte's system, is to that in Galiteo's, as the distance of the centre of percussion, taken on the vertical diameter of the fracture, is to the whole of that diameter: and hence also, the resistance being less than what Galileo imagined, the relative weight must also be less, and in the ratio just mentioned. So that, after conceiving the relative weight of a body, end fits resistance equal to its absolute weight, as two contrary powers applied to the two arms of a lever, in the hypothesis of Galileo, there needs nothing to cbange itinto that of Mariotte, but to imagine that the resistance,
or the absolute neigbt, is beconce less, in the ratio above mentioned, every thang else remaining the same.

One ot the most curiuus, and perhape the most useful quewions in this rocurch, is to tind what figute a body munt have, that its risstance may be equal or profortional in every past to the force tending to broak it. Now to this end, it is wecessary, bolne part of it being conceived as cut off by a plate parallel to the fracturi, that the momentum of the part fetrenched be to its resistance, in the same ratio as the monsentum of the whote is to its risistance; these four powers acting by arms of livene peculiur to themstives, and are poportional in the whole, and in euch part, of a suldd of equal resistance ; and from this proportion, larignon casily deduces two solds, which shall resist equally in all their parts, or be no more liable to break in one part than in anotber: Galleo had found ons before. 'Ibat discurered by Varignon is in the form of a trumpet, and is to be fixed into a wall at its greater end; so that its magmonde or weight is always simanished in proportion as its lengit, or tie arm. of the luter by wheh its weight acts, is increased : ad it is remarhable that, however difierent the wo syotems may lic, the solids. of equal resistance are, the same in buth.

For the resisasace of a sulidsupported at each end, as of a beam between two walls, see BEAs.

Resietance of Fimides, is lie force with which bodies, moving in fluid medtuas, are impetied and retarded in thar mothon. A body movme in a fluid is rebored frum tina causes. The tirst of these is she cuberon of the parts of the Iluid. For a body, in its monion, exparating the parts of a flitil, inust overcome the forec with which those parts cohese. 'The secund is the inerta, or inactivity of mutter, by which.n cenallin force is required to move tbe particles from their places, in order to let the body pass.

The retardanion trom the first cause is always the same in the same space, whatiser she velocity be, the body remaining the same; that 1 t, the resistance is as the space run through in the same time: but the velocity is also in the same rutio of the spacesun over in the same time: and therefore the ressatance, ifiom this cause, is as the velociry itself.

The resistance from the sccond caux', when a body moves through the same flutd with difterent welocities, is as the square of the velocity. Fur, fint the resistance increases nccording to the number of particles or quantity of the fluid struck in the same time; which number inust be as the space run through in that time, that is, as the velocity; but the resistance also inerames in proportion to the force with which the body strikes against every part; which ferce is also as the velocity of the loody, being double with a duuble velocity, and triple with a iriple one, \&c: therefore, on hoth these accounts, the resistance is as the velacity muluplied by the velocity, or as the square of the velocity. On the whole threrefore, ou accutunt of both causey, viz, the tenacity und inertia of the fluid, the boily is resistert partly as the velocity and partly as the square of the velocity.

But when the same body ineves through different fluids with the same velocity, the resistance from the second cause follows the propurtion of the natter to to removed in the same eime, which is as the density of the fluid.

Hence therefore, if d denote the density of the fluid, o the velocity of the budy,
and a and b constant coefficients :
then $a d D^{2}+b o$ will be proportional to the whole renist-

RES

RES
ance tothe same body, moving with different velocities, in the same direction, through fluids of different densities, but of the same tenacity.

But, to take in the consideration of different tenacities of fluids; if t denote the tenacity, or the cohesion of the parts of the fluid, then $a d v^{2}+b t v$ will be as the whole resistance.

Indeed the quantity of resistance from the cohesion of the parts of fuids, except in glutinous ones, is very small in respect of the other resistance; and it also increases in a much lower degree, being only as the velocity, while the other increases as the square of the velocity, and rather more. Hence then the term bo is very small in respect of the other term adve; and consequently the resistance is nearly as this latter term; or nearly as the square of the velocity. Which rule has been employed by most authors, and is very near the truth in slow motions; bot in very rapid ones, it differs considerably from the truth, ns we shall perceive below; not indeed from the omission of the small term ber, due to the cohesion, but from the want of the full coonter pressure on the hinder part of the tody, a vacuum, either perfect or partial, being left behind the body in its motion; and also perhaps to some compression or accumulation of the fluid against the fore part of the body. Hence,

To conceive the resistance of Buids to a body moving in them, we must distinguish between those fluids which, bcing greatly comprested by some incumbent weight, always close up the space behind the bedy in motion, without leaving any vacuity there; and those fluids which, nut being much compressed, do not quickly fill up the space quitted by the body in motion, but leave a kind of vacuum behind it. These differences, in the resisting Quids, will occasion very remarkable varieties in the laws of their resistance, and are absolutely necessary to be considered in the determination of the action of the air on shut and shells; forithe air partukes of both these affections, according to the different velocities of the projected bodig.

In treating of these resistances too, the fluids may be considered either as continued or discontinued, that is, having their particles contiguous or else as separated and unconnected; and also cither as elastic or non-elastic. If a fluid were so constituted, that all the particles composing it were at some distance from each other, and having no uction between them, theu the resistance of a body moving in it weuld be ensily computed, from the quantity of motion communicated to those particles; for instance, if a eylinder moved in such a fluid in the direction of its axis, it would communicate to the particles it met with, a veloCity equal to its own, and in its own direction, when neither the cylinder nor the parts of the fluid are clastic: whenec, if the velucity and diameter of the cylinder be known, and also the density of the fluid, there would thence be deurmined the quantity of motion communicated to the fluid, which (as action and reaction are equal) is the same with the quantity loat by the cylinder, and consequently the resistance would thus be ascertained.

In this kind of discontinued fluid, the particles being detached from each other, every one of them can pursue its own motion in any direction, at least for some time, independent of the neighbouring onkes ; so that, instead of a cylinder tnoting in the direction of its axis, if a body with a surface oblique to its direction be supposed to move in such a fluid, the motion which the parts of the fluid
loz. If.
will hence acquire, will not be in the direction of the rosisted body, but perpendicular to its oblique surface; whence the resistance to such a budy will not be estimated from the whole motion communicated to the particles of the fluid, but from that part of it only which is in the direction of the resisted body. In fluids then, where the parts are thus discontinued from each other, the different obliquities of that surface which goes foremost, will occasion considerable changes in the resistance; though the transverse section of the solid should in all cases be the same: And Newton has particularly determined that, in a fluid thus constituted, the resistance of a globe is but half the resistance of a cylinder of the same diameter, mosing, it the direction of its axis, with the same velocity.

But though the liypothesis of a fluid thus constituted be of great use in explaining the nature of resistances, yet we know of no such fluid existing in nature; all the fluids with which we are conversant being so coustituted, that their particles either lic contiguous to each other, or at least act on each other in the same manuer as if they did: consequently, in these fluids, no one particle that is contiguous to the resisted body, can be moved, without moving at the same time a great number of others, some of which will be distant from it; and the motion thus conamunicated to a mass of the fluid, will not be in any one determined direction, but different in all the particlea, according to the different positions in which they lie in contact with those from which they receive their impulse; whence, great numbers of the particles being diverted into oblique directions, the resistance of the moving body, which will depend on the quantity of motion communicated to the fluid in its own direction, will be different in quantity from what it would be in the foregoing supposition, and its estimation becomes much more complicated and operose.
If the fluid be compressed by the ineumbent weigbt of its upper parts (as all fluids are with us, except at tbeir very surface), and if the velocity of the moving body be much less than that with which the parts of the fluid would rush into a void space, in consequence of their compression; it is evident, that in this case the space left by the moving body will be instantaneonsly filled up by the fluid; and the parts of the fluid against which the forcmost part of the body presses in its motion, will, instead of being trapelled forwards in the direction of the body, in some measure circulate towards the hinder part of it, in order to restore the equilibrium, which the constant influx of the floid behind the borly would otherwise destroy; whence the progressive motion of the fluid, and consequeatly the resistance of the body, whicb depends upon it, would in this instance be much less, than in the hypothesis where each particle is supposed to acquire, from the stroke of the resisting body, a velocity equal to that with which the body moved, and in the same direction. Newton has determined, that the resistance of a cylinder, moving in the direction of its axis, in such a compressed fluid as wo have here treated of, is but ouc-fourth part of the resistance to the same cylinder, if it moved with the same velocity in a fluid constituted in the manner described in the first hypothesis, each fluid being supposed of the same density.

But again, it is not only in the quantity of their resistance that these fluids differ, but also in the different manuer in which they act upnn solids of different forms moving in them. In the discontinued fluid, first described, the obliquity of the foremost surface of the moving body would

2 S
diminish the resistance; but the same tofing does not hold true in conpressed Aluids, at least not in any considerable degree; for the chief rusistance in eompressed fluids arises from the greater or less facility with which the fluid, ime pelled by the fore part of the body, ean circulate towards its hinder part; and this being linte, if at all, affected by the form of the moving body, whether it be cylindrical, conical, or spherical, it fullows, that while the transverso sectiont of the body is the same, atod consequently the quantity of impelled fluid also, the change of figure in the body will scarcely affeet the quantity of its restatance.

And this case, viz, the resistance of a compressed fluid to a solid, moving in it wath a velociny much less than what the parts of the tivid would acquire from their eompression, has been very fully considered by Newton, who has ascertained ihe quantity of such a resistance, according to the different magnitudes of the moving body, and the density of the fluid: but he expiessly informs us thant the rules he has laid down, are not generally true, being only so on a supposition that the compression of the fluid be increased in the greater velocitics of the moving body: however, some unshilful writers, who have followed him, overlooking this caution, have applied this determination to bodies moving with all degrees of velocity, without attending to the different compressions of the fluids they are resasted by ; anil by this means they bave accounted the resistance, for instance, of the air to musket and canhon shot, to be but about onc-third part of what it is found to be by experience.

It is indeed evident that the resisting power of the medium must be increased, when the resisted body moves so fast that the fluid cannot instantaneously press in bebind it, and fill the deserted space; for when this happens, the body will be deprived of the pressure of the flund behind it ; whieh in sume measure balanced its resistance, or at least the fore pressure, and must support on its fore part the whole weight of a column of the fluid, over and above the motion it gives to the parts of the same; and besides, the motion in the particles driven befure the body, is less affected in this case by the compression of the fluid, and consequently they are less deflected from the direction in which they are impelled by the resisted surface: whence it happens that this species of resistance appromehes more and more to that described in the first hypolicsis, where each particle of the fluid, being unconnected with the neighbouing ones, pursued tis own motion, in its own direction, without being intrrrupted or deflected by their contiguity; and therefore, as the resistance of a discontinned fluid to a cylinder, moring the direction of its axis, is 4 times greater than the resistance of a fluid suffciently compressed of the snme density, it follows that the resistance of a fluid, when a vaeuing is left behind the moving body, may be near 4 times greater than that of the same fiuid, when no such vacuity is formed; for when a void space is thus left, the resistance approaches in its nature to that of a discontinued fluid.

This then may probably be the case in a cylinder moving in the same compressed fluid, according to the different degrees of its velocity; so that if it set out with a great velocity, and moves in the fluid till that velocity be mueh diminished, the resistingpower of the medium may be near 4 times greaterinthe beginning of its motion than inthe end.

In a globe, the difference will not be so great, because, on account of its oblique surface, its resistance in a discontinued medium is but about twice as much as in one
properly compressed ; for its oblique surface diminisfics its resistance int one case, and not in the other: bowever. as the compression of the medium, even when a vacuity is left behinul the moring body, may yet confine the oblique motion of the parts of the fluid, which are driven before the body, and as in an elastuc tluid, such as our air is, there will be some degree of condensation in those parts ; it is highly probuble that the resistance of a globe, moving in a compressed fluid with a very great veiocity, may greatly exeeed the proportion of the resistance 10 slow motions.

And as this increase of the resisting power of the medium will take place, when the volocity of the moving body is so great, that a perfect vacuum is kft behind it, so some degree of augmentation will be seasible in velocities much shart of this; for even when, by the compreasion of the fluid, the space left behind the body is instantanconsly filled up; yet, if the velocity with which the parts of the fluid rush in behind, is not much greater than that with wisich the body moves, the same reasons that have been urged above, in the case of an absolute vacuity, will hold in a less degree in this instance; and therefore it is not to be supposed that, in the inerrased resistance which has been bitherto treated of, it imnicdiately vanishes when the compression of the fluid is just sufficient to prevent a vacuum behind the resisted body; but we must consider it as dimiaighing only aecording as the velocity, with which the parts of the fiuid follow the body, exceels that with which the body moves.

Hence then it may be concluded, that if a globe sets out in a resisting medium, with a velocity much exceeding that with which the particles of the medium would rush into a void space, in consequence of their compression, so that a vacuum is accessarily left behind the globe in its motion; the resistance of this medium to the globe will be much greater, in proportion to its velocity, than what we are sure, from sir l . Newtor, would take place in a slower motion: and we may further conclude, that the resisting power of the medium will gradually diminish as the velocity of the globe decreases, till at last, when it moves with velocities which bear but a small proportion to that with which the particles of the medium follow it, the resistance becomes the same with what is assigned by Newion in the rase of a compressed fluid.

And from this setermination may be seeu, how false that position is, which asserts the resisuance of any fiedium to be always in the duplicate ratio of the velocity of the ressuted body; for it plainly appears, by what has been sairl, that this ean only be considered as nfarly true in small variations of velocity, and can never be applied in comparing together the resistances to all velucities whatever, without incurring the most enormous errors, See Robins's Gunnery, chap. 2, prop. 1, and my Tracts and Course of Mathem, vols. 2 and 3. See also the articles Reststance of the Air, Projectile, and Gunnery.

Resistance and retardation are used indifferently for each other, as being both in the same proportion, and the same resistance always generating the same retardation. But with regard to different todies, the same resistance frequently generates different retardations; the resistance being as the quantity of motion, and the retardation as that of the celerity. For the difference and measure of the two, see Metail dation.

Theretardations from this resistance may be compared
together, by comparing the resistance with the gravity or quantity of matter. If is demonstrated that the resistance of a cylinder, which moves in the direction of its axis, is equal to the wcight of a column of the fluid, whose base is equal to tbat of the cylibsler, and its altifude equal to the height through which a body inust fall in vacuo, by the furce of gravity, to acquire the selocity of the moving body. So that, if a denote the arces of the face or end of the cylinder, or other prism, t its velocity, and n the specific gravity of the fluid; then, the altitude due to the velocity v being $\frac{n^{\prime}}{46}$, the whole resistance, or motive force m, will be $a \times n \times \frac{t^{\prime}}{4 g}=\frac{a \pi v^{\prime}}{8 g}$; thequatutity g being $=16 \frac{1}{1}$ fret, or the space a body falls, in vacuo, in the first scond of time. Atid the resistance to a glabe of the saine diameter would be the half of this.Let is ball, for instance, of 9 inches diameter, be moved in water with a celerity of 16 feet per second of time: How from experinents on peudulums, and on falling bodies, it has been found, that this is the celerity which a body acquires in falling from the height of 4 feet; therefore the weight of a cylinder of water of 3 inches diameter, and 4 feet bigh, that is a weight of about 12lb 40π, is equal to the resistance of the cylinder; and consequently the half of it, or ollh 20 is that of the ball. Or, the furmula $\frac{\pi w^{\prime}}{4 g}$ gives $\frac{7545 \times 9 \times 1000 \times 16 \times 16}{144 \times 4 \times 16}=196 \mathrm{nz}$, or 12 lb 40 z , for the resistance of the cylinder, or 61b. 2oz, for that of the ball, the same as before.

Let now the resistance, so discovered, be divided by the weight of the body, and the quotient will show the ratio of the retardation to the force of gravity. So, if the said ball, of S inches diameter, be of cast iron, it will wrigh nearly 61 ounces, or $8 \frac{f}{f} 1 \mathrm{~b}$; and the resistance being 6 ib $20 z$, or 98 ounces; therefore, the resistance being to the gravity as 98 to 61, the retardation, or retarding force, will be $\frac{2}{5} \frac{8}{2}$ or $1 \frac{1}{3}$, the force of gravity being 1 . Or thus; because a, the area of a great circle of the ball, is $=$ $p^{d 2}$, where d is the diameter, and $p=7854$, therefore the resistance to the ball is $m=\frac{p^{2} d^{\prime} r^{*}}{}$; and because its solid content is $w=\frac{3}{3} P d^{3}$, and its weight ${ }_{3}^{2} x p d^{3}$, where y denotes its specitic gravity; therefore, dividing the resistance or motive force m by the weight w, gives $\frac{m}{w}=\frac{a m v^{2}}{16 \mathrm{mdg}}=f$ the retardation, or retarding force, that of gravity being 1 ; which is therefore as the square of the velocity directly, and as the diameter iuversely; and this is the reason why a large ball overcomes the resistance better than a small one, of the same density. See my Tracts and Course as above.

Remistance. of Pluid Mediums to the Motion of Falling Bodics.-A body freely descending in a fluid, is accelerated by the relative gravity of the body, (that is, the difference between its own absolute gravity and that of a like bulk of the fluid,) which continually acts upon it, get not equably, as in a vacuum : for the resistance of the fluid occasions a retardation, or diminution of acceleration, which dinuinution increases with the velocity of the budy. Hence it happens, that there is a certain velocity, which is the greatest that a body can acquire by falling; for if its velocity be such, that the resistance arising from it becomes equal to the relative weight of the body, its motion can be no longer accelerated; for the
motion here contipually generated by the relative gravity, will be deatroyed by the resistance, or the force of resistance is equal to the relative gravity, and the borly must then go on equably; for after the velocity is arrived at such a degrec, that the resisting force is equal to the weight that urges it, it can jncreuse no longer, and the globe tnust afterward continue to descend with that velocity uniformly. And a body continually comers nearer and nearer to this greatest celerity, but can never atıain it accurately. Nuw, N and n boing the specific gravitios of the globe and flutd, $N \sim n$ will be the relative gravity of the globe in the fluid, and thercfore $w=\frac{f}{3} p d^{\circ}(\mathrm{s}-\mathrm{n})$ is the weight by which it is urged downward; also $m=$ $\frac{p+f^{2} x^{2}}{\mathrm{rg}}$ is the resistance, as above; therefure these two must be equal when the velocity can be no further in. creased, or $m=w$, that is $\frac{p m d^{p} u^{p}}{8 g}=\frac{3}{3} p d^{0}(\mathrm{~s}-n)$, or $n v^{8}$ $=\frac{12}{3} d g(\mathrm{~N}-\mathrm{n})$; and bence $v=\sqrt{ }\left(\frac{1 g}{3} d g \times \frac{n-n}{n}\right)$ is the said uniform or greatest velocity which the body can attain; which is evidently the greater in the sulduplicate proportion of d the diameter of the ball. But v is always $=\sqrt{4} \mathrm{eft}$, the velucity generated by any accelerative force f in describing the space s; which being compared with the former, it gives $:=\frac{4}{4} d$, when f is $=\frac{n-n}{n}$; that is, the greatest velocity is that which is generated by the accelerating force $\frac{N-n}{n}$ in passing over the space $\frac{4}{d}$ or $\frac{f}{}$ of the diameter of the ball, or it is equal to the velocity generated by gravity in describing the space $\frac{n-n}{n} \times \frac{s}{3} d$. For ex. if the ball le of lead, which is about $11 \frac{1}{4}$ times the density of water; then $\mathrm{x}=11 \frac{\mathrm{f}}{\mathrm{w}}, \mathrm{n}=1, \mathrm{w}-\mathrm{n}=$ $\frac{n-n}{n}=10 \frac{\tilde{t}}{2}=\frac{4 x}{4}$, and $\frac{n-n}{n} \times \frac{\hat{2}}{} d=\frac{y^{2} d}{d}=133_{1}^{2} d$; that is, the uniform or greatest velocity of a ball of lead, descending in water, is equal to that which a heavy body acquired by falling in vacuo through a space equal to $13 \frac{3}{3}$ of the diameter of the ball, which velocity is $D=$ $2 \sqrt{ }\left(\frac{7}{f} d g \times \frac{n-n}{n}\right)=2 \sqrt{ } 13_{3}^{2} d g=8 \sqrt{ } 13 \frac{2}{3} d$ nearly, or 8 . times the root of the same space.

Hence it appears, how soon small bodies come to their greatest or uniform velocity in descending in a fluid, as water, and how very small that velocity is: which explains the renson of the slow precipitation of mud, and small particles, in water, as also why, in precipitations, the larger and gross particles descend soonest, and the Iowest.

Further, where $n=n$, or the density of the fluid is equal to that of the body, then $s-n=0$, consequently the velocity and distance descended are each nothing, and the borly will just float in any part of the fluid.

Moreover, when the body is lighter than the fluid, then n is less than n , and $\mathrm{s}-\mathrm{n}$ becomes a negative quantity, or the force and mution tend the contrary way, that is, the ball will ascend up towards the top of the lluid by a motive force which is as $n-\mathrm{s}$. In this case then, the body ascending by the action of the fluid, is moved exactly by the same laws as a heavier body falling in the fluid. And wherever the body is placed, it is sustained by the fluid, sad carried up with a force equal to the difference of the weight of a quantity of the fluid of the $2 S_{2}$
same bulk us the body, from the weight of the body; there is therefore a force which continually acts equably on the body; by which not only the action of gravity of the body is counteracted, so ns that it is not to be considered in this case; but the body is also carried upwards by a motion equably accelerated, in the same manner as a body heavier than a fluid descends by its relative gravity : but the equability of acceleration is destroyed in the same manaer by the resistance, in the ascent of a body lighter than the fluid, as it is destroyed in the descent of a body that is heavier.

The resistance to a plane surface of 1 foot square, in passing through water with various degrees of velocity, is as below :

For the circumstances of the correspondent velocity, space, and time, \&c, of a body moving in a fluid in which it is projected with a given velocity, or descending by its own weight, \&c, see my Tracts and Course, as beforementioned.

Resistance of the Air, in Preumatics, is the force with which the motion of bodies, particularly of projectiles, is retarded by the opposition of the air or atmospherc. See Gunneity, Prosectiess, \&c.

The air being a fluid, the general laws of the resistance of fluids obtain in it; subject only to some variations and irregularities from the different degrees of density in the different stations or regions of the atmosphere.

The resistance of the air is chiefly of use in military projectiles, in order to allow for the differences causel by it in their flight and range. Before the time of Mr. Robins, it was thought that this resistance to the motion of such heavy bodies as iron balis and shells, was too inconsiderable to be regarded, and that the rules and conclusions derived trom the common parabolic theory, were sufficiently exact for the common practice of gunnery. But that grntleman showed, in his New I'rinciples of Gunnery, that, so far from being inconsiderable, it is in reality enormously ereat, nad by no means to be rejected without incurring the gronsest errors; so touch so, that balls or shells which range, at the most, in the air, to the distance of two or three miles, would in a vacuum range to 20 or 30 miles, or more. To determine the, quantity of this resistance, in the case of diferent velocities, Mr. Robins discharged musket-balls, with various degrees of hnown velocity, against his ballistic pendulums, placed at se verul different distances, and so discovered byexperiment the quantity of velocity lost, when passing through those distances or spaces of air, with the several known degress of celerity. For having thus known the velocity lost or destroyed, in passing over a certain space, in a certain time, (which time is very nearly equal to the quotient of the space divided by the inedium velocity between the. greatest and least, or between the velocity at the mouth of the gun and that at the pendulum;) that is, knowing the velocity v, the space s, and time t, the resisting force is
thence easily known, being equal to $\frac{\mathrm{v}}{\mathrm{g}^{\mathrm{g} t}}$ or $\frac{\mathrm{vvb}}{2 g^{2}}$, where b denotes the weight of the ball, and v the medium velocity above-mentioned. The balls employed on this occasion by Mr. Rohins, were leaden ones, of $\frac{\mathrm{t}^{-}}{} \mathrm{T}$ of a pound weight, and $\frac{1}{8}$ of an inch diameter; and to the medium velocity of

1600 feet the resistance was 111 b ,
1065 feet - it was $2 \frac{4}{\frac{4}{3}}$;
but by the theory of Newton, before laid down, the foriner of these should be only $4 \frac{1}{\mathrm{lb}}$, and the latter $2 \mathrm{lb}:$ so that, in the former case the real resistance is more than double of that given by the theory, being increased as 9 to 22 ; and in the lesser velocity the increase is from 2 to $2 \frac{4}{5}$, or us 5 to 7 only.

Mr. Robins also invented another machine, having a whirling or circular motion, by which he measured the resistances to larger bodies, though with much smaller vclocities: it is described, and a figure of it given, near the ead of the list vol. of his works, and in the 3d vol. of my Tracts.
That this resisting power of the air to swift motions is very sensibly increased beyond what Newton's theory for slow motions makes it, seems hence to be evident. By other experiments it appears that the resistance is very sensibly increased, even in the velocity of 400 feet. However, this increased power of resistance diminishes as the velocity of the resisted body diminishes, till at length, when the motion is sufficiently abated, the actual resistance coincides with that supposed in the theory nearly. For these varying resistances Mr. Robins has given a rule, though not correct, extending to $16 \overline{\mathrm{z}} 0$ feet velocity.

Mr . Euler has shown, that the common doctrine of resistance answers pretty well when the motion is not very swift, but in swift motions it gives the resistance less than it ought to be, on two accounts. 1. Because in quick motions, the air does not fill up the space behind the body fast enough to press on the hinder parts, to counterbalance the weight of the atmosphere on the fore part. 2. The density of the air before the ball being increased by the quick motion, will press inore strongly on the fore part, and so will resist more than lighter air in its natural state. And he has also shown that Mr. Robins has restrained his rule to velocities not exceeding 1670 feet per second; whereas had he extended it to greater velocities, the result must have been erroneous; and he gives another formula himself, and deduces conclusions differing from those of Mr. Robins. See his Principles of Gunnery investigated, translated by Brown in 1777 i pa. 224 \&c.

Mr. Robins having proved that, in very great changes of velocity, the resistance does not accurately follow the duplicate ratio of the velocity, lays down two positions, which he thought might be of some service in the practice of artillery, till a more complete and acenrate theory of resistance, and the cbanges of its augmentation, could be obtained. The first of these is, that ull the velocity of the projectile surpass 1100 or 1200 feet in a second, the resistance may be esteemed to be in the duplicate ratio of the velocity: and the second is, that when the velocity exceeds 1100 or 1200 feet, then the absolute quantity of the resistance will be near 3 times as great as it would be by a comparison with the smaller velocities. On these principles he proceeds in approximating to the actual ranges of pieces with small angles of elevation, viz, such as do nnt exceed 8° or 10°, which he sets down in a table.
compared with their corresponding potential ranges. Sce his Mathematical Tracts, vol. 1, pa. 179 \&c. But we shall see presently that these posituons are both without foundation; that tbere is no such thing as a suoden or abrupt clange in the law of resistance, from the square of the selocity to one that gives a quantity three times as much; but that the change is slow and gradual, from the lowerst to the highest velocities; and that the increased real resistance no where rises much higher than double of that which Newtun's theory gives it.

Mr.Glenie, in his History of Gunnery, 1726, pa. 49, observes, in consequence of some experiments watb a riffed piece, properly filled for experimental purposes, that the resistance of the air to a velocity somewhat less than that mentioned in the first of the above propositions, is considerably greater than $1 \boldsymbol{u}$ the duplicate ratio of the velocity; and that, to a celerity somewhat greater than that stated in the second, the resistance is considerably less than that which is treble the resistance in the said ratio. Some of Robins's own experiments seem necessarily to make it so; since, to a velocily no quicker than 400 feet in a second, be found the resistance to be somewhint greater than in that ratio. But the true value of the ratio, and other circumstances of this resistance, will more fully appear from what follows.

The subject of the resistance of the air, as begun by Robins, has been prosecuted by miyself, to a very great extent and variety, both with the whirling machine, and with cannon balls of all sizes, from 1 lb to 6 lb weight, as well as with figures of many other different shapes, both on the fore part and hind part of them, and with planes set at ull varieties of angles of inclination to the path or motion of the same; from all which I have oltanted the real resistance to bodies for all velocities, from 1 up, to 2000 feet per second: together with the law of the resistance to the same body for all difficrent velucitics, and for different sizes with the same velocity, and also for all angles of inclination; a full account of which is given th the 2d and 3 d vols. of my Tracts. Some of the tables and rules are abstracted as below.

Table I. Resistances of seceral different Bodien.

Veloc. per we.	$\begin{array}{\|c\|} \hline \text { Small } \\ \text { Hemis. } \end{array}$	Large 'lemis.		Cune.		$\begin{aligned} & \text { Cylin- } \\ & \text { ider } \end{aligned}$	$\begin{aligned} & \text { Whicle } \\ & \text { glolve } \end{aligned}$	$\begin{aligned} & \text { Resint. } \\ & \text { as the } \\ & \text { power } \\ & \text { of the } \\ & \text { veloc. } \end{aligned}$
	Ant side.	$\begin{gathered} \text { Als } \\ \text { aile } \end{gathered}$	round alde	venter	bse			
Seet.	cr.	${ }_{0} \mathrm{Ha}_{4}$	OE.	02.	02.	os.	02.	
a	-078	20s3	-080	. 029	-064	oso	-027	
4	-048	-096	-039	-049	$\cdot 109$	-0180	${ }^{\circ} 047$	
3	-072	${ }^{4} 149$	063	.071	-162	-143	. 065	
6	-103	-211	-094	-098	*223	-20s	-003	
7	-141	-254	-123	129	-195	$\checkmark 2 ; 4$	-143	
R	-184	-363	-160	169	-3132	-360	-162	
9	233	-464	-199	-211	4789	-436	-203	
10	$\cdots 57$	-35.4	242	- 260	-587	-56,	-2ss	
$1:$	$\cdot 349$	-69s	-292	-315	-712	-CMs	-310	2.049
13	414	-6 86	-347	976	"aso	-820	-370	2043
13	. 492	-945	-409	- 440	1-000	-979	4.43	2.036
14	-574	1-134	-479	- 312	1-166	t-14s	-303	20.31
13	661	1-336	-332	- 380	$2 \cdot 346$	1-327	-351	2.031
16	-34	1.3.38	634	$\cdot 673$	3-546	1-336	-601	2031
17	'ss3	1.757	722	7763	1761	1\%4	-731	2038
14	-959	1-995	-18	-630	\%-003	1-9*5	-848	2014
19	1-073	2-236	-922	-939	2-160	2-246	-949	2.047
20	1.196	2.342	10.04	$3^{*} 069$	$2 \cdot 310$	2378	1-057	20st
$\begin{aligned} & \text { Neen } \\ & \text { Fropro. } \\ & \mathrm{N}_{\mathrm{op}} \end{aligned}$	140	288	119	226	291	285	124	2.040
4	\%	3	4	5	6	7	8	9

In this table are contained the resistances to several forms of bodies, when moved with various degrees of velocity, from 3 feet per second to 20 . The names of the bodies are at the tops of the columns, as also which end went foremost through the air ; the different velocities are in the first column, and the resistances on the same line, in their several columns, in avoirdupois ounces and decimal parts, So on the first line are contaned the resistances whell the bodies inove winh a velocity of 3 feet in a second, viz, in the 2 d column for the small hemisphere, of $4 \frac{1}{2}$ inches diameter, its resistance '028 oz when the flat side went foremost; in the 3 d and 4 th columns the resistances to a larger hemisphere, first with the flat side, and next the round side foremost, the diameter of this, as well as all the following figures being $6 \frac{1}{1}$ inches, and therefore the area of the great circle $=32 \mathrm{sq}$. inches, or $\frac{2}{5}$ of a se. foot ; then in the 5th and 6th columns are the resistanees to a cone, first its vertex and thenl its base foremost, the altitude of the cone being $0 \frac{1}{2}$ inches, being only f inch more than the diancter of its base; in the 7 th column the resistance to the end of the cylinder, and in the 8th that against the whole globe or sphere. All the numbers show the real weigbts which are equal to the resistances; and at the bottoms of the columns are placed proportional numbers. which show the mean proportions of the resistances of all the figures to one another, with any velocity. Lastly, in the 9 th column are placed the exponents of the power of the velocity which the resistances in the 8th column bear to each other, viz, which that of the 10 feet velocity bears to each of the following ones, the medium of all of them being as the 2.04 power of the velocity, that is, very little above the square or second power of the velocity, so far as the velocities in this table extend.- From this table the following inferences are ensily deduced.

1. That the resistance is nearly in the same proportion as the surfaces; a small increase only taking place in the greater surfaces, and for the greater velocities. Thus, by comparing together the numbers in the 2 d and 3 d columns, for the bates of the two hemispheres, the areas of which bares are in the proportion of $17 \frac{1}{4}$ to 32 , or 5 to 9 very nearly, it appears that the numbers in those two columns, expressing the resistances, are nearly as 1 to 2 or 5 to 10 , as far as the velocity of 12 feet; but after that, the resistances on the greater surface increase gradually more and more above that proportion.
2. The resistance to the same surface, with different velucities, is, in these slow motions, nearly as the square of the velocity; but gradually increases more and more above that proportion as the velocity increases. This is manifest from all the columns: and the index of the power of the velocity is set down in the gth column, for the resistances in the 8th, the medium being 2.04 ; by which it appears that the iesistance to the same body is, in these slow motions, as the 2.04 power of the valocity, or nearly as the square of it.
3. The round ends, and sharp ends, of solids, suffer less resistance than the flat or plane endis, of the same diameter; but the sbarper end has not always the less resistance. Thus, the cyliniler, and the flat ends of the hemisphere and cone, have loore resistance, than the round or sharp ends of the same; tut the round side of the bemisphere has less resistance than the sbarper end of the cone.
4. The resistance on the bawe of the hemisphere, is to that on the reund, or whole spbere, as If to 1, instead of

2 to 1 , as the theory gives that relation. Also the experimented resistance, mu cach of these, is nearly $\frac{1}{5}$ more than the quantuty assigned by the theory.
3. The resistance on the base of the cone, is to that on the vertex, acarly as 2 有 to 1 ; and almost in the same ratio is radius to the sune of the angle of inclination of the side of the cone to its path or axis. So that, in this insfance, the resistance is dircetly as the sine of the angle of incidence, fle transrerse section being the same.
6. When the hinder purts of bodies are of different forms, the reastances are different, though the fure-parts be exactly ahke arul equal ; owing probably to the ditierent preasures of the aur on the binder parts. Thux, the resistance to the fore part of the cylinder, is less than on the equal fiat suifnce of the cone, or of the bemisphere; because the buader pait of the cylinder is more pressed or pushed, by the following air then those of the other two figures; also, for the samo resern, the buse of the hemispbere sulfera a less resistance than that of the cose, and the round atde of the bemisplece less than the whole sphere.

See other deductions in my Tracts, vol. 3, pa. 193 \&ce. Tazle II. Resistances both hy Frperiment and Theory, to a Giobe of 1 th 65 Inches Dumeter.

Veloc. par nes, in feet.	Rusiat. by Exper. ol.	R-cin by Tbesmy. Os.	Ruso of Exper, to Therry.	Hesint. as the power of the veloc.
5	0.006	0.005	1.20	
10	${ }^{\circ} 0.0241$	$0 \cdot 090$	$1-23$	
15	0.053	0014	1.25	
20	$0 \cdot 100$	0079	$1 \cdot 27$	
25	0.158	0.123	1285	2.050
30	0.829	0177	130	2.048
4.	$0 \cdot 413$	0314	133	2.046
50	0.651	$0+91$	$1 \cdot 33$	2.0.44
100	2.675	1.964	$1 \cdot 36$	2.012
200	11	$7 \cdot 9$	140	2041
300	25	18.7	$1 \cdot 4$	$2 \cdot 039$
400	45	31.4	1.43	2039
500	72	40	1.47	$20+6$
(6i*)	107	71	$1 \cdot 31$	20031
700	131	96	1.57	2059
800	205	126	163	2.667
900	271.	159	170	2077
1000	330	196	178	$2 \cdot 086$
1100	44 ?	238	$1 \cdot 86$	2095
1200	3.6	283	190	$2 \cdot 102$
1300	661	382	199	2.107
1400	765	385	$2{ }^{2} 0$	2.111
1500	916	$4+2$	207	2.113
1600	1051	503	209	2-113
1700	1186	368	208	2.111
1800	1319	636	$2 \cdot 7$	$2 \cdot 108$
1900	$1+47$	709	204	$2 \cdot 104$
2000	1369	786	2.00	2.098

In the firt col mn of this table arn contained the several velocities, from oup to the great velocity of 2000 fiet per arcond, with which the ball or globe moved. In the 2 d columa are the experimented resistancen, in avoirdupois ounces. In the 3d column are the correspondent resistances, as computed by the forgoing theory. In the 4 th column are the ratios of these two reistances, or the quotients of the former divided by the latter. And in the sth or last, the indexes of the power of the velocity
which is proportional to the experimented resistance; which are found by comparing the resistance of 20 foet velocity with each of the following ones.

From the 2d, 3u and th columns it appears, that at the beginuing of the motion, the experimented renistance is nearly equal to that computed by theory ; but that, as the velocity incruases, the experimented rexistance gradually exceeds the other more and more, till at the seloenty of 1300 fert the former becomes doubie the latier ; after which, the difference increases on little farther, till at the velocity of 1600 or 1700 , where that excess is the greatest, and is rather less thun $P_{\mathrm{r}}^{\mathrm{r}}$; ; and after this, the difference decreasses gradually as the velocity increanes, and at the velucity of 2000 , the former resistance ngana becomes jast double the latter.

From the last column it apprars that, near the beging ning, or in slow motrens, the resistances are nearly as the aquare of the velocities; but that the ratio gradually increases, with some small variation, till ut the velocity of 1500 or 1600 feet it becomer as the $2 \frac{4}{8}$ power of the velocity teasly, whech is its bighest ascent; and after that it gradually decreases agasn, as the velocity gres higher. And similar concluatons have also been derived from experiments with larger balls or globes.
And bence we perceive that Mr. Robins's positionsare erroneous on two accuunts, wix, buth in stating that the resistance changes saddealy, or all at once, from being as the square of the velocity, so as then to become us some higher and constunt prower; and also when he states the resistance as risug to the beight of three times that which is giren by the theory: since the ratio of the resustance buth increases gradually from the begianing, and yet never ascents higher than $\mathrm{g}_{\mathbf{r}}{ }^{\text {ons }}$ of the theory.
Tawle Ill. Reristance to a Plane, set at ontious Angles of Inclination to its Path.

Angle with the Path.	- Expeain. Revistances. oa.	Keast. by tilis Formule. $-845^{3}+6 \%$	Sines of the Angles to Radion - 18.
0°	. 000	*000	-0,0)
5	-015	-009	-073
10	-9)44	. 035	- 146
15	-082	.076	$\cdot 217$
20	-133	* 131	.287
25	.200	- 199	. 355
30	"278	.278	- +20
35	- 569	- 363	-482
40	- 448	- 4.50	- 540
45	.554	-535	. 594
50	. 619	-613	- 643
55	'68\%	-680	-688
60	-729	-736	-727
65	$\cdot 776$	-778	.761
70	-803	-808	$\cdot 789$
75	-823	-896	-811
50	. 835	-836	-827
85	-839	*839	-838
90	'840	-810	-840

In the second columo of this table are contained the actual experimented resistances, in ounces, to a plane of 32 equare incbes, or $\frac{2}{\square}$ of a square foot, mored through the air with a velocity of exacily 12 feet per second, when the plane was set so as to make, with the direction of its path, the correxponding angles in the first column,

And from these bas been deduced this formula, or
theorem, viz, $843^{1 \cdot 642 \mathrm{C}}$, which brings out very nearly the same numbers, and is a general theorem for every angle, fur the same plane of $\frac{z}{y}$ of a frot, and nooved with the same velocity of 12 feet 1 a second of time; where s is the sine, and c ibe cosine of the angles of inclination in the first column.

If a theorem be desired for any other velocity ${ }^{2}$, and any other plane whuse urea is a, it will be this:
 notes the resistance nearly to tany plane surface whose area is a, moved through the air with the velocity v , in a direction making with that plane an angle, wbose sine is s, and cosiue c.

If it be water or any other fluid, different from air, this formula will be varied in proportion to the density.

By this theorem were computed the numbers in the 3d colurnn; which it is evident agree very nearly with the experiment resistances in the 2 d column, excepting in two or thrce of the small numbers near the beginning, which ars of the least consequence. In all other cases, the theortm gives she true resistance very nearly. In the sth or last culumn are entered the sines of the angles of the first colunsu, to the radius 84 , in order to compare them with the resistancey in the other columns. Whence it appears, that those resistances are not always proportional to the sines of the angles, nor yet to the squares of the sines, hor to any other power of them whatever. In the beginning of the columns, the sines much exceed the resistances all the way till the angle be between 55 and 60 degrees; after which the sines are less than the resistances all the way to the end, or till the angle become of 90 degrees.

Mr. James Bernoulli gave some theorems for the resistances of different figures, in the Acta Erud. Lips. for June 1693 , pa. $252 \&{ }^{2}$. But as these are deduced from theory only, which we find to be so different from experiment, they cannot be of much use. Messieurs Euler, Dalembert, Gravesande, and Simpson, have also written pretty largely on the theory of resistances, besides what had been done by Newton. Also Mr. Vince, in the Plifos. Trans. an. 1795, pa. 24.

Solid of Lase Resistance. Sir Isaae Newton, from his general theory of resistance, deduces the figure of a solid which shall have the least resistance, of the same basc, beight, and content.

The figure is this. Suppose dna to be a curve of such a nature, that if from any point x the ordinate $N a$ be drawn perpendicular to the axis AB; and from a given point g there be drawn on parallel to a tangeut at m, and meeting the axis produced in R; then if $M x$ be to $G R$, as GR^{3} to $4 \mathrm{BR} \times \mathrm{BG}^{2}$, a solid described by the revolution of this fgure about its axis AB, moving in a medium from A towards B, is less resisted than any other circular solid of the same base, \&c.

This theorem, which Newton gave without a demonatration, has been demonstrated by several mathematicians,
as Facio, Bernoulli, Hospital, \&ce. See Maclaurin's Flux. sect. 6160^{3} and 607; also Horsley's edit. of Newton, vol. 2, pa. 390. Sre also Act. Erud. 1699, pa. 51t; and Merm. de l'Acad. \&c; nlso Kobins's Viww of Newton's method for comparing the Elsistance of Sulids, $8 \mathrm{vo}, 1734$; and Simpson's Fluxions, art.413; or my Pıuciples of Bridges, in my Tracts, prop. 15.
M. Bouguer lans resolved this problem in a very general manner; and not in supposing the solid to be formed by the revolutions of any tigure whatever. The problem, as enurciuted and resolved by M. Buuguer, is this: any base being given, to find what kind of solid must be formed upon it, so that the impulse upon it may be the least possible. Properly however it ought to be the retardive force, or the impulse diviticel by the weight or mass of matter in the body, shat ought to be the minimum.

RESOLU'TION, in Physies, the reduction of a body into its original or natural state, by a dissolution or separation of its aggregated parts. Thus, snow and ice are said to be resolved into water; water resolves in vapour by heat; and vapour is again resolved into water by cold; also any compound is resilved into its ingredients, \&ce.Some of the modern philosophers, particularly Boyle, Mariotte, Buerhaave, \&c, naintain, that the natural state of water is to be congealed, or in ice; inasmuch as a certain degree of heat, whel is a foreign and violent agent, is required to make it Auid: so that moar the pole, where this foreign agent is wanting, it constantly retains its fixed or icy state.

Resolution, or Solution, in Mathematics, is an orderly enumeration of several things to be done, to obtain what is required in a problem.-Wolfus makes a probles to cunsist of three parts : the proposition (or what is properly called the problem), the resolution, and the demonstration. As soon as a prublem is demonstrated, it is converted into a theorem; of which the resolution is the hypothesis; and the proposition the thesis. For the process of a mathematical resolution, see the following article.
Resolvtion in Algebra, or Algebraical Resolution, is of two kinds ; the one practised in numerical problems, the other in geometrical ones.

In Resolcing a Numerical Problem Algebraically, the method is this. 1st, the given quantities are distinguished from those that are sought; and the former denoted by the initial letters of the alphabet, but the latter by the last letters-2d, Then as many equations ure formed as there are unknown quantities. If that cannot be done from the proposition or dath, the problem is indeterminate; and certain arbitrary assumptions must be made, to sup ply the defect, and which can satisfy the question. When the equations are not contained in the problem itself, they are to be found by particular theorems concerning equations, ratios, proportions, \&c.-Since, in an equation, the known and unknown quantities are mixed together, they must be separated in such a manner, that the unknown one remain alone on one side, and the known ones on the other. This reduction, or sparation, is marle by addition, subtraction, multiplication, division, extraction of roots, and raising of powers; resolving esery kind of combination of the quantities, by their counter or reverse ones, and performing the same operation on all the quabtities or terms, on both sides of the equation, that the equality may still be preserved.

To Resolve a Geometrical Problem Algebraically.-The
same kind of operations are to the performed, as in the former article; besides sereral others, that depend on the nature of the diagram, and geometrical propertics. As 1st, the thing required or proposed, must be supposed done, the diagram being drawn or constructed it ail its parts, both known and unknown. 2. We must then examane the geometrieal relations which the Jines of the figure have among themselves, without regarding whether they are known or unknown, to find what equations arise from those relations, for timiling the unknown quantities: 3. It is often necessary to form similar triangles aud rectangles. sometimes by producing of lines, or drawing parallels and perpendiculars, and forming equal angles, \&c ; till equations can be formed, from them, including both the known and unknown quantities.

If we do not thus urrive at proper equations, the thing is to be tried in some other way, And sometimes the thing itself, that is required, is not to be sought directly, but some other thing, bearing certain relations to it, by means of which it may be found.

The final equation being at last arrived at, the geometrical construction is to be deduced from, it, whielt is performed in various ways according to the different kinds of equations. See An alysis.

Resolution of Forces, of of Motion, is the resolving or dividing of any one force or motion, into several others, in other directions, but which, taken together, shall have the same effect as the single one ; and it is the reverse of the composition of forces or mutions. See these articles.

Any single direct foree AD, may be resolved into two oblique forces, whose quantities and directions are AB, AC, baving the same effeet, by ducribing any parallelogram ABDC, whose diagonal is AD. And each of these inay, in like manner, be resolved into two others ;
 and so on, as far as we pleake. And all these new forces, or motions, so found, when acting togesher, will produce exactly the same effert as the single original one. See also Colliatox, Percussion, Motion, Composition, Pahallelogram and Polygon of Forces, \&e.
REST; in Ihysics, the continuance of a body in the same place ; or its continual application or contiguity to the same parts of the ambient and contiguous bodies.Sce Space.

Rest is either Alsolute or Relative, as place is.
Some define Plest to be the state of a thing without motion; and hence again rest becomes either absolute or relative, as motion is.

Newton defines true or absolute rest to be the continuance of a bedy in the same part of absolute and immoveable space; and relative rest to be the continuance of a body in the same part of relative space. Thus, in a ship under sail, selative rest is the continuance of a body in the same part of the ship. But true or absolute rest is its continuaniee in the same part of universal space in which the whip ingelf is contained.

Hence, if the carth were really and absolutely at rest, the body relatively at rest in the ship would really and absolutily move, and that with the same velocity as the ship itselt. But as the earth also moves, there arises a real and alsolute motion of the body at rest; partly from the real motion of the carth in absolute spaec, and partly from the relative motion of the ship on the sa. Lasily, if the
body be likewisc relatively moved in the ship, its real motion will arise partly from the real motion of the earth in immovcable space, and partly from the relative motion of the ship on the sea, and of the body in the ship.

It is an axiom in philosophy, that matter is indifferent as to rest or motion. Hence Newton lays it down, as a law of nature, that every body perseveres in its atate, either of rest or uniform motion, except so far as it is disturbed by external causes.-The Cartesians assert, that firmness, bardness, or sulidity of bodies, consists in this, that their parts are at rest with regard to each other; and this rest they establish as the great nexus, or principle of cohesion, by whieb the parts are connected together. On the other hand, they make fluidity to consist in a perpetual motion of the parts, \&c. But the Newtonian philosophy furnishes us with much better solutions.- Maupertus asserts, that when bodies are in equilibrio, and any small motion is impressed on them, the quantity of action resulting will be the least postible. This he calls the law of rest; and from this law be deduces the fundamental proposition of statics. See Berlin Mem. tom. 2, pa. 294. And from the same principle wo he deduces the lewa of percussion.

RESTITUTION, in Physics, the returning of elastic bodies, forcibly bent, to their natural state; by some called the Motion of Restitution.

RETARDATION, in Physics, the act of retarding, that is, of delaying the motion or progress of a body, or of diminishing its velocity. -The retardation of moving bodies arises from two great causes, the resistance of the medium, and the force of gravity.

Retardation from the Resistance is often canfounded with the resistance itself; because, with respect to the same moving body, they are in the same proportion.

But with respect to different bodies, the same resistance often generates different retardations. For if hodies of cyual bulk, but different densities, be moved through the saine fluid with equal velocity, the fluid will act equally on each ; so that they will have equal resistanees, but different retardations; and the retardations will be to each other, as the velocities which might be generated by the same forces in the bodies proposed ; that is, they are inversely as the quantities of matter in the bodies, or inversely as the densities.

Suppose then bodies of equal density, but of unequal bulk, to more equally fast through the same fluid; then their resistances increase according to their superficies, that is as the squares of their diameters; but the quantities of matter are increased according to their mass or magnitude, that is as the cubes of their diameters: the resistances are the quantities of motion ; the retardations are the celerities arisiag from them; and dividing the quantitics of motion by the quantities of matter, we shall have the celerities; therefore the retardations are directly as the squares of the diameters, and inversely as the cubes of the diameters, that is inversely as the diameters them-1 sclves.

If the bodies be of equal magnitude and density, and moved shrough different fluids, with equal celerity, their retardations are as the densities of the fluids. And when equal bodies are carried through the same fluid with ditferent velocities, the retardations are as the squares of the velocities.

So that, if s denote the superficies of a body, w its weight, u its diameter, the velocity, and n the density of the fluid medium, and x that of the body; then, in
similar bodies, the resistance is as nes ${ }^{2}$ or as nd ${ }^{2} 0^{\circ}$, and the retardation, or retarding force, as $\frac{200^{\circ}}{\omega \omega^{\circ}}$, or as $\frac{n d^{\circ} \omega^{\circ}}{s d^{\circ}}=\frac{n v^{2}}{s d}$.

The Retardation from Gradity is peculiar to bodies projecied upwards. For a body thrown upwards is retarded after the same manner as a falling body is accelerated ; only in the one case the force of gravity conspires with the motion acquired, and in the other it acts contrary to it.

As the force of gravity is uniform, the retardation from that cause will be equal in equal times. Aud hence, as is is the same force which generates motion in the falling body, and diminishes it in the rising one, a body rises till it lose all its motion; which it does in the same time in which a body falling would have acquired a velocity equal to that with which the body was thrown up.

Also, a body thrown up will rise to the same height from which, in falling, it would acquire the same velocity with which it was thrown up: therefore the heights which bodies can rise to, when thrown up with different velocitics, are to each other as she squares of the velocities.

Hence, the retardations of motions may be compared together. For they are, first, as the squares of the velocities; 2dly, as the densities of the fluids through which the bodies are moved; 3dly, inversely as the diameters of those bodies ; 4thly, inversely as the densities of the bodies thenselves; as expressed by the theorem above, viz, $\frac{m^{\prime}}{\mathrm{Nd}}$.

The Laws of Retardation, are the very same as those for acceleration ; motion and velocity being destroyed is the one case, in the very same quantity and proportion as they are generated in the other.

KE:TICULA, or Reticule, in Astronomy, a con* trivance for very accurately measuring the quantity of eclipses, \&c. This instrument, introduced some years since by the Paris Acad. of Sciences, is a little frame, consisting of $1 \$$ fine silken threads, parallol to, and equidistant from each other; placed in the focus of objectglasses of telescopes; that is, in the place whore the image of the luminary is painted in its full extent. Consequently the diameter of the sun or moon is thus seen divided into 12 equal parts or digits: so that, to find the quantity of the eclipse, there is nothing to do but to number the parts that are dark, or that are luminous.-As a square reticule is only proper for the diameter of the luminary, not for the circumference of it, it is somotimes made circular, by drawing 6 concentric equidistant circles; which represents the phases of the eclipse perfectly.-But it is evident that the reticule, whether square or circular, ought to be perfectly rqual to the diameter or circumference of the sun or star, such as it appears in the focus of the glass; otherwise the division cannot be just. And this is no ensy matter to effect, because the apparent diameter of the sun and moon differs in each eclipse ; nay that of the moon differs from itself in the progress of the same eclipse.Another imperfection in the reticule is, that its magnitude is determined by that of the inage in the focus; and of conseqaence it will only fit one certain magnitude.

But M. Labire has found a remedy for all these inconveniences, and contrived that the same relicule shall serve for all telescopes, and all magnitudes of the luminary in the same eclipse. The principle on which his invention is founded, is, that two object-glasses applied againat each obler, having a common focus, and these forming an image of a certain magnitude, this image will increase ia pro-
Vol. II.
portion as the distance between the two glasses is increased, as far as to a certain limit. If therefore a retioule be taken of sucb a magnitude, as just to comprehend the greatest diameter the sun or moon can ever have in the common focus of two object-giasses spplied to each other, there needs nothing but to remove them from each other, as the body comes to have a less diameter, to have the image still exactly comprehended in the same reticule.

Further, as the silken threads are subject to swerve from the paralielism, \&c, by the different temperature of the air, another improvement 18 , to make the reticule of a thin looking-glass, by drawing lines or circles upon it with the fine point of a diamond. See Micnometer.

RETIRED Flank, in Fortification. See Flaki.

RETROCESSION of Curbes, \$c. See Retrooradation.
Retrocession of the Equinor. See Precession.
RETROGRADATION, or Rephog aession, in Astronomy, is an apparent motion of the planets, by which they seem to go backwards in the ecliptic, and to move contrary to the order or succession of the signs.

When a planet moves in consequentia, or according to the order of the signs, as from Aries to Taurus, from Taurus to Gemini, kc, which is from west to east, it is said to be Direct. When it appears for some days in the same place, or point of the heavens, it is said to be Sta-tionary.-And when it goes in antecedestia, or backwards to the foregoing signs, or contrary to the order of the signs, which is from cast to west, it is suid to be Retrograde. All these different affections or circumstances, may happen in all the planets, except the sun and moon, which are seen to go direct only. But the times of the superior and inferior planets being retrograde are different; the former eppearing so about their opposition, and the latter about their conjunction. The intervals of time also between two retrogradations of the several planets, are very unequal.

$$
\begin{aligned}
& \text { In Herschel it is } 1 \text { ycar } 6 \text { days, } \\
& \text { In Satura }-1 . \ldots .13 \\
& \text { In Jupiter }-1 . \ldots .43 \\
& \text { In Mars - }-2 \ldots 50 \\
& \text { In Venus } \\
& \text { In Mercury }-1.0 .280 \\
& \text { In }
\end{aligned}
$$

Again, Herschel continues retrograde 153 days, Saturn 140, Jupiter 120, Mars 73, Venus 42, and Mercury 22 ; or nearly $s 0$; for the several retrogradations of the same planct are not constantly equal.

These various circumstances however in the motions of the plancta are not real, but only apparent; as the inequalities arise from the snotion and position of the earth, from which shey are viewed; for when they are considered as seen from the sun, their motiops appear always unilorm and regular. These inequalities are thus explained:

Let s denote the sun; and alacd\&e the path or orbit of the earth, moving from west to east, and in that order; also 6 K \&e thie orbit of a superior planet, as Saturn for inssance, moving the same way, or in the direction okle, but with a much less celerity than the earth's motion. Now when the earth is at the point a of its orbit, let Saturn be at 0 , in conjunction with the sun, when it will be seen at p in thr zodiac, or among the stars; and when the earth bas m.ved from a to b , let Saturn have mover from G to n in its orbit, when it will be seen in the line BHQ, and will appear to have moved from P to Q in the zodiac; also when the earth has got to C , let Saturn 2 T
be arrived at 1 , but found at a in the zodiac, where being seen in the line cts, it appears stationary, or without motion in the rodiac at R . But after this, Saturit will appear for some time in retrogradatiou, vir, maving backwards, or the contrary way: for when the curth has moved to b , this planet will have got to x , and, being seed in the line dxq, will appear to have moved retrograde in the zudiac from n to Q; about which place the
 plavet, ceasing to recede any farther, again becomet stutionary, and afterwards proceeds forward aquin; for while the earth moves from D to E , and Saturn from K to L , the latter, being now swen in the lue ELR, appears to have moved furward in the zodiac from Q to ut and so on; the superior plancts always becoming retrograde a little before they are in opposition to the sun, and continuing so till some time after the opposition: the retrograde motiot being swifiest when the planet is in the very upposition itself; and the direct inotion swiftest when in the conjunction. The arch ne, which the planet describes while thus retrograde, is culled the arch of retrugradation. These arches are unequal iu all the planets, being greatust in the most distant, and gradually less in the wearer ones.

In like manner may be shown the circumstances of the retrogradations of the inferior planets; by which it will appear, that they become stationary a liule before their inferior conjunction, and go retrograde till a lutle time after it; moving the quickest retrograde just at thut conjunction, and the quickest direct just at the superior or further conjunction.

Retroebadation of the Nodes of the Moon, is a motion of the line of the nodes of her orbit, by which it continually shifts its situation from east to west, contrary to the order of the signs, completing its retrograde circulation in the period of about 19 years: afier which time, either of the nodes, having receded from any poibt of the ecliptic, returns to the same again.-Newton has demonstrated, in his Principia, that the Retrogradation of the monn's nodes is caused by the action of the sun, which continually drawing this planet from her orbit, deflects this orbit from a plane, and causes its intersciction with the ecliptic contitually to vary; and his detertninations ou this puint huve been confirmed by observation.

Retrogigadation of the Sun, a motion by which in some situations, it the torrid zone, he seems to move retrugrade ur backwards. When the sun is in the torrid zone, and has his declination An greater than the latitude of the place Az, but either northern or southern as that is, the sun will appear to go retregrade, or backwards, both before and atter noon. For draw the vertical circle zow to be a tangent to the sun's diurnal circle moo in

σ, and another zon through the sun's rising, at $0: 1 \mathrm{k}$.a, it is evident, that all the intermediate vertical circles cut the sun's diurnal circle twice; first in the are (an, and the second tume in the are or. So that, as the sun ascends through the are co. be continually arrives at tarther and farther verticals. But as he continues his asceut through the arc of, he returns to his furmer verticals; and therefure is seen retrograde for sume time belore noon. And in like manner it may be shown that be does the same thing for sonte time after noon. Hence, as the shadow always tends opposite to the sun, it will be retrograde twice every day in all places of the torrid zoue, where the sun's declimation exceeds the latitude.

Rethugadation, of Rethockession, in the lligher Geometry, is the same with what is otherwise called Contrary Flexion or Flexure. Scelidexume, and Jiflexion.

REIROGRADE, tenotes bachward, or contrary to the forward or natural direction. See Rethogradation.

Retrogression, or Retracesston. The same with liethogradatiun.

REIURNING Stroke, in Flectricity, is at expression used by lord Mahon (nuw Earl Staulape) to denote the effect produced by the return of the electric fire into a body irom which, in certain circumatances, it has beell expelled.

To understand properly the meaning of these terms, it must be premised that, accorling to the noble author's experiments, an insulated smooth body, immerged wathin the electrical atmosphere, but beyond the striking distance of another boty, charged pustivety, is at the same time in a state of threefold electricity. The cond next to the charged body aequires negative electricity; the farther end is positively electrified; while a certam part of the body, somewhere between its two extremes, is in a natural, unelectrified, of neutral state; so that the two rontrary electricities, balance each other. It may further be mdiled, that if the body be not insulated, hut have a communication with the carth, the whole of it will be in a negative state. Suppose then a brass bull, which may be called A, to be constantly placed at the striking distance of a prime conductor; so that the condicter, the instant when it becomes fully charged, capledes into it. Let another large or second conductor be suspended, in a perfectly insulated state, tarther from the prine conductos than the striking distance, but withit its electrical atmosphere: let a persun standing on an ituslated stool touch this second conductor very ightly with a fingor of his right land; while with a finger of his left liand, he communicates with the tasth, by touching very lightIy a second bruss ball fixed at the top of a metallic stand, on the foor, which may be called n. Now while the prime cunductor is receiving its electricity, sparhs pass (at least if the distance between the two conductors ts not too greaf) from the second cotductor to the right hand of the insulated person ; white similar and simultaneous sparks pass out from the finger of his left hand into the secobd metallic ball B , communicating with the earth. At length however the prime conductor, having acquired its full charge, suidenly stilies intu the ball A, of the first thetallic stand, placed for that purpose at the striking distance. The explowion beng matie, and the prime conductor suddenly deprived of its elastic atmusphere, its pressure or action on the second comluctur, and on the insulated person, as suddenly cewes; and the
latter instantly feels a smart returning struke, though he has no direct or visible communication (except by the floor) with cuther of the two Lodies, and is placed at the distance of 5 or 6 fiet from boih of them. This returning stroke is evidently occusioned by the sudden reerntrance of the clectric fire naturally belonging to lis body and to the scond conductor, whinch had befure been expelled ly the action of the charged prime conductor upon them; and which returns to its former place in the instant when that action or elastic pressure ceases. When the second conductur and the insulated person are placed in the dellsest part of the elcetrical atmosphere of the prine conductor, or just beyond the striking distance. the efficts are still more considerable; the returning stroke being in that case extremely severe and pungent, and appearing considerably sharper than even the main stroke itself, received directly from the prime condactor. Lord Mahon observes, that persons and animads may be destroyed, and particular parts of buildings may be much damaged, by an eiectrical returning stroke, occasioned even by some very distant explosion from a thundercloud; possibly at the distance of a mile or more. It is certanily not difficult to conceive that a highly charged thander-cloud must be productive of effects simiar to those produced by the prime conductor; but perhaps the effects are nut an great, nor the danger so terrible, as it serms have bero apprehended. If the quantity of electio flud naturally contained, for example, in the body of a man, wore immense or ind finite, then the estimate between the effi-cts producible by a clond, and those caused by a prime conductor, might be armitted; but surely no electrical cloud can expel from a body more than the natural quantity of electricity which it contain*. On the sudden removal therefore of the pressure by which this natural quantity bad been expelled, in consequence of the explusion of the cloud into the earth, no more (at the utinost) than the whole untural stock of electricity can reventer las body, provided it be so situated, that the returning tire of other bodies must necessarily pass through his hody. But perhaps we have no reason to suppose that this quantity is so great, as that its sudden re-entrance into his body should destroy or injure him.

Allowing therefore the existence of the returning stroke, as sufficiently ascertained, and well illustrated, in a varicty of circumstances, by the author's experiments, the magnitude and danger of it do not seem to be so ularming us be apprehends. See Lord Mahon's Principles of Eifeticity, \&kc. 4to. 1779, pa. 76, 113, and 131. Also Mouthly Review, vol. 62, pa. 436.

REVERSION in . $\mathrm{f}_{\text {unwilies, }}$ or Reversionary Payments, are payments that are not to be made till after some stated period; being thus distinguished from payments that are to be made immediately.

Revetsions are either certain, or contingent: of the former hind, are all sums payable after a certain number of years, or any other fixed and determinate period of time, as also on the extinction of any lives. And of the latter sort, are all such reversions as depend on any contingeney; and particulatiy the survivorship of any lives beyond, or after, others. See the articles Asserance, Annuities, Liff. Ansuities, and Sunvivorsiip.

Reveisston of Serict, in Algebra, is the finding the value of the root, of unknown quantity, whose powers enter the terms of an infinite series, by means of another intinite series in which it is not contained. As, in the
infinite series $t=a r+b x^{2}+c 1^{3}+d x^{4} \& c$; then it there be found $x=A z+n z^{2}+c z^{3} \& c$, that series is res verted, or its roct x is found in an infuite series of other terms.

This was one of Newton's improvements in analysis, the first specimen of which was given in his Annlysis per Fquationcs Numero Terminotum Intinitas; and it is of great use in reswlving many problems in various parts of the mathematics.

The most usual and general way of reversion, is to assume a series, of a proper form, for the value of the requiled unknown quantity; then substitute the powers of this value, instead of those of that quantity into the given serics; Instly compare the resulting terms with the said given series, and the salurs of the assumed coefficients will thus be obtained. So, to revert the series $z=a x$ $+b x^{2}+c x^{3} s c$, or to find the value of x in terms of z; assume it thus, $x=A Z+B z^{2}+c z^{3} \& c$; then by involving this sernes, for the several powers of r, and multiplying the corresponding powers by $a, b, c, \& c$, there results

$$
\begin{aligned}
& z=a \mathrm{Az}+a \mathrm{az} z^{2}+a c z^{3}+a \mathrm{D} z^{4}, \dot{d} \mathrm{C} . \\
& +b_{A} z^{2}+2 b A B b^{3}+9 b_{A C} s^{4} \\
& +b n^{12} z^{4} \\
& +C A^{2} z^{3}+3 C A^{2} \varepsilon^{4} \\
& +d_{A^{4} z^{4}}
\end{aligned}
$$

Then by comparing the correspunding terms of this last serics, of making their cocflicients equal, there are obtained these uquations, viz,
$a_{A}=1$, and $a B+b_{A}{ }^{2}=0$, and $a c+2 b_{A B}+c A^{3}=0$, $\& c$, which give these values of the assumed coefficients,
$A=\frac{1}{a} ; \mathrm{B}=-\frac{t \mathrm{~s}^{*}}{4}=-\frac{t}{a^{1}} ;$
$c=-\frac{2 N_{1} B+c A^{3}}{a}=\frac{a b-a c}{a^{2}} ;$
$\mathrm{D}=-\frac{2 f \mathrm{Ac}+\mathrm{H} \mathrm{A}^{2}+3 \mathrm{CA} \mathrm{A}+d \mathrm{~A}^{2}}{a}$
$=-\frac{30 k-s^{p}-a^{2} d}{a^{T}} ; \& c$. consequently
$x=\frac{1}{a} z-\frac{b}{a^{3}} z^{2}+\frac{2 \Delta b-a r}{a^{2}} z^{3}-\frac{3 a k c-3 b^{3}-s^{2} d}{a^{2}} z^{4}, \& x c$. which is therefore a general formula or theorma for every series of the same kind, as to the powers of the quantity x. Thus, for

Er. Suppose it were required to revert the serios $z=x-x^{4}+x^{3}-2^{4}, \& c$.

Here $a=1, b=-1, c=1, d=-1, \& c$; which values of these letters being subatituted in the theorem, there results $x=z+z^{4}+z^{3}+z^{4}, \& c$, which is that series reverted, or the value of x in it.

In the sarue way it will be found that the theorem for reverting the series
$z=a x+b x^{2}+c x^{5}+d x^{7} \& c$, is
$x=\frac{1}{a^{2}} z-\frac{b}{a^{4}} z^{3}+\frac{a b b-a c}{a^{T}} z^{9}-\frac{a^{\prime} d+12 b^{2}-\text { aake }}{a^{\prime a}}$, \&c.
Various methods of reversion may be seen as given by De Moivre in the Philos. Trans. No. 2.40; or Maclaurin's Algebra pa. 263; or Stuart's explanution of Newton's Analysis, \&ec, pa. +55 ; or Colson's Comment on Newton's Flux. pa. 219; or Horsley's ed. of Newton's works vol. I, pa. 291; or Simpson's Flux, vol. 2, pa. 302: or most authors on algebra.

REVETEMENT, in Fortification, a strong wall buile on the outside of the rampart and parapert, to support the earth, and prevent its rolling into the ditch.

REVOLUTIUN, in Giconetry, the motion of rotation
2 T8
of a line about a fixed point or centre, or of any figure about a fixed axis, or upon any line of surface. Thus, the revolution of a given line about a fixed centre, generates a curcle; and that of a right-angled triangle about ode side, as an axis, generates a cone; and that of a semicircle about its diameter, generates a sphere or globe, \&c.

Revolutios, in Astronomy, is the period of a star, planet, or comet, \≻ or its course from any point of its orbit, till it return to the same again.

The planets have a swofild revolution. The one about theirown axes, usually called their diurnal rotation, which constitutes their day. The other about the sun, called their annual revolution, or period, constituting their year.

REYNEAU (Chakles-RENE), cunimonly called father Reyneau, a noted French mabematician, was born at Brissac in the province of Anjou, in the year 1656. At 20 years of age he enterrd bimself among the Uratorians, a kind of religious order, in which the members lived in commanity without making any vows, and applied themselves chiefly to the education of youth. He was soon after sent, by his superiors, to teach philosophy nt Pezenas, and then at Toulon. This requiring some acquaintance with geometry, he contracted a great affection for that science, which be cultivated and improved to a great extent ; in consequence he was culled to Angers in 1683, to fill the mathematical chair; and the Academy of Angers elected him a member in 1694.

In this occupation father Reyneau, not content with making himself master of every thing worth knowing, which the mudern analysis, so fruifful in sublime speculations and ingenious discoveries, had already produced, undertonk to reduce into one body, for the use of his scholars, the principal theories scattered about in Newtun, Descartes, Leibnitz, Bernoulli, the Leipsic Acts, the Memwirs of the Paris Acadeny, and in other works ; treasures which by being so widely dispersed. proved much less useful than they otherwwe might have been. The fruit of this undertaking, was his Analyve Demontrex, or Analysis Demonstrated, which he published in 2 volumes 410, 1708.

Reyneau, atter thus giving lessons to those who understood something of grometry, thought proper to compose a work alsu fur such as were utterly unacquainted with that science. This was in some measure a condencension in him, but his passion to be useful made it easy and agreeahle. Aceordugly, in 1714 be publisbed a useful volume in 410 on calculation, under the title of Seience du Calcul des Grandeurs.

As moon as the Royal Academy of Sciences at Paria, in consequence of a rrgulation made in the year 1716, opened its donrs to other learned men, under the tile of Free Associatea, fumber Reyneau was adnitted of the number. The works however which we have already mentioned, besides a small piece upon logic, are the only ones he ever published, or probably ever compused, except most of the materials for a second volume of his Science du Calcul, whicb be left behind him in manuscript. The last years of his life were attended with too much sickness to admit of any extraordinary application. He died in 1728, at 72 years of age, not more regretted on account of his great learning, than of his many virtues, which all conspired in an eminent degree to make that learning agreeable to those about him, and useful to the world. The first men in France deemed it an bonour and a happiness to count him among their friends. Of this number were the chancellor of that kingdom, and father Mallebrache, of whom Reyneau wes a realous and faithful disciple.

RHABDOLOGY, or RasdoLoor, in Arithmetic, a name given by Napier to a metbod of perforbing some of the more difficult operations of numbers by means of certain square little ruds. Upon these are inscribed the simple numbers; then by shifting them according to certnin rules, those operations are performed by sinuply adding or subtracting the numbers as they stand upon the rods. See Napiev's Rabdologia, printed in 1617. Sce also the article Napieris Bones.

RHEO-STATICS, is used by some for the statics, or the science of the equilibrium of fluids.

RHETICUS (Geones Joachim), a noted (ierman astronomer and mathematician, who was the colleague of Reinhold in the university of Wittemburg, being jont professors of mathematics there tugether. He was burn at Feldkirk in Tyrol the 15 th of February 1514. After studying the elements of the mathersatics at Zurich with Oswald Myeone, he went to Wittemberg, where be diligently cultivated tbat science. Here he was tnate master of philosophy in 1535, and professur in $\mathbf{5 5 7}$. He quitted this situation however twn years after, and went to firsenburg to put himself under the assintance of the celebrated Copernicus, being induced to this step by his zeal fur astronomical pursuits, and the great fame which Copernicus had then acquired Rheticus asmisted this astronomer for some years, and constanily exhorted him to perfect his work, De Revolutumilus, which he published atter the death of Copernicus, viz, in 1543, folio, at Norimbergo together with an illustration of the same in a marration, dedicated to Schoner. Here too, tu render astronomical calculations more accurate, he began bis very elaborate canon of sinc-b, tangents, and secants, to 15 places of figures, and to every to seconds of the, quadrant, a design whicb he did not live quite long enough to complete. The canon of sines howewer to that radius, for every 10 seconds, and for every single second in the firt and last degrre of the quadrant, compured by hom, was published in folo at Francfurt 1613 by Pitiscus, who himself added a fcw of the first sines computed to $\$ 2$ places of figures. But the larger work, or canon of sines, tangents, and sceants, to every $t 0$ sconds, was finished and published afier his death, viz, in 1596, by his disciple Valentine Otho, mathematician to the electoral prince Palatine; a particular aceount and analysis of which woik may be seen in the Historical Introduction to my Logaribbus,

After the death of Copernicus, Rheticus returned to Wittemberg, viz, in 1541 or. 1542, and wus again admitted to his office of professor of mathematics. The same year, by the recommendation of Melancthon, he went to Norimberg, where he found certain manuseripts of Werner and Regiomontanus. He afterwards taught mathematics at Leipsic. From Saxony he departed a second time, for what reason is not known, and went to Poland; and from thence to Cassovis in Hungury, where he died December the 4th, 1576, at nearly 63 years of age.

His Narratio de Libris Revolutionum Copernici, was first published at Gedunum in 4t0, 1540; and afterwards added to the editions of Copemicus's work. He also composed and published Ephenerides, according to the doctrine of Copernicas, till the year 1551.

Rheticus also projected other works, of various kinds, astronomical, astrological, geographical, chemical, \&c, and partly executed them, though they were never published, which are more particularly mentioned in his letter to Peter Ramus in the year 1568, which Adrian Romanus
inserted in the preface to the first part of his Idea of Mathematics.

RHOMB-SoLID, consists of two equal and right cones joined tugether at therir bases.

AHONBUIL, ar Rnoxsitors, in Geometry, a quadrilateral figure, whinse opponite sides and angles are equal : but which is neither equilateral nor equiangular.

RHUMBUS, is an oblique equilateral perallelogram; or a quadrilateral fignre, whuse sides are equal and parallel, but the four angles not all equal, two of the opposite ones being obtuse, and the other two opposite ones acute. The two diagonals of a rbombus intersect at right angles. As to the area of the rhonalus or rhomboides, it is found, like that of all other paralitlugrams, by multiplying the length or bese by the perpendicular breadth.

Raombus-Solid. See Rhoma-Solid.
RHUMB, or HUms, in Navigation, a vertical circle of any given place; or the intersection of a part of such a circle with the horizon. Rbumbs therefore coincide with the points of the borizon. And hence mariners distiaguish the rbumbs by the same names as the points and winds. But we may ubserve, that the rhurabs are denominated from the points of the compass in a different manner from the winds: thus, at sca, the north-east wind is that which blows from the north-east point of the hozizon towards the ship in which we are; but we are said to sail upon the north-east rhumb, when we go towards the north-east.-They usually reckon 32 rhumbs, which are represented by the 32 lines in the rose or card of the comprass.

Aubin defines a rhumb to be a line on the terrestrial globe, or sea-compass, or sea-chart, representing one of the 32 winds which serve to conduct a vessel. So that the rhumb a vessel pursues is conceived as its route, or course.

Rhunbs are divided and subdivided like points of the compass. Thus, the whole rhumb answers to the cardinul point. The half rhumb to a collateral point, or makes an angle of 45 degrees with the former. And the quarter rhumb makrs an angle of $22^{\circ} 30^{\circ}$ with it. Also the halfquarter thumb makes an angle of $11^{\circ} 15^{\prime}$ with the same.

For a table of the rhuinbs, or points, and their distances from the meridian, see Wind.

Rhuma-hise, Lorodromia, in Navigation, is a line prolonged trom any point of the compass in a nautical chart, exerpt the fuur cardinal points: or it is the line which a ship, keeping in the same collateral point, or rhumb, describe throughout its whole cuarse; being derived from a Portuguese word.

The chief property of the rhumb-line, or loxodromia, and that from which some authors define it, is, that it cuts all the meridians in the same angle. This angle is called the Angle of the Rhumb, or the Loxodromic angle. And the angle which the rhumb-line makes with any parallel to the equator, is called the Complement of the Rhumb.

An ides of the origin and properties of the rbumb-line, the great foundation of navigation, may be coaceived thus: A vessel beginning its courre, the wind by which it is driven makes a certain angle with the meridian of the place; and as we shall suppose that the vessel runs exuctly in the direction of the wind, it makes the same angle with the meridian which the wind makes. Supposing then the wind to continue the same, as each point or instant of the progress may be esteomed the beginting, the
vessel always makes the same angle with the meridian of the place where it is each moment, or in each point of its course which the wind makers.-Now a wint, for example, that is north-east, and which consequently makes an angle of 45 degrees with the meridian, is equally imirth-east wherever it blows, and makes the same anyle of +3 degrees wihh all the muridians it nicels. And therelore a vessel, driven by the sanir wind, always mahis the sam angle with all the meridians it merts with on the surface of the earth. If the vessil sail north or south, in dracribes the great circle of a meridian. If it runs casi or west, it cuts all the meridians at right angles, und deacribes etither the circle of the equator, or else a circle parallel to it. But if the vessel salls between the two, it doez not then discribe a ciscle; since a circle, drawn obliquely to a meridian, would cut all the meridians at unequal angles, which the vessel cannot do. It describes therelorea particular curve, the essential property of which is, that it cuts all the meridinus in the same angle, and it is called the Laxodromy, or Loxodromic Curve, or Rhumb-line.

This curve, on the globe, is a kind of spiral, tending continually nearer and nearer to the pole, and making an infinite number of circumvolutions about it, without ever arriving exactly at it. But the spiral rbumbs on the globe become proportional spirals in the stercographic projection on the plane of the equator. The length of a part of this rhumb-line, or spiral, then, is the distance run by the ship while she kerps in the same course. But as such a spiral line would prove very perplexing in the calculation, it was necessary to have the ship's way in a right line; which right line however must have the essential properties of the carve, siz, to cut all the meridians at riglit angles. The method of effecting which, see under the article Caart.

The arc of the rhumb-line is not the shortest distance between any twn places through which it passes; for the shortest distance, on the surface of the globe, is an are of the great circle passing through those placts ; so that it would be a shorter course to sail on the arc of this great circle: but the ship cannot be kept in a great circle, because the angle it makes with the meridians is continually varying, more or lesu.

Let P be the pole, nw the equator, ABCDEP a spiral rhumb, divided into an indefinite number of equal parts at the points $\mathrm{B}, \mathrm{c}, \mathrm{p}, \mathrm{\& c}$; through which are drawn the acridians, PS, PT, PV, \& C_{i} and the parallels $\boldsymbol{F B}, \mathrm{KC}$, E.D, \&kc, also draw the parallel AX. Then, as a ship sails uloug the rhumbline twwards the pole, or in thr direction A BCD \& $c_{\text {, from }} A$ to E , the distance sailed $A E$ is made up of all the small equal parts of the rhumb $A B+$
 $\mathrm{BC}+\mathrm{CD}+\mathrm{DE} ;$ and
the sum of all the small differences of latitude ar + Ba $+\mathbf{C H}+\mathrm{Dt}$ make up the whole difference of latutude AM or En; and the sum of all the small parallels ra $+a C+$ $\mathrm{HD}+$ IE is what is called the depariure in plane sailing : and mE is the meridiunal distance, or distance between the first and lust meridians, measured ont the last parallel; also nw is the difference of longitude, measured on the equator. So that these last three are all different, vis, the departure, the meridional distance, and the difference of longitude.

If the ship sail towards the equator, from E to A: the departure, difference of latitude, and ditherence of longisude, will be all three the sance as befote; but the meridional distance will then be $A N_{\text {; }}$ instwal of 18 e the one of which an being greater than the departure $\mathrm{FA}+\mathrm{CC}$ $+11 D+1 E$, and the other $M E$ less than the sume; and indeed that departure is nearly a mean proputional bee tween the two meridional distances mf, as. Uther propertics are as below.

1. All the stall elementary triangles $A \mathrm{~B} p, \mathrm{BCG}, \mathrm{c} \mathrm{DH}_{\mathrm{H}}$, \&c, are mutually sinuilar and cqual it all these parts. For all the angles at A, B, C, J, Ne are equal, teing the angles which the rhumb makes wits the meridians, or the angles of 'the course; also all the augles $y, G, t a, 1$, ure equal, being right angles; therefore the third ansles are equal, and the triangles all similar. Also the hyporhenuses $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}, d \mathrm{de}$, are all equal by the hypothesis; and consequently the triangles are both simalar and equal.
2. As radius: distance run AE
: : sine of course $\angle A$: departure FB + oc Sce,
: : cosin, of course $\angle A$: dif. of lat. A.M.
For in any one any of the equal clementary triangles, which may be considered as small right-angled plune triangles, it is, us rad. or sin. $\angle F:$ sin. course $A:: A$: 1 : B : : (by composition) the sum of all the distances $A B+$ $\mathrm{BC}+\mathrm{CD} \mathrm{NC}$; the sum of all the departures $\mathrm{FB}+\mathrm{aC}+$ HD \&c.

And, in like manter, as radius : con, coure a : : A B : $A F:: A B+B C A C: A F+B C \& C$.

Hence, of these four things, the course, the diticience of latitude, the departure, and the distance run, having any two given, the other two are found by the proportions above in this article.

By means of the departure, the length of the rhumb, or distance run, may le connected with the longitude and latitude, by the following two theorems.
S. As radius : half the sum of the cosincs of both the latitudes, of A and E : : dif. of long. nw : departure.

Hecause us: fe: : rallus: sine of pa or cos.ra, and $\mathrm{vw}: 1 \mathrm{E}:$: radius: sine of PE or cos. Ew.
4. As radius: cos, middle latitude : : dif. of longitude : departure.-For the cosine of middle latitude is nearly equal to half the sum of the cosines of the two extreme latitulen.

RICCI (Micuagl-Aygelo), a learned Italian divine, born at Rome in 1619 . He whs well shilled in the pure mathematical sciences; and be was created a cardinal in 1681; but did not long cujoy that dignity, as he died in 1683, at $6+$ years of age. He published at Rome, in $4 t 0$, Exercitatio Gcometrica, a small tract, which wus uprinted at London, and annexed to N. Mercator's Logarithinoterhnia; having been thuught fit to be so reprinted, partly by reason of its scarceness, but chiefly on account of the excellency of the argument, which is, de maximis et minimis, or the doctrive of limits: where the author shows a deep judginent in exhibiting the means of reduciag that lately diseovered doctrine to pure geometry. In this tract is deinonserated the doctrine of Caravagio de upplicationibus, who affirins, that he who is ignorant of it may mispend his time about equations, in scarching for that which cabnot be found. He delivers also a method of drawing tangents to all the conic sections, and to several other curves.

HiCCIOLI (Joasnes-Baptista), a Itarned Italian astrouomer, philosopher, and mathematician, was born in

1598, at Ferrara, a city in Italy, in the dominiuns of the Pope. At 16 ycurs of age the was admittere into the society of the Jesuits. He was endawed with uncommot talents, which he cultivated with extraurdinary wiplication; sa that the progreas he imale in every brunch of liternture and science was surprising. Ite was nitat appuinted to frach rhetonic, poetry, plitusopliy, and scholastic divnity, in the Jesuits' collegrs at Derma and Bologna; yet he applied himelf in the mean time to maknig otw ivalions in geopraphy, chronology, and astromomy. This was his nataral bent, and at lengh he oharned leave from lis superiors to quit all wher emplaynem, that he inight devote hansiffentirely to theres sciences.

He projecicel a large worh, to be divided into thiree parts, and to contain as it were a complete system of phiiI'saphical, mathematical, and astronomical hnonledge. The first of these parts, which regards astronomy, was published nt Bolugna in $\mathbf{6 5 1}, 2$ wils. folie, with this title, J. B. Ricciol, Amagestuni Nurum, Astronomiam veterem novamqué complectens, obervateanibus aliorum et propriis, novisque theorematibus, problematibus, ac tabulis promstars. Reccioli imitated P'olemy in this worh, by collteting and digesting iuto proger order, with observations, enery thing unchat and modern, which related to his subject; so that (iassendus very justly called lis work, "Pronptuarium et thesaurum ingentent Astronomire."

In the first volume of this work, he treats of the sphere of the wonld, of the sun und moon, with thir eclipses; of the fixed stars, of the plunets, of the comets and new stars, of the several mundane systents, ind six sectiuns of general problems serving to astronamy, \&c.-In the second volume, he treats of tighonometry, or the dectrine of plane and spherical triangles; propeses to give a treatise of astronomical instruments, and the optical part of astronomy (which part was never published); it ulso treats of geopraphy, hydrography, with an eptome of chronology. -The third, comprehends observations of the sun, moon, eclipses, fixed stars and planets, with precepts and tables of the primary and secondary motitus, and other astronomical tables. Hiccioli printed alor, iwn nther works, iil fulıo, at Bologna, vir,
2. Astronemia Reformata, 1665 : the design of which was, that of considering the various hypotheses of several astronomers, and the diticulty thence arising of concluding any thing certain, by comparing logether all the best obsirvations, and exaraining what is moxt certatn in them, the nce to reform the principles of astronomy.
3. Chronologia Meformata, 1669 .

Hiccioli died in 1671 , at 73 yrars of age.
RICOCIIET Firing, in the Military Art, is a methed of firing with small clarges, fiom pirces of ordnance elevated at small anglis as from 3 to 6 degrees. The word signifies duck-athd-drake, or relsumbling, because the ball or shot, thus divcharged, goes boutding and rolling along, hilling or destroying every thing in its way, loke the bounding of a riat stone along the surface of water when thrown almost horizontally.

RIDEAU, in Fortification, a small clevation of carth, extending itself lengtherays of a plain; serving to cover a camp, or give an advantage to a puest.

Rideau is somelimes aboused for a trench, the earth of which is thrown up on its side, to scrveasa parapet for covering the nain.

RIFLE Guss, in the Military Art, are those whose

RIG

bärrels, instead of being straight on the inside, are formed with spiral clannels, inahing each about a turn and a balf in the leugith of the bartel. These carry their balls farther and with mure certainty than the common piecrs. For the nature and qualitics of them, see Robius's Tracts, vol. 1, pa.32s dx.

RIGEL, in Atronomy. See Reesl.
RIGIIT, in Gpometry, something that lies evenly or equally, without inchning or bending one way or another. Thus, a right-liue is that whose purts all tend the same way. In this sense, right means the same as struight, as opposed to curved or crooked.

Rignt-Angle, is that which nee line makes with another upon which it stands, so as to incline acither to one side nor the otioer. And in this setwe the word right stands upposed to oblique.
lignt-angled, is said of a fizure when its sides are at right angles or perpendicular to each other.-This sometimes holds in atl the angles of the figure, as in squares and rectangles; sutaetines ouly in part, as in right-angled triangles.

Richr-angled Triangle in Numbers. It was a favourite speculation with the ancient geonneters, to express numerically, or in integer numbers, the sides of a right-angled thiangle. 'Hie rules which they used for that purpose, are equally simple and ingenous. In symbols they are briefly expressed thus; viz, if a denote any odd number, above 1 , then
according to Pythagoras, n, and $\frac{n^{t}-1}{2}$, and $\frac{n^{3}+1}{2}$, or aceording to Plato, $2 n$, and $n^{2}-1$, and $n^{4}+1$, will represent the three sides of a right-angled triangle, the last term being the hypothenuse. In the second of these forms, which is only the double of the former, n may be any number, above 1 , either odd or even; in the former n tnust be an odd number, to give integral results. In any case, the resultsare rational at least ; and the proposition is manifest, viz, that the sum of the squares of the first two terms, is equal to the square of the third.

But a more general form of the same property is exhibited in the following terms, $2 m n, m^{8}-n^{4}$, and $m^{2}+n^{4}$, where m and n may be any two numbers takt b at pleasure, so as that m be greater than n. And by taking any particular numbers for m and n, an endless series of rightangled triangles, in rational, or even in whole numbers, will be the result.

Victa employed another form of the like properties, in his curious work, Canon Mahematicus, seu ad Triangula , in which the three sides ate either of the three fullowing furms:
 $\underline{m^{7}+1}$
sets, denotes the hypothenuse of a triangle, and the two leading terms, the base and perpenticular, as it is evident that, in then all, the square of the 3d term is cqual to the sum of the squares of the 1 st and 2 d . And by these forms, V Vieta conuputed the sides of $\$ 300$ right-angled triangles, in rational numbery, and arrauged theon in tables. Sce an acconnt of them in the introluction to my Mathematical Tables, pa. 3 and 6 ; or in my Tracts, vol. I, pas.asj.
It in the second set, $\left(2 n, n^{4}-1, n^{2}+1\right)$, above mentionet, wee express fractionvise the accond term divided by
the first, thus, $\frac{n^{0}-1}{2 n}$, and expound the value of n successively by the numbers $2,3,4,5, \& c$, we shall obtain a series of tractions, of which the numerators and denominatons will be the two less sides of a series of right-angled triangles, in whole numbers.
O_{r}, if for n we substitute $2 m+1$, the afuresaid fraction $\frac{n^{\prime}-1}{2 n}$ becomes $\frac{2 m^{2}+2 m}{2 m+1}=m+\frac{m}{2 m+1}$, in the form of a mixt number, in which the value of m may be any number whatever, the denominator $2 \mathrm{~m}+1$ denoting the least side, the numerator $2 \mathrm{~m}^{2}+2 \mathrm{~m}$ the other side, and the same increased by 1 , viz, $2 m^{2}+2 m+1$ the bypothenuse. So, if m be expounted successively by the numbers 1, 2, 3, 4, \&c; the series of fractions will be $\frac{4}{3}$. $\frac{12}{5}, \frac{24}{7}, \frac{40}{0}, \& \mathrm{~d}$, the denominators being the least sides, the numerators the greater, and these increased by 1 , the hypothenuses, of the series of triangles. Or if we employ the form $m+\frac{n}{2 m+1}$, the same numbers $1,2,3, \& c$, will give the mixed numbers $1 \frac{1}{2}, 2 \frac{2}{3}, 3!, 4 \frac{4}{v}, 5 \frac{T_{i}}{}, 6{ }_{4}^{6}, \& c$, in which the law of contonuation is manifest ; the denominator of each being the least side, the integer multiplied by the denominator and the numerator adeled is the greater side, and 1 more is the hypothenuse.

Again, if instead of n, in the first fraction $\frac{n^{2}-1}{n}$, be substituted $\Omega_{m}+2$, that fraction then becomes
$\frac{4 m^{7}+5 m+3}{4 m+t}=m+\frac{4 m+3}{4 m+5}$, Then, taking for m successively the numbers $1,2,3,4, \& \mathrm{cc}$, this other series of mixed numbers results, viz, $1 \frac{17}{}, 2 \frac{1}{2} \frac{1}{3}, 31 \frac{5}{6}, 4 \frac{1}{2}, 3 \frac{2}{2}, 6 \frac{2}{2} \frac{7}{1}$, \&c, expressing another scries of the triangles, in the same way as the former one.-And in like manner for any other series.

Ricitt Come, Cylinder, Prism, or Pyramid, one whosa axis is at right-angles to the base.
Richt-lined Angle, one formed by right lines.
Rigut Sine, one that stauds at right-angles to the diameter; as opposed to versed sine.
Rtout Spherc, is that where the equator cuts the horizon at rigbt-angles; or that which has the poles in the horizon, and the equinuctial in the renith. Such is the position of the sphere with regard to those who live at the equator, or under the equinoctial. The consequences of which are; that they have no latitude, nor elevation of the pole; they see buth polis of the world, and all the slars rise, culminate and set; also the sun always rises and descends at right-angles, and make therr days and nights equal. In a right sphere, the borizon is a meridian ; and if the sphere be supposed to revolve, all the meridiant successively become horizons, one after another.
Right Ascension, Descension, Parallax, \&ce. See the respective articles.
llant Circle, in the Stereographic Projection of the Sphere, is a citcle at right-angles to the plane of projectorn, or that which is prujected into a right linc.
Hicitt Sailing, is that in which a voyage is performed on some one of the four cardinal points, cast, west, north, or south.- If the ship sail on a nevidian, that is, north or south, she does nat alter ber longitude, but only changes the latitude, and that just us much us the number of degrees she has run.-But if she sal on the equator, direcily east in west, she varies not her latiude, but only changes the longitude, and that just as much as the number of de-
grees she has run_-And if she sail directly east or west upon any parallel, she again does not change her latitude, but only the longitude ; yet not the same as the number of degrees of a great circle she has suiled, as on the equator, but more, according as the parallel is remoter from the cquinoctial sowards the pule. For the lews any parallel iy, the greater is the difference of longitude answering to the distance run.

RIGIDITY, a brittle hardness; or that kind of hardness which is supposed to arise from the mutual indentation of the component particles within one another. Rigidity is opposed to duculity, malleability, \&c.

RING, in Geometry, is a figure returning into itself, the axis being bent round into a circular form.-This is either plane or solid. In the former case, it is the space or figure contained between the circumferences of two concentric circles. In the latter, or solid ring, it resembles a cylinder, or other prism, bent round into a circular form. And, in cither of them, the transverse section, perpendicular to the uxis, is the same quantity; in the plane ring, it is the same line, or difference of the two radii ; in the solid ring, it is the same plane figure.

For the measures of the surface and solidity of rings, multiply the axis by the transverse section perpendicular to it. See my Mensuration, pa, 110 and 194, edit. 4.

Rixo, in Astronomy and Navigation, an instrument used for tuking the sun's altitude \&c. It is usually of brass, about 9 inches diameter, suspended by a little swivel, at the distance of 45° from the point of which is a perforation, which is the centre of a quadrant of 90° divided in the inner concave surface.

To use it, let it be held up by the swivel, and turned round to the sun, till his rays, falling through the hole, make a spot among the degrers, which marks the altitede required. This instrument is preferred to the astrolabe, because the divisions are here larger than on that instrument.

Riso, of Saturn, is a thin, broad, opaque circular arch, encompassing the body of that planet, like the wooden horizon of an artificial globe, without touching it, and appearing double, when seen through a good telescope.

This ring was first discovered by Huygens, who, after frequent observation of the planet, perceived two lucid
points, like ansm or handles, arising out from the body in a right line. Hence, as in suhsequent observations he always found the same appearance, he concluded that Soturn was encompassed with a permanent ring; and accordingly produced his New System of Saturn, in 1659. It was however, Galileo who first discovered that the figure of Saturn was not round.

Huygens estimates the space between the globe of Saturn and the ring as equal to the breadth of the ring, or rather more, being about 22000 miles hroad; and the greatest diameter of the ring, in proportion to that of the globe, as 9 to 4. But Mr. Puund, by an excellent microineter applied to the Huygenian glass of 123 feet, determined this proportion, more exactly, to be as 7 to 3 .

Observations have also determined, that the plane of the ring is inclined to the plane of the ecliptic in an angle of 30 degrees ; that the ring probably turns, in the direction of its plane, round its axis, because when it is almost edgewise to us, it appears rather thicker on one side of the planet than on the other; and the thiclest ealge has been seen on diffierent sides at different times: the sun shines almost 15 of our years together on one side of Saturn's ring without setting, and as long on the other in its turn; so that the ring is visible to the inhahitants of that planet for almost 15 of our years, and as long invisible, by turns, if its axis has no inclination to its ring; but if the axis of the planet be inclined to the ring, ex. gr. about 30 degrees, the ring will appear and disappear once every natural day to all the inhabitants within 30 degrees of the equator, on both sides, frequently eclipsing the sun in a Saturnian day. Moreover, if Saturn's axis be so inclined to his ring, it is perpendicular to his orbit; by which the inconvenience of different seasons to that planet is avoided.
This ring, seen from Satum, appears like a large luminous arch in the heavena, as if it did not belong to the planet.

When we see the ring most open, its shadow upon the planet is hroadest; and frotn that time the shadow grows narrower, as the ring appears to do to ns; until, by Seturn's annual motion, the sun comes to the plane of the ring, or even with its edge; which, being then directed towards us, becomes invisible, on account of its thinness.

The phenomens of Saturn's ring are illustrated by a view of this figure. Let s be the sun, asciespon Saturn's orhit, and $1 \times \mathrm{Lm}$ no the earth's orbit. Both Saturn and the carth move according to the order of the letters ; and when Saturn is at A, his ring is turned edgewise to the sun s , and be is then seen from the earth es if he had lost his ring, let the earth be in any part of its orbit whatever, except between s and o; for while it dencribes that space, Saturn is apparently so near the sun as to be hid in his beams. As Saturn goes from a to c , his ring appears more and more open to the earth; at c the ring appears most open; but seems to become more aud more narrower as Satarn goes from \mathbf{C} to E ; and when arrived at this point the ring is again turned edgevise buth to the sun and
carth; and as neither of its sides is illuminated, it is invisible to us, because its edge is tou thin to be perceptible ; and Saturn appears again as if he had lost his ring. But as he goes fruin \mathbf{E} to G, his ring opens more and more to our view on the under side; and scems just as open at a as it was at c , and may be soen in the night-time from the earth in any part of its orbit, except about m, when the sun hides the planet from our view.

As Saturn goes from 6 to A, his ring turns more and more edgewise to us, and therefore, it wems to be narrower ; till at a it quite disappears as before. Hence, while Saturn goes from a to E , the sun shines on the upper side of his ring, and the under side is dark; and while he goes from ε to 4 , the sun shines on the under side of his
ring, and the upper side is datk. The ring disappears iwice in every annual revolution of Saturn, viz, when he is in the 19th deqree of Posces and of Virgo, and when Satura is in the middle between these points, or in the 19th degree either of Gemini or of Sagittarius, his ring appears most open to us; and then its longest diameter is to ins shortest, as 9 to 4 . Ferguson's Astr. sect. 204.

There are various hyponheses concerning this ring. Kepler, in his Epitom. Astron. Copern., and alter him Dr. Halley, in his Enquiry into the Casses of the Variation of the Needik, Phil. Trans. Nir. 195, supposis our carth may be composed of severul crusts or shells, one within another, and concentric to each uther. If this be the case, it is possible the ring of Satura way be the fragment or remaming ruin of his formerly exterior shell, the rest of which is brokell or fallen down upon the body of the platiet. And some have stpposed that the ring may be a congerits or series of mosns revolving about the planet.

Later observations have thrown much more light on this curious pleasureuin, especially respecting its dimensions, and rotation, and division into two or more parts. Lalande and Laplace say, that Cissini saw the breadth of the ring divided into two separate parts that are equal, or nearly so. Mr. Shurt assured M. Latande, that he had wen inaluy thivisions on the ring, winh bis 12 feet telescope.
 the ring divided into two parts. Several exectlent theories have beotl given in the Frouch Mrmairs, particularly by Laplace, conkeuding for the division of the ring into many parts. But finully, the obvervations of Dr. Herschel, in several volumes of the Pbilos. Trans,, seem to confirm the division into two concentic parts ouly. The dimensions of these two rings, and the space between them, he states in the fullowing proportions to each other.
 So that the outside diameter of the larger ring is almost 26 tumes the diameter of the earth.

Dr. Herscliel adds, "Some theories and observations, of other persons, lead us to consider the question, whether the construction of this ring is of a nature so as permanenty to remain in its present state? or whether it be liable to continual and frequent changes, in such a manner as in the course of not many years, to beseen subdivided inte narrow slips, and then again as united into one or two circular planes only. Now, vithout entering into a discussion, the mind seems to revolt, even at tirst sight, against an idea of the chaotic state in which so large a mass as the ring of Saturn must needs be, if phenomena like these can be admitted. Nor onglit we to indulge a suspicion of this bring a reality, unless repeated and well-confirmed observations bad proved, bryond a doubt, that this ring was actually in so tluctuating a condition." But from his own ohservations be concludes, " It does not appear to me, that there is n sufficient gound for admitting the ring of Sasurn to be of a very changeable nature; and I guess that its phenomena will hereafter be so fully explained, as to reconcile ull observations. In the mean-whilc, we must withhuld a tinal judgment of its

Yol. II.
construction, till we can have mom observations, Ifs division however into two very une qual parts, can adinit of no doubt." Sex Philos. Traus, vol, 80, pa. 4, 481 \& c, and the vol. for 1792, pa, i \&c, also Hist. de l'Acad. des Scienc. de Paris, 1787, pa, 249 dc.

Rings of Colours, in Optics, a phenomenon first observed in thin plates of various substances, by Boyle, and Hooke, but afterwards more fully explained by Newton.

Mr. Boyle having exhibited a vartety of colours in colourless liguors, by shaking then till they rose in bubbles, as weil as in bubbles of somp and water, and also in turpentiue, procured glas Wlown so thin as to exbibit similar colours; and he observes, that a feather ot a proper sbape and size, and al:o a blach ribband, held at a proper distance between his cye and the sun, showed a variety of little rainbows, as be calls them, wah very vivid colours. Boylc's Works by Shaw, sol. 2, pa. 70. Dr. Hooke, about nine years atter the publication of Mr. Beyle's Treatise on Colours, exbibited the coloured bubbles of soap and water, and observed, thut thoughat first it appeared white and clear, yet as the filin of water became thinner, there appeared upon it all the colours of the rainbow. He aiso described the beautiful colours that are seen in thin plates of Muscovy glass; which appeared, tbrough the microscope, to be rangel in rings surfounding the white specks or flaws in them, and with the same orter of colours as those of the rainbow, and which were often repeated ten times. Ile also took two thin pieces of glass, ground plave and polishal, and putting them one upon another, pressed them till there bugan to appear a red coloured spot in the middle; and pressing them cluser, he observed screral rings of colours encompussing the first place, till, at last, all the colours disappeared out of the middle of the circles, and the central spot appeared white. The first colour that appeared was red, then yellow, then green, then blue, then purple; then again red, yellow, green, blue, and purple; and again in the same order; so that he sometimes counted nine or ten of these circles, the red immediately next to the purple; and the last colour that appeared before the white was blue; so that it began with red, and ended with purple. These rings, he says, would change their places, by cbanging the position of the eyc, so that, the glasses remaining the same, that part which was red in one position of the eye, was blue in a sccontl, green in the third, \&cc. Bircb's Hist. of the Royal Suciety, vol. S, pa. 54.

Newton, having demonstrated that every different colour consists of rays which have a different and spectic degiee of refrangibility, and that natural bodies apprar of this or. that colour, according to their dirposition to refiect this or that species of rays (see Colova), pursued the hint suggested by the experiments of Dr. Hooks, already recited, and casually noticed by hinst if, with regard to thin transparent substances. On compressing two prisms hard tugether, in order to make their sides touch one another, he observed, that in the place of cuntact they were perfectly transparent, which appeared like a dark spot, and when it was looked through, it seemed the a hole in that air, which was formed into a thin plate, by being imprissed between the glasses. When this plate uf air, by turning the prisms about their common axis, became so little inclined to the incident rass, that some of then begall to be transmitted, there arose in it many slender arcs of colours, which increased, as the motion of the prisms was continued, and bended more and more about the 2 U
transparent spot, till they were completed into circles, or rings, surrounding it ; and afterwards they became continually more and more cons racted.

By another experiment, with two object-glasses, he was enabled to observe dwtinctly the order and quality of the colours from the central spot, to a very considerable distance. Next to the pellucid central spot, made by the contact of the glasses, succeeded blue, white, yellow, and red. The next circuit immediately surrounding these, consisted of violel, blue, green, yellow, and red. The third circle of colours was purple, blue, green, yellow, and red. The fourth circle consisted of green and red. All the succeeding colours became more and more imperfect, till, after three or four revolutions, they ended in perfect whiteress.

When these rings were examined in a darkened room, by the coloured light of a prism cast on a sheet of white paper, they became more distinct, and visible to a far greater number than in the open air. He sometimes saw more than twenty of them, whereas in the open air he could nut discern above cight or nine.

From other curious observations on these ringa, made by different kinds of light thrown upon them, he inferred, that the thicknesses of the air between the glasses, where the rings are successively made, by the limits of the seven colvurs, red, orange, yellow, green, blue, indigo, and vinlet, in order, are one to another as the cube roots of the squares of the eight lengths of a chord, which sound the notes in an octave, sol, la, fa, sol, la, mi, fa, sol ; that is, as the cube roots of the squares of the numbers $1, \frac{5}{5}, \frac{8}{8}, \frac{3}{2}, \frac{1}{3}, \frac{1}{3}$, $\frac{7}{7}, \frac{1}{3}$. These rings appeared of that prismatic colour, with which they were illuminated, and by projecting the prismatic colours immediately upon the glasses, he found that the light, which fell on the dark spaces between the coloured rings, was transmitted through the glasses without any change of colour.' From this circumstance he thought that the origin of these rings is manifest; because the air between the glasses is disposed according to its various thickness, in some places to reflect, and in others to transmit the light of any particular colour, and in the same place to reflect that of one colour, where it transmits tbat of anolher.
In examining the phenomena of colours made by a denser medium surrounded by a rarer, such as those which appear in plates of Muscovy glass, bubbles of somp and water, \&c, the colours were found to be much mure vivid than the others, which were made with a rarer medium surruunded by a denser.

From the preceding phenomena it is an obvious deduction, that the transparent parts of bodies, according to their several series, reffect rays of one culour and transmit those of another; on the same account that thin plates, or bubbles, reflect or transmit those rays ; and this Newton supposed to be the reason of all their colours. Hence also he has inferred, that the size of those component parts of natural bodics that affect the light, may be conjectured by their colours. SceColove, and Replection.

Newton, pursuing his discoveries concerning the colours of thin substances, found that the same were also produced by plates of a considerable thickness, divisible into lesser thicknesses. The rings formed in both cases have the same origin, with this difference, that those of the thin plates are made by the alternate reflections and transmissions of the rays at the second surface of the plate, after one passage through it; but that, in the case of a glass
speculum, concave on one side, and convex on the other, and quicksilvered over on the convex side, the rays go through the plate and return before they are alternately reflected and transmitted. Newton's Optics, pa. 169, \&c. or Newtomi Opera, Horsley's edit. vol 4, pa. 121, \&xc. p. 184, \&sc.

The abbe Mazeas, in his experiments on the rings of colours that appesr in thin plates, has discovered several important circumstances attending them, which were uverlooked by the sagacious Newton, and which tend to invalidate his theory for explaining them. In rubbing the flat side of an object-glass against another piece of flat and smooth glass, he found that they adhered very firmly together after this friction, and that the same colours were exhibited between these plase glasses, which Newton had observed between the convex ebject-glass of a telescope, and anotber that was plane; and that the colours were in proportion to their adhesion. When the surfaces of pieces of glass, that are transparent and well polished, are equally pressed, a resistance will be perceived; and wherever this is felt, two or three very fine curve lines will be discovered, some of a pale red, and others of a faint green. If the friction be contibued, the red and green lines increase in number at the place of contact ; the coluurs being sometimes mixed wihhout any order, and sumctimes disposed in a regular manner; in which case the coloured limes are generally concentric circles, or ovals, more or less elongated, as the surfaces are more or less united.

When the colours are formed, the glasses adhere with considerable force; but if the glasses be separaided suddenly, the colours will appear immediately upon their being put together, without the least friction. Beginning with the slightest touch, and increasing the pressure by insensible degrees, there first appears an oval plate of a faint red, and in the centre of it a spot of light green, which enlarges by the pressure, and becomes a green oval, with a red spot in the centre; and this enlarging in its turn, discovers a green spot in its centre. Thus the red and green succeed one another in turns, assuming different shades, and having other colours mixed with them. The greatest difference betwren these colours exhibited between plane surfaces, and those by curve ones, is, that, in the former, pressure alone will not produce them, except in the case above-mentioned.

In rubbing together two prisms, with very small refracting angles, which were joined so as to form a parallelopiped, the colours appeared with a surprizing lastre at the ptaces of contact, and differently coloured ovals ape peared. In the centre there was a black spot, bordered by a deep purple; next to this appeared violet, blue, orange, red tinged with purple, light green, and faint purple.

The other rings appeared to the naked eye to consist of nothing but faint reds and greens. When these coloured glasses were suspended over the flame of a candle, the colours disappeared suddenly, though they still adhered; but being suffered to cool, the colours returned to their former places, in the same order as before. At first the abbí Mazens had no doubt but that these colours were owing to a thin plate of air between the glasses, to which Newton has ascribed then; but the remarkable difference in the circumstances attending those produced by the fiat plates and those produced by the object-glasses of Newton, convinced him that thertir was not the cause of this appearance. The colours of the flat plates vanished at the
approach of flame, but those of the object-glasses did not. Nor was this difierence owing to the plane glasses being less compressed than the convex ones; for though the former were compressed ever so much by a pair of forceps, it did not in the lenst hinder the effect of the flame. He then put botb the plane glasses and the convex ones into the receiver of an air-purnp, suspending the former by a thread, and keeping the latter compressed by two string; ; but lee observed no change in the colones of either of then, in the most perfect vacuum that he could make. Suspecting still that the air adhered to the suriace of the glasors, so as not to be separated from them by the force of the punp, he had recourse to other experiments, which rendered it still more improbable that the air should be the cause of these colours. Having laid the coloured plates, after warming them gradually, on burning cuals; and thus, when they were nearly red, rubbing them tugether, he observed the same coloured circles and ovals as before. When he ceased to press upon them, the colours seemed to vanish; but they returned, as he reuewed the friction. In order to determine whether the colours were owing to the thickness of some matter interposed belween the glassos, he rubbed them together with suct and other soft substences between them; yet bis endeavour to produce the colours had no effect. However by continuing the friction with some degree of violence, he obmerved, that a candie appeared through them encompassed with two or theee concentric greens, and with a lively red inclining to yellow, and a green like that of an emorald, and at length the rings assumed the culours of blue, yellow, and violet. The abbé was thus confirmed in his opinion that there must be some error in Newton's hypothesis, by considering that, according to his measures, the colours of the plates varied with the difference of a millionth part of an inch; whereas he was satisfied that there inust have been much greater difficrences in the distance between his glasses, when the colours remained unchanged. From other experisents be concluded, that the plate of water introduced betweell the glasses was not the cause of their colours, as Newton apprebended; and that the coloured rings could not be owing to the compression of the glasses. After all, be adds, that the theory of light, thus reflected from thin plates, is too delicate a subject to be completely ascertained by a small number of observations. Berlin Mein. for 1752, or Memoires Presentes, vol. 2, pa. 28-43. M. du Tour repeated the experiments of the abbe Mazeas, and added some observations of his own. See Mem. Pres. vol. 4, pa. 258.

Musschenbroeck is also of opinion, that the colours of thin plates do not depend upon the air ; but as to the cause of them, he acknowledges that he could not satisfy himself about it. Introd. ad Phil. Nat. vol. 2, pa. 738. See on this sulject Prientley's Hist. of Light, \&c, per. 6, sect. 3, pa, 498, \&c.

For an account of the rings of colours produced by electrical explosions, sce Colouss of Nathral Bodies, Cibcular Spots, and Fairy Cireles.

IISING, in Astronomy, the appearence of the sun, or a star, or other Iuminary, above the horizon, which before was bid beneath it. By reason of the refraction of the atmosphere, the heavenly bodies always appear to rise befure their time ; that is, they are seen above the horimon, while they are really below it, by about 33^{\prime} of a degree.

There are three poetical kinds of rising of the slars. See Acronical, Cosmical, and Heliacal

MitTENHOUSE (Dr. David), President of the American Philosophical Society, died July 10, 1796i, in the 64th year of his age. He was a native of Pennaylrania; and, in the early part of life, mixed the pursuits of science with the active employmens of farming and watch-making. In 1769, he was invited by the American Philusophical Society, in association with other gentlemen, for making astrunomical observations, particularly of the transit of Venus, that ycar ; when he greatly distinguished himself hy the accuracy of bis observations and calculations. He afterwards constructed an ubservatory, which be superintended in person, and which became the source of many important discoveries, as well as greatly tended to the gencral diflusion of science in the western world. During the American war he was an active asserter of the cause of independence. After the conclusion of the peace, he successively filled the offices of treasurer of the state of Pennsylvania, and director of the national mint. He succeeded the illustrious Franklin in the office of President of the Philosophical Society; a situation which the bent of his mind, and the course of his studies, bad rendered tim eminently adequate to fill. Towards the close of his life he bad retired from active occupations. He was the author of several excellent papers, chiefly on astronomical subjects, inserted in the Transactious of the American Philosophical Society.

KIVER, in Geugraphy, a stream or current of freah water, flowing in a bed or channel, from a source or spring, into the sea.-When the stream is not large enough to bear boats, or small Ioaden vessels, it is properly called by the diminutive, Rivulet or Brook; but when it is considerable enough to earry larger vessels, it is called by the general name River.-Rivulets have their rise sometimes from great rains, or great quantities of thawed snow, especially in mountainous places; but they more usually arise from springs.-Rivers themselves all arise either from the confinencc of several rivulets, or from lakes.

Rivea, in Physics, denotes a stream of water running by its own gravity, from the more elevated parts of the earth towards the lower parts, in a natural bed or channel open above. - When the channel is artificial, or cut by art, it is called a canal; of which there are two kinds, viz, that whose channel is every where open, without sluices, called an artificial river, and that whose water is kept up and let off by means of sluices, which is properly a canal.

Modern philosophers endeavour to reduce the motion and flux of rivers to precise laws; and with this view they bave applied geometry and mechanics to this subject; so that the doctrine of rivers is become a part of the new philosophy. The authors who have most distinguished themselves in this branch, are the Italians, the French, and the Dutch, but especially the first, and among thero more particularly Gulielmini, and Ximenes.

Rivers, says Gulielmini, usually have their sources is mountains or elevated grounds ; in the descent from which it is, that they mostly acquire the velocity, or acceleration, which maintains their future current. In proportion as they advance farther, this velocity diminishef, on account of the continual friction of the water against the bottom and sides of the channel; as also from the various obstacles they meet with in their progress, and from their $2 U_{2}$
arriving at length in plains where the descent is less. Thus the Reno, a river in Italy, which be says gave occasion, in some measure, to liss spiculutions, is found to bave near its mouth a declivity ot scarce. 52 seconds, being only 1 foot in 4000 .

When the acquired velocity is quite spent, by means of the many obsacles that the water meets with, so that the cursent becomes horizontal, there will then remain nothing to propagate the motion, and continue the stream, but the depth, or the perpetudicular pressure of the water, which is always proportional to the depth. And, bappily for us, this resource increases, as the occasion for if nervases ; for in proportion as the water loses of the velocity acquired by the descent, it rises and increases in its depth.-It appears from the laws of motion pertaining to boilies moving on inclixed planes, that when water flows freely upon an inclined bed, it acquires a velocity, which is alway, as the square root of the quantity of descent of the beed. But in an horizontal bed, opened by sluices or otherwise, at one or both ends, the water flows oul by its gravity alune.

The upper paits of the water of a river, and those at a distance from the banks, may continue to fow, from the smple cause or principle of declivity, how snall soever it be; for not being actained by any obstacle, the minutest difference of level will have its cffect; but the lower parts, which roll along the loottom, will scarcely be ensible of so small a declivity; and will only have what motion they receive from the pressure of the superiacumbent waters.-The greatest velocity of a river is about the mildle of its depth and breadth, or that point which is the farthest possible from the surface of the water, and from the botion and sides of the bed or channel. Whereas, on the contrary, the least velocity of the water is at the bottom and sides of the bed, because there the resistance arising from friction is the greatest, which is communicated to the other parts of the section of the river inversely as the distances fram the botton and sides.To find whether the water of a river, alnost horizontal, flows by means of the selocity acquired in its descent, or by the pressure of its depth; set up an obstacle perpendicular to it ; then if the water rise and swell inmediately against the obstacle, it runs by virtue of its fall; but if it lirst stop a little while, in cirtue of its pressure.

Rivers, accordme to this author, almost always make their own bods. If the bottom bave originally been a large declivity, the water, hence falling with a great force, will have swept away the most clevated parts of the sinl, and carrying them lower down, will gradually render the bottom more nealy horizintal.- The water having made its bed horizomal, bccomer so itself, and consequently rakes with the less force againet the bottom, ull at length that force becomes only equal th the resistance of the bottom, which is now arrived at a state of permanency, at least for a considerable time; and the longer according to the quality of the soil, clay and chalk resisting longer than sand or mud.

Ou the other hand, the water is continually wearing away the bitns of its channel, and this with the more force, as, by the direction of its stream, it impinges more directly against them. By this means it bas a continual tendency to render them parallel to its own course. At the same time that it bas thus rectified its edges, it has widened its own bed, and thence becoming less decp, it luses part of its furce and pressure: this it continucs to
do till there is an equilibrium between the force of the water and the resistance of its banks, and then they will remain without farther change. And it appears by experience that these equilibriunts are all real, as we find that rivers only deepen and widen to a certain pitch.

The very reverse of all these things does also on some occasions happen. Hivers, whose waters are thich and muddy, raise their bed, by depositing part of the heterogeneous matters contained in them : they also contract their banks, by a continual opposition of the sanne mutter, in brushing over them. This matter, being thrown aside far from the stream ol water, might even serve, by reamon of the dullmess of the notion, to form new basiks. If these various causes of resistance to the motion of flowing waters did not exist, viz, the attraction and continual hiction of the bottom and sides, the thequalitios in both, the uindings and angles that occur in their coursc, and the diminution of their declivity the farther they recede from their springs, the velocity of their currents would be ₹"eclerated to 10, 15, or even 20 times more than it is at present in the same rivers, by which they would become absolutely unnavigable.-

The union of two rivers into one, makes the whole flow the swifter, because, instend of the frictiou of tour shores, they have only two to overcome, ansl one bottom instead of tuo; also the strean, being fatther distant from the banky, goes on with the less interruption, besides, that a greater quantity of water, moving with a greuter velocity, digs derper in the bed; and of course retrencless its former width. Hence also it 15, that risers, by being united, take up less spuce on the surfince of the earsh, and are more advantagcous to low grominds, which dran their superfluous moisture into them, and have abo less occasion for dykes to prevent their overflowing:

A very good and simple inethod of measuring the velocity of the current of a river, or canal, is the following. Take a cylindrical pice of dry, light wood, and of a length something less than the depih of the water in the river; about one end of it let there be suipended as many small weights, as may keep the cylinder in a vertical or upright position, wht its bead just abose water. To the centre of this end fix a small straight rod, preciscly in the direction of the cylineler's asis; int order that, when the itstrument is suspended in the water, the deviations of the rod from a perpenticulutity to the surface of it, may indicate which end of the cylinder goes foremost, and by which may be discotered the difierent velocities of the water at different depths; for when the rod inclines formath, according to the rirection of the curent, it is a proof that the surface of the water tas the greatest velocity; but when it reclines buchwad, it shows that the swiftest current is at the bottom; and whell it remains perpenolicular, it is a sign that the velocites at the tup and buttom are equal.

This instrument, being placed in the current of a rivet or canal, receives all the percusions of the water througho ont the whole depth, and will have an equal velocity with that of the whole current from the surface to the burtom at the place where it is put in, and by that moans may Le tound, both with exactucss and rase, the mean velocity of that part of the river for any determinate distance and time.

But to obtan the mean selocity of the whole section of the river, tho instrument nust be put successively both in the inidfle and towards the sides, because the veluctites
at those places are often very different from each other. Having by this meuns found the several velocities, from the spaces run ower in certain times, the aribunetical mean proportional of all these trials, which is found by dividing the common sum of them all by the number of the trinks, will be the mean velocity of the river or canal. And if this medium velocity be multiplied by the area of the transverse suction of the waters at any place, the proluct will be the quantity running through that place in a secoud of time.

If it be required to find the velocity of the current only st the surface, or at the mutalle, or at the bottom, a sphere of wood loaded, or a common bottle corked with a little water in it, of such a wright as will remain suspended in equilibrium with the water at the surface or depth which we want to measurc, will be better for the purpose than the cylinder, beealise is is only atfiected by the water of that sole part of the current where it remains suspended.

It follows from what bas been said in the former part of this article, that the deeper the waters are in their bed in proportion to its breadth, the more their motion is accylerated; so that their velocity increases in the inverse ratio of the breadth of the bed, and also of the magmitude of the section; whence, in order to augment the velocity of water in a river or canal, without lucreaning the declivity of the best, we must inctease the depth of the channel, and diminish its breadth. And these principles are ugreeable to observation; as it is well known, that the velocity of flowing waters depends much more oft the quantity and depth of the water, and on the compression of the uipher parts on the lower, than on the declivity of the bed; and therefore the declivity of a river must be insde much greater in the begisning than toward the end of its coure; where it should be almost insensible. If the depth or volume of watur in a river or canal be considerable, it will suffice, in the part next the mouth, to allow one font of declivity through 6000 , or $\$ 000$, or eren (according to Dechales, De Fontibus et Fluviis, prop. 49) 10,000 fret in horizontal extent ; at most it need not be above 1 in 6 or 7 thousand. From lience the quantity of declivity in equal spaces inust slowly and gradually increase as far as the current is to be made fit for navigation; but in such a manner, that at this upper end there may not be above one foot of perpendicular declivity in 4000 feet of horizontal extent.

To conclude this article, Ml. de Buffon observes, that people accustomed to riven can easily foretell when there is going to be a sudelen increase of water in the bed from floods, produced by mutiden falls of rain in the bigher countriss through which the rivers pass. This they perceive by a particular mution in the water, which they express by saying, that the river's bottom moves, that is, the water at the buttom of the channel runs off fuster than usual; and this increase of motion at the bottom of a river always announces a sudden increase of water coming down the stream. Nor, say, he, is their opinion ill groutded; because the motion and weight of the waters coming down, though not yet arrived, must act upoh the waten in the lower parts of the river, and communicate by impulsion part of thenr motion to them, within a certain distance. .

On the subject of this article, see an elaborate treatise on rivers and canals, in the Philos. Ttans. vol. 69, pa. 535 \&ce, by Mr. Munn, who has avaled bimaself of the observations of Gulielmini, and must other writers.

ROBERTSON (Jonn), p. R. s. was born in the year 1712 ; and though be was at first placed out in a trade, yet be must soon liave quited it, as in the tirle of his first book, a Complete Treatise on Mensuration, in 1739, be is styled Teweher of the mathematics. In this line, as a private teacher, he continued several years, till in 1754 lie was appointed Master of the Royal Mathematical Sclool in Christ's lluepital: in which year also he published the first edition of his thement, of Navigation. The year following, howeser, be left Clarist's Hospital, in consequence of an Admiraliy appointment to be first manter al the Rugal Naval Acarderyy at Portsmoutb; soon ufter which be published his Treatise on Mathematical lustruments. In 1766, through the petty cabals of the necond master, they were both dismissed trom that service by the first lord of the Admirality; on which Mr. R. retumed to London, where he was soin appainted clerk and librarian to the Rogal Sociely; an office which he respectably held to the time of his death, in December 1776, at 64 years of age.

Besides the three work* above-mentioned, which were all excellent of their kind, particulariy the Navigation, he had nany ingenious papers inserted in the Philos. Trans. from the 46 th to the 60th volume. Mr. R. was a person of very botouratite character and condnct, being greatly respected by the naore learned and best charncters among the members of the Ilogal Suciety; on manst occasions his advice in the council was much regarded; and he had the hotour to be one of the committee chosen to inspect aud repert on the governonent's powder-magazine at Purtleet, concerning its damage and security from lightning. In his mode of craching, and arranging the matter in his publications, Mr. R. was remarkably neat and tnethodical; a habit which he probably in some measure acquired in imitation of his good friend und master, William Jones, *q. many of whose papers, on his decease, came into the possession of Mr. R. which were sold by anction, along with the valuable library of the latter, after his death, on which occasion many of them were purchased by myself.

ROBERVAL (Gtles-Pensonne), an eminent French mathematician, was born in 1602, at Roberval, a parish in the diocese of Bcauvais. He was first professor of mathematics at the College of Matre-Gervais, and atterwards at the Coll-ge-royal. A similarity of taste connected him with Gassendi and Morin; the latter of whom be succeeded in the mathemntical chair at the Royal College, without quitting however that of Ramus.

Roberval inade experiments on the Torricellian vacuum: be invented two new kinds of balance, one of which was proper for weighing air; and made many other curious experiments. He was one of the first members of the allcient Academy of Sciencrs of 1606 ; but died in 1675, at 73 years of age. His principal works are,

1. A Treatise on Meclianics.

11. A work entitled Aristarchus Samos.

He hat several inemoirs inserted in the volumes of the Academy of Sciences of 1666, via, 1. Expenuments concerning the Pressure of the Air. 2. Observations on the Compusition of Motion, and on the Tangents of Curvo Lines. 3. The llecognition of Equations. 4. The Geometricul Resolution of Plane and Cutic Fquations. 5. Treatise on ludivisibles. 6. On the Truchoid, or Cycloid, 7. A letter to Yather Mersenne. 8. Two Letters frotaTorricelli. 9. A new kind of Balance,

ROBERVALLIAN Lines, a name given to certain lines, used for the transformation of tigures: thus called from their inventor Roberval. These lines bound spaces that are infinitely extended in length, which are arevertheless equal to other spaces that are terminated on all sides.

The ubbot Gallois, in the Memuirs of the Royal Academy, anno 1093, ubserves, that the method of transforroing figures, explained at the latter end of Roberval's treatise of Indivisibles, was the same with that afterwards published by James Gregory, in his Geonetria Universalis, and also by Rarrow in his Lectiones Geonstricx; and that, by a letter of 'Torricelli, it appyars, that Roberval was the inventor of this method of transforming figures, by means of certain lines, which Torricelli therefore called Robervallian Lines. He adds, that it is highly probable, that J. Gregory first learned the method in the j-urney lie made to ladua in 1668 , the method itself having been knowo in lealy from the year 1646, thuugh the brok was not published till the year 1692.

This account David Gregory has cudeavoured to refute, in vindication of his uncle Jaines. His answer is inserted in the Philos. Trans. of 1694 , and the ablott rejoined in the French Memoirs of the Academy of 1:03.

ROBINS (Beysamiv), an English mathematician and philosopher of great genius and eminence, was born at Bath in Somersetshire, 1707. His parents were Quakers of low condition; and consequently weither able trom their circumstances, nor willing from their religious professim, to have him much instructed in that kind of learning which they are taught to despise ns human. Nevertheless, he made an early and surprising progress in karious branches of science and literature, particularly in the mathematics; and his friends being desirous that he might continue his pursuits, and that his merit might not be buried in obscurity, wished tbat be could be properly recommended to teach that science in London. AccordIngly, a specimen of his abilities in this way was sent up thither, and shown to Dr. Pemberton, the author of the "View of Sir Isaac Newton's Philosophy ;" who, thence conceiving a good opinion of the writer, for a farther trial of his skill sent him some problems, which Robius resolved very much to his satisfaction. He then came to London, where he confirmed the opinion which had beed preconceived of his abilities and knowledge.

But though Robins was possessed of much more skill than is usually required in a commun teacher; yet being very young, it was thought proper that he should employ some time in perusing the best writers upon the sublimer parts of the mathernatics, before he should publicly undertake the instruction of others. In this interval, besides improving himself in the modern languages, he had opportunities of reading in particular the works of Archimedes, Apollonius, Fermat, Huygens, De Witt, Slusius, Gregory, Barrow, Newton, Taylor, and Cotes. These autbors be readily understood without any assistance, of which he gave frequent procifs to his friends: one was, a demonstration of the last proposition of Newton's treatise on Quadratures, which was thought not undeserving a place in the Philosophical Transactions for 1727.

Not long after, an opportunity occurred of exbibiting to the public a specimen also of his knowledge in Natural Philosophy. The Royal Academy of Sciences at Paris liad proposed, among their prize questions in 1724 and 1726, to demonstrate the laws of motion in bodies im-
pinging on one anotber. John Bernoulli here condescended to be a candidate; and as his dissectation lost the reward, he appealed to the learned world by prining it in 1727. In this piece he endeavourud to establish Leibnitz's opinion of the force of bodies in motion from the effects of their striking against springy thaterials; as Poleni had before attempted to evince the saine thug irom experiments of bodies falling on soft and yielding substances. But as the insafficiency of Poleni's arguments had been demonstrated io the Philosophical Transactions, for 1722; so Robins published in the Present State of the Republic of Latters, for May 1728, a Confutation of Bernoull's performance, which was allowed to be unanswerable.

Robins now begun to take scholars; and about this time be quitted the garb and profession of a Quaker ; for, haviug neither euthusiasm nor superstition in bis nature, as became a mathematician, be suon shook off the prejudices of such early habits. But though he professed to teach the mathematics only, he would frequently assist particular friends in other matters; tor he was a man of universal knowledge: and the confinement of this way of life not suiting bis disposition, which was active, he gradually deelined t , and went into other coursey, that required more exercise. Hence be tried many luborious experiments in gunnery; believing that the resistance of the air had a much greater effiet on swift projectiles, than was generally supposed. And bence he was led to consider those mechancearts that depend upon mathematical pinciples, in which he might employ bis juvention: as, the constructing of mills, the building of bridges, draining of fens, rendering of rivers navigable, and making of harbours. Among other arts of this hind, fortufication very much engaged his attention; in which he met with opportunities of perfecting humself, by a view of the principal strong places of Flanders, in some journcys he made abroad with persous of distinction.
On his return home from one of these excursions, he found the learned here amused with Dr. Berkeley's treatise, printed in 1734, entitied, "The Analyst;" in which an examination was made into the grounds of the doctrine of Fluxions, and occasion thence taken to explode that method. Rohins was therefore advised to clear up this affair, by giving a full and distinct account of Newton's doctrines, in such a manner, as to obviate all the objections, without naming them, which had beell advanced by Berkeley; and accordingly he published, in 1735, A Discourse concrrning the Nalure and Certainty of Sir Isaac Newton's Method of Fluxions, and of Prime and Ultimate Ratios. This is a very clear, neat, and elegant performance: and yet some persons, even among those who had whitten against 'The Analyst, taking exception at Robins's manner of defending Newton's ductrine, he afterwards wrote two or three alditional discourses.

In 1738, he defended Newton against an objection, contained in a note at the cad of a Latin piece, called " Matho, sive Cosmotheoria puerilis," written by Baxter, author of the " Inquiry into the Nature of the Human Snul:" and the year after he printed Remarks on Euler's Truatise of Motion, on Snitb's System of Optics, and on Jurin's Discourse of Distiluct and Indistinct Vision, anbextd to Dr. Smith's work.

In the mean time Robms's performances were not confined to mathematical subjects: for, in 1739, he published three parophlets on potitical affairs, which did him great honour. The first was entitled, Observations on the pre-
sent Convention with Spain: the second, A Narrative of what passed in the Common Hall of the Citizens of London, assembled for the Election of a Lord Mayor: the third, An Address to the Electors and other free Subjects of Great Britain, occasioned by the late Succession ; in which is contained a Partucular Account of all our Negociations with Spain, and their Treatment of us for above ten years past. These were all published without our author's name; and the first and last were so universally esteemed, that they were generally reputed to have been the production of the great man himself, who was at the bead of the opposition to Sir Robert Walpole. They proved of such consequence to Mr. Robins, as to occasion his being employed in a very honourable post; for, the patriots at length gaining ground against Sir Robert, and a committee of the House of Commons being appointed to examine into bis past conduct, Rubins was chosen their secretary. But after the committre had presented two reports of their proceedings, a sudden stop was put to their farther progress, by a compromise between the contending parties.

In 1742, being again at laisure, be pulilished a small treatise, entitled, New Principles of Gunnery ; containing the result of many experiments that be had made, by which are discovered the force of gunpowder, and the difference in the resisting power of the air to swift and slow motions. To this treatise was prefixed a full and learned account of the progress which modern fortification had made from its firt rise; as also of the invention of gunpowder, and of what had already been performed in the theory of gunnery. It secms that the occasion of this publication, was the disappointment of a situation at the Royal Military Academy at Woolwich. On the new modelling and establishing of that Academy, in 174t, our author and the late Mr. Muller were competitors for the place of professor of fortification and gunnery. Mr. Muller held then some post in the Tower of London, under the Board of Ordnance, so that, notwithstanding the great knowledge and abilities of our author, the interest which Mr. Muller had with the Board of Ordnance carried the election in his favour. On this disappointment Mr. Robins, indignant at the affront, determined to show them, and the world, by bis military publications, what sort of a man be was that they had rejected.

On a discourse containing certain experiments being published in the Philoseplical Transactions, with a view to invalidate some of Hobins's npinions, he thought proper, ill an account he gave of his book in the sume Transactions, to take notice of those experiments: and in consequence of this, several dissertations of his on the resistance of the air were read, and the experiments exhibited before the Royal Society, in 1746 and 1747 ; for which he was presented with the annual gold medal by that Society.

In 1748 came out Anson's Voyage round the World; which, tbough it bears Walter's name in the title-page, was in reality written by Robins. Of this voyage the public had for some time been in expectation of seeing an account, composed under that commander's own inspection: for which purpuse the reverend Richard Walter was employed, as having been chaplain on board the Centurion the greatest part of the expedition. Walter had accordingly almost finished bis task, baving brought it down to his own departure from Macao for England'; when he proposed to print his work by subscription. It
was thought proper that an able jndge sbould first review and correct it, and Rohins was appointed; when, on examination, it was resolved, that the whole should be written entirely by Robins, and that what Walter had done, being mustly taken verbatinı from the journals, should serve as materials only. Hence it was that the whole of the introduction, and many dissertations in the body of the work, were compised by Robins, without rcceiving the least hint from Walter's manuscript; and what he bad transcribed from it regarded chiefly the wind and weather, the currents, courses, bearings, distances, offings, soundings, moorings, the qualities of the ground they anchored on, und such particulars as usually fill up a seaman's account. Nu production of this kind ever met with a more favourable reception, four large impressions having been sold off within a year: it was ulso translated into most of the European languages; and it still supports its reputation, having been repeatedly reprinted in various sizes. The fifth edition at London in 1749 was revised and corrected by Robins himself; and the 9th edition was printed there in 176 t .

Thus becoming farnous for his elegant talents in writing, be was requested to compose an apology for the unfortunate affair at Prestonpans in Scotland. This was added as a preface to the Report of the Proccedings and Opinion of the Board of General Officers on their Examination into the Conduct of Lieutenant-General Sir John Cope, \&cc, printed at London in 1749 ; which preface was erteemed a master-picce of its kind.

Robins had afterwards, by the favour of lord Anson, opportunities of making further experiments in Gunnery; which have been published since his death, in the edition of his works by bis friend Dr. Wilson. He also not a little contributed to the improvements made in the Royal Observatory at Greenwich, by proeuring for it, through the interest of the same noble person, a second mural quadrant, and other instruments; by which it became perhaps the most complete of any observatory in the world.

His reputation being now arrived at its meridian, he was offered the choice of two very considerable eroployments. The first was to go to Paris, as one of the commissaries for adjusting the limits in Acadia; the other, to be engineer gencral to the East India Comprany, whose forts, being in a most ruinous condition, wanted an able person to put them into a proper state of defence. He accepted the latter, as it was suitable to his genius, and as the Company's terms were both advantageous and honourable. He designed, if he had remained in England, to have written a second part of the Voyage round the Wurld; as appears by a letter from lord Anson to him, dated Bath, Oct. 22, 1749, as follows.
"Dear sir - When I last saw you in town, I forgot to ask you, whether you intended to publish the secund volume of my Voyage before you leave us; which I confess I am very sorry for. If you should have laid aside all thoughts of favouring the world with more of your works, it will be much disappointel, and no one in it more than your very obliged humble servant,

"Anson."

Robins said, a little before his death, that the only thing he had to regret during his life, was writing lord Anson's voyage. Hence it has been supposed the expectation induced him to hegghten the narralive; but it secms that his principal reward consisted in promises.

ROR

[336
Robins was also preparing an enlarged edition of his New Principles of Guanery: Lut, having prosided hinoelf with a complete set of astronomical and other instraments, for mahing observations and caperiments in the Itries, lie departed hence at Christmas in 1749 ; batl aller a voyago, in which the ship was near being cato away, he arrived there ir July following. Ife mamediattly set about his proper business with the grewtess diligencer, und formed complete plans for Fort St. David and Mialıas: but he did not live to put them into exccution, For the gicat df firconce of the clatuate from that of tas and lring beyond bis constitution to suppurt, he was attachal by a fever in teptarmbur the same year; and tbough be recovered out of this, yet about cight months after he fell inan a Iagguishing condition, in which be continued till his death, which happewed the sgth of July 1751 , at coly 44 yvars of uge.

By his last will, Mr. Robing Ioft the problishing of his Mathednatical Works to his honoured and intimate urend Martin Folhes, esq. president of the R(o)al Socicty, and to Dr. Jaines Wilson; but the former ot these gentiemen being incapacitnted by a paralyzic disorder, for whate time before his death, they were atherward publisted by the latter, in 2 volunes $8 \mathrm{ve}, 1761$. To this colleciom, which contains his nathematical and plalusuphical pieces onaly, Dr. Wilson bas prefixed an account of Mr. Robins, from which this memoir is chiefly exanacted. He added also a Jarge appendix at the end of the mecond volume, contansing a great many curious and critical matters in sarious interesting parts of the mathematics. As to Mr. Robins's own papers in these two volumes, they are as follow: viz, in vol. J,

1. New I'rinciples of Gunnery, First printed in $17+2$.
2. An account of that book. Read before the Ruyal Society, April the 14 th and 21 st, 1743 .
3. Of the Resistance of the Air. Read the 12th of June, 1746.
4. Of the Resistance of the Air ; together with the Method of computing the Motions of Boeirs projucted in that Modium. Read June 19, 1746.
5. Account of Experiments relating to the Resistance of the Air. Read the 4 th of June, 1747,
6. Of the Force of Guupowder, with the Computation of the Velocities thereby communicated to military Projectiles. Read the esth of June, 174 .
7. A Compantson of the Experintental Ranges of Cannun and Mortuss, with the Theory contained in the preceding papers. Read the 27 th of Juve, 1751.
8. Piactical Maxiuss relating to the Efficets and Management of Arnllery, and the Flight of Shells and Shot.
9. A Proposal for increasing the Strength of the British Navy. Head the $2 d$ of A pili, 1747.
10. A Letter to Martin Fulkes, esq. President of the Royal Society. Redd the \bar{t} h of January, 1748.
11. A Letter to Lord Anson. Read the 26th of October, 17.49.
12. On Pointing, or Directing of Cannon to strike distant Objects.
13. (Jbsessations on the Ileight to which Rockets ascend. Juad the 4 th of May 1749 .
14. An Account of some Experiments on Rockets, by Mr. Ellicott.
15. Of the Nature and Advantage of Rifled Barrel Pieces, by Mr. Robins. Read the 2 d of July, 1747 .

In volume II are,

- 16. A Discpurse concerning the Nalure and Certainty of Sir Isaac Nrwton's Mlethoth of Flusions, and of Prisee and Ulimate Ratios.

17. An Account of the preceding Incourse.
18. ARusicw of wome of the principal Objections, that have bern made to the Dostime of Flaxions und Climate Psopartions, winh suse Jevaishs on the ditik rent Aethods, that bure been taken to esbiate theus.
19. A Disact:ation, alowing that the Account of the Doctrines of Fluxions and of I'time and CHtimate Ration, d-liwered in Mr. Itabios's Discutarse, is ugrecable to the real Meaning of their great lnsentur.
20. A Ibewongtrathan of the Eleventh Propusition of Sir Isaac Nowtun's Treatisc of Quadratunes.
21. Remasks on Berauulli's Discoutse upon the Laws of the Commaniciation of Motion.
s2. An I.xamibation of a Note concerning the Sun's Paiallax, published at the 'ad of Baxter's Matho.
22. Nemanky on Kuler's Troatise of Motion; Dr, Smib's System of Optics; and Ur. Jurin's lissay on Dıse tinct and Indintinct Vision.

24: Appendis by the l'ublisher.
It is but jusitice to say, that Mr. Rubius was one of the most accurate and elegatit mathenatical writers that our language can boast of; and tioat be matle tnote ras inprovenunts in drtallery, the floght and the remisance of projectiles, than all tbe peceding w riturn on that subject. His New Jinciples of Gunucry werv ranslated into several wher langunges, and commented on by seieral eminent writers. The celebrated Fuler translated the work into the German, accompanied with a large and critical connuratary; and this work of Euler's was again translated into Einglish in 1774, by Mr. Hugh Brown, with Notes, 111 one vulume 4 to.

ROBINS, or ROBYNs (Jonx), an English mathematician, was born in Statividshire about the close of the I ith century, as he was entered a student at Oxford in 1516, where he was educated fur the church. But the bent of his genius lay to the sciences, and be soon made such a progress, says Wuod, in " the pleasant srudies of mathetoatics and astrology, that be became the ablest persun in his tince for those suadies. bis friend Record not excepted, whose learuing was of a nature more general, At length, taking the degree of bachelor of divinity in 1531, he was the year following made by King Henry the sth (tu wbom he was chaplain), one of the canons of his collige in Oxon, and in December $15+3$ canon of Windsor, and finally chaplain tu Qucen Mary, who held him in great veneration for his lsarning. Imong several things that be wote relasitig to astroligy (or astronomy) I find these fullowing:

* De Culutautione Fixarum Stellarum, \&ee.
le Ortu di ()rearu Stellarum Fixamum, \&c,
Aunotationes Astrologicax, \& c. Jab. 3.
Ametationcs Edwardo V'].
Tractatus de Prognosticatione per Eclipsins.
* All which books, thot are in MS, were some time in the choice library of Mr. Thonas Allen, of Glocester Hall. Afier his doath, coming into the hands of sir Kemelm Diply, they were by him given to the Bodleian Iibuary, where they yet remsin. It is also said, that be, the suid Robyus, hath witten a beok intitled, De Portentosis Conuctis, but such a thing I bave not yet secn, nor do I know any thing else of the author, only that, paying bis
last debt to nature the 25th of August 1558, he was buried in the chappel of St. George at Windsore."

ROBISON (Jour), Lis.d. an eminent philosopher, was born in Scotland, about 1733. After receiving a hiberal education in his native country, he went to Russia, on the appointment of director of the marine cadet academy, at Cronstadt, a situation which he held for seweral years. On his return to Scotland he was appointed professor of chemistry in the university of Glasgow ; and shortly afterwards he was invited to fill the chair of natural philosophy professor at Ediaburgh ; an office which he held with much honour to hinuself, and benefit to the students of that university, till his death, which happened early in the year 1505.
Though Dr. Robison laboured under a most painful and distressing complaint during the last is years of his life, still his mind was always active, and generally directed to the most useful purposes. He was wall known as the author of must of the mathematical and philosophical articles in the third edition of the Eucyclopedia Britanuica, and the Supplement to that valuable work. Those articles are of established character; and, though seteral of then are written in a very desultory manner, yet they are rich in important remarks and useful informaton. They appear to have been the substunce of his lecturcs delivered io the college; and some of them were afterwards thrown into an improved form, and published under the title of Elements of Mechunical Philosophy, of which it seems only one large 8 vo volume has been published. In 1797 Ur. R. astonisbed the world by a publication wbich he called, Proofis of a Conspiracy ugainst all Religions and Governments of Europe, carried on in the Sccret Meetings of Free-Masons, Illuminati, and ReadingSocieties; and in 1803 he published a valuable edition of Dr. Black's Lectures on the Elements of Chemistry; accompanied with much interesting disquisition and history; by the editor.
Altogether, Dr. K. may justls be considered as one of the most eminent philosophers ever produced in Scotland; though perhaps inferior to Gregory and Maclaurin. He certainly possessed a very extersive acquaintance with chemistry, as well as with both pure and mixed mathematics; and he doubtless enjoyed a most happy talent ut converting and applyiug the knowledge be pos* sessed to important practical purposes.

ROCKET, in Pyrotechny, anartificial firework, usually consisting of a cylindrical case of paper filled with a composition of certain combustible ingredients; which being tied to a rod, mounts into the air to a considcrable height, and tbere h,ursts. These are called Sky Rockets. Besides which, there are others called Water Rockets, from their acting in water.

The composition with which rockets are filled, consists of the three following ingredients, viz, balipetre, chatcoal, and sulphur, all well ground; and in the smaller sizes, gunpowder dust is also added. But the proportions of all the ingredients vary with the weight of the rochet, as in the following table.

Comporition for Rockets of various Sizes.
The general composition for rockets is,

Salpetre	41 b.
Sulphur	116.
Charcoal	11 b.

But for large rockels,
Salipetre 4 lb .
Vol. It.

Sulphur Mealpowder	1 lb.
For rockets of a middle size;	
Salepetre	31 b.
Sulphur	21 b.
Mealpowder	1 lb.
Charcoal	1 lb.

When rockets are intended to mount upwards, thry have a long slender rod fixed to the lower end, to direct their motion.

Theory of the Flight of Rockets.-Mariotte takes the rise of rockets to be owing to the impulse or resistance of the air against the flame. Desaguliers accounts for it thus. Conceive the rocket to have no veut at the choke, and to be set on fire in the conical bore; she consequence would be, either that the rocket would burst in the weakest place, or that, if all parts were equally strong, and able to sustain the inpulse of the tlame, the rocket would bura out inmoveable. Now, as the force of the llame is cquable, suppuse its action downwards, or that upwards, sufficient to lift 40 pounds; as these forces are equal, but their directions contrary, they will destroy each other's action.

Imagine then the rocket opened at the choke; by this means the action of the flame downwards is taken away; and there renains a force equal to 40 pounds acting upwards, to carry up the rocket, and the stick or rod it is tied to. Accordingly we find that if the composition of the rocket be very weak, so as $n \cdot s$ to give an impulse greater than the weight of the rocket and stick, it does not rise at all; ur if the composition be slow, so that a sinall part of it only kindles at first, the rocket will not rise.

The stick serves to keep it perpendicular; for if the rocket should begin to tumble, moving round a point in the choke, as being the common centre of gravity of rocket and stick, there would be so much friction against the sir, by the stick between the centre and the point, and the point would beat against the air with so much velocity, that the reaction of the medium would restore it to its perpendicularity. When the composition is burnt out, and the impulse upwards has ceased, the common centre of gravity is bruught lower towards the middle of the stick; by which means the velocity of the point of the stick is decreased, and that of the point of the rocket is increased; so that the whole will fall down, with the rocket end foremost.

During the time the rocket burns, the common centre of gravity is shifting and getting downwards, and still the faster and the lower as the stick is lighter; so that it sometimes begins to tumble before jt is quite burnt out: but when the stick is too heavy, the common centre of gravity will not get so low, but that the rochet will rise straight, thought not so fast.

From the experiments of Mr. Robins, and other gentlemen, it appears that the rockets of 2,3 , or 4 inches diameter, rise the highest; and they found them rise to all heights in the air, fronl 400 to 1254 yards, which is ubout \$1h of a mile. Sce Robins' Tracts, vol. 2, pa.317, and the Pbilos. Trans, vol. 46, pa. 378.

ROD, or Polc, is a long measure, of $16 \frac{1}{2}$ feet, or $5 \frac{t}{3}$ sards, or the th part of a Gunter's clasin, for land-measuring.
ROEMER (Olats), a noted Danish antronomer and mathemetician, was born et Arhusen in Jutland, 1644; 2 X
and at 18 years of age was sent to the university of Copenhagen. He applied assiduously to the study of the mathematics and astronomy, and became so expert in those sciencers, that when Picard was sent by Lewis the 14th, in 167°, to make observatiuns in the north, he was greatly surprised and pleased with him. He engaged him to return with hin to France, and had him presented to the king, who honoured him with the dauphin as a pupil in mathematics, and rettled a pension on him. He was joined with Pieard and Cassini, in making astrunomical observations; and in 167 : be was admitted a member of the academy of sciences.

Dur-ng the ten years he resided at Paris, he gained great reputatuon by his discoveries; yet it is said he complained afterwards, tbat his coadjutors ran away with the bonour of many things which belonged to him. Here it was that Roemer, first of any one, found out the velocity with which light thoves, by means of the eclipses of Jupiter's satellites. He had obscrved for many years that, when Jupiter was at his grewtest distance from the earth, the emersions of his first satellite happened constantly 15 or 16 minutes later than the calculation gave them. Heace he concluded that the light reffected by Jupiter took up this time in running over the excess of distance, and consequently that it took up 16 or 18 minutes in running over the diameter of the earth's orbit, and 8 or 9 in comiag from the sun to us, provided its velocity was nearly uniform. This discovery had at first meny opposets; but it was afterwards confirmed by Dr. Bradley in the most ingenious and beautiful manner. Sre Aberbation.

In 1681 Roemer was recalled back to his own country by Christian the 5 th, king of Denmark, who made hinn protessor of ustronomy at Copenhugen. The king employed him also in reforming the coin and the architecture, in regulating the weights and measures, and in measuring and laying out the high roads throughout the kingdom; offices which be discharged with the greatest credit and satisfaction. In consequence he was honoured by the king with the appointment of chancellor of the exchequer and other diynities. Finally be became counsellor of state and burgonaster of Copenhagen, under Frederic the 4 th, the succerssor of Chrissian. Roemer was preparing to publish the result of his observations, when he died the 19th of September 1710 , at 66 years of age : but this loss was supplied by Harrebow, his disciple, then profeswor of astronomy at Copenhagen, who published, in $4 t 0,1735$, various ulservations of Roemer, with his method of observing, under the title of Basis Astronomize-He had also printed various astronomical observations and pieces, in several volumes of the Memoins of the Royal Academy of Sciences at Paris, of the institution of 1666 , particularly vols. 1 and 10 of that collection.

ROIIAULT (Jases), a Freach philosopher, was the son of a rich merchant at Amiens, where he was born in 1620. He cultivated the languages and belles-lettres in his own country, and then was sent to Paris to study philosophy. He read the ancient and modern philosophers, but Descartes was the author who most engaged his notice. Aecordingly he became a zealous follower of that great man, and drew up an abridgment and explanation of his philosophy with great clearness and method. In the preface to bis Physics, for so his work is called, he makes no scruple to say, that " the abilities and uceomplishments of this philosopher must oblige the whole world to confess, that France is ut least as capable of producing
and raising men versed in all arts and branches of knowledge, as ancient Grecce." Clerselier, well known for his traulation of many pieces of Descartes, conceived such an affection for Rohault, on account of his attachment to this philosopher, that be gave him his daughter in marriage, against all the remonstrances of his family.

Rohault's Physics were written in French, but have been translated into Latin by Dr. Samuel Clarke, with notes, in wbich the Cartesian errors are corrected on the Newtonian system. The 4 th and best edition of Rohault's Physica, by Clarke, is that of 1718 , in 8 vo. He wrote also. Elemens de Mathematiques,
Traité de Mechsnique, and
Entretiens sur la Philosophic.
But these dialogues are founded and carried on upon the prisciples of the Cartesian philosophy, which bas now little other merit, than that of having corrected the errors of the ancients. Rohault died in 1675 , and left behind him the character of an amiable, as well as a learned and philosophic man.

His posthumous works were collected and printed in two neat little volumes, first at Paris, and then at the Hague in 1690 . The contents of which are, 1. The first 6 books of Euclid. 2. Trigonometry. S. Practical Geometry. 4. Fortification. 5. Nechanics. 6. Perspective. 7. Spherical Trigonometry. 8. Arithmetic.

ROLLE (Micaz2), a French mathematician, was born at Ambert, a small town in Auvergne, the $21 s t$ of April 1652. His firat studies and employments were under notaries and attorneys; occupations but little snited to his genius. He went to Paris' in 1675 , with the only resource of fine penmansbip, and subsisted by giving lessons in writing. But as his inclination for the pothematics had drawn lim to that city, he attended the masters in this science, and aoon became one himself. Oranam proposed a question in arithmetic to hint, to which Rolle gave so clear and good a solution, that the minister Colbert made him a handsome gratuity, which at last grew into a fixed pension. He then abandoned penmanship, and gave himself up entircly to algebra and other branches of the mathematics. His conduct in life gained him many friends; in which his scientific merit, his peaceable and regular behaviour, with an exact and scrupulous probity of manners, were his only solicitors.

Rolle was chosen a member of the ancient academy of Sciences in 1685 , and named sccund geometrical-pensionary on its renewal in 1699 ; an honour which be enjoyed till his death, which happened the 5th of July 1719, at 67 years of age.

The works published by Rolle, were,
I. A Treatise of Algebra: in 4 to, 1690.
II. A Method of resolving Indeterminate Questions in Algebra ; in 1699 . Besides a great many curious pieces inserted in the Memoirs of the Academy of Sciences, as follow :

1. A Rule for the Approximation of Irrational Cubes : an. 1666, vol. 10.-2. A Method of resolving F.quations of all Degrees which are expressed in General Terms : an. 1666, vol. $10 .-3$. Remarks on Genmetric Lines: 1702 and 17e3.-4. On the New System of Infinity: 1703.5. On the Inverse Method of Tangents: 1705, pa. 25, 171, 222.-6. Method of finding the Fuei of Geometric Liwes of all kinds: 1706, pa. 284.-7. On Curves, both Geometrical and Mechanical, with their Radii of Curvature : 1707, pa. 370.-8. On the Construction of Eque-
tions: 1708, and 1709.-9. On the Extermination of the Unknown Quantitics in the Geometrical Analysis: 1709, pa. 419.-10. Rules and Remarks for the Construction of Equations: 1711, pa. 86.-11. On the Application of Diophantine Rules to Geometry : 1712.-12. On a Paradox in Geometric Effections: 1713, pa. 243.-13. On Geometric Constructions: 1713, pa. 261, and 1714, pa. 5.

ROLLING, or Rotation, in Mechanics, a kind of circular motion, by which the moveable body turns round its own axis, or centre, and continually applies new parts of its surface to the body it moves upon. Such is that of a wheel, a sphere, a garden roller, or the like.

The motion of rolling is opposed to that of sliding ; in which letter motion the same surface is continually applied to the plane it moves along.

In a wheel, it is only the circumference that properly and simply rolls; the rest of the wheel proceeds in a compound angular kind of motion, and partly rolls, partly slides. The waint of distinguishing between which two motions, occasioned the difficulty of that celebrated problem of Aristotle's Wheel. See Rota Aristovelica.

The friction of a body in rolling, is much less than the frittion in sliding. And hence arises the great use of wheels, rolls, \&c, in machines; as much of the action as possible being laid upon it, to make the resistance the Jes. See Rotation.

ROMAN Order, in Architecture, is the same as the Composite. It was invented by the Romans, in the tirue of Augustus: it is composed of the Ionic and Corinthian orders, being more ornamental than either.

RONDEL, in Fortification, a round tower, sometimes erected at the foot of a bastion.

ROOD, a square measure, being a quantity of land equal to the 4 th part of an acre, or equal to 40 perches or square poles.

ROOF, in Architecture, the uppermost part of a building; being that which forms the covering of the whole. In this sense, the roof comprises the timber work, together with its furniture, of slate, or tile, or lead, or whatever else serves for a covering: though the carpenters usually restrain roof to the timber-work only.

The form of a roof is various: viz, 1 . Pointed, when the ridge, or angle formed by the two sides, is an acute angle.-2. Square, when the pitch or angle of the ridga is a right angle, called the true pitch.-3. Flat or pediment roof, being only pediment pitch, or the angle very obtuse. There are also various other forms, as hip roofs, valley roofs, hopper roofs, double ridges, platforms, round, \&c.-In the true pitch, when the sides form a square or right angle, the girt over both sides of the roof, is accounted equal to the breadth of the building and the half of the same.

ROOKE (Lawrence), an English astronomer and geometrician, was born at Deptford in Kent, 1623, and educated at Eton school. Hence he removed to King's College, Cambridge, in 1639 ; and after taking the degree of master of arts in 1647, he retired into the countiry. But in the year 1650 he went to Oxford, and settled in Wadham College, that be might have the company of, and receive improvement from Dr. Wilkins, and Mr. Seth Ward the Astronomy Professor ; and that he might attend Ar. Boyle in his chemical operations.

Atter the death of Mr. Foster, he was chosen Astronomy Professor in Gresham College, London, in the year 1652.

He made some observations on the comet at Oxford, which appeared in the month of December that year; which were printed by Dr. Seth Ward the year following. And, in 1655, Dr. Wallis publishing his treatise on Conic Sections, he dedicated that work to those two gentlemen.

In 1657, Mr. Rooke was perinitted to exchange the astronomy professorship for that of geometry. This step might seem strange, as astronomy still continued to be his favourite study; but it was thought to have been from the convenience of the lodgings, which opened behind the reading hall, and therefore were proper for the reception of those gentlemen after the lectures, who in the year 1660 formed the Royal Society there.

Mr. Rooke having thus successively enjoyed those two places some years before the restoration in 1658, most of those gentlemen whohad been accustomed to assemble with him at Oxford, coming to London, joined with other philosophical men, and usually met at Gresham College to hear Mr. Rooke's lectures, and afterwards withdrew into bis apartment; till their meetings were interrupted by the quartering of soldiers in the college that ycar. And after the Royal Society was formed and settled into a regular body, Mr. Rooke was very zealous and serviceable in promoting that great and useful institution; though he did not live till it received its establishment by the Royal charter.

The Marquis of Dorcbester, who was not only a patron of learning, but learned himself, used to entertain Mr. Rooke at his seat at Highgate after the restoration, and bring him every Wednesday in his coach to the Royal Society, which then met on that day of the week at Gresham College. But the last time Mr. Rooke was at Highgate, he walked from thence; and it being in the summer, he overheated himself, and taking cold after it, was thrown into a fever, which cost him his life. He died at his apartments at Gresham College the 27 th of June 1662, in the 40th year of his age,

Another very unfortunate circumstance attended his death, which was, that it happened the very night that he had for some years expected to finish his accurate observations on the satellites of Jupiter. When he found his illness prevented him from making that observation, Dr. Pope says, he sent to the Society his request, that some other person, properly qualified, might be appointed for that purpose; so intent was he to the last on making those curious and useful discoveries, in which he had been so long engaged.

Mr. Rooke made a nuncupatory will, leaving what he had to Dr. Ward, then lately made bishop of Exeter: whom he permitted to receive what was due upon bond, if the debtors offered payment willingly, otherwise ke would not have the bonds put in suit: "for," said he, "as I never was in law, nor had any contention with any man, in my life-time; neither would I be so ufter my death."

Few persons have left hehind them a more agreable character than Mr. Rooke, from every person that was acquainted with him, or with his qualifications; and in nothing more than for his veracity: for what lie asserted positively, might be fully relied on : but if his opinion was asked cuncerning any thing that was dubious, his usual answer was, "I have no opinion." Mr. Hooke has given this copious, though concise character of him: "I never was acquainted with any person who knew more,
2×2
and spuke less, being indeed eminent for the knowledge and improvement of astronomy:" Dr. Wren and Selh Ward describe him, as a man of profound judgment, a vast comprehension, prodigious memory, and solid experience. His skill in the mathematics was reverenced by sll the lovers of those studies, and his perfection in many other kinds of learning deserves no less admiration; but above all, as another writer characterises him, his extensive knowledge had a right influence on the temper of his mind, which had all the bumility, goodness, calmness, strength, and sincerity, of a sound and unaficeted philosopher. These accounts give us his picture only in miniature ; but his successor, Dr. Isaac Barrow, has drawn it in full proportion, in his oration at Gresham College; which is too long to be inserted in this place.

His writings were chiefly;

1. Observations on the Comet of Dec. 1652. This was printed by Dr. Seth Ward, in his Lectures on Comets, 4to, 1653.
2. Directions for Scamen going to the East and West Indies. Published in the Philosophical Transactions for Jan. 1665.
3. A Method of Observing the Eelipses of the Moon \&c. In the Philos. Trans. for Feb. 1666.
4. A Discuurse concerning the Observations of the Eclipses of the Satellites of Jupiter. In the Hlistory of the Royal Society, pa. 183.
5. An Account of an Experiment made with Oil in a long Tube. Read to the Royal Soc. April 23, 1662.By this experiment it was found, that the oil sunk when the sun shone gut, and rose when he was clouded; the proportions of which are set down in the account.

ROOT, in. Arithmetic and Algebra, denotes a quantity which being multiplied by itself produces some bigher power; or a quantity considered as the basis or foundation of a higher power, out of which this arises and grows, like as a plant from its root.

In the involution of powers, from a given root, the root is also called the first power; when this is once multiplied by itself, it produces the square or second power; this multiplied by the root again, makes the cube or 3 d power ; and so on. And hence the denominations squareroot, cabe-root, \&c, or 2d root, or Sd root, \&c, according as the given power or quantity is considered as the square, or cube, or 2 d power, or 3 d power, 8 cc . Thus, 2 is the square-root or 2 d root of 4 , and the cube-root or 3 ll root of 8 , and the 4 th root of $16, \& \mathrm{cc}$.

Hence, the square-root is the mean proportional between I and the square or given power; and the cuberoot is the first of two mean proportionals betwren 1 and the given cube; and so on.

Root is also applied sometimes in a different sense; thus we say the root or radix of any system of notation, or the radix of a system of logarithms. The radix of our present scale of notation is $\mathbf{1 0}$, and this is also the radix of the modern or Brigges's logarithms. The advantages of which consist in this equality between the roots of the system of notation and logarithms, by which means the tables of the latter are much contracted, and are also much readier in their application.

For the method of extracting the roots of numbers, and algebraic quantities, see the articles Extraction, and Binamial Theorem.

Finite approximating rules for the extraction of roots have been given by several suthors, as Raphson, De

Lagney, Halley, \&c. See the articles Approximation and Extraction. Sce also Newton's Universal Arith. the Appendix; Philos. 'Trans. numb. 210; Maclautin', Alg. pa. 242; Simpson's Alg. pa. 155 ; or his Essajs, pa. 82, or his Dissertations, Fa. 102, or his Select Exerc. pa. 215: where various general theorems for approximating to the roots of pure powers are given. See also Equation and Reduction of Equations, Approximatios, and Converging.

But the most commodious and general rule of any, for such approximations, 1 believe, is that which has been invented by myself, and explained in my Tracts, vol. 1, pa. 210: which theorem is this;
$\frac{n+1, N+n-1 . a^{n}}{n-1 . x+n+1 . x^{0}} a=\sqrt{n} \mathrm{~N}$. That is, having to extract the nth root of the given number s; take a° the nearest rational power to that given quanity s , whether greater or less, its root of the same kind being a; then the required root, or $\sqrt[V]{\mathrm{s}}$, will be as is expressed in this formula above; or the same expressed in a proportion will be thus:
$(n-1) \cdot \mathrm{x}+(n+1) \cdot a^{\mathrm{n}}:(n+1) \cdot \mathrm{N}+(n-1) \cdot a^{n}:: a: \sqrt[n]{ } \mathrm{k}$ the root sought very nearly.

This rule includes all the particular rational formuhes of De Lagney, and Halley, which were separately investigated by them;'and yet this general formula is perfectly simple and easy to apply, and inore easily kept in mind than any one of the said particular formulas.
$\boldsymbol{E r}$. Suppose it be required to double the cube, or to extract the cube root of the number 2 .

Here $\mathrm{x}=2, n=3$, the nearest root $a=1$, also $a^{3}=1$; hence, for the cube root the formula becomes $\frac{4 \mathrm{~N}+2 a^{2}}{2 \mathrm{~N}+4 a^{2}} a$ or $\frac{2 \mathrm{an}+a^{2}}{N+2 a^{\prime}} a=\sqrt[3]{\mathrm{N}}$.

But $\mathrm{N}+2 a^{3}=4$, and $2 \mathrm{~N}+a^{3}=5$; therefore as 4:5::1: $\frac{1}{4}=1 \cdot 25=$ the root nearly by a first approximation.

Again, for a second approximation, take $a=\frac{1}{4}$, and consequently $a^{3}=\frac{125}{64}$;
hence $2 \mathrm{x}+a^{3}=4+\frac{125}{64}=\frac{381}{64}$,
and $v+2 a^{3}=2+\frac{250}{64}=\frac{378}{64}$;
therefure as $378: 381$, or as $126: 127:: \frac{5}{4}: \frac{633}{904}=$
$1.259921 \& \mathrm{c}$, for the required cube root of 2 , which is true even in the last place of decimals.

Root of an Equation, denotes the value of the unknown quantity in an equation; which is such a quantity, as being substituted instead of that unknown letter, into the equatinn, shall make all the terms to vanish, or both sides equal to each other. Thus, of the equation $3 x+5=14$, the root or value of x is 3 , because substituting 3 for x, makes it become $9+5=14$. And the root of the equation $2 x^{6}=32$ is 4 , because $2 \times 4^{7}=32$. Also the root of the equation $x^{2}=a^{2}+c^{2}$ is $x=\sqrt{ }\left(a^{2}+c^{2}\right)$.

For the nature of roots, and for extracting the several roots of equations, see Equation.
Every equation has as manly roots, or values of the unknown quantity, as are units in the dimensions or highest power in it. So a simple equation has one root, a quadratic two, a cubic three, and so on.

Roots are positive or negative, real or imaginary, rational or radical, \&c. See Feu ation.

Cubic Roor. This is threcfold, even for a simple cubic. So the cube root of a^{3}, is either

ROT
0 , or $\frac{-1}{+\sqrt{ }-3} \frac{2}{2} a$, or $\frac{-1-\sqrt{2}-3}{2} a$.
And even the cube Root of 1 itself is either

$$
1 \text {, or } \frac{-1+\sqrt{2}-3}{2} \text {, or } \frac{-1-v-3}{2}
$$

Real and Imaginary Roors. The odd roots, as the Sd, 5 th, 7 th , Akc roots, of all real quautities, whether psisitive or negative, are real, and are respectively potituse or negative. So the cube root of a^{3} is a, and of $-a^{3}$ is $-a$.

But the even roots, as the $2 \mathrm{~d}, 4$ th, 6 th, \&.c, are only real when the quantity is positive; being imaginary or inpossible when the quantity is negatise. So the square root of a^{2} is a, which is real ; but the square root of $-a^{4}$, that is, $\sqrt{\prime}^{\prime}-a^{2}$, is imaginary or impossible; because there is no quantity, beither $+a$ nor $-a$, which by squaring will make the given negative square $-a^{3}$.

The large Table of Roots, Squares, and Cubes, at the ettd of vol. 1 of my Tracts, is very useful in many culcu* lations, and will serve to find square roots and cube roots, as well as square and cubic powers, \&ec.

ROTA, in Mechanics. See Wherl.
Rota Aristotelica, or Aristosles Hheel, denotes a cctebrated problem in mechanics, concerning the motion or rotation of a wheel about its axis; so called because first noticed by Aristotle. The difficulty is this. White a circle makes a revolution on its centre, adsancing at the same time in a right line along a plane, it descrites, on that plane, a right line which is equal to its circumference. Now if this circle, which may be called the deferent, carry with it another smaller circle, concentric with it, like the nave of a coach wheel; then this littlecircle, or nave, will describe a line in one revolution, which is equal to that of the larte wheel or circumference itself; because its centre advances in a right line as fast as that of the wheel, being in reality the same with i .-The solution given by Aristotle, is no more than a good explication of the difficulty.

Galileo, who next attempted it, had recourse to an infinite number of infinitely fittle sacuitios in the right line deseribed by the two circles: and imagines that the little circle never applies its circumference to those vacuities; but in reality only applies it to a line equal to its own circumference; though it appears to have applied it to a much larger. But all this is nothing to the purpose.

Tacquet says, that the little circle, making its rotation more slowly than the great one, does on that account describe a line longer than its own circumference; get without applying any point of its circumf rence to more than one point of its base. But this is no more satisfactory than the furmer.

After the fruitless attempts of me many great twen, M. Dortous de Megran, a French gentleman", had the good fortune to hit upon a solution, which he sent to the Academy of Sciences; where being examined by Mess. de Louville and Soulmon, appointed fur that purpose, they made their report that it was satisfactory. The solution is to this effect:

The whel of a conch is only acted on, or ifrawn in a right line; its rotation or circular motion arises purely from the resistance of the ground upon which it is npplicd. Now this resistance is equal to the force whicls draws the wheel in the right line, inasmuch as it defeats that direction ; consequently the causes of the two motions, the one right and the other circular, are equal. And hence the
$3.1]$
110 T
wheel describes a sight line on the ground equal to its circumference.

As for the fave of the whel, the case is otherwise. It is drawn in a right line by the same torce as the whet; ; but it only turus round because the whel aloess su, and can only turn th the sume time with it. Hence it tollows, that its circular velocity is less than that of the wheel, in the ratio of the two circunterences; and therefure its circular motion is less than the rectilinear one. Since then it necessarily describes a right line equal to that of the wheel, it can only do it partly by sliting, and partly by revolving, the shding part being more or less as the nuve itself is smaller or larger. See Cyclomd.

Rotation, or Rotary Motion, in Mechanics, is the motion of a body, or system of berfies, about a fixed axis; being thus distinguished from rectifinat motion, in which bodies are'supposed to describe spaces in the direction of the impelling force, which is always considered as actify in a right line passing through the centre of gravity of the body moved; and therefors, that every partucle of such body must partake of the same degree of velocity as that with which the centre of gravity moves. But in numerous instances which occur in practice, a body, or system of bodics, is so situated, that when any force or number of forces are impressed upon it, it cunnot take any other miotion than onc of rotation about a fixed axis, which may either pass through the body or system, or be at an extremity of it: so that the velocity of the constituent molecula of the systent shatl be greater or less according to the greater or less distance of any individual particle from the axis about which the motion is performad. And in such cases, it is necessary to call to our aid other considerations than what are required in discussing the properties of acceleration and'retardation.

In these considerations, two things are principally to be attended to, i. e. the noving force ly which the revolving motion is gaverated, and the inctia of the parts that compose the system: the noving force excrted on any givell particle in the system, as well as its inertia, depends on its dutance from the axis of motion, every. thing etse being the same, and if both these be ascertaind, the absolute acceleration will be determined, and consequently the absulute velocity generated in it in a given time. Thus,

Let AFGil represent the circume ference of a wheel, which turns in its own plane round an horizontal axis, passing through s its centre, and let a weight r , fixed at the extremity of a line AP, communicate motion to the wheel., Alsc, let the whole weight of the wheel be e, and suppose this weidht to be cullected untormly into the circumference afin; then during the descent of the weight P , wach point of the cir-
 cumference must move with a velocity equal to that with which P descends; and consequently, since the moving force is the weight \mathbf{p}, ind the mass moved $\mathrm{r}+\mathrm{e}$, the force which accelerates t in its descent, will be that part of the accelerating force of gravity which is expresed by the fraction $\frac{p}{p+q}(\sec$ Acceleration). The velucity therctore which is gencrated in \mathbf{P}, in any given time, is found by proportiou, namely, it will be to the velerity
gencrated by gravity in a falling body in the same time, as this fraction to unity; 90 , if $q=1$, then its velocity to that of gravity, is as 1 to 2. And this is universally true while the axis of the body, or system of bodies, passes through their centre of gravity. But if, instead of this, we suppose all the inatter of the wheel to be collected into one point as at Q; then it is manifest, that if the mass a be acted on by gravily, the force which communicates motion to the system round s, will be variable, it being the greatest when so is horizontal, and gradually dimimishing till 4 has descended to its lowest point. But if, instead of supposing \& to be acted on by gravity, we consider it as destitute of weight, and to possess inertia only, then the moving force will be constant, being equal to p, and the bodirs moved will be $p+q$, and therefore the accelcrating force of the weight P will be represented by $\frac{p}{p+q}$, the same as before; which ought to be the result, because in the former case the paits of the weigbt Q being uniformly disposed over the circumference, bulance each other round the common centre of gravity s, and their weight therefore has no effect in accelerating or retarding the descent of the weight P .

In general, the accelerating force of the body p will he represented by the motive force divided by the inertia of the bodies moved; and therefore, if the body P be destitute of inertia, the accelerating force will be expressed simply by the fraction ${ }^{*}$,

In what has been said above, we have supposed all the matter of the wheel to be uniformly disposed throughout the circumference of it; but supposing the wheel of uniform thickness and density, or in any other way constituted, before we enter upon the investigation of the law of acceleration, we must first determioe the centre of gyration, or that point of it into which, if all the matter of the botly be collected, the same angular velocity would be produced, which in a uniform circle is at $r \sqrt{ } \frac{1}{2}$ distance from the contre, r being the radius of the wheel. All the matter of the wheel being supposed to be collected in that circumference whose radius is $r \sqrt{ } \frac{1}{2}$, we shall have the moving force as $r \mathrm{P}$, because the weight of the wheel, being uniformly distributed, will balance it on its centre, and therefore can neither tend to accelerate nor retard the descent of the body p. But the inertia of bodies being as the square of their distances from the axis of motion, we shall have $\frac{1}{2} r^{2} Q$ for the inertia of the wheel, and $r^{2} \mathrm{P}$ for the inertia of the weight p, and therefore $\frac{r r}{r(f 2+r)}$ for the accelerating force of the wheel, or of the lever atu; and as the acceleration of any point of a lever must, (besides the accelerating force with which the lever itself is made to revolve) be in proportion to the distance of that point from the axis of suspensiot, therefore the acceleration of the point r will be as $\frac{r^{\prime}}{r^{2}\left(\frac{p}{2}+r\right)}=\frac{r^{2}}{\sqrt{p+p^{\prime}}}$.

Let now a se represent a wheel and axle, the diametens of which are given, wand p two given weights; the former, bring fixed to the axle, is drawn up by the descent of the latter attached to the circunierence of the wheel; and let it be required to determine the accelerative force of the descending body, the wheel and axle being supposed of no weight.

Pot $\mathrm{BC}=b, A C=a$, then from what has been before observed, the noving force will be as $b \mathrm{p}$, and the retarding force as $a w$, and therefore the motive force will be expressed by $6 \mathrm{P}-\mathrm{aw}$; also the inertia of the bodies will be as $b^{2} \mathbf{r}+a^{2} w$, and heace the accelerating force of the lever will be as $\frac{t v-a w}{l^{p} y+a^{\prime} w}$; also, the acceleration of any point of the lever being as its listance from the axis, we have for the accelerative force of $\mathrm{P}, \frac{b \mathrm{p}}{b^{4} \mathrm{P}+\frac{a \mathrm{w}}{a^{2} \mathrm{w}} \times b=\frac{t^{\prime} \mathrm{p}}{b^{p}+}+\frac{a / \mathrm{w}}{a^{2} \mathrm{w}}}$; and if P be a power of that kind which is not poosessed of inertia, the expression becomes simply $\frac{b^{p}+\text { piw }}{\sigma^{2} w}$. See Atwood on the Rectilinear Motion and Rotation of Bodies, pa. 183, and Gregory's Mechunics, rol. 1, pa.257; see also the articles Gyeation, Oscileatton, Cental of Spontancous Rotation, \& c c, in this Dictirnary.

Rotation, in Geometry, the circumvolution of a surface round an immoveable line, called the Axis of Rotation. By sucb rotation of planes, the tigures of certain regular solids are formed or generated. Such as, a cylinder by the rotation of a rectangle, a cone by the rotation of a triangle, a sphere or globe by the rotation of a semicircle, \&c.

The method of cubing solids that are generated by such rotation, is laid down by Demoivre, in his specimen of the use of the doctrine of fluxions, Philos. Trans. numb. 216 ; and indeed by most of the writers on fluxions. In every such solid, all the sections perpendicular to the axis are circles, and therefore the fluxion of the solid, at any section, is equal to that circle multiplied by the fluxion of the axis. So that, if y denote anabsciss of that axis, and y an ordinate to it in the revolving plane, which will also be the radius of that circle : then, putting $n=$ $\mathbf{3} 1416$, the arca of the circle is $n y^{2}$, and consequently the fluxion of the solid is $n y^{8} \dot{x}$; the fluent of which will be the content.

Such solid may also be expressed in terms of the gencrating plane and its centre of gravity; for the solid is always equal to the product arising from the generating plane multiplied by the path of its centre of gravity, or by the line described by that centre in the rutation of the plane. And this theorem is general, by whatever kind of motion the plane is moved, in describing a solid.

Rotatios, Revolution, in Astronomy. See Revolution.

Dinfal Rotation. Sec Deurival, and Eartu.
ROTONDO, or Rotundo, in Architecture, a popular term for any building that is round both withinside and without, whether it be a church, hall, a saloon, a vestibule, or the like.

ROUND, Roundeess, Rotundity, the property of a circle and splicre or glube, \&c.

ROWNING (Jortw), an ingenious English mathematician and philosopher, was fellow of Magdalen Cullege, Canbridge, and afterwards rector of Anderby in Lincolnshire, in the gift of that society. He was a constant attendant at the meetings of the Spalding Society, and was a man of a great philosophical turn of mind, though of a cleecrful and sociable disposition. He liad a guod genius for mechanical contrivances in particular. In 1738 he printed at Cambridge, in 8 vo, A Comprendious System of Natural Philosophy, in 2 vols Svo; a very ingenious work, which has gone through several editions. He had also two pieces inserted in the Philosuphical Transactions, viz, 1. A Description of a Barometer wherein the Scale of Va-
riation may be increased at pleasure ; vol. 38, pa. 39. Anal 2. Direction for making a Machine for finding the Routs of Equations universalty, with the Manner ot using it; vol. 6u, pra. 2+0.-Mr Rowning dicel at his lodgings in Carey-sireet near Lancoln's-lon Firlds, London, the latter end of Novembur 1771, at 72 yrars of age.

Though a very ingenious and pleasant man, be had rather an unpronising and forbidding appeurance: he was tall, stooping in the shoulders, and of a sallow and glonmy countenance.
ROYAL Oak, Robar Carolinum, in Astronomy, one of the new southern constellations, the stars of whicb, according to Sharp's catalogue, annexed to the Britannic, are 12.

RUDOLPHINE Tables, a set of astrunomical tables that were published by the celebrated Kepler, and so called from the emperor Rudolph or Rudolphus.

RULE, The Carpenter's, a folding ruler generally used by carpenters and other urtificers; and is otherwise called the sliding rule.-This insirument consists of two equal pieces of bos-wood, each one foot in lengib, connected together by a folding joint. One side or face, of the rule, is divided into inches, and half-quarters, or cighths. On the same face also are several plane scales, divided into 12th parts by diagonal lines; which are usel in planning dimensions that are taken in feet and inches. The edge of the rule is commonly divided decimally, or into 10, bs; viz, each foot into 10 equal parts, and each of these into 10 parts again, or 100th parts of the foot : so that by means of this last scale, dimensions are taken in feet and tenths and hundredths, and multiplied together as commen decimal numbers, which is the best way.

On the one part of the other face are four lines, marked A, B, C, D, the two middle ours a and C being on a slider, which runs in a groove made in the stack. The same numbers serve for both these two middle lines, the one line being above the numbers, and the other below them.-These four are logarithmic lins, and the three A' B, C, which are all equal to one another, are double lines, as thry proceed twice over from 1 to 10 . The lowest line D is a single one, proceeding from 4 to 40 . It is also called the girt line, from its use in computing the contents of tries and umber: and on it are marked wo at $17 \cdot 15$, and $A G$ al 1895 , tho wine and ale gauge points, to make this insirument serve the purpose of a gauging-rule.-On the other part of this face is a table of the value of a load, or 50 cubic feet, of timber, at all prices, from 6 d . to 2 s . a foot.

When 1 at the bcgimuing of any line is accounted only 1, then the 1 in the middle is 10 , and the 10 at the end 100; but when the I al the beginning is accounted 10 . then 1 in the middle is 100 , and the 10 at the end 1000 ; and so on. All the smaller divisions being also altered proportionally.

By uncans of this rule all the usual operations of arithmetic may be eas̆ly and quickly performed, as multiplication, division, involution, evolution, finding mean proportionals, 3d and th proportionals, or the rale-of-three, \&c. For all which, see my Mensuration, part 5, sect. 3.

Rules of Philooophizing. See Philosophizing.
Rule, in Arithmetic, denotes a certain mode of operation with Gigures, to find sums or numbers unknown, and to facilitate computations.- Each rule in arithmetic has its particular name, according to the use for which it is inteoded. The first four, which serve as a foundation of
the whole art, are called addition, subtraction, mulhiplication, and division.

From these arise numerous other rules, which are indeed ouly applications of these to particular purposes and occusions ; as the Rule-of-threc, or coolden Rule, or Rule of Proportion; also the Rules of Fellowship, Interest, t.xchanges, Pusition, Progressions, dec, \&c. For which, see each article severally.

Rvele-of. Three, or Rule of Proportion, commonly called the Golden Rule from its great use, is a rule that teaches how to find a 4 th proportional number to three others that are given.

As, if 3 degrees of the equator contain 208 miles, how many are contained in 360 degrees, or the whole circumference of the earth? The rule is this: State, or set the three given terms down in the form of the first three terms of a proportion, stating them pro-

$$
\begin{aligned}
& \text { as deg. mil. } \begin{array}{c}
\text { deg. } \\
3: 208: \\
\frac{360}{\text { miles. }} \\
\frac{12480}{12480} \\
\frac{624}{3!74880} \\
\frac{74960}{2490}
\end{array}
\end{aligned}
$$ portionally, thus :

Then multiply the 2 d and 3 d terms together, and divide the produci by the Ist term, so shall the quotient be the 4th term in proportion, or the answer to the question, which in this example is 24960 , or nearly 25,000 miles, for the circumference of the carth.

This rule is ofied considered as of two kinds, viz, Direct, and Inverse.

Rule-of-Three Direct, is that in which more requires more, or less requires less. As in this; if 3 men mow 21 yards of grass in a certain time, how much will 6 men mow in the same time? Here more requires more, that is, 6 men, which are more than 3 men, will also perform more work, in the seme tine. Or if it were thus: if 6 men mow 42 yards, how much will 3 men mow in the same time ? Here then less requires less, or 3 men will. perform proportionally less work, in the same time. In both these cases then, the rule, or the proportion, is di-rect; and the staling must be

$$
\begin{aligned}
& \text { thus, as } 3: 6:: 21: 42 \text {, } \\
& \text { or thus, } 6: 3:: 42: 21 \text {. }
\end{aligned}
$$

Rule-of-Three Inverse, is when more requires less, or less requires more. As in this; if 3 men mow a certain quantity of grass in 14 hours, in how many hours will6 men mow the like quansity? Here it is evident that 6 . men, being more than 3, will perform the same work in less time, or fewer hours; hence then more requires less, and the rule or question is inverse, and must be stated by making the number of men change places, thus, as $6: 3:: 14: 7$ bours, the time in which 6 men will perform the work; still multiplying the 2d and 3d terms together, and lividing by the ist.

For various abbreviations, and other particulars relating to these rules, see my books of arithmelic.

Double Ru Le-of- Three, or Compound Praportion, is where two statings are required to be wrought, or to be combined together, to find out the number sought.

This rule may be performed, etaher by working the two. statings or proportions separately, making the result or 4th term of the list operation to be the 3 d term of the last proportion; or clse by reducing the two statings inso one, by multiplying the two first terus together, and the two third terms ongether, and using the productsas the 1st and Id terms of the compound stating. As, if the question.
be this: If 1001 . in 2 years yield $9 l$, interest, how much will 5001 , yield in 6 yeart. Here, the two statings are,

$$
100\}: 9::\left\{\begin{array}{r}
500 \\
6
\end{array}\right.
$$

Then, to work the two statings separately, as $100: 9:: 5 \mathrm{CO}: 45 \mathrm{t}$.
and $2: 6:: 43: 1351$.
so that 1951. is the interest or answer sought. But to work by one stating, it will be thus,

$$
\begin{aligned}
& \frac{100}{2}: \frac{500}{200}: 9: \frac{600}{3000}: 135 l . \text { the answer. } \\
& 2.00) \\
& 270 \cdot 00
\end{aligned}
$$

See the boohs of arithmetic for more particulars.
Central Rule. See Central Rale.
Parallel Ruler. Sec Paratilel Refer.
RUMB. See Ruremb.
Ituma-Line, or Lorodromie. See Rllumb-Line.
RU'sTIC, in Architecture, denotes a manner of building in imitstion of simple or rude nature, rather than according to the rules of art.

Rustic 2uoin. See Quotx.

Rustic Work is where the stones in the face \&e of a building, instend of being smooth, are hatched or picked with the point of an instrument.

Regular Rustics, are those in which the stones are chamiered off at the edges, and form angular or square recesses of about an inch deep at their jointings, or beds, and ends.

Rustic Order, is an order decorated with rustic quoins, or rustic work, \&c.

RUTHERFORD (Taomas, d. d.), an ingenious English philusupher, was the son of the Rev. Thomas Rutherford, rector of Papworth Everard in the county of Cambridge, who had made large selections for the history of that county. He was born the 13th of October 1712. He sludied at Cambridge, and became fellow of St. John's college, and regius professor of divinity, in that unversity; afterwards rector of Slienfield in Essex, and of Barley in Hertfordshire, and archdeacon of Eissex. He died October 5,1771 , at 59 yeurs of age.

Dr. Rutherford, besides a number of theological writings, pubhshed, at Cambridge,

1. Ordo Institutionum Physicarum, $17+3$, in 4 to.
2. A System of Natural Philosophy, if 2 vols, 4to, 17.4. A work which has been much esteetned.
3. He communicated also to the Gentleman's Society at Spaiding, a curious correction of Plutarch's description of the instrument used to renew the vestal fire, as relating to the triangle with which the instrument was formed. It was nothing more, it seems, than a concave speculum, whose principal focus, which collected the rays, is not in the centre of concavity, but at the distance of half a diameter from its surface. But sotne of the ancients thought otherwise, as appears from prop. 31 of Euclid's Catoptrics.

SA G

IN books of Navigation, \&ce, denotes south. So also s. E. is suuth-cast ; s. w. south-west; and s. s. E. south-gouth-cass, \&c. See Compsss.
SACROBOSCO. See Halywoots.
SAGITT'A, in Astronomy, the Arrow or Dart, a constellation of the northern hemisphere near the engle, and one of the 48 old asterisms. The Grecks say that this constellation owes its origin to one of the arrows of Hercules, with which be killed the eagle or vuliure that gnawed the liver of Prometheus. The stars in this constellation, in the catalogues of Ptolemy, Tycho, and llevelius, are only 5, but in Flamsteed's they are extended to 18.

Sagitta, in Geometry, is a term used by some writers for the absciss of a curve.
Sagitta, in Trigonometry \&e, is the same as the versed sine of an arch ; beitug so callell because it is like a dart or arrow, standing on the chord of the arch.

Sagiltarit's, Sagittany, the Archer, one of the signs of the zodac, being the 9th in order, and marked with the chanacter f of a dart or arrow. This constellation is drawn in the figure of a Centaur, or an animal half inan and hali' horse, in the act of shooting an arrow frum a brw. This figure the Greals feign to be Crutus, the son of Eupheme, the nurse of the muses. Among more ancient nanions the frgure wus probably meant for a hunter, to deuote the huning season, when the sun enters this sign. The star, in this cunstellation are, in Ptolemy's catalogue 31, in 'rycho's 1t, in Ilevelins's 22, and in the Iritamic catalogue 69.

S A I

SAILING, in a general sense, denotes the movement by which a vessel is wafted along the surface of the water, by the action of the wind upon lier sails. Suiling is also used for the art or act of navigating; or of determining all the cases of a ship's inotion, by means of sea-charts \&c. These charts are constructed either on the supposition that the earth is a large extended flat surface, whence we obtain those that are called plane charts; or on the supposition that the earth is a sphere, whence are derived globular charts. Accordingly, sailing may be distinguished into two general kinds, viz, Plane Sailing, and Glohnlar Suiling. Sometimes indeed a third sort is added, viz, Spheroidical Sailing, which proceeds on the supposition of the spheroidical figure of the earth.

Plane SAtLIXG is that which is performed by means of a plane chart; in which case the meridians a re considered as parallel lines, the parallels of latitude are at right angles to the meridians, the lengths of the degrees on the meridians, equator, and parallels of latitude, are every where equal. In plane sailing, the principal terms and circumstances made use of, are, coursc, distance, departure, difference of latitude, rhumb, \&c; for as to longitude, that haw no place in plane sailing, but belongs properly to globular or spherical sailing. The explanation of all which terms, are given under the respective articles.

If a ship sails either due north or south, she sails on a meridian, her distance and diff-rence of latitude are the same, and she makes no departure: but where the ship sails cither due east or west, slie runs on a parallel of lati-

5 AI

5 A 1

tude, making no difference of latitude, and her departure and distance are the same. It may further be observed, that the departure and difference of latitude always make the legs of a rightangled triangle, whose hypothenuse is the distance the ship has sailed; and the angles are the course, its complement, and the right angle; therefore, among these four things, course, distance, difference of latitude, and departure, any two of them being given, the rest may be found by plane trigonsmetry. Thus, in the annexed figure, smpose the circle fiFe to reprosent the horizon of the place A, from whence a ship sails; AC the rhumb she sails upon, and ct lie place arrived at: then nu represents the parellel of latitude she sailed from, and ec the parallel of the latitude arrived in: so that

And all these particulars will Le alike represented, wheethere the ship sails in the NE , or Nw , or SE , or sw quarter of the horizon.

From the same figure, in which
An or AF or AH represents the rad. of the tables,
\& 8 the sine of the course,
A $\frac{1}{}$ the cosine of the course,
we may easily deduce all the proportions or canons, as they are usually called by mariners, that can arise in plane sailing; because the triangles ADC and ABE and AFO are evidently similar. These proportions are exhibited in the following table, which consists of 6 cases, according to the varieties of the two parts that can be given.

AD becomes the diff. of lat. de the departure, ac the distance sailed, $\angle D A C$ is the course, and $\angle \mathrm{dCa}$ the comp. of the course.
\qquad

For the ready working of any single course, there is a table, called a Traverse Table, usually annexes to books of navigation; which is so contrived, that by fioding the given course in it, and a distance not exceeding 100 or 120 miles, the usual extent of the table; then the differene of latitude and the departure are had by inspection. And the same table will serve for greater distances, by doubling, or trebling, or quadrupling, \&c, or taking proportional parts. See Traverse Table.

An ex. to the first case may suffice to show the method. Thus, a ship from the latitude $4 i^{\circ} 30^{\prime} \mathrm{N}$, has sailed sw by $\$ 98$ miles; required the departure made, and the latitode arrived in.

1. By the Traverse Table. In the column of the course, viz. 3 points, against the distance 98 , stands the number 54.45 miles for the departure, and $81 \cdot 5$ miles for the diff. Vol. II.
 given. lat. $47^{\circ} 30^{\prime}$, leaves $46^{\circ} 8 \frac{1}{\prime}^{\prime}$ for the lat. come to,
2. By Construction. Draw the nevidian $A D$; and drawing an arc, with the chord of 60 , make PQ or angle A equal to 3 points; through Q draw the distance $A Q E=98$ miles, and through a the departure ed pert. to AD. Then, by measuring, the diff. of lat. An measures about $81 \frac{1}{2}$ miles, and the departure D E about $54 \frac{1}{3}$ miles.

3. By Computation.
First, as radius $\ldots .$.
to sin. course 33°
so dist. 98
so
to depart. 54.45
$2 Y$

Again, as radius 10000000 to cos course 991985 so dist. $98 \ldots{ }^{1.99123}$
to dift. of lat. 81-48 ... 1.91108
4. By Gunter's Scale. 'The extent from radius, or 8 peints, to 3 points, on the line of sine rhumbs, applied to the lime of numbers, will reach from 98 to 54 the departure. And the extent from 8 points to 5 points, of the rhombs, reaches from 98 to $81 \frac{1}{2}$ on the line of numbers, for the difference of latitude.

And in like manncr for other cases.
Traverse Satling or Compound Courses, is the uniting of several cases of plane sailugg into one ; as when a ship sails in a zigzag manner, certain distances upon several different courses, to find the whole ditference of latitude ant departure made good on all of them. This is done by working all the cases separately, by means of the traverse table, and constructing the figure as in the following example.

Er. A ship sailing from a place in latitude $24^{\circ} 32^{\prime} x$, has run five different courses and distances, as set down in the 1st and 2 d columns of the following traverse table; required her present latitude, with the departure, and the dirwet course and distance, between the place sailed from, and the place cone to.

Traverse Table.

Courres.	Dis.	N.	S.	F. ${ }^{6}$	W.
swbs	45		25.0		37.4
EsE	50		191	46.2	
5w	30		21.2		21.2
sebe	60		333	49.9	
sw b s $\frac{1}{4}$ w	63		50.6		37.5
			1492	96.1	$96 \cdot 1$

Here, by finding, in the general traverse table, the difference of latitude and departure answering to each course and distance, they are set down on the same lines with each course, und in their proper columns of northing, southing, casting, of westing, according to the quarter of the compans the ship sails in, at each course. As here, there is no northing, the differences of latitude are all southward, also two d.partures are sastward, and three are westward. Then, addnog up the numbers in each culumn, the sum of the custings appears to be exactly equal to the sumt of the westings, consequently the ship is arrived in the same ineridias, without making any departure; and the southings, or difficrence of latitude being $1+9 \cdot 2$ miles or minutes,
that is $2^{\circ} 29^{\prime}$, which taken from 24 32,
the batitude dep. from,
leaves 22 3x,
the latitude come to.
To Comstruct this Tarerse. With the ehord of 60 degrees deseribe the circle s s \&c, and quarterit by the two perpendicular diameters; then from s set upon it the several courses, to the points niarked 1,2 , $3,4,5$, through which points draw lines from the centre A, or conceive them to be drawn; lastly, upon the first line lay of the first distance 45

from a to s , also draw $\mathrm{BC}=50$ and parallel to \triangle, and $\mathrm{CD}=30$ parallel to $A 3$, and $\mathrm{DE}=60$ parallel to a 4 , and Er $=63$, parallel to A 5 ; then it is found that the point y falls exactly on the meridiall Naf produced, thereby showing that there is no departure ; and by measuring Ar, it gives 149 miles for the difierence of latutude.

Obfigue Ssilase, is the resolution of certain cases and problens in sailing by oblique triangles, or in which whlique triangles are concerned. In this kind of sailing, it nayy be observed, that to set an object, means to olserve what rhumb or point of the nuutical compass is directed to it. And the bearing of an object is the rhumb on which It is seen; also the beating of one place from another, is reckoned by the name of the rhumb passing through those two places.

In every figure relating to any case of plane sailing, the bearing of a line, not running from the centre of the circle or horizon, is found by drawing a line pasallel to it, from the centre, and towards the same quarter.

Er. A ship sailing at sca, observed a point of land to bear e by s; and then after sailing se 12 miles, its bearing was tound to be se by e. Required the place of that point, and its distauce from the ship at the last observatiou.

Construction. Draw the meridian line sas, and, assuming a for the first place of the ship, draw ac the e by rhumb, and an the xe one, upon which lay off 12 miles from A to B ; then draw the meridian Bt parallel to Ns , from which set of the SE by e point BC, and the point C will be the place of the land required; then the distance sc measures 26 miles.

Or thus, deseribe the circle nes \&cc, and draw ns and ae cutting each other it right angles in the centre A; which is supposed to be the place of the ship. Drawalariad the we.line, A the E'by s, and A, the se by zline. Take AB $=12$, and draw ec parallel to a 3 , then produce A t till it cuts Bc inc,
 so shall c be the point of land, which measures 26 miles as above.

By Computation. Here are given the side $A \mathrm{~B}$, and the two angles A and E , viz, the $\angle A=5$ points or $56^{\circ} 13^{\prime}$, and the $\angle 3=9$ points or $101^{\circ} 15^{\prime}$; consequently the $\angle \mathrm{c}=2$ prints or $22^{\circ} 30^{\prime}$. Then, by plane trigonometry,

$$
\begin{aligned}
& \text { As } \sin . \angle c 22^{\circ} \\
& \text { A0 } \\
& \text { To } \sin .
\end{aligned} \angle \mathrm{B} 56 \quad 15 \times 9.958284
$$

So is AR 12 miles … 1.07918 To ac 26.073 miles 1.41619
Saili no to Winduard, is working the ship towards that quarter of the compass from which the wind blows.

For rightly understanding this part of navigation, it will be necessary to explain the terms that occur in it, though most of them may be seen in their proper places in this work. When the wind is directly, or partly, against a stip's direct course for the place she is bound to, she reaches her port by a kind of zigzag or 2 like course; which is made by sailing with the wind first on one quarter, and then on the other.
In a ship, when you look towards the head,
Starboard denotes the right band side ;
Larboard, the left hand sidr;
Forwards, of afore, is towarids the head;
Aft, or abaft, is towards the steru. The Bearn means athwart or across the middle of the ship.

When a ship suils the same way that the wind blows, she is said to sail or run before the wind; and the wind is said to be right uft, or right astern; and her course is then 16 points, or the fartliest possible, from the wind, that is, from the point the wind blows from. - When the ship sails with the wind blowing directly across ber, she is said to have the wind on the beam; and ber course is 8 points from the wind. - When the wind blows obliqualy across the ship, the wind is said to be abaft the beum when it pursues her, or blows more on the hinder part, but befure the beain when it meets or opposes her course, her course being more than 8 points from the wind in the former case, but less thas 8 points in the latter case.When a ship endeavours to sail towards that point of the compass from which the wind blows, she is shid to sail on a wind, or to ply to windward.-And a vessel sailing as near as she can to the point from which the wind blows, is said to be close hauled. Most ships will lie within about 6 points of the wind; but sloops, and some other vessels, will lie much nearer. To know how near the wind a ship will lie; obseive the course she goes on ench tack, when she is cluse hauled; then half the number of points between the two courses, will show how near the wind the ship will lie.

The windward, or weather side, is that side of the ship on which the wind blows; and the other side is called the leeward, or lee-side.-Tacks and shrels are large ropes fastened to the lower corners of the fore and main sails; by which either of these corners is hauled fore or aft.When a ship sails on a wind, the windward tacks are always bauled forwards, and the leeward sheess aft-The starboard tachs are aboard, when the starboard side is to windward, and the larborard side to leeward. And the larboard tacis are aboard, when the larboard side is to windward, and the starboard to leeward.

The most conumon cases in turuing to windward may be constructed by the following precepts. Having drawn 4 circle with the chord of 60°, to represent the horizon of, the place, quarter it by drawing the meridian and parallel of latitude peespendicular to each other, and both through the centre; mark the place of the wind in the circumference; draw the rhuinb passing through the place bound to, and lay on it, from the centre, the distance of that place. Oll cach side of the wind lay off, in the circumference, the points or degrees showing how asear the wind the ship can lie; and draw these rhumbs.

Now the first course will be on one of these rhumbs, according to the tack the ship leads with. Draw a line through the place bound to, parallel to the other rhumb, and meeting the first; and this will show the course and distance on the other tack.
E. The wind being at north, and a ship bound to a port 25 miles directly to windward; beginuing with the starboard tacks, what must be the course and distance on each of two tacks to reach the port ?

Construction. Having drawn the circle \&c, as above described, where A is the port, AP and aQ the two rhumbs, each within 6 points of AN; in Na produced take An = 25 miles, then a is the place of the ship; draw $A C$ parallel to $A P$, and neeting on produced in \mathbf{c}; so shall BC and ca be the distances on the two tacks; tho furner being wsw, and the latter ExE.

Computation.

$$
\begin{aligned}
& \text { Here } \angle A=\text { NAP }=6 \text { points, } \\
& \text { and } \angle A=6 A Q \text { points, } \\
& \text { theref. } \angle C=+ \text { points. }
\end{aligned}
$$

So that all the angles are given, and the side AA, to find the other two sides $A C$ and ac, which are equal to cach other, because their opposite angles a and s are equal. Hence, as sin, $c: A B:: \sin . A: R C$,
i. e. $8.45^{\circ}: 25:: 5$. $67^{\circ} 30^{\prime}: 32 \frac{3}{j}=\mathrm{BC}$ or Ac , the distance to be run on each tack.
Sailete in Currens, is the method of determining the true course and dissance of a ship when her own motion is affected and combined with that of a current.

A current or tide is a progressive motion of the water, causing all floating bodies to move that way towards which the stream is directed.-The settiug of a tide, or current, is that point of the compass towards which the waters run; and the drift of the current is the rate at which it runs per hour.
The drift and setting of the most remarkable tides and currents, are pretty well known; but for unknown currents, the usual way to tind the drift and setting, is thus: Let three or four men take a boat a little way from the ship; and by a rope, fastened to the boat's stem, let down a heavy iron pot, or loaded kettle, into the sea, to the depth of 80 or 100 fathoms, when it can be done: by whicb means the boat will ride almost as steady ns at anchor. Then heave the log, and the number of knots run out in half a minute will give the rate of the current, or the miles which it runs per hour; and the bearing of the \log shows the setting of the current.

A body moving in a current, may be considered in thrce cases : viz,

1. Moving with the current, or the same way it sets.
2. Moving against it, or the contrary way it sets.
3. Moving obliquely to the current's motion.

In the Ist case, or when a ship sails with a current, its velocity will be equal to the sum of its proper mution, and the current's drift. But in the 2 d case, or when a ship sails against a current, its velocity will be equal to the difference of ber own nuotion and the drift of the current: so that if the current drives stronger than the wind, the ship will drive ustern, or lose way. In the 3d case, when the current sets oblique to the course of the ship, her real course, or that made good, will be somewhere between that in which the ship endeavours to go and the direction
of the current; and indeed it will always be along the diagonal of a parallelogram, of which one side represeots the ship's course set, and the wiher adjoning side the current's dritt.

Leian be the direction of the wind, or the direction of the ressel when acted on by wiud only, and AB the distance the ship would run in any givent time, by the action of this lores; also let ac be the direction of the current and the distance the ship would be curried, in the same time as nbove, by this force
 ouly. Druw bo parallel to AC, and CD parallel to AB, meting bo in D , and join Ab; thew will AD represent the real course of the vessel when acted on by those two foress conjointly. Fur the wind neither accelerates nor retards the motion of the ship towards the line $\mathbf{c u}$, the current therefore will bring her there in the same time as if the wind did not act. And in the same mantier, the current will huve un tifect on the mution of the ship in the direction an, the wind therefure will bring her to the lane nd in the same time as if the current did not act. Therelore the ship at the end of that time, will be found it both thase lines, that is, in their point of meeting n . Consequently the ship thust have passed from A 10 D in the diagonal AD.

Hence, draning the rhumbs for the proper course of the ship and of the current, and wtting the distances off upon then, sccording to the quantity run by each in the given time; thenforming a paralieloyran of these two, and drawing its diagonal, this will be the real course and distance taade good by the ship.

Ex. 1. A ship suils k. 5 miles an hour, in a tide setting the same way 4 miles an hour: required the ship's course, and the distance made good.

> The ship's motion is $5 \mathrm{~m}, \mathbf{E}$.
> The current's motion is $4 \mathrm{~m}, \mathbf{\mathrm { E }}$.
> Theref. the ship's run is $\mathrm{g}_{\mathrm{ID}, \mathrm{E} .}$.

Er. 2. A ship sails ssw. with a brivk gale, at the rate of 9 miles an hour, in a current setting \$NE. 2 triles an hour: required the ship's course, and the distunce made good.

The ship's motion is $\quad s s w .9 \mathrm{~m}$.
The current's motion is NNE . '2m.

- Theref. ship's true run is ssw. 7 mm .

Er. 3. A ship runting suuth at the sate of 5 miles an hour, in 10 hours crosses a current, which all that time was sening east at the rate of 3 miles an hour; required the ship's true course and slistance sailed.

Here the ship is first supposed to be at A, her imaginary course is along the line AB , which is drawn south, and equal to 50 miles, the rut in 10 hours; then draw ac east, and equal to 30 miles, the run of the current in 10 hours. 'Then the ship is found at c, and her true path is in the line ac $=58.31$ her distance, and ber course is the uugle at $A=30^{\circ}$ 58^{\prime} from the south towards the ent.

Ginbutar Sathivg is the restimating the ship's motion and run an principles derived Iron the globular figure of the earth, viz, her course, distance, and difference of latitude and Iongitude.

The prinepples of this method are explained under the
articles Raunb-line, Mercator'sCifant, and Meridional Parts; which see.

Globular Sailing, in the extensive sense here applicd to the term, comprehends Parallel Sailing, Middle-latitude Suling, and Mercator's Sailing; to which may be udded Circular salling, or Gireat-circle Sailing. Of each of which it may be proper to give a brief account in this place.

Puraliel Saicixg is the art of finding what distance a ship should run slue cust or west, in sailing from the merritair of one place to that of another, in any parallel of intitute.

The computations in parallel sailing depend on the following rule :

As radius,
'Jo cosine of the lat. of any parallel ;
So are the milcs of long. between any two meridians,
To the dist. of these meridians in that parallel.
Also, for any twu latitudes,
As the cosine of one latitude,
Is to the cosine of another latitude ;
So is a given meridional dist, in the 1st parallel,
To the like meridional dist. in the 2 d parallel.
Hence, counting 60 nautical miles to each degree of longitude, or on the equator; then, by the first rule the number of miles in each alegree on the other parallels, will be found as in the following table.

Table of Meridional Distances.

Lat.	Miles.	Lat.	Miles.	Lat.	Miles.
1	59.99	31	51.43	61	2909
2	59.96	32	5088	62	28.17
3	59.92	35	50.32	63	27.24
4	59.85	34	4974	64	26.30
5	59.77	35	+9.15	65	$25 \cdot 36$
6	59.67	36	48.54	66	24.41
7	39'56	37	4792	67	23.44
8	59.42	38	47.28	68	22.48
9	59\%26	59	46.63	69	21.50
10	39.09	40	4596	70	20.52
11	58.59	41	45-28	71	19.53
12	38.69	42	44.59	72	18.54
13	58.46	43	43.88	73	17 '54
14	58:28	44	$43 \cdot 16$	74	1654
15	57.95	45	42.43	75	$15^{\prime} 53$
16	5767	46	41.68	76	14.61
17	57.38	47	40.92	77	13.50
18	57.06	48	$40 \cdot 15$	78	12.48
19	56.73	49	39.36	79	11.45
20	$56 \cdot 38$	50	38.57	80	10.42
21	56.01	31	37.76	81	$9 \cdot 38$
22	55.63	52	36.94	82	$8 \cdot 35$
23	55.23	53	- 36.11	83	7.32
24	54.81	54	$35 \cdot 27$	84	6.28
25	54.38	5.5	34.41	85	5.23
26	53.93	56	33.55	86	4.18
27	58.46	57	32.68	87	3.14
28	52.97	58	31.79	88	2.09
29	52.47	59	$30 \cdot 90$	89	105
30	. $51 \cdot 96$	60	30.00	90	000

See another table of this kind, allowing $69{ }^{\prime}{ }^{\prime}$, English miles to one degree, under the article Degrea.
-To find the meridional distance to any number of mis-
nases between any of the whole degrees in the table, as for instance in the parallel of $43^{\circ} 26^{\prime}$; take out the tabular distances for the two whole digrees brtween which the parallel or the odd minutes lie, as for 48° and 49°; subtract the one from the other, und take the proportiunal part of the remainiler for the odd minutes, by multiplying it by those mintites, and dividing by 60 ; and lasily, subtract this proportional part from the grater tabular number. Thus,

Taken from - - 40.15 for lat. 48°
Leaves merid. dist. $\overline{3 y^{\prime}} \mathrm{si}$ for lat. $48^{\circ} 26^{\prime}$.
And, in like manner, by the counter operation, to find what latitude answers to a given meridional distance. As, for ex. in what latitude 46.08 miles answer to a degree of longitude.

$$
\begin{aligned}
& \text { From } 46^{\circ} 63 \text { fir } 33^{\circ} \mid \text { from } 46.63 \text { for } 39^{\circ} \\
& \text { Take } 4.5 .96 \text { for } 40^{\circ} \\
& \text { Then แ } 0.07: 60^{\circ}: \text { : }
\end{aligned}
$$

Therefore the latitude sought is $39^{\circ} 49^{\prime}$.
E_{r}. 3. (ijisn the latitude and meridional distance; to fiad the corresporoding difference of longitude. As, if a ship, in latitude $53^{\circ} 30^{\circ}$, and longitude $10^{\circ} 18^{\prime}$ cast, sail due wrst 236° milex; required her present longtude.

Here, by the first sule,
As cos. lat. $33^{\circ} 36^{\prime}$ comp. 0.22664
To radius - y0 00 - 1000000
So merid. dist. 256 m . $\quad 2.37291$
To ditf. long. 397.7 . - $2 \cdot 50955$
Its 60th gives $6^{\circ} \quad 38^{\prime} \mathbf{w}$. diff. Tong.
Taken from $10 \quad 18 \mathrm{E}$. long. from
Leaves - - $3+\mathrm{E}$ long. come to.
By the table; the length of a degree on the parallel of $53^{\circ} 36^{\prime}$ is 35.6 .
Then as $35 \cdot 6: 60:: 236: 397 \%$, the diff. of long. the same as before.

Middle-latitude Sailing, is a method of resolving the cases of globular sailing by means of the middle latitude between the latitude departed from, and that come to. This method is not quite accurate, being only an approximation to the truth, and it makes use of the principles of plane sailing and parallel sailing conjointly.

The mithod is founded on the supposition that the departure is reckoned as a meridional distance in that latitude which is a middle parallel between the latitude sailed from, and that arrived at. But the method is not quite aceurate, because the arithmetical mean, or half sum of the cosines of two distant latitudes, is not exactly the cosine of the middle latitude, or half the sum of those latitudes ; nor is the departure between two places, on an oblique rhumb, equal to the meridional distance in the middle latitude; as is presumed in this method. Yet
when the parallels are near the equator, or near to each other, in any latitude, the error is not considerable.

This method seems to have been invented on account of the easy manner in which the several cases may be resolved by the iraverse table, and when a table of meridional parts is wanting. The computations depend on the following rules:

1. Take half the sum, or the arithmetical mean, of the two given latitudes, fur the middle latitude. Then,
2. As cosine of middle latitude,

Is to the radius;
So is the departure,
To the diff. of longitucte. And.
3. As cosine of middle latitude,

Is to the tangent of the course;
So is the difference of latitude;
To the difference of longitude.
Mercator's bailtxg, is the art of resolving the several cases of globular sailing, by plane trigononn'ty, with the assistance of a table of meridional parts, or of logarithmic tangents. And the computations are performed by the following rules:

1. As meridional diff. lat.

To diff. of longitude ;
So is the radius,
To tangent of the course.
2. As the proper diff. lat.

To the departure ;
So is merid. diff. lat.
To diff. of longitude.
3. As diff. log. tang, balf colatitudes,

To tang. of $51^{\circ} 38^{\prime} 09^{\prime \prime}$;
So is a given diff. longitude,
To tangent of the course.
The mumer of working with the meridional parts and logarithmic tagents, will appear from the two following cases.

1. Given the latitudes of two places; to find their meridional difference of latitude.

By the Merid. Parts. When the places are both on the same side of the equator, take the difference of the meridional parts answering to each latitude; but when the places are on opposite sides of the equator, take the sum of the same parts, for the meridional duffictence of latitude sought.

By the Log. Tangents. In the former case, take the difference of the log. tangents of the half colatitudes; but in the latter case, take the sum of the sume; then the said difference or sum divided by 12.63 , will give the meridional difference of latitude sought.
2. Given the latitude of one place, and the meridional difference of latitude between that and another place; to find the latitude of this latter place.

By the Merid. Parts, When the places have like names, that is both north or both south, take the sum of the merid. parts of the given lat. and the given duti.; but take the difference between the waine when they have tulike names; then the result, being found in the table of meridional parts, will give the latitude sought.
By the Log Tangens. Muluply the given moridional diff. of lat. by $12^{\circ} 63$; then in the former case sutuact the protuct from the log. tangent of the gives half colatitude, but in the latter ease add them; then steh the degrees and minutes answering to the result among the log.
tangents, and these degrees, \&c. doubled, will be the colatitude sought.

Circular Sailing, or Great-circle Saibina, is the art of finding what places a ship must go through, and what courees to steer, that her track may be in the are of a great circle on the globe, or nearly so, passing through the place sailed from and the place bound to.

This metbod of sailing has been proposed, because the shortest distance between two places on the sphere, is an are of a great circle intercepted between them, and not the spiral rhumb passing through them, unless when that rhumb coincides with a great circle, which can only be on a meridian, or on the equator.

The solutions of the cases in Mercator's sailing are performed by plane triangles, but in great-circle sailing they are resolsẹd oy means of spherical triangles. A great variety of cases might be here proposed, but those that are the most useful, and more commonly occur, pertain to the following problem,

Problem I. Given the latitudes and longitudes of two places on the earth; to find their nearest distance on the surface, together with the angles of position from either "place to the other.

This problem comprehends 6 cases.
Case 1. When the two places lie under the same meridian ; then their difference of latitude will give their distance, and the position of one from the other will be directly north and south.

Case 2. When the two places lie under the equator; their distance is oqual to their difference of longitude, and the angle of position is a right angle, or the course from one to the other is due east or west.

Case 3. When both places are in the same parallel of latitude. Ex. gr. The places both in 37° north, but the longitude of the one 25° west, and of the other 76° 23^{\prime} west.

Let P denote the north pole, and A and B the two places on the same parallel nos, also Bis their distance asubder, or the are of a great circle passing through them. Then is the angle A or B that of position, and the angle RPA $=51^{\circ} 2 J^{\prime}$ the difference of longitude, and the side PA or PA $=33^{\circ}$ the colatitude.

Draw P1 perp. to AB, or bisect-
 ing the angle at P . Then in the triangle $A \mathrm{Pr}$, rightangled at I, are given the hypothenuse $A P=53^{\circ}$, and the angle APT $=25^{\circ}+1^{\prime} 30^{\prime \prime}$; to find the angle of position A or $\mathrm{B}_{\mathrm{r}}=73^{\circ} 51^{\prime}$; and the half distance $\mathrm{A1}=20^{\circ} \quad 13^{\prime}$ it ; this doubled gives $40^{\circ} 31^{\prime}$ for the whole distance AA, or 2431 nautical miles, which is 3 t miles less than the distance along A DB, or by parallel sajling.

Case 4. When one place has latitude, and the other has none, or is under the equator. For example, suppose the Island of St. Thomss, lat. 0°, and long. $1^{\circ} 0^{\prime}$ east, and Port St. Julian, in lat. $48^{\circ} 51^{\prime}$ south, and long. $65^{\circ} 10^{\prime}$ west.

Port St. Julian, lat. $48^{\circ} 51^{\prime} \mathrm{s} . \quad$ - long. $65^{\circ} 10^{\prime} \mathrm{w}$.
Isle St Thomas - $000-\cdots 100 \mathrm{e}$.
Julian's colat. - $\overline{4109}$ Diff. long. $\overline{6610}$
Hence, if s denote the south pole, a the 1sle St. Thomas at the equator, and a St. Juliang then in the triangle are given sa a quadrant or 90°, is $=41^{\circ} 9^{\prime}$ the colat. of SL. Julian, and the $\angle s=60^{\circ} 10^{\prime}$ the dif. of longitude ;
to find $A \mathrm{~A}=\mathbf{7 4}^{\circ} \mathbf{8 5}^{\prime}=4475$ miles, which is less by 57 miles than th distance found by Mercator's sailing; also the angle of position at $A=31^{\circ}$ 22^{\prime}, and the angle of position $\mathrm{B}=$ $108^{\circ} 24$.

Case 5. When the two given places are both on the same side of the equator ; for example the Lizard, and the
 island of Bermudas.

The Lizard, lat. $49^{\circ} 57^{\prime} \mathrm{N}$. - long. $5^{\circ} 21^{\prime} \mathrm{w}$.

$$
\text { Bermudas, } 3235 \mathrm{x} .-\frac{6332 \mathrm{w} .}{5811}
$$

Here, if p be the north pole, L the Lizard, and B Bermudas ; there are given, $\mathbf{P L}=40^{\circ} 03^{\prime}$ colat. of the Lizard, $P_{B}=3725$ colat. of Bermudas, $\angle F=5811$ diff. of longitude; to find $\mathrm{BL}=45^{\circ} 44^{\prime}=9744$ miles the distance, and

\angle of position $\mathrm{B}=49^{\circ} \mathrm{27}{ }^{\circ}$, also

$$
\angle \text { of position } \mathrm{L}=90^{\circ} s 1^{\prime} .
$$

Case 6. When the places lie on different sides of the equator; as suppose St. Helena and Bermudas. Here
$\mathrm{PB}=37^{\circ} 25$ polar dist. Bermudas,
$\mathbf{p} \mathbf{n}=10555$ polar dist. St. Helena, $\angle P=3743$ diff. long.
To find $\mathrm{BH}^{\circ}=73^{\circ} 26^{\circ}=4406$ miles, the distance, also the angle of position $\mathrm{H}=48^{\circ} 0^{\circ}$, and the angle of position $B=121^{\circ} 59^{\prime}$.

From the solutions of the foregoing cases it appears, that to sail on the are of a great circle, the ship must conti-
 mually alter her course; but as this is a difficulty too great to be admitted into the prectice of navigation, it has been thought sufficiently exact to employ a kind of approximation, that is, by a method which nearly approaches to the sailing on a great circle: namely, on this principle, that in small arcs, the difference between the are and its chord or tangent is so small, that they may be taken for each other in any nautical operations : and accordingly it is supposed that the great circles on the earth are made up of short right lines, each of which is a segment of a rhumb line. On this supposition the solution of the following problem is deduced.

Problem II. Having given the latitudes and longitudes of the places ssiled from and bound to; to find the successive latitudes on the arc of a great circle in those places where the alteration in longitude shall be a given yuartity; together with the courses and distances between those places.

1. Find the angle of position at each place, and their distance, by one of the preceding caves.
2. Find the greatest latutude the great circle runs through, i. e. find the perpendicular from the pole to that circle; and also find the several angles at the pole, made by the given alterations of longitude between this perpendicular and the successive meridians come to.
3. With this perpendicular and the polar angles severally, find as many corresponding latitudes, by saying, as radius : tang. greatest lat. : : cos. 1st polar angle : tang. 1 th lat. : : cos. ©ll polar angle : tang, of $2 d$ lat. \& c.
4. Hasing naw the several latitudes passed through, and the difference of longitude between each, then by Merca-
tor's sailing find the courses and distances between those latitudes. And these are the several courses and distances the sbip must run, to keep nearly on the arc of a great circle.

The smaller the alterations in longitude are taken, the nearer will this method approach to the truth; but it is sufficient to compute to every 5 degrees of difference of longitude; as the length of an arc of 5 degrees differs from its chord, or aangent, only by 0002 .

The track of a ship, when thus directed nearly in the are of a great circle, may be delineated on the Mercator's chart, by marking on it, by means of the latitudes and longitudes, the succeasive places where the ship is to alter her course; then thuse places or points, being jomed by right lines, will show the path along which the ship is to sail, under the proposed circumstances.- in the subject of these articles, see Rubertson's Elements of Nasigation, rol. 2.

Spheroidical Sailima, is computing the cases of navigation on the supposinion or principles of the spheroidical tigure of the carth. Sie Roberteon's Navigation, vol. \&, b. 8 , sect. 8.

Sailing, in a morc confined sense, is the art of conducting a shp from place to place, by the worhing or handing of her sails and rutder. - To bring suiling to cortann rules, M. Renau compues the force of the water, against the ship's rudder, stem, and side; and the foree of the wind against her sails. In order to this, he first considers all fluid bodirs, such as the air, water, \&sc, to be composed of little particles, which when they act upon any surface, all move parallel to one, another, or strike against the surface after the same manner. Secondly, that the motion of any buady, with regard to the surfince it strikes, must be etther perpendicular, parallel, or oblique. From these principles be computes, that the force of ate air or water, striking perpendicularly upon a sail or rudder, is to the furce of the same striking obliquely, in the duplicate ratio of radius to the sine of the angle of inculence: and consequently that all oblique furces of the wind aguinst the sails, of of the water against the rudder, will be to each other in the duplicate ratio of the sines of the angles of incidence.-Such are the conclusons from theory; but it is very different in real practice, or experiments, as appears from the tables inserted in the article Resistanck.

Further, when the different degrees of velocity are considered, it is also found that the forces are as the squares of the velocities of the moving air or water nearly; that is, a wind that blows twice us swift, as another, will act with 4 times the furce upan the sail; aud when 3 times as swift, 9 times the force, \&c. And it being also indifferent, whether we consider the motion of a solid in a fluid at rest, or of the fluid against the solid at rest; therefore, the reciprocal impressions being always the same, if a solid be moved with different velocities in the same fluid nuatter, as water, the different resistances which it will receive from that water, will be in the samo proporion as the squares of the velucities of the moving body.

He then applies these principles to the motions of a ship, both forwards and sideways, through the water, when the wind, with certain velocities, strikes the sails in various positions. After which, the author procreds to demonstrate, that the best position or situation of a ship, to that she may make the least lee-way, or side motion,
but go to windward as much as possible, is this: that, let the sail have what situation it will, the ship must be always in a line bisecting the complement of the wind's angle of incidence on the sal. 'I hat is, supposing the sail in the position sc , and the wind blowing frum a to B , and consequently the angle of the wand's incidence on the sail is $A B C$, the complement of which is caE: then must the ship be put in the position ΔK, or move in the lime BL, bisecung the $\angle \mathrm{Cbg}$.

He shows furtber, that the angle which the sail ought to make wilh the wind, i. c, the angle ABC, ought to be but 24 degrees; that being the thast advantageous situatiwh fir workiag to windward.

To this might be adted many curious particulars from Borelli de Vi Pescussionis, concerniug the different directions given to a vessel by the rudder, when satling with a wind, or Boating whthout sails in a current: in the former casc, the head of the ship ulways coming to the rudder, and in the latter always flying off fron is; as also from Euler, Bouguer, and Juan, who bave all written learnedly on alis subjict.

SHAANI, in Fortification, is suid of an angle that projects its point outwards ; in opposition to a re..entering angle, which has its point turned inwards. Insuances of boih kinds of these occur in t.mbilles and star-works.

Salon, or Saloon, in Architecture, a grand, lofty, spacious kind of hall, vaulted at top, and usually cornprehending two stories, with two ranges of windows: and may be either square, round, oval, or ociag nal.

SAP, or SAPP, in liuldiug, us to sap a wall, \& c , is to dig out the ground trom beneath it, so as to bring it down all at once for want of support.

Sap, in the Milhary Art, denotes a work carried on under cover of gabions and fascioss on the flank, and mantets or stuffid gabions on the tront, to gain the descent of a ditch, or the like. It is perionined by dige ging a deep tiench, deseending by steps irtim top to tottom, under a corndor, carrying in as far as the bottom of the riteth, when that is dry; or as far as the surface of the watter, when wet.

SAROS, in Chrondogy, a perived of 223 Junar months. The etymology of the word is said to be Chaldean, sigeif_{j} ing restinution, or return of eclipses; that is, conjuncnons of the sun and moon in mearly the same place of the ecliptic. The Saros whs a cycle like to that of Meto.

Salrkasin, or Sarrazin, in Fortification, a hind of port cullis, otherwise called a herse, whet is hurg with ropers over the gate of a town or fortress, to be let fall in case of a surprise.

SAIt LLITES, in Astronomy, are certain secondary planers, moving round the other planets, as the moon docs round the earth. They are so called because always found attending shem, Irom rising to settong, and mahing the tour about she sun together with them. The words moon and sutellite are sunctimes used indifferently: thus we say, either Jupiter's moons, or Jupiter's sate-lites; but usually we restrain the term moon to the earth's attendant, and apply that of satellite to the bette moons discovered about Jupiter, Saturn, and Uranos, by the assistance of the telescope, which is necessary 10 render them vasible,

The satellites more about their primary planets, as a cene tre, by the same laws as those promary ones do round their centre the sun ; viz, in such a mamer that, in the satullites of the same planet, the squases of the periodic times are proportional to the cubes of their dismances from the primary planet. For the ployvical cause of their motions, see Guavity. Ste also Plankts.

We know not of any satcilites basides those alove mentioned; what other discoveries nay be made by further inprovements in telescopas, time only can bring to light.

Sateletes of Jupiter. There are 4 bitle monns, or satellites now known to pertorm their cevolutions about Jupiter, as that planet does about the sun.
Simon Marius, mahematician of the elector of Brandenburg, abaut the end of November 1609 is sand to have observed three little stars moving round Jupiter's body, and proceeding nlong with him; and in January 1610, he found a th. In Junuary 1610 Gulitio also wbserved the same in Italy, and in the same year published bis observations. And indeed Montucla gives the honour of the first discovery entirely to Galiteo. These satellites were aloo cobserved in the sime month of January 1710 , by Thomas Harriot, the celebratell author of a work on algebra, and who made constant obsetvations of thein, from that time till the 261 h of February 1612; as appears by his curious asironomical papera, lately discovered by Dr. Zach, at the seat of the earl of Egremont, at Petworth in Sussex.
When Jupiter is in a line with any of his satellites and the sun, the satellite disajpears, being then eclipsed, or involved in his shadow.- When the satellite goes behind the body of Jupiter, with reppect to an obwerver on the carth, it is then said to be occulted, being bid from our sighe by bis body, whetber in his shadow or uns.-And when the sitellite comes into a position between Jupiter and the sun, it casts a shadow upon the face of that plane, which we see as an otscure round spot.-Lastly, when the satellite is in a line between Jupiter and us, it is shid to transit the dise of the planet, upors which it apprary as a pound blach spot.

The peliods or revilutions of Jupiter's samellites, are found out from their conjunchons with that planet ; after the same mauner, th thuse of the primary planets are discovered from their oppositions to the sun. Anl their distances from the body of Jupitre are measured by a microserter, and csimmeted in semidiameters of that planet, and thence in miles. By the latest and most exact observations, the periodical times and distances of these saullites, and the angles under which their orbits are sell from the earth, at its inean distance from Jupiter, are as below:

Satmhetres of Juptien.

Sovellites.	Periolic Time.	3 Bras ances in		$\begin{gathered} \text { Angles of } \\ \text { O.bic. } \end{gathered}$
		Sernatiame. 197.	Milen.	
1		$5 \frac{1}{2}$	266,000	$3^{\prime \prime} 55^{\prime \prime}$
2	$\begin{array}{lllll}3 & 13 & 13 & 42\end{array}$	9%	14,3,000	614
3	$7 \mathrm{7} \quad 34233$	14%	(i) 6,000	958
4	16163130	23 ${ }^{3}$	1,189.000	1730

The eclipses of the satellites, especially of those of Jupiter, are of very great use in a tronomy. First, in determining pretty exactly the distance of Jupiter from the
carth. A second advantage still more considerable, which is drawn from these eclipscs, is the proof which they give ot the progressive inotion of light. It is demonstrated by these celipses, that light does not come to us in an instant, as the Cartesians pretended, though its motion is extremeIy rapid. For if the motion of light were intinite, or came to us in an instant, it is evident that we should sce the commencement of an eclipse of a sutellite at the sume monnent, at whatever distatice we might be from it; but, on the contrary, if light move progressively, then it is as evident, that the farther we are from a planet, the later we shatl be in secing the moment of its eclipse, because the light will take upa longer time in arriving at us; and so it is found in fact to happen, the eclipses of these satellites appearing always later and bater than the true computed times, as the earth removes farther and farther from the planet. When Jupiter and the earth are neasest to each other; that is, when they are in conjunction on the same side of the sull ; then the eclipses are observed to happen about $7 \frac{1}{\frac{1}{2}}$ minutes before the computed time for the mean distance; and when those two plancts are at their greatest distance, being then in opposition, the eclipses happen about $7 \frac{1}{2}$ minutes after the thme predicted ly calculation. Now the difference between the least and greatest distance bring equal to the diameter of the earth's orbit, it therefore follows thut light takes up a quarter of an hour in travelhing across the orbit of the earth, or near 8 minutes in passing from the sun to the earth; which gives about 12 millions of miles per minute, or 200,000 miles per second, for the velocity of light. A discovery that was first made by M. Rociner.
The third and greatest advantage derived from the eclipses of Jupiter's satellites, (ant which was himtel at by Gutilen on the first discovery of them,) is the knowledge of the longitudes of places on the earth. Suppose two observers of an eclipse, the one, for example, at London, the other at the Canaries; it is certain that the eclipse will appear at the same mument to both observers; but as they are sitnated under different meridians, they count different howis, being perhaps 9 w'clock to the one, when it is only 8 to the other; by which observations of the true time of the eclipse, on comurunication, they find the difference of their lougitude to be one hour in thase, which answers to 15 digrees of longitude.

To the above we may also add, that this discovery had a very cansiderable iniluence in eradicating the errors of the ancicut astronomers, and consequently in firmly establishing the Copernican syatem; us a supporter of which, the veneratike discovertr, Gulihoo, was, at this time, smartmg under the recollinction of the condemnation which had treen passed upon him, by that most detestable of all tyrannics, the inquivition.
SatELLit\&s of Saturn, are 7 in number revolving about him. One of them, which till lately was reckoned the 4th in urder from Satuen, was discowered by Huygens, the 25 th of Murch 1655 , by means of a telescope 12 feet long, and the Ist, 2d, $3 \cdot 1$, and 5 th, at different times, by Cuss sini ; viz, the S1h in Octuber 1671, by a telescope of 17 feet; the 3d in December 1ti72, by a telescope of Campani's, 35 feet long; and the first and second in March 1684, by heip of Campani': Glasses, of 100 and 136 ieet. Finally, the fith und 7 th sutcllites bave lately been discovered by Dr. Herschel, with hin 40 feet reffecting telescope, viz, the 6th on the 19hh of Ausust 1787 , aad the 7 th on the 17th of Scptember 1788. These two he has called
the 6th and 7th satellites, though they are nearer to the planet Saturn than any of the former five, that the names or numbers of these might not be mistaken or confounded, with regard to former observations of thern.

Morcover, the great distance between the 4th and 5th satellite gave occasion to Huygens to suspect that there might be some intermediate one, or clse that the 3 th might have sone other satellite moving round it, as its centre. Dr. Halley, in the Philos. Trans. (No. 145,) gives a cor* rection of the theory of the motions of the 4 th or Huygenian satellite. Its true period be anakes 11 d 22 h 41 m 6 s.

The periodical revolutions, and distances of these satellites from the body of Saturn, expressed in scmidiameters of that planet, and in miles, are as follow.

Satellites.	Periods.	Disences in		Dismeter ofOrbit.	
		Semidiame1 lers.	Miles.		
1	$1^{4} 21^{\text {d }} 18^{\prime} 26^{\prime}$	$4 \frac{1}{3}$	170,000	1^{\prime}	27^{*}
2	2174651	$5 \frac{1}{8}$	217,000	1	52
3	4129511	8	303,000	2	36
4	15224114	18	704,000	6	18
5	$\begin{array}{lllll}79 & 7 & 54 & 37\end{array}$	54	¢,050,000	17	4
6	18539	38	135,000	1	14
7	0223730	2π	107,000	0	57

The first four describe ellipses like to thuse of the ring, and are in the same plane. Their inclination to the ecliptic is from 30 to 31 degrees. The 5th describes an orbit incllned from 17 to 18 degrees with the orbit of Saturu; his plane lying between the ecliptic and those of the other satellites, \&c. Dr. Herschel observes that the 5 th satellite turns once round its axis exactly in the time in which it revolves about the planet Saturn; in which respect it resembles our moon, which does the same thing. And be makes the angle of its distance from Saturu, at his mean distance, $17^{\prime} 2^{\prime \prime}$. Philos. Trans. 1792, pa. 22. See along account of observations of these satellites, with tables of their mean motions, by Dr. Herschel, Philos. Trans. 1790, pa. 4278 cc .

Sateleites of Herschel, or Uranus, are 6 little moons that revolve about him, like those of Jupiter und Saturn. These satellites were discovered by Dr. Herschel, who gave an account of them in the Philos. Trans, from which it appears that their synodical periods, and angular distances from their primary, are as follow:

Satelite.	Sidereal Revolution.	Mean Das.
1	$5^{4} 21^{14} 25^{m} 211^{4}$	$0^{\prime} 25^{\prime \prime} 5^{\prime \prime}$
2		- 33.0
3	$\begin{array}{llll}10 & 23 & 3 & 59\end{array}$	038.6
4	$\begin{array}{llll}13 & 10 & 56 & 30\end{array}$	$0 \quad 44.2$
5	$\begin{array}{llll}38 & 1 & 48 & 0\end{array}$	$\begin{array}{llll}0 & 88.5\end{array}$
6	107163956	0176.8

The orbits of these satellites are nearly perpendicular to the ecliptic, and contrary to the order of the signs. In magnitude they are probably not less than those of Jupiter.

Sateleite of Venus. Cassini thought he maw one, and Mr . Short and other astronomers have suspected the same thing. (Hist. de l'Acad. 1741, Pbilos. Trans. No. 459.) But the many fruilless searches that have been since poade

Voz. 11 .
to discover it, leave room to suspect that it has been oniy an optical iltusion, formed by the glases ot telescopen; av appears to be the opinion of F, Hell, at the end of his Ephemeris for 1766 , and Boscovich, in his Sth Opticul Dissertation.-Neither bas it been discovered that either of the other planets have auy satellites revolving about thern. It is remarkuble that our mown, and some of the other satellites, as far as they have been ubserved, kepp slways the same face or side tuwards their respective primaries; around which they appear to be moved as a stone is whirled round in a sling.

SATURDAY, the 7 th or last dey of the week, so called, as supposed, from the isol Seater, worshipped on this day by the ancient Siaxons, and thougint to be the same as the Saturn of the Latins. In astronony, every day of the week is denoted by some one of the planets, and this day is marked with the planet b Saturn. Saturday auswers to the Jewish sabbath.

SATURN, one of the prinary plancts, being the 10th in order of ilistance from the sun, and the outermost of all, except the planet llersclel, is marked with the character b, denoting an old man supporting himself with a stuff, reprcsenting the ancient god Saturn.

Saturn shines with but a feeble light, partly on account of his great distance, and partly from his dull ted colour. This planet is perhaps ono of the mast eluguging objects that astronomy offers to our view; it is surrounded with a double ring, one without the other, and bey ond these by 7 satellites, must of them in the plane of the rings ; the rings and plauets being all dark and deuse bodies, like Satura himself, these bodies casting their shadows mutually upon each other; though the reflected light of the riugs is usually brighter than that of the planet itself.
Saturn has also certain olscure zones, or belts, appearing at times across his disc, like those of Jupiter, which are changeable, and are probably obscurations in his atmusphere. Dr. Ilerschel, Philos. Trans. 1790, shows that Saturn has a dense atmosphere; that he revolves about an axis, which is perpendicular to the plane of the rings ; that his figure is, like the other planets, the oblate spheroid, being flatted at the poles, the polar dianeter being to the equatorial one as 10 to 11 ; that his ring has a motion of rotation in its own plane, its uxis of mution being the seme us that of Satorn himself, and its periodical time equal to 10 h 32 m 15s.4. See also Remg, and Satellite,

Concerning the discovery of the ring and figure of Saturn, we tind that Galileo first perceived that his figure is uot round: but Huygens showed; in his Systema Saturniana 1659, that this was owing to the positions of his ring; for his spleroidical form could only be seen by Herschel's telescope; though indeed Cassimi, in an observation made June 19, 1692, saw the oval figure of Saturn's shadow upon his ring.

Mr. Bugge determines (Philos. Trans. 1787, pa. 42) the heliocentric longitude of Saturn's descending node to be $9^{\prime} 21^{\circ} 5^{\prime} 8^{\prime \prime} 4$; and that the planet was in that node $A u-$ gust 21, 1784 , at $15^{\mathrm{h}} 20^{\mathrm{m}} 10^{\mathrm{f}}$ time, at Copenhagen.

The annual period of Saturn about the sun, is 10759 days 7 bours, or almost 30 years; and his diameter is about 67000 miles, or near $8 \frac{1}{2}$ tines the diameter of the carth; also his distance is about 9$\}$ times that of the earth. Hence some have concluted that his light and heat are entirely uufit for rational inbabitants. But that their light is not so weak as we imagine, is evident fiom its brightness in the night-time. Besides, alluwing the sun's light 2 Z
to be 45000 times as strong, with respect to us, as the light of the moon when full, she sun will aftord 500 tinces as wuch light to Sasurn as the full moon does to us, and 1600 times as much to Jupiter. So that these two planets, even withuut any moon, would be much more enlightened shan we at first imagine; and by having so many, they may be very comfortahle places of residence. Their theat, so lur as it depends ou the force of the sun's ragy, is certainly much leas than ous ; to which no doubt the bodies of their inbabitats are ay well ndapted as ours are to the sensons we enjoy. And if it be cotudered that Jupiter never has any winter, even at his poles, which probably is also the case with Saturn, the cold cannot be so intense on these two planets es is generally irnagued. To this may be added, that there may be something in the mature of their soll warmer shan in that of our earth ; and we find that all our beat does not depend on the rays of the sun ; for if it did, we should always have the same months equally hot or cold at tbeir annual return, which is very far from beitg the case.

Sue the articlen Plaset, Period, Rino, Satfllite.
SAUCISSB, in Artillery, a long train of powder inclosed in a roll or pipe of pitched cloth, and sumetimes of teather, about 2 inches in diameter; serving to set fire to mines or cassons. It is usually placed in a wooden pipe, called an auget, to prevent its growing damp.

Sauctssos, in Furtification, a kind of faggot, made of thick branches, of trees, or of the truah of shrubs, bound tugether, for the purpose of eovering the men, and to serve as epautements ; and alsu to repair brcaches, stop passages, make traverses over a wet ditch, \&x. The sancisson differs from the fascire, wheth is only made of smail branches; and by its bewg tround at both ends, und in the middle.

SAVILLE: ("ir Hexry), a vrry learned K.nglisbman, the second son of Henry Saville, esq. was born at Bradley, near Halıfas, in Yorkshire, November the 30th, 15.69. He was entered of Merton-collegr, Os ford, in 1361, where he took the degrre B. A., and was chosen fellow. He became master of arts in 1570, having read fur that degree on the Almagest of Plolemy, which procured him the sepbtation of a man emtnently billiesl in mathematics and the Greek language; in the former of which be gratnirously read a public lecture in the university for some time.

In 1578 he travelled into France and other countrics; where, dilgently improving hienself in all useful learning, in languages, and the knowledge of the world, he becaine a most accomplished gentleman. At his retarn, the was made totor in rhe Greek tongue to qucen Elizabeth, who had a great estecm for bim.

In 1535 he was made warden of Merton-colirge, which he governed six-and-thirty years with great honour, and improved it by all the mians in his power.-In 1306 he was chosen provost of Fiton-college; whicb he filled with many learned men.-Jancs the First, on bis accession to the crown of England, exprosed a great regurd for him, and would have preferred hum either in church or state; but Saville declined these offers, atrd only aecepted the ceremony of kaighthood from the hing at Wimdsor in 1 (104. His only son Henry dying about that time, he thenceforth devoted his fortune to the promoting of learning. Among other things, in 1619 , he founded, in the university of O_{x} ford, two lectures, or professorships, one in geometry, the other in avtronomy; which he endowed with a salary of 160 l a y year cach, besidey a legacy of 600). to purchase
more lands for the same use. He also furnisbed a library with nathematical books near the mathematical school, for the use of his professors; and gave 1001. to the mathematical chest of his own appuinting: adding afierwards a legacy of 401. a year to the same chest, to the university, and to his professors jointly. He likewise gave 1201. towards the new building of the schools, bestrics several rare manuscripts and printed books to the Bodleian hbra* ry; and a good quantity of Greek types to the printingpress at Oxford.

After a life thus spent in the encouragoment and promotion of science and literature in general, he died at Etowncollege the 19th of Febriary 1622 , in the 73 d year of bis age, and was boried in the chapel there. On this occasion, the univensity of Oxford paid him the greatest honours, by having a public oration and verses inade in his praise, which were publisbed swon after in $\$ 10$, under the title of Ultima Linea Saviln.

As to the character of Saville, the highest encomiums are bestowed on bim by all the lcarned of his time: by Casaubon, Mercerus, Meibmius, Joseph Scaliger, and especially the learned bishop Montague; who, in his Diatribar upon Selden's Hastory of Tythes, styles him, " that nagazine of learsing, whose memory shall be honourable nmongst not only the learned, but the righteous for ever,"

Several noble instances of his tamificence to the republic of lettens have already treen mentioned ; in the account of his publications many more, and even greater, will appear. These are,

1. Four Bookn of the Histories of Corselius Tacitus, and the Lifé of Agricola; with Notes upon them, in folio, dedicated to Queen Elizabeth, 1581 .
2. A Vrew of certam Matary Matters, or Commentarice concerning Roman Wurfure, 1598.
3. Rerum Anglicarum Scriptores pust Bedam, \&c. 1596. This is a collection of the best writers of our Einglish history; to wheh he added ebronological tables at the end, from Julius Casar to Whlliam the Conquetor.
4. The Works of St. Chrysostom, in Greek, it 8 vols. fotie, 1613. This is a very line edition, and composed with great cost and labeur. In the preface be says, "that having humself visited, about 12 yeare befure, all the public and private librarict in Britain, and copied out thence whatever he thought uneful to this design, be shen sent some learned men into France, Genoany, haly, and the Kast, to transcribe such parts as he had wot alteady, and to collate the others with the best manurcripts." At the same time, be makes his acknowledgroents to several eminent mets for their ussistance; as Thuanus, Velserus, Scbottus, Casaubon, Ducæus, Gruter, Hueschelius, \&.c. In the Sth volume are insetted Sir Ilenry Saville's own notes, with those of other learned men. The whole charge of this edition, including the weveral nums paid to learned men, at bome and abroad, employed in finding out, transcribing, and collatung the best manuscripts, is said to have anvounted to no less than 80001 . A still more sumptuous and voluminous edision was afterwards printed at Paris, in 13 folio volumes, by ibe Benedictines und the learned Montfaucon, the 1st vol. in 1718 , and the last in 1738.
5. In 1618 be published a Latin work, written by Thomas Bradwardin, abp. of Canierbury, against Pelagius, intitied, De Causa Dei contra Pelagium, et de vir-
tute causarum ; to which he prefixed the life of Bradwardin.
6. In 1621 he published a collection of his own Mathematical Lectures on Euclid's Ellements; in 410.
7. Oratio coram Elizabetha Regina Oxonice liabita, anno 1592. Printed at Uxford in 1658, in 4 to.
8. He tramslated into latin kiug James's Apology for the Oath of Allegiance. He also lett several manuscripts behind him, written by order of king James; ull which are in the Bodleian library. He wrote notes aloo on the margin of many books in his library, particularly Eusebius's Ecelesiastical History ; which were afterwards used by Valesius, in his edition of that work in $165 y$.-Four of his letters to Camden are published by Smith, among Camden's Letters, 1691, 4tn.

Sir llenry Saville had a younger brother, Tnomas Savilie, who was admited probationer fellow of Mer-ton-college, Oxford, in 1580. He afterwards travelled abroad into several coontries. On his return he was chosen fellow of Eton-collcge; but be died at London in 1593. Thomas Suville was also a man of great kearning, and an intimate friend of Camden ; among whose letters, just mentioned, there are 15 of Mr. Saville's to him.

- SAUNDERSON (1)r. Nicholas), an eminent professor of mathematics in the unversity of Cambridge, und a fellow of the Royal Society, was born at Thurlston in Yorkshire in 1682. When he was but twelve months old, he lost not only his eye-sight, but his very eyc-balls, by the small-pox ; so that he could retain no more ideas of vision than if he had been born blitd. At an early age, however, being of very promising parts, he was sent to the freeschool at Penniston, and there laid the foundation of that knowledge of Greek and Latin languages, which he afterwards improved so far, by his own application to the classic authors, as to hear the warks of Euclid, Archimedes, and Diophantus read in their original Greck.

Having acquired a grammatical education, his father, who was in the excise, instructed him in the common rules of arithmetic. And here it was that his excellent mathematical genius first appeared : for he very soon becarme able to work the common questions, to make long calculatoons by the strength of his memory, and to form new rules to himself for the better resolving of such problems as are often proposed to learners as trials of skill.

At the age of 18 , our author was introduced to the acquaintance of Riclard West, of Underbank, Esq. a lover of mathematics, who, observing Mr. Saunderson's uncommon capacity, took the pains to instruct him in the principles of algebra and geometry, and gave him every encourugement in his power to the prosecution of these stodics Soon after this he becarac acquanted also with Dr. Netteton, who took the same pains with him. And It was to these two gentlemen that Mr. Saunderson owed his first institution in the mathematical sciences: they furnished bim with books, and often read and expounded them to him. But he soon surpassed lis masters, and became fitter to teach, than to learn any thing from them.

His father, otherwise bnrdened with a numerous family, finding a difficulty in supporting him, his friends began to think of providing both for his edncation and maintenance. His own inclunation led him strongly to Cambridge, and it was at length determined that he should try bis fortune there, not as a scholar, but as a master: or, if this design should not succeed, they promised themselves success in opening a school for him at London. Accordingly be
went to Cambridge in 1707 , being then 25 years of ayc, and his fame in a short time filled the university. Newton's Principia, Optics, and Universal Arithmetic, were the foundations of his lectures, and afforded him a noble field for the display of his genius; and great numbers came tu hear a blind man give lectures on optics, discourse on the nature of light and colours, explaia the theory of vision, the effect of glasses, the phenomenon of the raintow, and other objects of sight.

As he instructed youth in the principles of the Newtonian philosophy, he soon became acquainted with its incomparable author, though lie had several years before left the university; and frequently converserl with him ou the mose difficult parts of bis works: he also beld a friendly communication with the other eminent mathematicians of the age, Halley, Cotes, Demoivre, \&c.

Mr. Whistoll was during this time in the mathematical professor's chair, and read lectures in the manner proposed by Mr. Saundersin on hissettling at Cambridge; so that an attempt of this hind looked like an encroachanent on the privilege of his office; but, as a good-natured man, and an encuurager ot lenrning, he readily conseated to the application of triends maile in behall of so uncommon a person.

On the removal of Mr. Whiston from his professorship, Mr. Saunderson's merit was thought so tulh superior to that of any other competitor, that an extraordinary step was taken in bis favour, to qualify him with a degree, which the statute requires : in consequence he was closen, in 171t, Mr. Whiston's successor in the Lucasian professorship of mathematics, Sir Isaac Newton interesting himself greatly in his favour. His first performance, after be was seated in the cbair, was ull mau* gural specch made in very elegant latin, and a style truly Ciceronian ; for he was well versed in the writings of Tully, who was his favourite in prose, as Virgil and Horace were in verse. From this time he applied himself closely to the reading of lectures, and gave up his wbole tume to his pupils. He continued to reside among the gentlemen of Cbristcollege till the yeur 1793, when be took a house in Cambridge, and sonn atter married a daughter of Mr. Dickens, rector of Boxworth in Cambridgeshire, by whom he Lad a son and a daughter.

In the year 1728, when king George visited the university, he expressed a desire of seeing so remarkable a person; and accordingly our professor attended his majesty in the senate, and by bis favour was there created doctor of laws.

Dr. Saunderson was naturally of a strong healthy constitution; but being too sedentary, and constantly confining himself to the house, be became a valetudinarian: and in the spring of the year 1739 he complained of a numbness in his limbs, which ended in a mortitication in his foot, of which he died the 19th of April that year, in the 57 th year of his age.

There was scarcely any part of the mathematics on which Dr. Saundervon had not composed something for the use of bis pupils. But he discovered no intention of publishing any thing till, by the persuation of his friends, he prepared his Elements of Algebra for the press, which after his death were published by subscription in 2 vola 4to, 7740.

He left many other writings, though none perhaps prepared for the press. Among these were some valuable comments on Newton's Principia, which not only explain the

272
mere difficult perts, but often improve upon the doctrine itself. Thesc are published in Latin at the end of his postbumaus Treatise on Fiuxions, a valuable woik, publishel in 8vo, 1756 . - His manuseript lectures too, on mist pasts of natural pholuouphy, which 1 linve seen, toight make a considerable volume, and prove an acceptable present to the public it printed.

Dr. Nuundersun, as to his character, was a man of nuch wit and viracity in conversation, and esteemed an excellent companion. He was endued with a great regard to truth; and was such an enemy to disguise, that he thought it his duty to speak lis thoughts at all tines with unrestrained freedom. Hence his sentiments on men and opinions, his friendship or disnogard, were expressed without reserve; a sincerity which raised him many enemies.
A blind man, moving in the sphere of a mathematician, seems a plienomenon difficult to be aecounted for, and has excited the admiration of every uge in which it has appeared. Tully mentions it as a thing scarce credible in his own master it philosophy, Disdotus; that he exercised himself in it with more assiduity ufter he became blind ; and what he thought next to improssible to be done without sight, that he professed geometry, describing his duazrams so exactly to bis scholars, that they could draw every line in its proper direction. St. Jerome relates a still more remarkable instance in Didymus of Alexandria, who, thnugh blind from his infancy, and therefore ignorant of the very letters, not only learned logic, but geometry also to very great perfection, which secums most of all to require sight. But, if we cunsider that the itleas of extended quantity, whicls are the chief objects of mathematics, may as well be acquired by the sense of feeling as that of sight, that a fixerl and steady attention is the pritlcipal qualification for this study, and that the blind are by necesaty more abstracted than uthers (for which reason it is said that Hemocitus put out his cyen, that he might think more intensely), we shall perbaps fud reason to suppose that there is no branch of scieuce so much adapted to their circumstances.

At first, Dr. Saunderson acquired most of his ideas by the sense of feeling; and this, as is commonly the case with the blind, he enjoyed in great perfection. Jet he could not, as sone are said to have done, distinguish colours by that sense; for, after having made repeated trials, he used to say, it was pretending to impossibilities. But he could with great nicety and exactness observe the smallest degree of roughness or defect of pulish in a surface. Thus, in a set of Roman medals, he disunguished the genuine from the false, though they had been counterfeited with such exactness as to deceive a connoisseur who hat judged by the cye. By the sense of feeling aloo, he distingurshed the least variation; and he las been seen in a gatden, when observations have been making on the sun, to take notice of every cloud that interrupted the obrervation almost as justly as they who could see it. Ile could also tell when any thing was held wear his face, or when be pased by a tree at no great divtance, merely by the difietent impulse of the air on his face.
lis ear was alsu equally exact. He could readily distinguish the 5th part of a note. By the quickuess of this sense lie could jurge of the size of a room, and of his distance froin the wall. And if ever he walked over a pavement, in courts or piazzas which reflected a sound, and was atterwards conducted thither agaia, be could tell in
what part of the walk he stood, merely by the note it sounded.

Dr. Saunderson had a peculiar method of performing arithuetical calculation, by an ingenious machine and methon, which is particularly deseribed in a pisce prefixed to the first volunie of his Algebra. That he nas able to make long and intricate calculations, both arithmetical and algebraical, is a thing as certain as it is wonderful. Ile bad contrived fur his own use, a commodious notation for any large numbers, which he could express on his abacus, or calculating table, and with which he could readily peiform any aritbuctical toperations, by the suse of feeling only, for which reason it was called his palpable Arithmetic.

His calculating table was a smooth thin board, a little more than a fout square, raised upon a smull frame so as to lie bollow; which board was divided into a great number of littic syuares, by lines intersecting one another perpendiculatly, and parallel to the sides of the table, and the parallel ones only one-tenth of an inch from each other; so that every square inch of the table was thus diviled into 100 little squares. At every point of intersection the board was perfurated by small holes, capable of receiving a pin; lor it was by the belp of pins, stack up to the head ihrough these boles, thut he expressed his numbers. He nsed two kinds of pins, a latger and a smaller sort; at least their heuds were different, and might casily be distinguished by feeling. (1) these pins he had a large quantity in two boxis, with their points cut off, which always stond ready before him when he calculated. The writer of that account describes particularly the whole process of using the machine, and concludes, " He could place and displace his pins with incredible nimbleness and facility, much to the pleasure and surpnze of all the beholders. He could even break off in the middle of a calculation, and resume it when be pleased, and could presently know the condutinn of it, by only drawing his fingers gently over the table."

SAURIN (Joseph), an ingenious French mathematician, was born in 1659 , at Courtaison, in the principality of Orange. His father, minister at Grenoble, was a man of a very studious disposition, and was the first preceptor or instructor to our author; who made a rapil progress in his studics, und at a very carly age was admitted a minister at Eure in 1)auphniy: but preaching an offensive serinon, he was obliged to quit France in 1683 . On this occasion he retired to Geneva; whence lie went into the State of Berne, and was appointed to a living at Yverdun. He was no sooner established in this his situation, than certain theologians raised a clumour ngainst him. Saurin, disgusted with the controversy, and still more with the Swiss, where bis talents were buried, passed into Holland, and from thence into France, where he put himself under the protection of the celebrated Bussu, to whom he made hiis abjuration in 16yo, as it is suspected, that he might find protection, and have an opprortunity of cultivating the sciences at l'aris. And in this be was not disappointed: he met with many flattering encouragements; was even much noticed by the king, had a pension from the court, and was admitted of the Academy of Sciences in 1707, in the quality of geometrician. This science was now his chief study and delight ; with many writings upon which he enriched the volums of the Journal des Savans, and the Memoirs of the Academy of Sciences, These were the only works of this kind that he publisbed:
he was author of several other pieces of a controversial nature, against the celebrated Rousseau, and other antagonists, over whom, with the assistance of govenument, he was enubled th triumph. The latter part of his lific was spent more pueceably in cultivating the mathematicat sciences. He died the 29112 of Decenber 1737, of a lethargic fever, wi 78 years of age.

The character of Saurin was lively and impetuons, endued with a considerable degree of that noble inslependence and loftiness of manner, which is apt to be mastuhen for haughtiness or insolence; in consequence of which, his memory was attacked after his death, as his reputation had beell during his life; and it was even said he had been guiliy of crimes, by his own confession, that ought to have been punished with death.

Saurin's mathenatical and philosophical papers, printed in the Menonrs of the Acadrmy of Sciences, which are pretty numerntus, are to be fuund in the volumes for the years followint: vix, 1709, 1710, 1713, 1716, 1718, $1720,17: 2,1723,1725,1727$.

SaUlisidRr, (Horace Benkidict de), an ingenious philosspher, who was born at Geneva in 1740, nnd died in 1799 At the age of 21 he was clected philosuphical profess.rat Geneva, where he taught for 25 years, with grest puthic buncfit. He first vivited Paris in 1768 , and next examaned the discoveries of Montgoltier at Lyons; he then travelled through Holland, Belgium, England, and Italy. He visued the islund of Ellba, examined Vesuvius, and measured the crater of Etna. He invetted several instruments, in scientific operations. In his excursians among the Alps, he crossed them 14 times, nt 8 different places; and he asceuded to the summit of Mont Blanc, wiuse he could hardly breathe. He was made member of the Academy of Sciences at Paris, \& c. In the French revolution he was elected, on the union of lus country to France, to the Nutional Assembly; liut the disorders of the trmes ruined his littie fortune, and broke his heart.

Saussure was author of an Eulogy on his friend Bonnet, Svo: Dissertatio Physica de Igne: Inquiry on the, Bark of Leaves, \&c: Dissertatio Physica de Electricitate, Svo: Plan of Reform for the Cullege of Geneva: Description of the Electrical Feffects of Thunder: Essay on Hygrometry, 4to: Travels in the Alps, 4 vols. \$to, a valuable work: and other pieces.

SAUVEUR (Joseru), an eminent French mathematician, was bonn at La Fleche tie 94th of March 1653. He was absolutely dumb till he was seven years of age; and then the organs of speech did not disengage so effectually, but that he was ever after obliged to speak very slowly and with difficulty. He very carly discovered a great turn for mechanics, and was always inventing and constructing something or other in that way.

He was sent to the college of the Jesuits to study polite literature, but inade very little progress in poetry and eloquence. Virgil and Cicero had no charms for him; but he read with eagerness books of arithmetic and geometry. However, ho was prevailed on to go to Paris in 1670 , and, being intended for the church, there be applied himself for a time to the study of philosophy and theology; but still succeeded no better. In short, mathematics was the only study be had any relish for, and this he cultivated with extraordinary success; for during his coorse of philosophy, he learned the first six books of

Euclid in the space of a month, without the help of a master.

As he had an impediment in his voice, though otherwise endued with extraurdinary abulities, he was advised by M. Bussuet, to give up all disigns for the church, and to upply hinself to the study of physic: but this being utterly against the inclination of his uncle, from whom be drew his principal resourcts, Sauveur determined to devote himmilf to his favourite science, and to perfect himself in it, so as to teach it for his support; and in effect lee soon becume the tashionable preceptor in mathemalics, so that at 23 years of age he had prince Eugene for his scholar. - Ile had not yel read the geometry of Descartes; but a foreigner of the first quality desising to be taught it, he made bimsedf mavere of it in an inconceivably smatl space of time. - Basset bring a fushionable game at that time, the marguis of Dangrau asked him for some calculations relacing to it, which gave such satisfaction, that Sauveur had the honour to explacin them to the hing and queell.

In 1081 he was sent with M Mariote to Chantilli, to make some experiments upon the waters there, which he did with much upplause. The frequert visits lie made to this place inspred biun with the slesign of writing a treatise on fortification; and, if order to join practice with theory, lie went to the siege of Muns in 1691, where he continued all the while in the trenches. With the same view also he visited all the towns of Flanders: and on his retum lie became the mathematician in ordinary at the court, with a pension for life--lit 1680 he had been chosen to teach mathemntics to the pages of the Dauphiness. In 1 (186 he was appointed mathematical professor in the Hoyal College. And in 1696 adonitted a member of the Academy of Sciences, where he was in high esteem with the members of that society. - He became also particularly acquainted with the prince of Condé, from whom he received many marks of favour und affection. Finally, M. Vaubun baving been ruade marshal of France, in 1703, he proposed Sauveur to the hing as his successor in the office of examiner of the engineers; to whict bis majesty agreed, and honoured him with a pension, which our author enjoyed till his desth, which happened the 9th of July 1716 , in the 64th year of his age.
Sauveur, in bis character, was of a kind obliging disposition, of a sweet, uniform, and unafiected temper; and though his fame was pretty generally spread abroad, it did not alter his humble deportment, and the simplicity of his manners. He used to say, that what one man could accomplish in mathematics, another might do also, if he chose it.
An extraordinary part of Sauveur's character is, that though he had neither a musical voice nor ear, yet he studied no science more than music, of which he composed an entire new system. And though be was obliged to borrow other people's voice und ears, yet he amply repaid them with such demonstrations as were unknown to former musicians. He also introduced a new dietion in music, more appropriate and extensive. He invented a new doctrine of sounds; and was the first that discovered, by theory and experiment, the velocity of inusical strings, and the spaces they describe in their vibrations, under all circumstances of tension and dimensions. It was he also who first invented for this purpose the monochord and the echometer. In short, be pursued his researches evell to
the music of the ancient Greeks and Romans, to the Arabs, and to the very 'Iurks and Persians; so jealous was he, lest any thing should escape him in the science of sounds.

Sauveur's writings, which consist of pieces rather than of set works, are all inserted in the volumes of the Memoirs of the Academy of Sciences, from the ycar 1700 to the ycar 1716, on various geometrical, mathematical, philosophical, and musical subjects.

SCALI:, a mathematical instrument, consisting of certain lines drawn on wood, metal, ivory, \&c, divided into various parts, either equal or unequal. It is of great use in laying down distances in proportion, or in measuring distances already laid down. There are scales of various kinds, accommodated to the several uses: the principal are the Plane Scal", the Diagonal Scale, Guiter's Scale, and the Pletting Scale.

Plane or Plain Scale, a mathematical instrument of very extensive use and application; which is commonly made of a feet in kngth; and the lines usually drawn upon it are the following, viz,

1 Lines of Equal Parts, and marked E. P.

1. The lines of cqual parts are of two kinds, viz, simply divided, and diagonslly divided. The first of these are formed by drawing three lines parallel to one another, and dividing them into any number of equal parts by short lines drawn across them, and in like manner subdividing the first division or part into 10 other equal small parts; by which, numbers or dimensions of two figures may be taken off. On some rulers, several of these scales of equal parts are ranged parallel to each other, with figures set to them to show into how many equal phrts they divide the inch; as $20,25,30,35$, $40,45,8 c$. The 2 d or diugonal divisions are formed by drawing elvenu long parallel and equidistant lines, which are divided into equal parts, und crossed by other short lines, as the former; then the first of the equal parts have the two ontermest of the eleven parallels divided into 10 equal parts, and the points of division being connected by lines drawil diagonally, the whole scale is thus divided into dimensions or numbers of three places of figures.

The other lines upon the scules are such as are commonly used in irigonometry, navigalion, astronumy, dialKing, progection of the splisere, 太e, $\mathbb{N C}$; and their constructions are mostly taken from the divasions of a circle, as follow:

Deocribe a circle with any convenient radius, and quarter it by drawing the diameters AB and DE at right anyles to rach other; continue the diameter $A B$ out to wards r, nud draw the tangent line ec parallel to it ; also dran tive chords ad, DB, Be, EA. Thell,
2. Fir the line of chords, divids a quadrant ax into 90 equal paris; on \mathbf{z} atm a conire, with the compasses transfer these divisions to tiec choril line en, which mark with the corresponding numbers, and it will become a line of chords, to be iransferred to the raler.

3. For the line of rhumbs, divide the quadrant ad into 8 equal parts: then with the centre a transfer the divisions to the chord $A n$, for the line of rhumbs.
4. For the line of sines, through each of the divisions of the arc BE, draw right lines parallel to the radius $B C$, which will divide the radius ce into the sines, or versed sines, numbering it from c to E for the sines, and from g to c for the versed sines.
5. For the line of tangents, luy a ruler on c, and the several divisions of the arc BE , and it will intersect the line eg, which will become a line of tangents, and numbered from e to G with $10,30,30,40, \$ \mathrm{sc}$.
6. For the line of sccants, transfer the distances betweell the cemre c and the divisions on the line of tangents to the line mf, from the centre c, and these will give the divisions of the line of secants, which must be nume bered from is towards \mathbf{r}, witb $10,20,30, \& \mathrm{c}$.
7. For the line of semitangents, lay a ruler on D and the several divisions of the are EB, which will intersect the radius CB in the divisions of the senitangents, which are to be marked with the corresponding figures of the arceb.

The chicf uses of the sincs, tangents, secants, and semitangents, are to find the poles and centres of the several circles represented in projections of the sphere.
8. For the lure of longitude, divide the radius $C D$ into 60 equal parts; through each of thesw, parallels to the radius be will intersect the arc $B D$ in as many points: from D as a centre the divisions of the arc BD being trans-
ferred to the chord ab, will give the divisions of the line of longitude.
If this line be laid upon the sale close to the line of chorels, theth inverted, se that 60° in the scale of longitude be against 0^{0} in the chords, \&e; and any degree of latitude be counted on the chords, there will stand opposite to it, in the line of longitude, the, miles contained in one drgree of longitude, in that latitude; the measure of 1 degree under the equator being 60 geographical milen.
9. Fur the line of latitude, lay a ruler on \mathbf{B}, and the several divistons on the sines on CE, and $i t$ will intersect the arc $A E$ ill as many points; on A as a centre transfer the inturections of the arc AE to the chord AE, for the line of laturde.

Sce alon R1.bertson's Description and Use of Mathematical lustruments.

Diagomal scale. See the article 1 , above.
Decumal, or Gunter's, or Ploting, or Proportional, or Reducing scalv. See the several artucles.

Scale, in Architeeture and Geography, a line divided into equal parts, placed at the Gotwoin ot a map or draught, to serve as a cosminon measure ta all the parts of the building, or all the distances and places of the map

In maps of largc tracts, ins kingdoms and proviuces, \&cc, the scale usually consists of miles: whence it is denominated a scale of miles.-In more patticular maps, as those of manors, \& c, the scale is usually of chains \&c. The scales used in draughts of buildings mostly consist of modules, feet, inches, paims, fathoms, or the like.

To find the distance between two towns \& c , in a map, the interval is taken in the compasses, and set off in the scale; and the number of divisions it includes gives the distance. The same method serves to find the height of a story, or other part in a design.

Fromt Scale, in Perspective, is a right line in the draught, parallel to the horizontal line; divided into equal parts, reproenting feet, inches, \&c.

Flying Scale, is a right line in the draught, tending to the point of view, and divided into unequal parts, representing feet, inches, \&c.
Differential Scale, is used for the scale of relation subtracted from unity. See Series.

Scale of Notation, is the order of progression on which any system of arithmetic is founded; es the Binary Scale, Quartenary, Sexenary, Denary, Duod-nary, \&c.

The deuary, or decimal scule, is that on which our present notation is establisbed, and by which the value of our numerical characters increase in a tenfold proportion, from the right hand towards the left, the number of characters employed beid ten. In the binary scale, there are only two characters, namely 1 and 0 ; and generally, for any scale of notation, the number of characters necessary for expressing a given quantity, will never exceed the radix of that system.

The following exampics will give some idea of the use of the different scales.

Soutc.	Numb,	Progressions,		xpresnon.
Binary - .	$101110=$	$\times 2^{2}+1 \times 2$		46
Ternary -	121201	+1 $\times 3^{2}+4 \times$		431
Quinary $-411402=4 \times s^{3}+1 \times s^{3}+3 \times s^{3}+4 \times s^{2}+0 \times 3+2=1: 602$ Semenary - $332+12=5 \times 6^{3}+3 \times 6^{4}+2 \times 6^{2}+4 \times 6^{2}+1 \times 6+8=43332$				
Decimel.	17844	$10^{2}+8=10^{6}+$		17944
Duoderary	$7846=$	128 $+4 \times 12+$	$=13303$	

For more on this subject, see Noration.
Scale of Retation, in Algebra, an expression denoting the rulation of the terms of recuring series to each other. Sce Senifs.
Hour Scale. See Hour.
Scale, in Music, is a denomination giren to the arrangement of the six syllables, invented by Guido Araunu, au re mi fa sot la ; called also gammut. It is called scale, or ladder, because it represents a kind of ladder, by means of which the wice rises to acute, or sinks to grave ; wach of the six syllables being as it were one step of the ludder.
Scale is also used for a suries of sounds rising or falling tonards acutchess or gravity, from any given pitch of tune to the greatest distance that is fit ur practicable, through such intermedtate degrees as to make the succession movt agrevable and pertect, and in which we have all the harmonical intervals most commodiously divided. -The scale is otherwise called an Universal System, as including all the particular systems belonging to music. Soe System - There wire three different scales in use among the ancients, which hal their denuminatians from the three several kinds of music, viz, the Diatunic, Chromatic, and Inharnonic ; which ser.

SCALENE, or SCalen ous Tiungle, is a triangle whose sides and angles are all unequal.-A cylimeder or cone, whuse axis is oblique or inelned to its base, is also said to be sralenous: though mure frequently it is called oblique.
SCALIGER (Joseph Justus), a celebrated Freach chronologer and critic, was the son of Julius Casar Scaliger, and born at Agen iu lirance, in 1540 . He studied in the college of Buurdcaux; after wlich his tather took him ualer his oun care, and emplnyed him in transcribing his poems; by which nocans be obtuined such a taste -for poetry, that before be was 17 gears of age he wrote a tragedy on the subject of Oedipus, in which he introduced all the puetical ornamens of style and sentimem.
His father oying in 1558, he went to Paris the year following, with a design to apply himscli to the Greck tongue ; for which purpose he for two months attended the lectures of Jurnebus; but finding that in the usual course be should be a long time in gaining tiv point, he shut himself up in lis closet, and by constant application for two years gained a perfect knowledge of the Greek language. After which he applicd himelf to the Hebrew, which he learned by himsell with great facility. And in like manner he ran through many other lanqugges, till be could speak, it is said, no less than 13 ancient and modern tongues. life made no less progress in the sciences; and bis writings pracured him the reputution of one of the greatest men of that or any other age? He embruced the reformed religion at 22 years of age: and in 1563 , be attached himself to Lewis Castcignier de la Roclı Pazay, whom he attended in several journeys. And, in 1593, the curators of the university of Leyden invited bim to an honorary professorship in that university, where be lived 16 years, till he died of a dropsy in 1609 , at 69 years of age.

Scaliger was a man of great temperance; was never married; and was so close a student, that he often spent whole days in his study without cating: and though his circuastances were always very narrow, he constantly refused the presents that were officred him.

He was author of many ingenious works on various subjects. His elaborate work, De Emendatione Tempo-
mm ; his exquisite animatvenions on Eusebius ; with his Cnnon lyagogicus Chronologiee; and his eecurate comment opari Manilius's Astronomicon, sufficiently évince hus knotwledge in astronomy, and other branches of learning, among the sucients, and who, according to the opinion of the celebrated Vieta, was far superior to any of that age. And he bad no less a character given bim by the learned ('anaubon,-He wrote Cyclometrica et Diatriba de Equinoctiorum Anticipatione. Also notes upon Seneca, Varm, and Ausonius ' Puems. But that which above all things renders the name of Scaliger memorable to posterity, is the iavention of the Julian period, which consists of 7980 years, being the continued product of the three cycles, of the sun 28, the muen 19, aud Roman indiction 15. This feriod bad its beginning fixed to the 76th year before the creation, and is not yot completed, and comprehends all other cycles, periods, and epochas, with the times of all monorable actions and histories. The collections intitted Scaltgerians, were made from his conversations by one of his friends; and being ranged in alphabetical order, were publithed by Isaac Vossius.

SCANTLING, a measure, site, or standard, by whicb the dimensious sce of things are to be determined. The torm is particularly applided to the dimetsions of any pitece of timber, with ngard to its breadth and theckness.
SCAPEMENT, in Clock-work, a generat term for the manner of communicating the unpolse of the whecls to tho pendulum. The ordinary scapements consist of the swing-wheel and pallets only; but modern improvements have added other levers or detelts, chiefly for the purposce of diminishing friction, or for detaching the pendulum from the pressure of the whecls during part of the ture of its vibration. Notwithstanding the very great impostance of the scapement to the perfurinance of clocks, no material improvetrent was made is it from the firstappliemion of the pendulun to clacks, to the days of Mr. George Graham; nuthing more was attempted before bis titae, than to apply the impulse of the swing-whel, in such manner us was attended with the least friction, and would give the greatest motion to the pendulum. Dr. Halley discuvered. by some esperiments made at the Royal Observatory at Greenwich, that by adding more weight (1) the pendulum, it was made to sibrate larger ares, and the clock went faster: by diminishing the weight of the pendulum, the vibrations became shorter, and the clock sent slower; the result of these experiments being diametrically opprsite to what ought to be expected from the theory of the pendulum, probably first roused the attention of Mr. Grabam, and led him to such further trialsas convineed him, that thes seemeng paralot was occaxioned by the retrograde motion, which wis given to the swing-wheel by erery construction of scapemens that was a! that time in use; and his great angacity soon produced a remelly for this defect, by constructing a scapement which preo vented all recont of the wheelis and restored to the clock pendulum, wholly in theory, and nearly in praciice, all its natural propertu's in its detached siroplestate ; this scapement was nemed by fis celebrated inventor the Dead Beat, and its great superiority was so univemally acknorledged, that it was soan introluced into general use, and still corb tinues in oniversal esteem. Tho importance of the scapement to the aceurate going of clocks, was hy this improvement rendered sor ungueatiomable, that artists of the first rate all over Europe, were forward in producing each his particular construction, as may be seen in the worths of

Thiout l'ainé, M. J. A. Iepunte, M. le Ros, M. Ferdinand Bertour, and Mir. Cummings' Elements of Clock and Watchwork, in which we bave a minute description of several new and ingeaious constructions of scapements, with an investigation of the principles on whicb their clain to merit is founded; also a comparative view of the advabtages or defects of the several constructions. Resides the scapements described in the abose works, many curious conztructions hase been produced by eminent artists, who have not published any account of them, nor of the motives which have induced each to prefer his favourite construction: Mr. Harrison, Mr. Hindley of York, Mr. Ellicot, Mr. Mudgr, Mr. Arnold, Mr. Whiteburst, and many other ingerious artists of this country, have made scapements of hetr and peculiar constructions, of which we are unable, for the above reason, to give any further account than that those of Mr. Harrison and Mr. Hindley had scarce any friction, with a certain mode and quantity of recoil; those of all the other gentlemen, we believe, have been on the principle of the dead beat, with such other improvements as they severally juilged most conducive to R good performance.
Count Brubl published, in 1794, a small pamphlet, "On the Investigation of Astronomical Circles," to which be has annexed, "A Descripsion of the Scapement in Mr. Mudge's first Timekeeper, drawn op in August 1771 ." Befure entering opon the deacription, the count premises a few obsersations, in one of which he recognizes a bint concerning the neture of Mr. Mudge's scapenernt, thrown out by this artist in a sunall tract printed by him in the year 1763 , which is this: "The force derived from the mainspring should be made as equal as possible, by making the matakpring wind up unother smailer spring at a less distance from the batance, at short imtervals of time. I think it would not be impracticable to make it wind up at every vibration, a small spring similar to the pendulum spring, that should irumediately act on the balance, by which the whole force acting on the balance would be redoced to the greatest simplicity, with this aivantage, that the force would increase in proportion to the arch." From this bint, Count Bruhl is surprised that no other artists have taken up Mr. Mudge's iovention. = He then gives the description of that invention, in the pamphlet above-mentioned.

For a detailed account of Miulge's scapement, and other inventions of this kind, see Gregory's Mechanics, vol. 2, pa. 329.

SCARP, in Fortification, the interior slope of the ditch of a place ; that is, the slope of that side of a ditch which is next to the place, or on the outside of tbe rampart at its fout, facing the champaign of opetil country. The slope on the outer side of the ditch is called the Counterscarp.

SCENOGRAPHY; in Perapective, the perspective representation of a body on a plane; or a description and sicw of it in all its parts and dimensens, such as it appears to the eye in any obleque view. This differs essentially from the ichnography and the orthography. The ichnography of a building \&ce, represents the plan or ground wori of the butding, or section parallel to it; and the orthography the elevation, or frons, or one side, alvo in its natural dimensions; but the scenography exhibits the whole of the building that appears to the eye, frunt, sides, height, and all, not in their real dimengions or cixtent, but raised on the geonetrical plan in perspective-In architecture and fortification, scenography is the manner of do-
lineating the several parts of a building or fortress, as they are represented in perspective.

To exhibit the Scenograrity of any body. 1. Lay down the basis, ground-plot, or plan, of the hody, in the perspective ichnography, that is, draw the perspective appearance of the plan or basement, by the proper rules of perspective. 2. Un the several points of the satd pierspective plan, raise the perspective heights, and connect the tops of them by the proper slope or oblique lines. So will the scenography of the body be completed, when a proper shade is adhled. Se Pehspective.

SCIIEINER (Cnuistorner), y considerable German mathematician and astronomer, was born at Mundeilheim in Schwaben in 1575 . He entered into the suciety of the Jestits at 20 years of age ; and afterwands tanglat the Hebrew tongue and the mathematics at Ingolstadt, Friburg, Brisac, and Rome. At length be lecame confessur to the archduke Charles, and rectur of the college of the Jesuits at Neisse in Silesia, where he died in 1650, at 75 years of age.
Scheiner was chicfly remarkable for being one of the first, though not the very first, who observed the spots in the sun with the telescope; for his observations of those spots were first made, ut Ingolstadt, in the latter part of the year 1611, whereas Galileo and Harriot both ubserved then in the latter part of the year before, or 1610. Scheiner continued bis observations on the solar phenomena for many years afterwards at Rome, with great assiduity and accuracy, constantly making drawings of them on paper, describing their places, figures, magnitude, revolutions, and periods, so that Ricciolidelivered it as his opinion that there was little reason to hope for any better observations of thuse spots. Descartes and Hevelius also say, that, in their judgment, nothing can be expected of that kind more satisfactory. These observations were published in one volume folio, 1630, under the title of Iosa Ursina, \&c c; almost every page of which is adorned with an image of the sun with the spots. He wrote also several smaller pieces relating to mathematics and philosophy, the principal of which are,
2. Oculus, sive Fundamentum Opticum, \&cc; which was reptinted at London, in 1652, in 4to.
3. Sol Eclipticus, Disquisitiones Mathematics.
4. De Controversiis et Novitatibus Astronomicis.

SCHEME, a draught or representation of any geometrical or astronomical figure, or problem, by lines seusible to the eye; or of the celestinl bodics in their proper places for any moment; otherwise called a diagram.

Scheme Arches. See Arcin,
SCHOLIUM, a note, remark, or annotation, occasionally made on somé passage, proposition, \&c.

The term is much used in geometry, and other parts of the mathematics; where, after demonstrating a proposition, it is used to point out how it might te done some other way; or to give some advice or precaution, in order to prevent mistakes; or to add some particular use or epplication of it.

Wolfius has given abundance of curious and usefularts and methods, and a good part of the modern philosuphy, with the description of mathematical instruments, dec; nll by way of scholia to the respective propositions io lid Elemenia Mathescos.

SCHONER (Joun), a noted German philosopher and mathematician, was born at Carolostadt in the year 1477, and died in 1547, at 70 years of age,-II is early propen-
sily to those sciences may be decmed a just prognostication of the grent progress wbich he afterwards made in trom. From his uncommon acquirements, he was chosen mathematical professor at Nuremburg when be was but a younz man. He wrotea great many works, and was particularly celebrated for his astionomical tables, which he published aficr the manner of those of Ilegiomontanus, und to which he gave the title of Resolutar, on account of their clearness. But notwithstanding his great knowlidger, he was, after the custom of the thmes, uluch addicted to juricinl astrolugy, which be took grat pains to improve. 'The list of his uritings is cisiefl) as follows:

1. Three Bowhs of Judicial Astrology.
2. The Astronomical Tiables named Resoluta.
3. De Usu Globi Steiliferi; De Composinione G obi Curlestis; De Usu Globi Terrestris, et de Compositione cjusdem.
4. Aiquatorium Astronomicum.
5. Libellus de Distantiis Locorum per Instrumentum et Numeros Investigandis.
6. De Compositiune Torqueti.
7. In Constructionem et Csum Rectanguli sive Radii Astrononnici Annotationes.
8. Ilorarii Cylindri Canones.
9. PJanispherrium, seu Meteoriscopium.
10. Orgatiura Uranicum.

11: Instrumentum Impedimentorum Lunx.
All printed at Nuremburg, in folio, 1551.
Of these, the large treatise of dialling rendered him more known in the learned world than all bis other works besides; in which he discovers a surprisitug genius and fund of learning of that kind.

SCHOOL, a place where languages, or arts and sciences, \&c, are taught.

Scrool is also used for a whole faculty, university, or seet; as Plato's school, the school of Epicurus, the school of Paris, \&c. The school. of Tiberias was celebrated amoug the ancient Jews; und it is to this we owe the Massora, and Massoretes.

School. Philosoply, \& c. the same with scholasic.
SCHIOOTEN (FuANC13), was a professor of mathematics at Leyden, being a very acute and respectable proficient in that scicnce. He published, in 1649, an edition of Descartes's Geometry, wilh learned and claburate annotations on that work, as also those of Beaume Hudde, and Van Ileauralt. Scbooten published also two very useful and learned works of his own cumpositions, viz,

1. Principia Matheseos Univers. \& c, 4to, 1651.
2. Exercitatioscs Mathematice, 4to, 1657.

SCLAGRAPHI, or Sciogataits, the profile or vertical section of a building; used tu show the inside of it.

Sciaonsfily, in Astronomy \&ce, is a term nsed by some authors for the art of finding the hour of the day or, night, by the shadow of the sun, moon, stars, \&c. See Dial.
SCIFNCE, a clear and certain knowledge of any thing, founded on dermonstration, or on self-evident principles. In this sense, doubting is opposed to science; and opinion is the middle between the two.

Scrence is more particularly used for a formed system of any branch of knowledge, comprehending the duetrine, reason, and theory of the thing, without any imnuediate application of it to any uses or oflices of life. And ia this sense, the word is used in opposition to art.

5 C 0

[36
362]
Sco

Science may be divided into three classea: First, the knowledge of things, their constitutions, properties, and operations, whether material or inmaterial. And this, in n little more enlarged sense of the word, may be called physics, or natural philosophy. Secoutly, the skill of rightly applying our own powers and actions for the attainment of good and useful things, as Ethics. Thirdly, the doctrine of signe ; as words, logic, \&c.

SCIENTIFIC, or Scievtifical, something relating to the pure and sublimer sciences; or that abounds in science, or knowledge. A work, or metbot, \&c, is said to be scientifical, when it is founded on the pure reason of things, or conducted wholly on the principles of them. In which sense the word stands opposed to narrative, arbitrary, opinionative, positive, tentative, Rcc.

SCIOPTIC, or Scioptate Ball, a sphere or glohe of wood, with a circular hole or perforation, where a lens is placed. It is so fitted that, like the eye of an animal, it may be turned round every way, to be used in making experiments of the darkened room, or camera obscura.

sciolprrics. Sce Camera Orscura.

sCIOTIIERICUM Telescopium, is an horizontal dial, udapted with a tolescope for observing the true time both by day and night, to regulate and adjust pendulum clocks, watebes, and other ti-nc-keepers. It was invented by Mr. Molyneux, who published a book with this title, which contains an accurate deseription of this instrument, with all its uses and applications.

SCLEROTICA, one of the common membranes of the eye, on its hinder part. It is a largy, thick, firm, hard, opaque membrane, extended from the external circumference of the cornea to the optic nerve, and forms much of the greater part of the external glube of the cye. The sclerotica and the cornea compose the case in which all the internal couts of the eye and its bumours are contained.

SCONCES, small forts, built for the defence of some pass, river, or other place. Some senced are made re gular, of four, five, or six bastions; others are of smaller dimensions, fit for passes, or rivers; and others for the ficld.

SCORE, in Music, denotes partition, "or she original Araught of the whole contprition, in which the s-veral parts, viz, the treble, second treble, bass, icc, are distinctly scored, and marked.

SCORPIO, the Scorpion, the 8 th sign of the zodiac, denoted by the character 7 I, being a rude design of the animal of that name.

The Greeks, who would be supposed the founders of astronomy, and who have, with that intent, applied some story or other of their own to every one of the constellatons, give a very singular account of the origin of this sign. They $t-l l$ us that this is the creature which kilted Orion; and according th them the famous hunter of that name boasted to Diana and Latona, that lie would destroy every animal that was upon the earth; the earth, they say, enraged at this, sent forth the poisonous reptile the seorpion, which insignificant creature stung him, that he died. Jupiter then ruised the scorpion to the heavens, giving him this place among the constellations; and that afterwards Diana requested of him to do the same honnur to Orion, which he at last consented to, but placed hitn in such a situanion, that when the scorpion rives, he sets.

But the E.gyptians, or whatever early nation it was that framed the zodiac, probably placed this puisonous reptrle
in that part of the heavens to denote that when the sun arrived at it, fevers and sicknesses, the maludies of autumn, would begin to rage. This they represented hy an animal whote sting was of such a nature as to occasion some of them; and it was thus they formed all the constellations.

The ancients allutted one of the twelve principal among their deties to be the guardian for each of the 12 signs of the zodiac. The scurpiod, as their history of it inade it u fierce and fatal animal that had killed the great Orion, fell naturally to the protiction of the god of war; Mars is then fore its tutelary deity; and to this single circumstance is owing all that jargon of the astrulogers, who tell us that there is a great analogy between the planet Mars and the constellation scorpir. To this also is owing the iloctrime of the alchymists, that iron, which they call Mars, is also under the dominion of the same constellation, and that the transmutation of that metal into gold can unly be performed when the sun is in this sign.

The stars in scorpio, in Ptolemy's catalogue, are 24 ; in that of Tycho 10, in that of Hevelius 20, but in that of Flamsteed and Sharp 44.

Scorpion is also the name of an ancient military engine, used chiefly in the defence of the walls, \&xc. Marcellinus descrites the scorpion, as consisting of two beams butund together by rupes; from the middle of which rose a third beam, so disposed, as to be pulled up and let down at pleasure ; and on the top of this were fastened iron book, where a sling was hung, either of iron or hemp; and uniler the third beam lay a piece of haircloth full of chaff, tied with cords. It had its name Scorpio, because when the long beam or tiller was erected, it had a sharp top like a sting.
'To use the engine, a round atone was put into the sling, and four persons on each side, loosening the beams bound by the ropes, drow back the ereet bean to the hook; then the engimer, standing on an eninence, gave a stroke with a hammer on the chord to which the beam was fastened with its hook, which set it at liberty; so that hitting against the soft hair-cloth, it struck out the stone with a great furce.

SCOTIA, in Architecture, a semicircular cavity or channel between the tores, in the bases of columns; and sometimes under the larmier or drip, in the cornice of the Doric order. The workmen oftell call it the casement, and it is also otherwise called the Trochilus.

SCOTT (George Lew19), a learned and respectable member of the Royal Society, and of the Board of Longitude. He was the eldest sun of Mr. Scott of Bristow, in Scotland, who married Miss Stewart, daughter of sir James Stewart, who was lord adrocate of Scotland in the time of K. William and Q. Anne. That lady was also his cousin-german, their mothers being sisters, and both daughters of Mr. Robert Trail, one of the ministers of Edinburgh, of the same family as the rev. Dr. Wm. Trail, the learned author of the Account of the Life and Writings of Dr. Rob. Simson, professor of mathematics at Glangow.

Mr. Scott (the father), with his family, lived many years abroad, in a public character; and he had three sons born while residing at the court of Hanover. The eldest of these was our author George Lewis, named (in both these nainis) ufter his godfather the Elector, who was afterwards George the Ist of Britain. Geo. Lewis Scott was a
gentleman of respeciable talents and general dearning; he was well skilled also in all the mathernatical sciences; for which he manifested at times a fine and critical taste, as may be particularly scen in some letters which, in the year 1764, passed in a literary correspondence betworn him and Dr. Simson of Glasgow, and inserted in Dr Trail's Account of the Life and Writings of Dr. Simson, pa. 113, \&c. Mr. G. L. Scolt was the author of the Supplement to Chambers's Dictionary, in 2 large folio volumes, which was much estecmed, and for which he reo ceived 1500 . from the booksellers, a considerable price at the time of that publicatinn. Mr. Scolt was sub-preocptor, for the Latin language, to his present Majesty, George the 3d, when Prince of Wales. After that he was appointed a commissioner of excise; a situation which his friends have considered as not adequate to his past deserts, and inferior to what he probably would have had, but for the freedom of his political opinions. Mr, Scott died the 7th of December, 1780.

SCREW, one of the six mechanical powers; chiefly used in pressing bodies close, though sometimes also in raising weights.

The screw is a spiral thread or groove cut round a cylinder, and everywhere making the same angle with the length of it. So that, if the surface of the cylinder, with this spiral thread upon it, were unfolded and stretched into a plane, the spiral thread would form a straight in* clined plane, whose length would be to its height, as the circumference of the cylinder is to the distance between two threads of the screw; as is evident by considering, that in making one round, the spiral rises along the cylinder the distance between the two threads.
Hence the threads of a screw may be traced upon the smooth surface of a cylinder thus: cut a sheet of paper into the form of a right-angled triangle, having its base to its height in the above proportion, viz, as the circumference of the cylinder of the serew is to the intended distance between two threads; then wrap this paper triangle about the cylinder, and the hypothenuse of it will trace out the line of the spiral thread.

When the spiral thread is upon the outside of a cylinder, the screw is said to be a male or convex one. But if the thread be cut along the inner surface of a hollow cylinder, or a round perforation, it is said to be female or concave. And this latter is also sometimes called the box or nut.
When motion is to be given to something, the male and female screw are necessarily conjoined; that is, whenever the serew is to be used as a simple engine, or mechanical power. But when joined with an axis in peritrochio, there is so occasion for a female screw; but in that case it becomes part of a compound engine.

The screw cannot properly be called a simple machine, because it is never used without the application of a lever, or winch, to assist in turning it.

Of the Force and Power of the Screw.

1. The force of a power applied to turn a serew round, is to the force with which it presses upwards or downwards, setting aside the friction, as the distance between two threads, is to the circumference where the power is applied.-For, the screw being only an inclined plane, or half wedge, whose beight is the distance between two threads, and its base the said circumference; and the force in the horizontal direction being to that in the vertical one as the lines perpendicular to them, siz, as the
height of the plane, or distance of the twn threads, is in the base of the plane, or circumference at the pluce where the power is applied; therefore the power is to the pressure, as the distance of two threads, is to that circamference.

Or the same may be otherwise shown thus. Since the momentum which any power generates, is equal to the momentum of that power; therefore the momentum of the screw, is equal to the momentum of the force applied to move it; which last is measured by the space passed over by the power in a given time. But this space is the circumference of a circle of which the lever is the radius, while the space passed over by the screw, in the same time, is only equal to the breadth of the threads, therefore the forec or power of the scren, is to the power applied to move it, as the space passed over by the screw, to the space passed over by the power; that is, as the breadth of the threads to the circumference where the power is applied.
2. Heace, when the serew is put in motion; then the power is to the weight which would keep it in equilibrio, as the velocity of the latter is to that of the furmer. And bence their two momenta are equal, which are produced by multiplying each weight or power by its own velocity. Two different forms of screw-presses, are as below.

3. Hence we can easily compute the force of any machine turned by a screw. Let the annexed figure represent a press driven by a screw, whose threads are each a quarter of an inch asunder; and let the screw be turned by a handle of 4 feet long from c to v ; then if the natural force of a man, by which he can lift, or pull, or draw, be 150 pounds; and it be required to determine with what force the serew will press on the board, when. the man turus the handle at C and D with his whole force: the diameter $C D$ of the power being 4 feet, of 48 inches, its circumference is 48×3.1416 or $150 \frac{4}{3}$ nearly; and the distance of the threads being f of an inch; therefore the power is to the pressure, as to $130 \frac{4}{3}$, or as 1 to $603 \frac{1}{\frac{1}{2}}$: but the power is equal to $1501 b$; therefore as $1: 603 \frac{1}{3}:: 150: 90480$; and consequently the pressure at the bottom of the screw, is equal to a weight of 90480 pounds, iadependent of friction.

But the power has to overcome, not only the weight, or other resistance, but also the friction of the screw, which in this machine is very great, in some cases equal to the weight itself, since it is sometimes sufficient to sustain the weight when the power is taken off.

Mr. Hunter has described a now method of applying the screw with advantage in particular caves, in the Pinins. Trans. vol. $71, \mathrm{pa} .58$ \&c. A brief account of which may also be seen in Gregory's Mechanics, vol. 1, pa. 99.

3 A 2

The Endless Screw, or Perpetual Screw, is one which works in, and turns, a dented wheel br , without a concave screw ; being so called because it may be tumed for ever, without coming to an end. From the following figures it is evident, shat while the screw turns once round, the wheel only advances the dlstance of one tooth.

1. If the power applied to the lever, or handle, of an endless screw AB, be to the weight, in a ratio compounded of the periphery of the asis of the wheel $E 11$, to the periphery described by the power in turning the handle, and of the revolutions of the wheel Dr to the revolutions of the screw CB, the power will balance the weight. Hence,
2. As the motion of the wheel is very slow, a small power may raise a very great weight, by means of an endless screw. And therefore the chief use of such a screw is, either where a great weight is to be raised through a small space; or where only a slow gentle motion is wanted. For'which reason it is very useful in clocks sod watches.
3. Having given the number of teeth, the distance of the power from the centre of the screw s , the radius of the axis uE, and the power; to find the weight it will raise. Multiply the distance of the power from the centre of the screw AB, by the number of the teeth, and the product will be the space passed through by the power, while the weight passes through a space equal to the periphery of the axis: then say, ws the radius of the axis is to the space of the power just found, so is the power to a 4 th proportional, which will be the weight the power is able to sustaiu. Thus, if $A \mathrm{Al}=\mathrm{S}$, she radius of the axis $\mathrm{H} \mathrm{E}=1$, the power 150 pounds, and the number of teeth of the wheel br 48 ; then the weight will be found $=21600$ $=3 \times 150 \times 48$. Whence it appears that the endless screw exceeds all others in increasing the force of a power.

Again, if the endless screw as be turned by the handle ac of 20 inches, the threads of the screw being each $\frac{1}{1}$ an inch distant; and the screw turns a toothed wheel e, whose pinion 1 urns another wheel p, and pinion 3 of this another wheel 0 , to the pinion or barrel of which is hung a weight w; it is required to determine what weight a man will be able to raise, with this machine, working at the bandle c ; supposing the diameters of the wheel to be 18 inches, and those of the pinion and barrel 2 inches; the teeth and pinions bring all of a size; and the man supposed, as in she former case, to be able to lift 150lbs, by his natural strengith.

Here $20 \times 3.1416 \times 2=125 \cdot 664$, is the circumference of the power.

And $12566 k: \frac{1}{2}$, or $251 \cdot 328: 1$, is the force of the screw alone.

Also $18: 2$, or $9: 1$, being the proportion of wheels to the pinions, and as there are three of them, therefure $9^{3}: 1^{3}$ or $729: 1$ is the power gained by the wheels.

Consequently (251.328×729): 1

Plate 58,
fig. 5. or 183218 : I nearly, is the ratio of the power to the weight, arising from the advantage both of the screw and the wheels. Hence 150×183218 $=27482700 \mathrm{lbs}$, is the weight which the man may sustain.

This must, however, only be considered as theoretical ; for in practice the friction, which is very great, must of course enter into cotsideration.
4. A machine for showing the power of the serew may be contrived in the following manner. Let the wheel c (last fig. former column), have a screw $a b$ on its axis, working in the teeth of the wheel D , which suppose to be 48 in number. It is plain that for every revolution of the wheel c, and screw $a b$, by the winch A, the wheel D will be moved one tooth by the screw; and therefore in 48 revolutions of the winch, the whel d will be turoed once round. Then if the ciscumference of a circle, described by the handle of the winch, be equal to the circumference of a groove e round the wheel D, the velocity of the bandle will be 48 times as great as the velocity of any given point in the groove. Consequently when a line a goes round the groove e, and has a weight of 48 lb hung to it below the pedestal EF, a power equal to one pound at the handle will balance and support the weight.

Archimede's Scnew, is a spiral pump, being a machine for raising water, first invented by him. Its strucsure and use will be understood by the following description of it. ABCD (PI. 28, fig. 6) is a wheel, which is turned round, according to the order of those letters, by the fall of water er, which need not be more than 3 fert. The axis a of the wheel is raised so as to make an angle of about 44° with the horizon; and on the top of that axle is a wheel $H_{\text {, }}$ which turna such anuther whel is of the same number of teeth; the axle x of this last wheel being parallel to the axle G of the two former whecls. The axle a is cut into a double threaded screw, as in the annexed figure (fig. 7), exnctly resembling the screw on the axis of the fly of a cominon jack, which inust be what is called a right-handed serew, if the first wheel turns in the direction a BCD; but a left-handed screw, if the stream turns the wheel the contrary way; and the screw on the axle o must be cut in a contrary way to that on the axle κ, because these axles tarn in contrary directions. These screws must be covered close over wihh boards, like those of a cylindrical cask; and then they will be spiral tubes. Or they may be made of tubes or pipes of lead, and wrapt round the axics in shallow grooves cut in it, as in figure 8. The lower end of the axle o turns constansly in the stream that turns the wheel, and the lower ends of the spiral tubes are open into the water. So that, as the wheel and axle are turned round, the water rises in the spiral tubes, and runs out at L through the holes m, N, as they come about below the axle. These holes, of which there may be any number, as 4 or 6 , are in a brond close ring on the top of the axle, into which ring the water is delivered from the upper open rnds of the screw tubes, and falls into the open box x. The lower end of the axle x turns on a gudgeon in the water in N ; and the splral tubes in that
axie take up the water from N, and deliver it into another such box under the top of \mathbf{E}; on which there inay be such anuther wheel as f , to turn a third axle by such a wheel upon it. And in this manner may water be raised to any proposed height, when ihere is a stream sufficient for that purpose to act on the broad float boards of the first whel. Archinedes's screw, or a still simpler form of $i t$, is also represented in fig. 9 .

SCROLLS, or Scrow ls, or Voluter, a term in Architecture. See Vor,utes.

SCRUPLE, the least of the weights used by the ancients. Among the Romans it was the $2+t h$ part of an ounce, or the third part of a drachm.

Sceuple is still a small weight among us, equal to 20 grains, or the Sd part of a drachm. Amung goldsmiths the scruple is 24 grains.
Scruple, in Cbronulogy, a small portion of time much used by the Chaldeans, Jews, Arabs, and other eastern people, in computations of time. It is the 1080 th part of an hour, and by the Hebrews called Helakin.

Scruples, in Astronomy, As
Scavples Eelipsed, denote that part of the moon's diameter which enters the shadow, expressed in the same measure in which the apparent diameter of the invon is expressed. Sce Digit.

Scruples of Hatj Daration, an arch of the moon's orbit, described by her from the beginning of an eclipse to its middle.

Scruples of Immersion, or Incidence, an arch of the moon's orbit, whieh her centre describes from the beginning of the eclipse, to the time when the centre falls into the shadow. See Impersion.

Schuples of Emersion, an arch of the moon's orbit, which ber centre describes in the time from the first emersion of the moon's limb, to the end of the eclipse.

SEA, in Geography, is frequently used for that vast tract of water edcompassing the whole tarth, more properly called occan. But

SEa is more properly used for a particular part or division of the occan, denominated from the countries it washes, or frym other circumstances. Thus we say, the Irish sea, the Mediterrancan sea, the Baltie sca, the Red sea, \&cc.

SBA among sailors is variously applied, to a single wave, or to the agitation produced by a multitude of waves in a tempest, or to their particular progress and direction. Thus they say, a heavy sen broke over our quarter, or we shipped a heavy sea; there is a great sea in the offing; the sea sets to the southward. Hence a ship is said to head the sea, whell her course is opposed to the setting or direction of the surges. A l.ong Sea implies a stearly and uniform motion of long and extensive waves. "On the contrary, a Short Sca is when they run irregularly, brokeu, and interrupted, so as frequently to burst over a vessel's site or quarter.

Properties and Affecrions of the S_{EA}.

1. General Motion of the Sea. M. Dassie of Paris, in a work long since published, has been at great pains to prove that the sea has a general motion, independent of winds and tides, and of more consequence in navigation than is usually supposed. He affirms that this motion is from east to west, inclining toward the north when the sun is on the north side of the equinoctial, but toward the south when he is on the soutb side of it. Phlos Trans, $\mathrm{No}_{\mathrm{N}} 135$.
2. Bason or Bottom of the Sea, or Fandus Maris, a term usell to express the bed or bottom of the sea in general. Mr. Buyle has published a treatise on this subject, in which he has given an account of its irregularities and various depths, foundied on the observations communicated to him by mariners.

Count Mansigli bas, since Boyle's time, given a more accurate account of this part of the globe. The materials which compose the bottom of the sca, may reasonably bo supposed, in some degrec, to influence the taste of its waters; and this autbor has made many experiments to prove that fossil coal, and other bitunimous substances, which are found in plenty at the bottom of the sea, may communicate in a great measure its bitterness to it.

It is a general rule among sailors, and is found to hold true in many insiances, that the more the shores of any pluec are steep and high, forming perpendicular cliffs, the deeper the sea is below; and that on the contraty, level shores denote shallow seus. Thus the deepest part of the Mediterranean is generally allowed to be under the height of Malta. And the obscrvation of the strata of earth and other fossils, on and near the sherres, may serve to form a good judgment as to the materials to be found in its bottom. For the veins of salt and of bitumen doubNiss run on the same, and in the same order, as we see them at land; and the sirata of rocks ihat serve to support the earth of hills and elevated places on shore, serve also, in the same continued chain, to support the immense quantity of water in the bason of the sea.

The coral fisheries have given occasion to observe that there are many, and those very large caverus or hollows in the bottom of the sea, especially where it is rocky; and the same cuverns are sometimes found in the perpendicular rocks which form the steep sides of those fisheries. These caverns are offen of great depth, as well as extent, and bave sometimes wide mouths, and sometimes only nurrow entrances into large and spacious hollows.

The bottom of the sea is covered with a variety of matters, such as could not be imagined by any but thoee who have examined into it, especially in deep water, where the surtace only is disturbed by tides and storms, the lower part, and consequently its bed at the bottom, remaining for ages perhaps undisturbed. The soundings, when the plunmet first touches the ground on approaching the shores, give some iden of this. The botton of the plummet is hollowed, and in that bollow there is placed a lump of tallow; which being the part that first touches the. ground, the soft nature of the fat receives into it some" part of those substances which it meets with at the bottom: this matter, thus brought up, is sometimes pure sand, sometimes a kind of sand made of the fragments of shells, beaten to a kind of powder, sometimes it is made of a like powder of the several sorts of corals, and sometimes it is composed of fragments of rocks; but besides these appearances, which are natural enough, and are what might well be expected, it brings up substanees which are of the most beautifut colours. Af.rsigli Hist. Phys. de la Mer.

Dr. Dunati, in all Italian work, containing an essay towards a naturul history of the Adriatic sea, printed at Venice in 1750, has related many curious observations on thiv subject, and which confirin the obscrvations of Marsigli. llaving carefully examined the soil and productions of the various countries that surround the Adriatic sea, and compared them with those which he took up from the bottom of the sea; be found that there is very

Jittle dintierence between the former and the intter. At the bottom of the water there are moumtains, plains, valleys, and caveras, similur to those upon land. The sil cunsists of different strata placed one upon another, and mostly parallel and correspondent to those of the rocks, islands, and neighbouring colltinents. They conaain stones of different Kinds, minerals, metals, various putrefied bodies, pomice stones, and lavan formed by volcanos.

One of the vbjects which most excited bis attention, was a crust, which be discovered under the water, compuscd of crustaccous and testaceous bodies and beds of polypes of different kiads, confusedly blended with eurth, sand, and gravel; the different-manne bodies which formthis crust, are found at the depth of a foot or more, entirely petrified and reduced iuto marble; thrao he supposes are naturally placed under the sea when it covers thero, and not by means of volcanos and eurthquakes, as sorne bave conjectured. On this account he imagios that the bottom of the sea is constantly rusing higher and higher, - with which other obvious causes of incrase concor; and from this rising of the bottom of the sea, that of its level or surface naturally results; in proof of which this writer cites a great aumber of facts. Philos. Trans, vol. 49, pa. 585.
3. Luminowancss of the Sca. This is a phenotuenon that has beell noticed by many nautical und philusophical writers. Mr. Boyle ascrities it to some cosmical law or custom of the terrestrial globe, or at least of the planelary vorfex.

Father kourzes, in his voynge to the Indies, in 1704, took partucular notice of this phenomenon, and very minutely describes it, without axigniog the true cause.

The Abbé Nollet was long of opinion, that the light of the sea prucceded from electricity; nad others have had rcourse to the same principle, ant shown that the lumsio nous points in the surface of the sea are protuced mercly by friction.

There are however two other hypotheses, which have been advanced to account for this phenomenon; the one of these ascribes it to tho shining of luminots insects or animalcules, and the other to the light proceeding from the putrefacupn of animal substances. The Abbe Nollet, who at first cousidered this laminousnoss as an electrical pbenomeson, baving had an opportunity of observing the circumstances of it , when he was at Venice in 1799 , relinquished his former opinion, and concluded tbat it was accasioned cither by the luminous aspect, or by some l quor or clliuvia of an ibsect which he particularly describes, though he does not altogether exclude other causes, and especially the spawn or fry of fisb.

Tbe same hyputhess had also occurred to M. Vianelli; and both he and Griactlini, a physician in Venice, bave given drawings of the insects from which they inagived this hoght to proceed.

A similar conjecture is proposed by a correspundent of Dr. Franklin, in a letter read at the Royal Society in 1756; the writer of which apprekends, that this appearance may be caused by a great number of little animals, floating on the surfuce of the seat. And Mr. Forster, ia his account of a voyage round the world with captain Cook, in the years $1772,3,4$, and 5 , descrites this phenumenon as a kiod of blaze of the ses; and, having attentively examinid some of the shining water, expresses his conviction that the appearance was oceasioned by innumerable suinute animals of a round shape, muving
through the water in all directions, which appear separately as so unny Iurainous sparks when taken up on the hand: be imagines that these smail gelatuons luninous spechs may be the young fry of ceriain species of sonne meduse, or blubber. And M. Dagelat nod M. Rigand obsersed several times, and in different parts of the ocean, such luminous oppearaboes by vast-masses of different animaitcules; and a few dryy wfor the sea was covered, near the coasts, with whole bonks of small fish in innemerable multatudes, which thry suppesed lad proceeded from the shiaing animalcules.

But M. le Roi, after giving much attention to this phenomenon, coucludes that it is botoceasioned by any shiss. ing insects, especially as, ufter carefully examining with a mictuscope sone of the luminous points, he foond theen to have no appearance of an animal; and he olso found that the mixıure of a little spirtt of wine with water just drawa from the sea, would give the appearance of a great number of littie sparks, which would contintue visible longer than those in the'nceen: the same effect was produced by all the acids, and various other liquora, M. le Roi is far from asserting that there are no luminous insects in the sea; for he nillows that several gentlemen have found them; but he is satisfied that the sca is lominous chiefly on some other account, though he dors not so much tw offer a conjecture with respect to the true cause.

Other authors, equally dissatisfied with the hypothesis of luminous insects, for explaining the phenomenon which is the subject of this urticle, have ascribed it to some substance of the phosphoric kind, arining, from putrefaction. The observations of F. Bourzes, above referred to, render it very probable, that the lominousness of the sea arises from finy and other putrescent matter, with which it abounds, though he does not meation the tendency to putrefaction, as a circumstince of any consequence to the appearance. But the experiments of Mr. Canton, which have the advantage of being eastly made, seem to leave no room to doubt that the Juminousness of the swa is chiefly owing to putrefaction. And his experiments confirm an observation of Sir John Pringle's, that the quantity of salt contained in sea water hastens putrefaction; but sigce that precise quantity of salt which promotes putrefaction the mosh, is less than that which is found in sea water, it is probable, Mr. Cantore ohserves, that if the sea were less salt, it would be more Jusairious. See P'bilos. Trans. vol. 39, pa. 446, and Franklin's Exper. and Observ, pa, 274.
4. Of the Depth of the Sea, its Swrface, itc.

What proportion the superficies of the sea bears to that of the land, is not accurately known, though it is said to be somewhat more than two to one. This ratio of the surface of the stes to the land, has been found by experiment tbus: taking the pristed paper map of covering of a terrestrial globe, with a pair of scissors clip out the parts that are land, and those that are water; then weighing thrse parts separately in a pair of fine scales, the land is found to be near f, and the water rather more than $\frac{3}{3}$ of the whole.

With regard to the profundity or depth of the sea, Viarenius affirms, that it is in sonse places unfathomable, and in athers very various, being in certain places from $\frac{1}{2}$ th of a mile to $4 \frac{1}{2}$ miles in depth, in other places deeper, but much less in bays than in oceans. In general, the deptbs of the sea bear a great analogy to the beight of mountains on the land, so far as is hitherto discuvered.

There is very good reason why the sea does not increase by means of rivers, \&c, running every where into it; siz, because the vapours raised from the sea, and fallugg in rain upon the tand, only cause a circulation of the water, but no increase of it. It has been found by calculations, founded on experiments, that in a summer's day, there may be raised in vapours from the surface of the Medrterranean sen, 528 millions of tuns of water; and yet this sea does not, from all its nine great rivers, receive more than 183 millious of tuns per day, which is but about a third part of what is exhausted in vapours; and this defect in the supply by the rivers, may serve to account for the coninual influx of a current by the mouth or straits at Gibraltar. Indeed it is rather probable, that the waters of the sea suffer a continual slow decrease as to their quantity, by sinking always deeper into the carth, by filtering through the fissures in the strata and component parts; as also by the slow increase and raising of the earth's surface.

SEASONS, certain portions or quarters of the year, distinguished by the signs which the sun then enters at those periods.

The year is divided into four seasons, spring, summer, uutuan, winter, which take their begimings when the sun enters the first point of the signs Aries, Cancer, Libra, Capricorn.

The seasons are well illustrated by fig. 1, plate x; where the candle at I represents the sun in the centre, about which the earth moves in the ecliptic abed, which cuts the equipoctial abed in the two equinuxes E and G . When the earth is in these two puints, it is evident that the sun equally illuminates both the poles, and mukes the days and nights equal in all parts of the earth. But while the earth muves from o by c to rf , the upper or north pole becomes more and more enlightened, the days become longer, and the nights shorter; so that when the earth is at ho, or the sum at 9 , our days are at the longest, as at niidsummer. While the earth moves frum ho by D to E , our days continually decrease, by the north pole gradually declining from the sun, till at e or autumn they become equal to the nights, or 12 hours long. Again, while the earth moves from a by A to p, the north pole beomes always more and more involved in darkness, and the days become shorter and shorter, till at F or E_{s}, when it is midwinter to the inhabitants of the northern sphere. Lastly, while the eurth moves from \mathcal{E} by B to G , the north parts emerge more out of darkness, and the days grow contioually longer, till at o the two poles are equally enlightened, and the days equal to the uights agnin. And so on continually year after year.

SECANT, in Geometry, a line that cuts another, whether right or curved: Thus the line PA or $\mathrm{PB}, \& \mathrm{c}$, is a secant of the circle $A B D$, because of their cutting it in the point r, or $\mathrm{c}, \& \mathrm{c}$. Properties of such secants to the circle are as follow :

1. Of several secants $P A, P B, P D$, \&c, drawn from the same point P, that - which passes through the centre c is the greatest; and from thence they decrease more and more as they recede
 farther from the centre; vir, PB less than PA, and PD less than PB, and so 0 D , till they arrive at the tangent at \mathbf{E}, which is the limit of all the secants.
2. Of these secants, the external parts $\mathbf{P r}, \mathrm{PO}, \mathrm{PH}, \& \mathrm{C}$,
are in the reverse order, increasing continually from \boldsymbol{F} to z, the greater sccant having the less external part, and in such proportion, that any secant and its external part are reciprocaly, or the whole is reciprocally as its exterial part, and consequently that the rectangle of every secant and its external part is equal to a constant quantity, viz, the square of a tangent. Thus,
$P A: \frac{1}{m}:: P B: \frac{1}{m}:: P D ; \frac{1}{m} \& C$,
or $\mathrm{PA} \times \mathrm{PY}=\mathrm{PB} \times \mathrm{PG}=\mathrm{PL} \times \mathrm{PH}=\mathrm{PK}^{2}$.
3. The tangent $P R$ is a mean proportional between any secant and its external part; as between Pa and Pr, or $P B$ and PG, or PD and Pu, dec.
4. The angle DPB, furmed by two secants, is measured Ly half the difference of ins intercepted arce DE und $G \mathbf{H I}$.
Sscast, in Trigonometry, denotes a right line drawn from the centre of a circle, and, cutting the circumference, proceeds till it meets with a tangent to the same circle. Thus, the line CD , drawn from the centre c, till it meets the tangent BD_{3} is called a secant ; and particularly the secant of the arc EE , to which BD is a tangent. In like manner, by producing de to meet the tangent $A d$ in d, then cd , equal to CD, is the secant of the arch $A E$, which is the supplement of the arch ne. So that aft arch and its sup-
 only the latter one is negative to the former, being drawn the contrary way. And thus the secants in the $2 d$ and 3 d quadrant are negative, while those in the Ist and 4th quadrants are positive.
The secant ct of the arc $\mathbf{\Sigma r}$, which is the complement of the furmer are ase, is called the Cosecant of aE, or the secant of its cumplement. The cosecants in the ist and 2 d quadrants are affirmative, but in the 3 d and 4th negative.
The secant of an are is reciprocally as the cosine, and the cosecant reciprocally as the sine; or the rectangle of the secant and cosime, and the rectangle of the cosecant and sine, are each equal to the square of the radius.
For cd:ce: : CB: $\mathbf{C H}$, or $\mathrm{s}: \mathrm{r}:: \mathrm{r}: \mathrm{c}$,
and $\mathrm{CI}: \mathrm{CE}:: \mathrm{CF}: \mathrm{CK}$, or $\sigma: r:: r: s$;
and consequently $r^{t}=c s=s \sigma$; where r denotes the radius, s the sine, c the cusine, s the secant, and σ the cosecant.
Some of the most useful trigononetrical formola, into which the secants and cosecants enter, are the following.

$$
\begin{aligned}
& =r \frac{V\left(r^{2}+\mathrm{cs}^{2}\right)}{\cot }=\frac{r}{\sin \cdot \cot }=\frac{\mathrm{recosec}}{\cot }
\end{aligned}
$$

The secant of the sum or difference of any two arcs a and b may be expressed as fullows:

$\operatorname{Cosec}(a \pm b)=\frac{\operatorname{coser} a \cos b}{\cot b \pm}$.
The secants of the multuple arcs are exhibited in the following formulae:
$\operatorname{Sec} a=\sec a$
$\operatorname{Sec} 2 a=\frac{\sec a}{2-\sec ^{5} \mathrm{~s}}$
circle; also the common intersection of the surfaces of two spheres, is the circumference of a circle; and the two commen sections of the surfaces of a right cone and a sphere, are the circumferences of circles if the axis of the cone pass through the centre of the sphcre, otherwise not; moreover, of the two common scrtions of a sphere and a cone, whether right or oblique, if the one be a circle the other will be a circle also, otherwise not. See my Tracts, vul. 1, tract 13, prop. 7, 8, 9.

The sections of a cone by a plane, are five; viz, a triangle, circle, ellipse, hyperbola, and parabola. See each of these terms, as also Conic Section.

Sections of buildings and bodies, \&cc, are either vertical, or horizontal, \&c. The

Angular Sections, is a term given by Vieta to the analyticyl investigation of the law of increase, or decrease, of the sines and chords of multiple and submultiple arcs. Vieta first published this ingenious theory in 1579, with his Caan Mathematicus, which is nothing more than a table of sines constructed according to this principle. He there shows that, if in the semicircle BCD\&c, there be taken any number of equal arcs, $B D, D E, E F, T G$, \&c; and if, we make the radius equal to 1 , and $A D=x$, we shall have the scries of supplementary chords $A D$,
 $A E, A P, \& C$; which, according to the modern method of expression, will be represented as follows:

$$
\begin{aligned}
& A B=2 \\
& A D=x \\
& A E=x^{8}-2 \\
& A P=x^{3}-3 x \\
& A O=x^{4}-4 x^{2}+2 \\
& A H=x^{3}-5 x^{3}+5 x \\
& A I=x^{0}-6 x^{4}+9 x^{4}-2 \\
& A K=x^{7}-7 x^{3}+14 x^{3}-7 x \\
& \& C \text {. }
\end{aligned}
$$

Vieta has also pointed out the law of this progression, by which it may be continued to infinity; that of the powers and signs is evident; and as to the co-efficients, he observes that, the coefficients of the second column are the serics of natural numbers, beginning at 2; those of the third columns are triangular numbers, beginning at 2 , instead of 1 , as in the common form of those numbers; that is, $2,(2+3),(2+3+4),(2+3+4+5), \& c$: in the fourth colum, they are the pyradical numbers, \&c.

The ratio of the chords themselves as BD, BE, BP, \& C, Vieta has also shown may be expressed in the following mamner, by calling the tirst chord x, and radius $=1$, as before, then the

$$
\begin{aligned}
& \text { 2d chord } 2-x^{2} \\
& \text { 3d } 3 x+x^{3} \\
& \text { 4th } \cdots-2+4 x^{2}-x^{4} \\
& \text { 5th - . - } 5 x-5 x^{3}+x^{5} \text {, \&c. }
\end{aligned}
$$

The law of the progression being the same as in the former case.

Various other curiuus and useful formulæ and observations, on the doctrine of angular sections, may be seen in the work above alluded to, and in the Opuscula of Oughtred, first published in 1667.

Varical Section, or simply the Sectios, of a huild-
ing, demotes its profile, or a delineation of its heighta and depths raised on the plan; as if the fabric had been cut asunder by a vertical plane, to discover the inside. And

Horizontal Section is the ichnography or ground plan, or a section parallel to the horizon.

Section of a Ratio, or Proportional Section, one of the last works of Apollonius, in 2 books, restored by Sjiell, in 1607 , and by Halley, in $1706,8 \mathrm{vo}$.

Section of a Space, another of the last works of Apollonius, in 2 books, restored by Snell in 1607.

Section, Determinate. See Detennimate Section.
SECTOR, of a Circle, is a portion of the circle comprehended between two radii and their included are. Thus, the figure asc, contained between the two radii $A C$ and BC, and the are AB , is a sector of the circle.

The sector of a circle, as $A \mathrm{BC}$, is equal to a triangle, whose base is the arc $A B$, and its altitude the radius $A C$ or BC. And therefore the radius be-
 ing drawn into the arc, half the product gives the area.

Similar Sectors, are those which have equal angles included between their radii. These are to each other as the squares of their bounding ares, or as their whole circles.

Sector also denotes a mathematical instrument, which is of great use in geometry, trigonometry, surveying, \&ec, in measuring and laying down and finding proportional quantities of the same kind: as, between lines and lines, surfaces and surfaces, \&c : whence it was called the Compass of Proportion, by the French and the Germans, \& c.

The great advantage of the sector above the common scales, $\& \mathrm{c}$, is, that it is adapted to all radi, and all scales. By the lines of chords, sines, \&c, on the sector, we bave lines of chords, sines, \&c, to any radius between the length and bradth of the sector when open.

The sector is founded on the 4 th proposition of the 6th book of Euclid; where it is demonstrated, that similar triangles have their like sides proportional. An idea of the thenry of its construction may be conceived thus. Let the lines AB, AC represent the legs of the sector; and AD, AE, two equal sections from the centro: then if the points BC and DE be connected, the lines BC and ne will be parallel; therefore the triangles $A B C, A D E$ will be similar, and consequently the sides AB, DC, AD, DE proportional, that is, as AB:EC::AD:: DE; so that if $A D$ be the half, 3 d , or 4 th part of $A B$, then pe will be a half, 3d, or 4th
 part of Bc : and the same holds of all the rest. Hence, if DE be the chord, sine or tangent, of uny arc, or of any number of degrees, to the radius $A D$, then ac will Le the same to the radius AB.

The sector, it is supposed, was the invention of Guido Baldo or Ubaldo, about the year 1568 . The first printel acconnt of it was in 1384, by Gaspar Mordemte at Antwerp, who indeed says that his brother Fabricius Mordente invented it, in the year 1554. It was next treated of by Daniel Speckle, at Strasburgh, in 1589; after that by Dr. Thomas Hood, at Iondon, in 1598 ; then by Lewin Hulse, at Frankfort on the Maine, 1603, whe says it was invented long before by Justus Byrgius, an engineer in the eprvice of the Landeraie of Heste. But that bonnur was claimed, and eien contended for, by I

Galileo and by Balthasar Capra of Milan. The former published a Tract on that useful instrument in 1607 ; and it doubtless received improvements from him, as well as from our countrymen Gunter, Foster, and others. See Wolfii Elem. Math. tom. 5, pa. 49; also Saverien Diction. art. Compass, and Cunn ou the Sector, published by Stone, Preface. It was treated on afterwards by many other writers ou practical geometry, in all the nations of Europe,

Description of the Sector. This instrument consists of two rules or legs, the longer the better, made of box, or ivory, or brass, \&c, representing the radii, moveable round an axis or joint, the middle of which represents the centre; from whence several scales are drawn on the faces. See the fig. 1 , plate $x \times x$ ii.

The scales usually set upon sectors, may be distinguished into single and double. The single scales are such as are set upon plane scales: the double scales are those which proceed from the centre; each of these being laid twice on the same face of the instrument, viz, once on each leg. From these scales, dimensions or distances are to be taken, when the legs of the instrument are set in an angular position.

The scales set upon the best sectors are $\binom{1}{2} \quad$ Inches, each divided into 8 and 10 parts,

 Decimals, containing 100 parts.

The manner in which these scales are disposed on the sector, is best seen in the figure.

The scalcs if lines, chords, sines, tangents, rhumbs, latitudes, hours, loggitude, incl. merid. may be used, with the instrument either shut-or open, each of these scales being contained on one of the legs only. The scales of inches, decimals, log. numbers, log. sines. log. versed sines, and log. tangents, are to be used with the sector quite open, with the two rulers or legsstretched ont in the same direction, part of each scale lying on both legs.
'The duuble scales of lines, chords, sines, and lower tangents, or tangents under 45°, are all of the same radius or length; they hegin at the centre of the instrument, and are terminated near the other extremity of each leg; via , the lines at the division 10 , the chords at 60 , the sines at 90 , and the tangents at 45 ; the remainder of the tangents, or those above 45°, are on other scales brginning at \ddagger of the leagth of the former, counted frotn the centre, where they are marked with 45 , and run to about 76 degrees.

The secants also brgin at the same distance from the centre, where they are marked with 10 , and are from thence continued to as many degrets as the length of the sector will allow, which is ubout 75°.

The angles made by the double scales of lines, of chords, of sines, and of tangents to 43 degrees, are always equal. And the angles made by the scales of upper tangents, and of secants, are abo equal.

The scales of polygons are set near the inner edge of the legs; and where these scales begin, they are marked with 4, und from thence are figured backwards, or towards the centic, to 19.

Frime this disposition of the double scaleb, it is plain, that those angles that are equal to cach otber while the loge of the sector were cluse, will still continue to be equal, though the sector be opened to any distance.

The scale of taches is laid close to the edge of the sector, and sametimes on the very edge; it contains as many inches as the instrument will receive when opened ; -ach inch being usually divided into 8 , and also into 10 equal purts. The decimal scale lies next to this: it is of the length of the sector when opened, and is divided into 10 equal parts, or primary divisions, and each of these into 10 other equal parts; so that the whole is divided into to0 equal parts: and by this decimal scale, all the other scalts, that are taken from tables, may be laid down. The scales of chords, rhumbs, sines, tangents, hours, Ac, are such as are described under Plane Scale.

The scale of logmrithnic or artificial numbers, called Gunter's scale, or Gunter's line, is a scale expressing the logarithms of common numbers, taken in their natural oriler.

The construction of the double scale will be evident by inspectung the instrumem. As to the scale of polygons, it usually comprehends the sides of the polygons from 6 to 12 sides inclusive : the divisions are laid down by taking the lengths of the chords of the angles at the centre of earh polyzon, and laying them down from the centre of the instrument. When the polygons of 4 and 5 sides are also introduced, this line is constructed from a scale of chords, where the I-ngth of 90^{2} is equal to that of 00° of the double scale of chords on the sector.

In describing the use of the suctor, the terms lateral disance nind trunacerse distance often occur, By the former is meant the distance taken with the compusses in one of the scales unly, loginning at the centre of the sector; and by the latter, the distance taken between any two corresponding disisions of the scales of the same name, the legs of the sector being in an angular pusition.

Uses of the Sector.
Of the Line of Lines. This is uselul, to divide a given line into any number of equal parts, or in any proportion, or to make scales of equal parts, or to find 34 and 4th proportionals, or mean proportionals, of to increase or decrease a given line in any proportion. E.x. I. To divide: a given line into any nomber of equal parts, as suppose 9 : make the length of the given line a transverse distance to 9 and 9 , the number of paits proposed; thea will the transverse distance of I and I be one of the equal parts, or the 9 th part of the whole; and the tranverse distance of 2 and 2 will be 2 of the equal parts, or $\frac{1}{6}$ of the whole line; and so on. 2. Again, to divide a given line into any number of parts that shall be in any am signed proportion, as suppose thrie parts, in the proportion of 2, 3, and 4. Make the given line a tramserse
distance to 9, the sum of the proposed numbers 2, 3, 4; then the transverse distances of these uutubers severally will be the parts required.

Of the Scale of Chords. 1. To open the sector to any angle, as suppose 50 degrees: Take the distance from the joint, or centre, to 50 on the chords, the number of degrecs proposel! then open the acctor till the transwerse distance from 60 tw 60 , on each lg , be equal to the said lateral distance of 50 ; so shall the scale of chords make the propord angle of 50 degrees.- By the couserse of this operation, nay be known the angle the sector is opened to; viz, taking the transvelse distance of 60, and upplying it laterally from the joint.
2. To protract or lay down un angle of any given number of degrees. At any opening of the sector, take the tianserse distance ol 60°, with witheh extent describe an are; then take the transtesse distance of the number of degrees proposed, anl apply it to that are; and through the extremities of this distance on the are draw two lines from the centic, and they will form the angle as proposed. When the angle exceeds 60°, lay it oft at twice or thrice. -By the converse uperation any angle may be meresured; riz, With any radius describe an arc from the angular point; set that radius transversely from 60 to 60; then take the distance of the intercepted arc, and apply it transversely to the choids, which will show the degries in the given angle. .

Of the Line of P'olygons. 1. In a given circle to inseribe a regular polygun, for example wn octagun. $U_{\text {pen }}$ the legs of the sector till the transverse diannec: frow 6 to 6 be equal to the radius of the circle; then will the transwrise distance of 8 and 8 be the stde of the inscribed octagen 2. Upon a line given to describe a regular pulygun. Make the given line a transverse dis. to 5 and 5 ; and at that opening of the sector tahe the transverse flistance of 6 and 6 ; with which as a radius, from the extremberes of the given line deveribe arcs to intersect vacth other, and this intersection will be the centre ot a circle in whach the proposed polygon may be ittseribed; then trom that centre disecribe the sud circte through the extsemitus of the given line, and apply this line continually round the circumference, for the several angular prints of the polygon. 3. On a given right line as a base, tu descube an isosceles tifiancle, having the angles at the base double the angle at the vortex. (Spra the sectur till the lougth of the given line fall transecsely of 10 and 10 on each kg ; then take the transoree distance to 6 and 6 , and it will be the Inwith of each of the equal sides of the triangle.

Of the Sincs, Tangents, and Scconts. By the scveral lines disponed on the sector, we have scales of several radii. So that, 1. Having a leaghth or radus given, not exceeding the leagth of the sector when opened, we can find the chorl, sine, Ac , to the sume: for ex. suppose the chord, sure, or tangent of 20 degrees to a radins of 3 inches be required. Make 3 inches the opening or transverse distance to 60 and 60 un the chords; then will the same extent rrach from 45 to 45 on the tangents, and Irom 90) to 90 on the atmes; su that to whatever radius the bine of chords is set. to the same are all the others set alse: In this chasposition therefore, if the Iransverse distance betwecll 20 and 90 on the chords be taken with the comprows, it will give the chord of 20 degrees; and if the transserse of 20 and 20 be in bike manner tahen on the sinces, it will be the sine of 20 degrees; and lastly, if the transserse distance of $\% 0$ and so be taken on the tan-
gents, it will be the tangent of 20 degrees, to the same radius.-2. If the chord or tangent of 70 degrees were required. For the chord, the transverse distance of balf the arc, viz 35, must be taken, as bofore; which distance taken twice gives the chord of 70 d -grees. To find the tangent of 70 degrees, to the same radius, the scale of upper taug nts must be used, the under one only reaching to 45: making therefor" 3 inches the transverse distance to 45 and 45 at the beginting of that scale, the extent betweell 70 and 70 degrees on the same, will be the tangent of 70 degrees to 3 inches radius. -3 . To tind the secant of an are; make the given radus the transverse distance betwean 0 and 0 on the secancos then will the transverse distance of 20 mid 20 , of 70 and 70 , give the secant of 20 or 70 degrees. -4 . If the radius, and any line representing a siue, tangent, or secant, be given, the degrees corresponding to that line may be found by setting the sector to the given radius, according as a sine, tangent, or secant is concerned; thett taking the given line between the compusses, and applying the two feet transversely to the proper scale, and sliding the feet along till they both rest on like divisions on both legs ; then the divisions will show the degrees and parts corresponding to the given line.
Use of the Sector in Trigononetry, or in working any other proportions.
By means of the double scales, which are the parts more peculiar to the sector, all proportions are worked by the property of similar triangles, making the sides proportional to the bases, that is, on the sector, the lateral distances proportional to the transverse ones; thus, taking the distance of the first term, and applying it to the 2 d , then the distance of the 3 d term, properly applied, will give the 4 th term: observing that the sides of triangles are taken off the line of numbers laterally, and the angles are taken transversely, of the sines or tangents or secants, according to the nature of the proportion. For example, in a plane triangle a BC, given two sides and an engle opposite to one of them, to find the rest; vis, given $18=56, \mathrm{AC}=64$ and $\angle \mathrm{B}=46^{\circ}$ S0, to find ac and the angles a and c. In this case, the sides are proportional to the sines of their opposite angles; bence these proportions,
as $A C(64): \sin \angle B\left(16^{\circ} 30\right):: A B(56): \sin , \angle c$, and as $\sin , B: A C:$: $\sin . A:: B C$.

Therefore, to work these proportions by the sector, take the lateral distance of $6+=\mathrm{AC}$ from the lines, and open the sector to make this a transverse distance of $46^{\circ} 30^{\circ}=$ $\angle \mathrm{B}$, on the sines; then take the lateral distance of $56=$ AB on the lines, and apply it transversely on the sines, which will give $39^{\circ} 24^{\prime}=\angle \mathrm{c}$. Hence, the sum of the angles B and c , which is $85^{\circ} 54^{\prime}$, taken from 180°, leaves $94^{\circ} 6^{\prime}=\angle \mathrm{A}$. Then, to work the 2 d - proportion, the sector remaining set at the same opening as before, tahe the transvense distance of $94^{\circ} 6^{\prime}=\angle A$, on the sines, or', which is the same thing, the transverse distance of its supplement $85^{\circ} 54^{\prime}$; then this applied laterally to the lines, gives $88=$ the side BC sought.

For the complete history of the sector, with its more ample and particular construction and uses, sec the lnimduction to Robertson's Treatise of such Mathematical Instruinents, as are usually put into a Portable Case.

Sector of a Sphere, is the solid generated by the revo-

Jution of the sector of a circle about one of jts radii; the other radius describing the surface of a cone, and the circular asc a circular portion of the surface of the sphere of the same radius. So that the spherical sector consists of a right cous, and of a segment of the sphere having the same commoh base with the cone. And hence the solid content of it will be tound by multiplying the base or spherical surface by the radius of the sphere, and takiug a 3d part of the product.

Sector of an Eclipae, or of an Hyperbola, \&ce, is a part resembling the circular sector, being contained by three lines, two of which are radi, or lines drawn fiom the centre of the figure to the curve, and the intercepted are or part of that curve.

Astronomical Secton, un instrument invented by Mr. George Grabam, for finding the difierence in right ascension and declination between two objects, whuse distance is too great to be observed through a fixed telescope, by means of a micrometer. This instrument (fig. 2, pi. 32,) consists of a brass plate, called the sector, formed like a T, having the shank $C D$, as a radius, about $2 \frac{1}{\ddagger}$ feet long, and 2 inches broall at the end p , and an inch and a half at C; and the cross-piece $A \mathrm{~A}$, as an arch, about 6 inches long, and one and a half broad; upon which, with a radius of 30 inches, is described an arch of 10 degrees, each degree being divided in as many parts as are convenient. Round a small cylinder c, containing the centre of this arch, and fixed in the shank, moves a plate of brass, to which is attached a telescope Cr_{r}, having its line of collimation parallel to the plane of the sector, and passing over the centre c of the arch AB, and the index of a Vernier's dividing plate, whose length, being equal to 16 quar* ters of a degree, is divided into 15 equal parts, fixed to the eye end of the telescope, and made to slide along the arch; which motion is performed by a long screw, 6 , at the back of the arch, communicating with the Vernier through a slit cut in the brase, parallel to the divided arch. Round the centre F of a circular brass plate abc, of 5 iuches diameter, moves a brass cross ki,un, having the opposite ends 0 and \mathbf{P} of one bar turned up perpendicularly about 3 inches, w serve as supporters to the sector, and screwed to the back of its radius; so that the plane - of the sector is parallel to the plane of the circular plate, and can revolve ruund the centre of that plate in this parallel position. A square iron axis UTF, 18 inches long, is screwed flat to the back of the circular plate along one of its diameters, so that the axis is parallel to the plane of the sector. The whole instrument is supported on a proper pedestal, so that the said axis shall be parallel to the earth's axis, and proper contrivances are annexed to fix it in any position. The instrument, thus supported, can revolve round its nxis it, parallel to the earth's axis, with a motion like that of the stars, the plane of the sector being always parallel to the plane of some hour-circle, and conseqnently every point of the telescope describing a parallel of declination; and it she sector be turned ruund the joint $₹$ of the circular plate, its graduated arch tnay be brought parallel to an heurecircle; and consequently any iwo stars, whose difference of declination does thot excend the degrees in that ureh, will pass over it.

To observe tbeir passuge, direct the telescope to the preceding star, and tix the plane of the sector a little to the westward of it; move the telescope by the screw is, and observe at the transit of each over the cross wires the time shown by the clock, and also the division upon th:

3 132
arch AB , shown by the index; then is the difference of the arches the difference of the declination; und that of the times shows the difference of the right ascemsion of those stars. For a inore particular description of this instrument, see Smith's Optics, book iii, chap. 9.

SECULAR Equations, or Century Equations, in Astronomy, are corrections required to compensate such ibequalitics, in the colestial motions, as occur in the counse of a century or 100 years. Thus, there are secular inequalities in the moun's motion, which require for their correction as many distinct secnlar equations. For which, see the books on astronomy.

Sectiae Year, the same with Jubilee.

SECUNDANS, an infinite series of numbers, beginning from nothing, and proceeding aecording to the squares of numbers in aritbmetical progression, as $0,1,4$, $9,16,25,36,49$, (i4, Sic.

SEEING, the net of perceiving objects by the organ of sight ; or the rense we have of external objects by means of the eye.
For the apparatus, or diposition of the parts necessary to seeing, see ETE. Avd for the manner in which seeing is perfornsed, and the taws of it, see Vistox.

Our best anatotnists differ greatiy as to the cause why we do not wee double with the two eyrs. Galen, and others ufter him, ascribe it to a coalition, or decussation, of the optic nerve, behind the as sphenoides. But whether they decussate or coalesce, or only barely touch one anctber, is not well agreed on.-The Bartholincs and Vesalins say expressly, they are united by a perfect confusion of their substance; Dr. Gibson allows them to be united by the closest conjuuction, but not by a confuxion of their fibrer. -Athazen, an Arabien philosopher of tho 121 h contury, accounts for single vision by two cyes, by mipposing thet when two carresponding parts of the retins ure affected, the mind perceives bat one image.

Desenctex and olliers account for the cffect amolier may; viz, by supposing that the fibrillas constituting the medullary part of those nerves, bring spresd in the retina of cach eye, have rach of them corresponding parts in the brain, so that when any of these fibrillet are struck hy any part of an image, the correponding parts of the bran are anfected by it. Somsentat like wbich is the opinion of Dr. Brggs, who takes the opric nerves of each rye to consist of bomologous fibres, having their rise in the thalamus merrormin opticorum, and being thence contimed to both the retinte, which are composed of them; and further, that those fabrille have the same parallelism, tunsim, $d e$, in both eyes ; consequently when an image is painted on the strue correspmaing sympathizing parts of each retina, the same effects are produced, the wame notice carried to the thalamus, and so imparted to the mind. Hence it is, that donble vision emsues upen en interruption of the paraltelism of the cyen ; a* when one cye is depressed by the finger, or their symphony is interrupted by disease: but 1r. Briggs maintains, that it is bet in few subjects there is any decussation; and in none any conjunction mose than meere contact ; though bis notion is by no means consonant to fects, and it is attended with many improbable curcumstances.

It was the opinion of Sir Isanc Newton, and of many others, that objects appear single, because the two optic nerves unite before they rrach the bruin. Bet Dr. Porterfield shows, from the observation of several anatomists, that the eptic nerves to net mix or confound their sul-
stance, being only uhited by a ciose cohesion; and objects have appeared sitgle, where the optic nerves were found to be digioined. To account for this phenomenon, this ingenious writer suppones, that, by an originat luw in our natures, we imagine ancobject to be situated sumewbere in a right line drawa form the pictore of it upon the retina, through the centre of the pupil; consequently the same object appeariog to both eyrs to be in the same place, we canot distuggish it into two. In atuswer to an ots. jection to this hypothesis, from otjects apperaring double when one eye is disturted, be says, the mind mistahes the position of the eye, imagimang, that it had moved in a manser corresponding to the other, in which case the conclasion would bave been just: in this be seems to buse recourse to the power of habit, though the disclaims thet hypothesis. This priuciple however has been thought suffcient to arcount for this appearance.

Originally, every object muking two pictures, one in each eye, is imagined to be double; but, by degrees, we find that when two correaponding parts of the revina are impressed, the olject is but one ; bat if those correspanding parts be clanged by the distortion of one of the eres, the object rave again afpear double as at the first. This scems to be verified by Mr. Cbeselden, who informis us, that a gentkman, who, from a blow on his head, had one cye distortad, found every object to appear double, but by degrecs the most familinr ones canse to nppear mingte again, and in tiane all objects did so whthout amendnemt of the distortion. A similer case is mentioned by Dr. Smath.On the other hend, Dr. Reid is of opision, that the cors respoadence of the cemives of two kyes, on which singie vision dipends, daes not wrise from custom, but from some natural constitution of the eye, and of the mind. M. du Tour adopts an opinion, fang bifuresuggented by Gassenti, that the cye mtendy to no more than the image made in one cye at x time; in support of which, he perduces several curious experiments; but as M. Buflon nbserves, it is a sufficient answer to this hypothesis, that we sise mote destinctly with two cyes than with one; and that when a round wbjecs is near as, we plainly see more of the surfuce in one case than in the other.

With rexpect to single vision with ewo ryes, Dr. Hartley observes, that it ieserves parucular uttention, that the optic werves of man, and such other animats as fook the same way with both eyes, unite in the rella turfica in a ganglion, or latile brain, as it may be called, peculiar to themselres, und that the asweciations betwern synchronous impressions on the two rehinas, suust be made sponer and cemented stronger on this account; who that they ought to have a much greater power over one another's imaye, than in any other part of the body. And zasts an impress sion made on the right eye ulone by a single object, propagatis itelf into the leff, utd there rnises up un image almost equal in vividness to itself; and, consequently, when we see with one cye only, we may however have pictures in both eyes.

It is a common observation, ways Dr. Smitb, that objects seen with both cyes appear more vivid and stronger than they do to a single eye, eypecially when both of then are cqually good. Porterfield on the E.ge, vol.ii, pa. 885, 315. Smith's Optica, Remarks, pa. 31. Reide Inquiry; pa. 267. Mcm. Prósentes, pa. 514. Acad. Par, 1747. Mem. 1'r. 334. Hariley on Men, vol, iv paizo7. Priest ley's Hist. of Light and Colours, pa. 66s, \&c.

Whence it is that we see objects ereet, when it is cer-
tain that the images thereof are painted invertedly on the rethas, is another difficulty in the theory of seeing. Descartes accounts for it bence, that the notice whicti the soul takes of the object, ducs not depend on any image, nor any uction coming from the object, but merely on the situation of the minure part* of the brain, whence the nerves arise ; ex. gr. the shuation of a capillament brain, which occasions the soul to see all those places lying in a right line with it.

But Mr. Molyneux gives another account of this matter. The cye, be observes, is only the organ, or instrument; it is the soul that secs. To enquire then, how the soul perceivas the object erect by an inverted image, is to eaquire into the soul's faculties. Again, imagine that the cye receives all impulse on its lower part, by a ray from the upper part of anolject; must not the visive faculty be hereby directed to consider thes stroke as coming from the top, rather than the bottom of the object, and consequently be determined to conclude it the representation of the top?

On these principles, we are to consider, that inverted is ouly a relative term, and that shere is a very great difference between the real ubject, and the means or image by which we perceive it. When all the parts of a distant prospect are painted on the retina (supposing that to be the seat of vision), they are all right with respect to one another, as well as the parts of the prospectitself; and we can only judge of an object being inverted; when it is torned reverse to its natural position with respect to other objects which we see and compare it with.

The eyc or visive faculty (says Molyneux) takee no notice of the internal surface of its own parts, but uses them as an instrument only, contrived by wature for the exercise of such a faculty. If we lay hold of an upright stick in the dark, we can tell which is the upper or lower part of it, by unoving our hand upward or downward; und very well know that we cannot feel the upper end by moving our hand downward. Just so, we find by experience and habit, that by directing our eycs towards a tall object, we cannot see its top by turning our eyes downward, nor its foot by turning our eyes upward; but must trace the object the sanc way by the eye to see it from bead to foot, as we do by the hund to feel it; and as the jodgment is informed by the motion of the hand in one case, so it is also by the motion of the cye in the other.

Molyneux's Dioptr. pa, 105, \&cc. Musschenbrork's Int, ad Phal. Nat. vol, ii, pa. 762. Ferguson's Lectures, pa. 132. See Visible, Vision, \&e.

SEGMENT, in Geometry, is a part cut off the top of a figure by a line or plane; and the part remaining at the bottom, after the segment is cut off, is called a frustum, or a zone. So, a

Segment of a Circle, is a part of the circle cut off by a chord, or a portion comprehended by an arch and its chord ; und may be either greater or less than a remicircle. Thus, the portion ABCA is a segment less than a semicircle; and adCA a segment greater.
The angle formed by lines drawn from the extremities of a chord to meet in asy point of the arc, is called an angle in the segment. So the angle $A B C$ is an angle in the segmeut ABCA; and the angle ADC, an angle in the segment $A \mathrm{DCA}$.

Also the angle B is said to be the angle apon the segment aDC, and D the angle on the segment $A B C$.

The augle which the chord ac makes with a tangent $\mathbf{E r}$, is called the angle of a segment; asd it is equal to the angle in the alternate or supplemental segment, or equal to the supplement of the angle in the same sequinent. So the angle ACE is the angle of the segment $A \mathrm{BC}$, und is equal to the angle ADC, or to the supplement of the angle B ; also the angle ACF is the angle of the segment $A D C$, und is equal to the angle B , or to the supplement of the angle D .

The area of a segment A ac, is evidently equal to the difference between the sector oasc of the same arc, and the triangle oac on the same chord; the triatigle being subtracted from the sector, to give the segment when less than a semicircle; but to be added when greater. See more rules for the segment in my Mensuration, pa. 99, \&c, 4th edition.

Similar Securnts, are those that have their chords directly proportional to their radii or diameters, or that have similar arcs, or such as contain the same number of degrees.

SEGMExt of a Splere, is a part cut off by a plane.
The base of a segment is illways a circle. And the convex.surfaces of different seguents, of the same sphere, are to each other as their altitudes, or versed sines. And as the whole convex surface of the sphere is equal to 4 of its great circles, or 4 circles of the same diameter; sn the surface of any segment, is equal to 4 circles on a diameter equal to the chord of half the are of the segment. So that if d denote the diameter of the sphere, or the chord of half the circumference, and c the chord of half the are of any other segment, also a the altitude or versed sine of the same; then,
$3 \cdot 1416 d^{\prime}$ is the surface of the whole sphere, and
$3 \cdot 1416 c^{2}$, or $3.1416 a d$, the surface of the segment.
For the solid content of a segment, there are two rules usually given; viz, 1 . Tu 3 times the square of the radius of its base, add the square of its beight ; multiply the sum by the height, and the product by * 5236 . Or, 2dly, From 3 times the diameter of the sphere, subtract twice the height of the frustum; multiply the remainder by the square of the height, and the product by +5236 . That is, in symbols, the solid content is cither
$=-5236 a \times\left(3 r^{3}+a^{2}\right)$, or $=3236 a^{2} \times(3 d-2 a) ;$ where a is the alritude of the srgment, r the radius of its buse, and d the diameter of the whoie sphere.

Line of Segments, are two particular lines, so called, on Gunter's sector. They lie between the lines of sines and superficies, and are numbered with $5,6,7,8,9,10$. They represent the diameter of a circle, so divided into 100 parts, that a right line drawn through those parts, and perpendicular to the diameler, shall cut the circle into two segments, the greater of which will bave the same proportion to the whole cirtle, as the parts cut off have to 100.

SELENOGRAPHY, the description and representation of the moon, with all the parts and appearances of her disc or face; as geography does those of the earth. Since the invention of the telescope, selenography is very much improved. We have now distinct names for mest of the supposed regions, seas, lakes, mountains, \&cc, vistble in the moon's body. Hevrlius, a celebrated astrunomer of Dantzic, and who published she first selemography, named the several places of the moon from those of the earth. But Riccioliafterwards called them by the names of the most celebrated astronomers and philosophers. Thus, what the onc calls Mons Porphyrites, the other
calls Aristarchus; what the one calls Artna, Sinai, Athos, Apenninus, \&c, the other calls Copernicus. Posidonius, Tycho, Gassendus, \&c.-M. Cassini has published a work culled Instructions Seleniques, and has published the best map of the moon.

SELEUCID.E, in Cbronology, the era of the Seleucidx, or the Syro-Macedonian era, which is a comoputation of time, commencing from the establishment of the Selencillx, is race of Gretk king\%, who reigued as successors of Alexander the Greal, in Syria, as the Prolemies did in Eyypt. According to the best accounts, the first year of this erafalls in the yeer 311 before Christ, which was 12 years after the death of Alexander.

SELLL, in Building, is of two kinds, viz, Ground-Sell, which deuotes the lowest piece of timber in a wooden building, and that upon which the whole superstructure is raised. And sell of a window, or of a door, which is the bottotn piece in the frane of them, upon which they rest.

SEMICIRCLE, in Geometry, is half a circle, or a figure comprehended between the diameter of a circle, and half the circumference.

Sespicircle is also an instrument in Surveying, sometimes called the Graphometer. It consists of a semicircular limb or arch, as 516 (fig. 3, pl. 32) divided into 180 degrees, and sometimes subdivided diagonally or otherwise into minutes. This limb is subtonded by a diameter $\mathrm{F} 日$, having two sights erected at its extremities. In the centre of the semicircle, or the middle of the diameter, is fixed a box and needle; and on the same centre an altdade, or moveable index, carrying two other sights, as in, 1: the whole being set on a staff, with a ball and socket, $\& c$

Hence it appears, that the semicircle is nothing but half a theodolite; with this only difference, that whereas the limb of the theodolite, being an entire circle, takes in all the 360° successively; while in the semicircle the degrees only going from 1 to 180 , it is usual to have the remaining 180°, or those from 180° to 360°, graduated in another line on the limb within the former.

To take an Angle with a Scmicircle,-Place the instrument in such manner, as that the radius co may bang over one leg of the angle to be measured, with the centre c over the vertex of the same. The first is done by looking through the sights F and σ, at the extremities of the diameter, to a marh fixed up in one exiremity of the leg; and the latter is had by letiing fall a plumnet from the centre of the instrument. 'I his done, turn the moveable index нi on its ceutre towards the other leg of the angle, till, through the sights fixed in in, you see a mark in the extremity of the leg. Then the degree which the index cuts on the limb, is the quantity or ineasure of the angle. Other uses are the same as in the theodolite.

SEMICLBICAL Parasola, a curve of the 2ll order, of such a nature that the cubes of the ordinates are proportional to the aquares of the abscisses, its equation being $4 y^{1}=x^{3}$. This curve, $A \mathrm{Mm}$, is one of Newton's five diverging parabolas, being his
 70th species; having a cusp at its vertex at A. It is otherwise named the Neilian parabola, from the name of the author who tirst treated of it, or squared it.
The area of the space $A P M$, is $={ }_{r^{4}}{ }^{5} y=\frac{4}{5} A P \times P M$, or $\frac{A}{i s}$ of the circumgeribing rectangle.

The content of the solid generated by the revolution of the space APM abput theaxis AF, is $\ddagger p r y^{2}=7854 A \mathrm{~F} \times$ $\mathrm{Pm}^{\mathbf{1}}$, or \ddagger of the circumscribing cylunder. And a circle equal to the surface of chat sol:d may be found from the quadrature of an hyperbolic space.

Also the length of any wre $A M$ of the curve may be easily obtuined trom the quadrature of a space contained under part of the curve ot the conmon parabola, two setriordnates to the axis, and ibe jutt of the axit contained between them.

This curve may be described by a continued motion, via, by tasteuing the angle of a syuare in the veriex of a common parabula; and then cariying the intersection of one side of thas squisue and a long ruler (wiich ruler always moves perposidicularly to the axis of the parabola) along the curve of tibat parabola. For the intersection of the ruler, and the other side of the gquare will describe a setnicubical parabola. Maclauria pertorms this without a common parabola, in his Geometria Organica.

SEMIIDIAMETER, the Radus, or half-diameter of a circle or sphere, is a line drawn from the centre to the circumference. And in any curve that has diameters and a centre, it is the radius, or half-diameter, or a lise drawn from the centre to some point in the cwrve.

Ihe distances, diameters, \& c, of the heavenly bodies, are usually estimated by astronomers in semidiameters of the ewrth; the number of which terrestrial semidiameters, confaned in that of each of those planets, is as below.

SEMMDIAPASON, in Music, a defective or imperfect octave; or an uctave diminisbed by a lesser semitore, or 4 commas.

SEMIDIAPENTE, in Mlusic, a defective or imperfect fifth, called usually by the ltalians, false quinta, and by us a false fifth.

SEMIDIATESSARON, in Music, a defective fourth, called also, a fabe fourth.

SEMIDIATUNL, in Music, is the lesser third, having its terms as 6 to 5.

SEMIOHDINATES, in Geometry, the halves of the oromates of applicates, being the liues applied between the absciss and the curve.

SE.MIPARABOIA, \& c, in the higber geometry, a curve detined by the equation $a x^{n-1}=y^{n}$; as $a x^{2}=y^{3}$, or $a x^{2}=x^{4}, \Delta c$. In semiparabolas, $y^{0}: v^{n}:: a x^{*-1}: n t^{-n}:$: $x^{n-1} ; z^{-1}$; or the power of the selmiordinates are as the powers of the abscisses one degree luwer: for iustance, in cubical semiparabolas, the cules of the ordinates are as the squares of the abscives; that in, $y^{3}: v^{3}:: x^{2}: z^{2}$.

SEMIQUADRATE, or SEMDQUABTILE, is on aspect of the planets, when distant frome cach other oue sign and a balf, or 45 degrees.

SH:MIQUAVIR, in Music, the half of a quaver.
SIBMQUINTILE, is an aspect of the planets when distant from each other the balf of a 5th of the circle, or by 56 degrees.

SEMISEXTILE, an aspect of two planets, when they are distant from each other 30 degrees, or the half of a
sextile, which is 2 signs or 60°. The semisextule is marked s. $\begin{gathered}\text {. } \\ \text {. }\end{gathered}$

SF. MITONE, in Music, a half tone or balf note, one of the drgees or intervals of concords. These are three degrees, or less intersals, by which a sound can move upwands and downwards, successively from one extreme of any concord to the other, and yet prorluce true inclody. Thes: ifgrees we the greater tone, the less tone, and the semitone. The rutios defining these inervals are these, viz, the grater tone 8 to 9 , the less tone 9 to 10 , and the somitonve 15 to 16. Its compass is 5 commas, and it has its name from being nearly halif whok, though it is really somewhat mure.

There are s-veral species of semitones; but those that ustally wecur an practice are of two kinds, distinguislied hy the adomon of greater and less. The lint ts rxpressed by the ratio of 16 to 15 , or $\frac{1^{\circ}}{3}$; and the second by 25 to 24 , or is. The octave conmilis io whitones major, and 2 diess? thealy, or 17 sematomes minor, marly; for the inehsure of the octave thengexpin ssed by the log. 100,000, the semitone maj r will be measured by
$0,0931 \mathrm{t}$, and the somitone miner by . . 0,05859. 'These two diti-r by a whole enharmonic diesis; which is an interval practicable by the voice. It was much in use among the uncients, and is not unk nown among modern practitioners, Euler Fent. Nuv. Theor, Mus. pa. 107. See Interval.

These semitones are called fietitious notes; and, with respect to the natural ones, they are exprensed by characters called thats and sharps. The use of thenr is te remedy the defects of instrimests, which, having their sounds tixed, cantert always be made to unswer to the dintonic scale. By meany of these, we have a new kind of scale, cailed the

SEMITTONIC Scale, or the Scale of Semitones, which is a scale or system of music, cunsisting of 12 degries, or 13 notes, in the octave, bi ing en iraprovement on the natural or diatonic scal., by inserting between each two nutes of it, unother unte, which divides the interval or tone into two unequal parts, califed semitenes.

The use of this sente is for instruments that have fixed sounds, as the orgin, harpsichord, Ec, which are exceedingly devective on the fuot of the intural or dintonic scale. For the degrees of the scale being unequal, from rvery $\mathrm{n} \circ$ te to its actave there is a different order of degrees; so that fromany note we cannu find every moterval in a series of lived sommels; which get is necessary, that all the notes of a puece of music, currict through several keys, may be found in their just tone, or that the same song may be begun inditferently at any note, as muy be necessary for accommadating sume instrunient to others, or to the voice, when they are to accompany ach other in unison.

The dintonic scale, begiming at the lowest note, being fist sothed on an instrument, and the notes of it distinguished by their names a, b, c, d, c, f, g; the inserted notes, or semitoms, are called fictinous notes, and take the name or letter below with a ${ }^{*}$, ns called cosharp; signifyng that it is a semitone highor than the sound of c in the natural scries; or this mark ${ }^{\text {b }}$ called a flat, with the name of the note above signifying it to be a semitoue lower.

Now $\frac{8,}{1 /}$ and $\frac{1}{1} \frac{1}{5}$ being the two semitones the greater tone is divided into, and $\frac{1}{1} \frac{1}{1}$ and $\frac{24}{23}$, the semitones the less tone is divided into, the whole octave will stand as in the
following scheme, where the ratios of each term to the next are written fraction-wise between them below.

 for the names of the intervals in this scale, it may be considered, that as the notes added to the natural scale are not designed to alter the species of melody, but leave it still datonic, and only correct certain defects arising irom something foreign to the office of the scale of music, viz, the fixing and limiting the sounds; we see the reason why the naines of the natural scale are continued, only making a distuction tif each iuto a greater and lese. Thus on interval of one semitone, is called a less scoond; of two semitones, a greater second; ef thrce semitones, a less third; of four, a greater third, \&c.

A second kind of semitunic scale we have from another division of the octave mito semitones, which is performed by taking an barmonical mean between the extremes of the greater and less tone of the batural scale, wach divides it into two setnitones nearly equal. Thus, the grenter tone 8 to 9 is divided into two semitonrs, which are 16 to 17 , and 17 to 18 ; where $16,17,18$, is un arithmetical division, the numbers representing the lengths of the chords; but if they represent the vibruinu, the lengths ot the chords are reciprocal; vizan 1 , $\mathbf{~} \frac{6}{5}$. $\frac{5}{9}$; which puis the" greater sematene 19 hext the lower part of the tone, and the lesser 17 next the upper, which is the property of the barmonical divasion. And afier the same manaer the less tune y to 10 is divided into two semitones, 18 to 19 , and 19 to 20 ; and the whole octave st:unde thus:

This scate, bur. Salmon telis us, in the Philosopuical Transactions, be made un experiment of before the Rnyal Society, on chords, exactly in these proportons, which yielded a pericet concert with other instruments, touched by the best hanils. Mr. Malcolm adds, has, laving calculated the ratios of them, tur his own satitacthot, bo fruand more of the on talse than in the preceding scale, but then their error, were considerably less, which made amends. Malcoln's Music, chap. 10. §2.

AKNSIBLE: Horizon, or Point, or 2uality, \&c. See the subatantives.

SEPTUAGeSIMA, in the Culender, is the 9th Sumiay before Liaster, so called, as some have supposed, because it is near 70 days, though in reality it is ouly 63 days, before it.

SERIES, in Algebra, denotes a rank br progression of quautites or ter ins, which usually proseed accordng to some certain law.
As the serics $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4} \delta \& c$,
ur the scries, $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5} d c$, where the fornuer is a grometrical series, priceeding by the constant division by 2, or the domuminators multiplied by 2 ; and the latter is an harmonical series, being the reciproculs of the arithmetical series $1,2,3,4$, \&ce, or the denominators beng cuntintally inereased by 1 .

The only traces of the doctrine ot serics found anong the ancients are in the wolks of Archimedes and Pappus. Thus, in comparing the spheroid with the cone and cylin= der, Archimedes supponsev the terms of a prugnssion to increase constatitly by the same diffience, and demonstrates several properties of such a prastession richating to the sum of the ternis, and the sum of their sqases; by meaus of which he compares the parabolic conoid,
the spheroid, and hyperbolic comoid, with the cone, and the area of his spiral line with the area of the circle. Again, in his Treatise on the Quadrature of the Parabola, he mentions a progression whose terms decrease constantly in the ratio of 4 to 1: but he does not suppose this progression to be continued to infinity, or mention the sum of an infinite number of terms; though it is plain that all that can be understood by those who assign that sum was fully known to him. He contents himself however, with demonstrating this plain propetty of such a series, that the sum of the terms continued at pleasure, added to the $\&$ part of the last term, amounts always to 4 of the first term. See pr. 23 quad parab.

Pappus touches on a subject nearly allied to the modern ductrine of series, in the 4th book of his mathematical collections, where he treats of the general problem relating to an infinite series of circles inscribed in the space called arbelon, contained between the circumferences of two circles touching inwardly. But both of these authors investigate their respective problems geometrically, and without any reference to the algebraic method.

With regard to series considered algebraically, the first notices are found in the works of Dr. Wallis, Thus, in his aritbmetical works, published in 1657 , be for the first time reduced the fraction $\frac{A}{1-\infty}$, by a continucd division, into the infinite series $A+A R+A R^{2}+A A^{3}+$ $A R^{0}+A C$. Thiv, and a few other deductions of similar import, gave the idea to Nic. Mercator, who made some advances in the ductrine. It was afterwards taken up by Brouncker, James Gircgory, \&c; but the genius of Newton tirst gave it body and form.
This method is chiefly useful in she quadrature of curves; where, as we often meet with quantives which cannot be expressed by any precise definite numbers, such as is the ratio of the diameter of a circle to the circumference, we are glad to express ahem by a series, which, infinively continued, is the value of the quantity sought, and which is called an infinite series.

The Naturc, Origin, tye. of Seateg.

Infinite series commonly arise, either from a continued division, as was practised by Mercator, or the extraction of roots, as first performed by Newton, who also explained other general ways for the expanding of quantities into infinite series as by the binomial theorem. Thus, to divide 1 by 3 , or to expand the fraction $\frac{f}{f}$ into an infinite series: by division in decimals in the ordinary
 Tठठिड $\& \mathrm{kc}$, where the law of continuation is manifest. Or, if the same fraction f be set in this form $\frac{1}{2+1}$, and divisioa be performed algebraically, the quolient will be $\frac{1}{3}=\frac{1}{8+1}=\frac{1}{8}-\frac{1}{4}+\frac{1}{3}-\frac{1}{16}+\frac{1}{32} \& c$.
$O r$, if it be expressed in this form $\frac{1}{3}=\frac{1}{4-1}$, by a like division there will arise the series, $\frac{1}{3}=\frac{1}{4}+\frac{1}{16}+\frac{1}{64} \& c=\frac{1}{4}+\frac{1}{4^{4}}+\frac{2}{j^{3}}$ \&cc. Again, by dividing 1 by $5-2$, or $6-3$, or $7-4$, \&c, the series answering to the fraction f, may be found in an endless variety of infinite series. The finite quantity $\frac{1}{\frac{1}{2}}$ is called the value or radix of the series, as also its sum, being the number or sum to which the series would amount, or the limit to which it would tend or approxi-
mate, by summing up its terms, or by collecting them togelier one after another.

In like manner, by dividing I by the algebraic sum $a+c$, or by $a-c$, the quotient will be in these two caves, as below, viz,

$$
\begin{aligned}
& \frac{1}{a+c}=\frac{1}{a}-\frac{c}{a^{2}}+\frac{c}{a^{2}}-\frac{c}{a^{2}} \& c \\
& \frac{1}{a-c}=\frac{1}{a}+\frac{c}{a^{a}}+\frac{c}{a^{2}}+\frac{c}{a^{4}} \& c ;
\end{aligned}
$$

where the terms of each series are the same, and they differ only in this, that the signs are alternately positive and negative in the former, but all posinive in the Intter.

And hence, by expounding a and c by any numbers whatever, we obtain an endless variety of infinite series, whose sums or values are knowis. So, by taking a or c equal to 1 or 2 or 3 or $4, \& \mathrm{c}$, we obtain these series, and their values or roots:

$$
\begin{aligned}
& \frac{1}{\frac{1}{+1}}=\frac{1}{3}=1-1+1-1+1-1 \& c \\
& \frac{1}{3-1}=\frac{1}{3}=\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{2}}+\frac{1}{3^{4}} \& c \\
& \frac{1}{2+1}=\frac{1}{3}=\frac{1}{3}-\frac{1}{a^{2}}+\frac{1}{3^{2}}-\frac{1}{2^{2}} \& c \\
& \frac{1}{1+2}=\frac{1}{3}=1-2+2^{2}-2^{3} \& c \\
& \frac{1}{3+1}=\frac{1}{4}=\frac{1}{3}-\frac{1}{3^{4}}+\frac{1}{3^{2}}-\frac{1}{3^{4}} \& c
\end{aligned}
$$

And bence it appears, that the same quantity or rat dix may be expressed by a greal variety of infinite series, or that many different serics may have the same radix or value.

Another way in which an infinite serics arises, is by the extraction of roots. Thus, by extracting the square root of the number S in the common way, we obtain its value in a series as follows, viz, $\sqrt{ } \mathrm{s}=173205 \mathrm{\& c}=$
 resolution the law of the progresston of the scries is not visible, as it is when found by division. Thus, the square rout of the algebraic quantity $a^{2}+c^{2}$ gives

$$
\sqrt{ }\left(a^{2}+c^{2}\right)=a+\frac{b^{2}}{2 a}-\frac{c^{2}}{\Delta a^{2}}+\frac{c}{16 a^{2}} \& c
$$

And a Sd way is by Newton's binomial theorem, which is a universal method, that serves for all hinds of quantities, whether fractional or radical ones: and by this means the same rout of the last given quantity becomes $\sqrt{ }\left(a^{2}+c^{2}\right)=a+\frac{e^{2}}{2 a}-\frac{1 . c^{4}}{2 \cdot 4 a^{4}}+\frac{1.3 c^{4}}{2 \cdot 4 \cdot 6 a^{4}} \& c$, where the law of continuation in evident.

See Extraction of Roots, and Binomial Theorem.
From the specimens above given, it appears that the signs of the terms may be either all plus, or aiternately plus and minus. Though they may be varied in many other ways. It also appears that the terms may be either cominually smaller and smaller, or larger and larger, or they may be all equal. In the first case therefore the series is said to be a decreasiug ote, in the 2d case an increasing one, nud in the 3 d case all equal one. Also the firsl series is called a converging one, because that by collecting its terms successively, Iaking in always one term more, the successive sums approximate or cousurge to the value or sum of the whole infinite series. S_{n}, in the series $\frac{1}{3-1}=\frac{1}{2}=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{31}, ~ \& c c$, the first terin f is tou little, or below f which is the value or sum of the whole infiaite series proposed; the sum of
the first two terms $\frac{f}{f}+\frac{8}{8}$ is $\hat{0}=\mathbf{4}=\mathbf{4 4 4} \& \mathbf{c}$, is also too little, but nearer to or ' 5 than the former; and the
 nearer than the last, but still too little; and the sum of four terms $t+\frac{1}{3}+\frac{1}{17}+\frac{1}{1 T}$, is $\frac{10}{7}=493827 \& c$, which is again nearer than the former, but still too little; and this is always the case when the terms are all positive. But when the converging series has its terms alternately positive and negative, then the successive sums are alternately too great and too little, though still approaching nearer and nearer to the final sum or value. Thus in in the series
$\frac{1}{a+1}=\frac{1}{4}=0-25=\frac{1}{3}-\frac{1}{9}+\frac{1}{27}-\frac{1}{61} k c$, the ist term $\frac{4}{\frac{1}{2}}=.333 \& \mathrm{c}_{\text {, }}$ is tou great, two terms $\frac{1}{3}-\frac{1}{4}=922 \& \mathrm{c}$, are too little, three terms $\frac{1}{1}-\frac{1}{5}+\frac{1}{17}=-259259$ \&cc, are too great, four terms $\frac{1}{2}-\frac{1}{1}+33^{2}-\frac{1}{1 T}=-246913$ \&c, are too small, and so on, alternately too great and too small, but every succeeding sum still nearer thall the former, or converging.

In the second case, or when the terms become larger and larger, the scries is called a diverging one, because that by collecting the terms continually, the successive suans diverge, or go always farther and farther from the true value or radix of the series; being all too great when the terms are all positive, but alternately 100 great and too little when they are alternately positive aud negative. Thus, in the serics

$$
\frac{1}{1+2}=\frac{1}{3}=1-2+4-8 \& \mathrm{c}
$$

the first term +1 is too great.
two terms $1-2=-1$ arc too little,
three terms $1-2+4=+3$ are 100 great,
four terms $1-2+4-8=-5$ are too little, and so on continually, after the 2 d term, diverging more and more from the true value or radix ; but alternately too great and tuo little, or positive and negative. But thealternate suins would be always more and more too great if the terms were all positive, and always too little if negative.

But in the third case, or when the terms are all equal, the series of equals, with alternate signs, is called a neutral one, because the successive sums, found by a continual collection of the terms, are always at the same distance from the true value or radix, but alternately positive and negative, or too great and too little. Thus, in the series

$$
\frac{1}{1+1}=\frac{1}{2}=1-1+1-1+1-1 \& c,
$$

the first term 1 is too great,
two terms $1-1=0$ are too little,
three terms $1-1+1=1$ too great,
four terms $1-1+1-1=0$ too little,
and so on continually, the successise sums being alter. nately 1 and 0 , which are equally difierent from the truc value or radix $\frac{1}{3}$, the one as much above it, as the other helow it,"

A serims may be terminated and rendered finite, and accurately equal to its radix, by assuming the supplement or remainder, after any particular term, and combining it with the foregoing terms. So, in the serics $\frac{-}{-}$ $\frac{1}{4}+\frac{1}{\frac{1}{6}}-\frac{1}{6}$ \&c, which is equal to $\frac{1}{1}$, and found by dividing 1 by $2+1$, after the first tern, $\frac{4}{}$, of the quotient, the remainder is $-\frac{1}{1}$, which divided by $2+1$, or 3 , gises $-\frac{1}{6}$ for the supplement, which being combined with the first terin $\frac{1}{2}$, gives $\frac{1}{2}-\frac{1}{6}=\frac{1}{2}$ the true suin of

Vol. It.
the series. Again, after the first two terms $\ddagger-1$, tha remainder is $+\frac{1}{2}$, which divided by the same divisor 3 , gives its for the supplement, and this combined with those two terms $\frac{1}{1}-\frac{1}{4}$, makes $\frac{1}{1}-\frac{\pi}{2}+\frac{1}{1 \pi}=\frac{1}{4}+\frac{1}{1}$ $={ }_{r_{2}}^{4}$ or \mathfrak{j} the same sum or value as before. And ia general, by dividing I by $a+c$, there is obtained
$\frac{1}{a+c}=\frac{1}{4}-\frac{c}{a^{j}}+\frac{c^{n}}{a^{n}} \cdots \pm-\frac{r^{n}}{a^{n+1}} \mp \frac{e^{n+1}}{a^{n+1}(a+c)}$;
where, stopping the division at any term as
$\frac{c^{n}}{a^{n+1}}$, the remainder after this term is $\frac{e^{n+1}}{e^{n+1}}$, which being divided by the same divisor $a+c$, gives $\frac{e^{n+1}}{a^{n+1}(a+c)}$ for the supplement as above.

The Late of Continuation - A scries being proposed, one of the chief questions concerning it, is to tind the law of its continuation. Indeed, no universal rule can be given for this; but it often happens that the, terms, taken two and two, or three and three, or in greater numbers, have an obvious and simple relation, by which the series may be determined and produced indefinitely. Thus, if 1 be divided by $1-x$, the quotient will be a geometrical progression, viz, $1+x+x^{2}+x^{2} \& c$, where the succeeding terms are produced by the continual multiplication by \boldsymbol{x}. In like manner, in other cases of disision, other progressions are produced.

But in moot cases the relation of the terms of a series is not constant, as it is in those that arise by division. Yet their relation often varies according to a certainlaw, which is sometimes obvious on inspection, and sometimes it is found by dividing the successive terins one by another, \&c. Thus, in the series
$1+\frac{3}{3} x+\frac{3}{T 1} x^{2}+\frac{12}{3} x^{2}+3 \frac{2}{3} \frac{3}{5} x^{4} \& c$, by dividing the 2 d term by the 1 st, the 311 by the $2 d$, the $4 t h$ by the $3 d$, and so on, the quotients will be $\frac{4}{3} x, \frac{4}{3} x, \frac{9}{4} x, \frac{3}{y} x, \& c$; and therefore the terms may be continued indefinitely by the successive multiplication by these fractions. Also in the following series $1+\frac{1}{6} x+\frac{1}{3} x^{2}+\frac{1}{4} x^{x^{3}}+\frac{1}{1} y^{2} x^{4} \& c$, by dividing the adjacent terms successively by cach other, the series of quotients is $\frac{1}{6} x, x^{2} x, \frac{1}{\frac{1}{2} x}, \frac{4}{4} \frac{2}{2} x, \& c$, or $\frac{1 . t}{2.3} x, \frac{5.3}{4.5}, \frac{9.5}{6.7} x, \frac{7.9}{8.9} x, 8 \mathrm{sc}$; and therefore the terms of the serics may be cootinued by the multiplication of these fractions.

Another method of expressing the law of a series, is unc that defines the series itself, by its general term, showing the relation of the terms generally by their distances from the beginning, or by differential equations. To do this, Mr. Stirling conccives the terms of the series to be placed as so many ordinates on a right line given by position, taking unity as the coumon interval between these ordinates. The terms of the series he denotes by the initial letters of the alphabet, $A, B, C, D, \& C ;$ a being the first, B the 2d, c the $3 \mathrm{~d}, \mathrm{\& c}$: and he denotes any term in g.neral by the letter T , and the rest following it in order by $\mathrm{T}^{\prime}, \mathrm{T}^{\prime \prime}, \mathrm{T}^{\text {t" }}, \mathrm{T}^{\prime \prime \prime \prime}, \& \mathrm{E}$; also the distance of the term I from any given term, or from any given internediate point between two terms, he denotes by the indeteraninate quantity z: so that the distances of the terms $\mathrm{r}^{\prime}, \mathrm{s}^{\prime \prime}, \mathrm{T}^{\prime \prime \prime}$, Nc, irom the said term or point, will be $z+1, z+2, z+3, \Delta c)$ because the increment of the absciss is the conmon interval of the ordinates, or terms of the series, applied to the abteciss.

Tirse things being premised, let this series be proposed,
 found, by dividing the terma by uach other, that the selations of the terins are,
 relation in general will be defined by the equation $\mathbf{T}^{\prime}=\frac{2 z+1}{2 z+2}$ Tx or $\frac{z+1}{2} \frac{1}{+1} T x$, where z denotes the distance of T from the first term of the series. For by substituting $0,1,2,3,4$, sce, successively intead of z, the same relations will arise as in the pruposed stries above. In like manner, if z te the distance of T from the 2 d term of the series, the equation will be $\tau^{\prime}=\frac{2 z+3}{2 z+3} \tau x$ or $\frac{z+1}{z+3} T x$, as will appear by substituting the numbers $-1,0,1,2,3$, dic, surcessively for z. Or, if z denote the place or numter of the term T in the series, its successive values will be $1,2,3,4, \& \mathrm{c}$, and the equation or gencral term will be $\mathrm{T}^{\prime}=\frac{2 z-1}{22}+\boldsymbol{x}$.

It appears therefore, that innumerable differential equations maty defite one and the same series, according to the different points from whence the origin of the absciss = is taken. And, on the contrary, the same equation defines innumerable different series, by taking different successive values of z. For in the equation $x^{\prime}=\frac{2 z-1}{2 z} x x$, which defines the foregoing series when $1,2,3,4$, \&c are the successive values of the abscisser; if $1 \frac{1}{2}, 2 \frac{1}{2}, 3 \frac{1}{2}, 4 \frac{1}{2}, \& \mathrm{c}$, be successively substituted for z, the relathons of the terms
 whence will arise the series $A, \frac{1}{\frac{1}{2}} A x, \frac{5}{15} A x^{3}, \frac{1}{\frac{1}{5}}{ }_{5}^{6} A x^{2}, \frac{14}{3} \frac{1}{25} A x^{4}$, \&c, which is different from the former.

And thus the equation will always determine the series from the given values of the absciss and of the first term, when the equation includes but two terms of the series, us in the last example, where the first term being given, all the rest will be given.

But when the equation includes thtee terms, then two roust be given; and three must be given, when it incluctes four ; and so on. So, if there be proposed the series x,
 terms are, $\mathrm{B}=\frac{1.3}{2.3} \mathrm{~A} \mathrm{x}^{2}, \mathrm{C}=\frac{3.1}{4.9} \mathrm{~B} \mathrm{x}^{7}, \mathrm{D}=\frac{5.5}{6.7} \mathrm{C} x^{2}, \& \mathrm{C}$, the equation defining this series will be
$\mathrm{T}^{\prime}=\frac{(2 z-1) \cdot(2 z-1)}{22 \cdot(2 z+1)} \mathrm{T} x^{2}=\frac{4 z-4 x+1}{42 z+22} \mathrm{Tx}$, where the successive values of z are $1,2,3,4, \& c$. See Stirling's Methodus Differentialis, in the introduction.
This may suffice to give a notion of these differential equations, defining the nature of saries. But as to the application of these equations in interpolations, and finding the sums of series, it would require a treatise to explain it. We must therefore refer to that excelient one just quoted, as also to Demoivre's Miscellanea Analytica; and several curious papers by Euler in the Acta Petropolitana.

A series often converges so slowly, as to be of no use in practice. Thus, if it were required to find the sum of the series $\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{36}+\frac{1}{7.9}+\frac{1}{9.10} k c$, which lord Brouncker found for the quadrature of the hyperbola, true to 9 figures, by the mere addition of the terims of the series; Mr Stirling computes that it would be necessary to add a thousand millions of terms for that purpose; for which the life of man would be too short. But by that
genteman's method, thesum of the series may be found by a very moderate computation. See Method, Ditter. pa. 26.

Series are of various himds or descriptions. So,
An Aocending Sexies, is one in which the powers of the indeterninate quantity increase; as $1+a x+b x^{2}+c s^{3}$ bec. Aiad a

Descending Series, is one in which the powers decrease, or else increase in the denomitnators, wlinch is the same thing; as
$1+a x^{-1}+b x^{-2}+c x^{-3} \& \mathrm{c}$, or $1+\frac{d}{x}+\frac{p}{x^{2}}+\frac{c}{x^{2}} k c$.
A Circular Series, which denotes a series whose sum depends on the quadrature of the circle. Such is the series $1-\frac{1}{4}-\frac{1}{5}-\frac{1}{8}$ dec: See Denoivre Miscel. Analyt. pa. 111, or my Mensur. pa. 119. Ur the sum ot the series $1+\frac{1}{4}+\frac{1}{y}+\frac{1}{T_{6}}+\frac{1}{i} \& c$, continued ad infinitum, according to Euler's discovery.

Contimued Fraction or Scrses, is a fraction of this kind, to infimity,

The first series of this kind was given by lord Brouncker, first president of the Royal Society, for the quadruture of the curcle, as related by Dr. Wallis, in his Algebra, pa. 317. His series is,

$$
1+\frac{1}{2+\frac{9}{2+\frac{25}{2+\frac{49}{2+\frac{81}{2+\& c}}}} .}
$$

Which denotes the ratio of the square of the diameter of a circle to its area. Mr. Euler bas treated on this kind of series, in the Petersburg Commentaries, vol. 11, and in his Analys. Infinit. vol. 1, pa. 295, where he shows various uses of it, and how to transtorm ordinary fractions und common series into continued fractions. A common fraction is transformed into a continued one, after the manner of seeking the greatest common measure of the numerator and denoninator, by dinding the greater by the less, and the last divisor always by the last remainder. Thus te change $\frac{14 \pi^{2}}{51}$ to a continucd fraction.
59) 1461 (24

It is not, however, in this form of the series that they
arc applied to any useful purposco ; they must firs be reduced to a seties of converging fractions, which will be finite wben the radix is raternal, but infiuite when the radix is a surd. The rule for perlorming this is as follows.

Having divided one number by another, as above directed, ull nothing remains, place all the quotients thus arising in one hurisontal line, in the order in which they were obtained, proceeding from left to right. Then the first fraction will have i for its numerator, and the first quotient figure for its denominator. The second fraction will have the second quotient figure for its numerator; and for its denominator, the product of the firs denominator, and the said quotient plus 1 .

And all the other terms will then be found as follows. For the numerator, multiply the numerator already found by the next quotient figure, and to the product add the preceding numerator, which will form the new numerator. And the denorainators are obtained in exaclyy the same manner.
Thus, to reduce the above continued fraction to a series of converging fractions, we have

A surd quantity, such as $\sqrt{ } 19$, is reduced to a series of converging fractions, which will go on to infinity, in a similar manner, after the series of quotients $9,9^{\prime}, 9^{\prime \prime}, 9^{\prime \prime \prime}$, $\& c$ is obained, which is done by taking out the greatest syuare, then the next greatest, and so on, thus,

$$
\begin{aligned}
& q=\sqrt{19}=4+\frac{\sqrt{19-1}}{1} \\
& q^{2}=\frac{1}{\sqrt{19}-4}=\frac{\sqrt{ } 19+4}{3}=2+\frac{\sqrt{19}-2}{3} \\
& q^{11}=\frac{a}{\sqrt{19-y}}=\frac{\sqrt{19}+2}{s}=1+\frac{\sqrt{19}-3}{3} \\
& q^{141}=\frac{3}{\sqrt{19}-3}=\frac{\sqrt{19}+3}{2}=3+\frac{\sqrt{19}-0}{3} \\
& q^{i v}=\frac{2}{\sqrt{19}-3}=\frac{\sqrt{ } 19+3}{3}=1+\frac{\sqrt{ } 19}{}-2 \\
& 9^{\circ}=\frac{3}{\sqrt{19-2}}=\frac{\sqrt{19}+2}{3}=2+\frac{\sqrt{19}-4}{3} \\
& q^{* 1}=\frac{3}{\sqrt{19}-4}=\frac{\sqrt{19}+4}{1}=8+\frac{\sqrt{19}-1}{1} \\
& q^{* 11}=-\frac{1}{\sqrt{19-4}}=\frac{\sqrt{19}+4}{3}=2+25 .
\end{aligned}
$$

So that the quotienty are
 fractions approximates towards the $\sqrt{ } 19$; diffiering from the common series in this, that in those, it is the sum of all the terms that gives the approximate value of the radix, whereas in this each term, singularly, approaches towards the value of the radical.

Converging Series, is a meries whose terms continually decrease, or the successive sums of whose terms approximate or converge always nearer to the ultimate sunt of the whole series. Add, on the contrary, a

Diverging SEutes, is one whose terms continually increase, of that has the successive sums of its terms diverging, or going off always the farther, from the sum or value of the series.

Determinate Series, is a series whose terms proceed by the powers of a determinate quantity; us $1+\frac{1}{2}+\frac{1}{2^{t}}+\frac{1}{2^{2}}+\& c$. If that determiuate quantity
be unily, the arries is said to be rletermined by unity: Demoivre, Miseel. Analyt. pa. 111.

Indeterminate SEaies is one whose terms proceed by the powers of an indeterminate quantity x; as
$x+\frac{1}{4} x^{4}+3 x^{\prime}+\frac{f}{4} x^{4} \delta c \mathrm{c}$; or sometines also with indeterminate exponents, or indeterminate coefficients.

The Form of a bertis, is used for that aflection of ais indeterminate seriss, such af
$a r^{n}+b r^{n+r}+c r^{n+2 r}+d r^{n+3 r} \& c$, which arises from the ditferent values of the judices of x. This,
If $n=1$, and $r=1$, the series will take the forna $a x+b x^{2}+c x^{3}+d x^{4} d c$.
If $n=1$, and $r=2$, the form will be $a x+b x^{2}+c x^{3}+d x^{7} \& c$.
If $n=\frac{1}{1}$, and $r=1$, the form is

$$
a x^{\frac{\pi}{2}}+b_{x}^{\frac{1}{3}}+c x^{\frac{5}{4}}+d x^{\frac{2}{2}} \text { \&c. And }
$$

If $n=0$, sind $r=-1$, the form will be

$$
a+b x^{-1}+c x^{-1}+d x^{-1} \& c
$$

When the value of a quanrity cannot be found exactly, it is of use in algebra, ns well as in common arithmetic, to seek an approximate value of that quantity, which may be useful in practice. Thus, in aritbmetic, as the truu value of the square root of 2 cannot be assigned, a decimal fraction is found to a sufficient degree of exactness in any particular case; which decimal fraction is in reality, no more thau an infinite series of fractions converging or approximating to the true value of the root sough. For the expression $\sqrt{2}=1.414213 \& c$, is equivalent to this $\sqrt{2}=1+\frac{1}{2}+$ ris + Jofo $\searrow \mathrm{cc}$; or supposing $x=10$, to this

$$
\begin{aligned}
& \sqrt{2}=1+\frac{4}{x}+\frac{1}{x^{2}}+\frac{4}{x^{2}}+\frac{2}{x^{8}} \& \mathrm{c} . \\
& \text { of }=1+4 x^{-1}+x^{-1}+4 x^{-3}+2 x^{-1} \& \mathrm{cc}
\end{aligned}
$$

which last series is a particular case of the more general indeterminate series $a x^{n}+b x^{n+q}+c x^{n}+{ }^{2 r} \& c$, via, when $n=0, r=-1$, and the cocficients $a=1, b=4$, $c=1, \bar{d}=4, \& c$.

But the application of the notion of approximations in numbers, to species, or to algebre, is nut so obvious. Newton, with his usual sagacity, took the hint, and prosecuted it; by which were discovered general methods in the doctrine of infinite series, which had before been treated only in a particular manuer, though with great acuteness, by Wallis and a few others. See Newton's Method of Fluxions and Infinite. Series, with Colsun's Comment; as also the Analysis per \neq quationes Numero Terminorum ${ }^{\circ}$ Infinitas, published by Jones in 1711, and since translated and explained by Stewart, togetber with Newton's Tract ou Quadratures, in 1745. To these may be added Maclaurin's Algebra, part.2, chap. 10, pa. 244; and Cramer's Analyse des Lignes Courbes Algebrwques, chap. 7, pa. 148; and many other authors.

Among the various methods for determinating the value of a quantity by a converging serics, that secms preferable to the rest, which consists in assuming an indeterninate series as equal to the quantity whose value is sought, and afterwards determining the valuts of the terass of this assumed series. For instance, suppose a logarithm were given, to find the natural number unswering to it. Suppose the logarithm to be z, and the corresponding number sought $1+x$: then by the nature of logarithons and Aluxions, $\dot{z}=\frac{\dot{x}}{1+x}$, or $\dot{x}+x \dot{z}=\dot{x}$. Now assume a
series for the value of the unknown quantity x, and substitute it and its fluxion instead of x and \dot{x} in the last equation, then determine the assumed coefficients, by comparing or equating the like terms of the equation. Thus,
assume $x=a z+b z^{8}+c z^{8}+d z^{4} \& c$,
then $\dot{x}=a \dot{z}+2 b \bar{z} \dot{\dot{x}}+3 c z^{4} \dot{z}+4 d z^{3} \dot{z} \& c$;
and $\quad \dot{x}=(\dot{z}+x \dot{z})=\dot{z}+a z \dot{z}+b z^{2} \dot{z}+c z^{2} \dot{x} k c$; hence, comparing the like terms of these two values of t, there arises $a=1, b=\frac{1}{2}, c=\frac{1}{6}, d=\frac{1}{2}, \& c$; which values being subssituted for $a, b, c, \& c$, in the assumed series $a x+b x^{2}+c x^{2} d c$, it gives
$x=\varepsilon+\frac{1}{2} z^{2}+\frac{1}{8} z^{3}+\frac{1}{1} z^{2}+\frac{1}{2} z^{2} z^{3}, \& c c$, or
$x=z+\frac{1}{1.2} z^{2}+\frac{1}{1.8 .35} z^{2}+\frac{1}{1.8 .34^{2}}+\frac{1}{1.2 .3 .4 .5} z^{5} d c ;$ and consequently the number sought will be

$$
1+x=1+z+\frac{1}{1} z^{2}+\frac{x}{4} z^{3} d x c
$$

But the indeterminate series $a t+b z^{4}+c z^{3} \& c$, was here assumed arbitrarily, with regard to its exponents 1 , 2, 3, \&c, which will not succeed in all cases, because some quantitics require other forms for the exponents. For instance, if fron a given arc, it were required to find the tangent. Making $x=$ the tangent, and $z=\operatorname{arc}$, the radius being $=1$. Then, from the nature of the circle we shall have $\frac{\dot{x}}{1+x^{2}}=\dot{z}$, or $\dot{x}=\dot{z}+x^{2} \dot{x}$. Now if, to find the value of x, we suppose $x=a z+b z^{2}+c z^{3}$ \&c, and proceed as before, we shall find all the alternate coefficients $b, d, f, \& c$, or those of the even powers of z to be each $=0$; and therefore the series assumed is not of a proper form. But making $x=a z+b z^{3}+c z^{3}+$ $d_{2}{ }^{7}, \& c$, then we find $a=1, b=\frac{1}{\frac{1}{2}}, c=\frac{{ }^{2}}{1}, d=\frac{19}{17}$;
 \&c. And other quantities require other forms of series.

Now to find a proper indeterminate series in all caves, tentatively, would often be very laboriouk, and even impracticablc. Mathematicians have therefore endeavoured to find out a general rule for this purpose; though ull lately the method has been but imperiectly understood and delivered. Most authors indeed have explained the manner of finding the cuefficienis a, b, c, d, $k c$, of the indeterminate series $a x^{\prime \prime}+b x^{n+r}+c x^{n+2 r} d c$, which is easy enough; but the values of n and r, in which the chief difficulty lies, bave been assigned by many in a manner as if thry were self-evident, or ut least discoverable by an easy trial or awn, as in the last example.

As to the number n, Newton himself has shown the method of determining it, by bis rule for figding the first term of a converging series, by the application of his parallelogram and ruler. For the particulars of this method, see the authors abovecited; secalso Parallelooram.

Taylor, in his Methodus Incrementorum, investigntes the number r; but Ssirling observes that his rule sometimes fails. Linee Tert. Ordin. Newton. pa. 28. Mr, Stirling gives a correction of Taylor's rule, but says he cannot affirm it to be universal, having only found it by Chance. And again,

Gravesande observes, that though be thinks Stirling's rule never leads into an error, yet that it is not perfect. See Gravenande, De Determin. Form. Seriei Infinit. printed at the end of his Mathescos Universalis Elementa. This learned professor has endeavoured to rectify the rule. But Cramer has shown that it is still defective in several respects; and he himself, to avoid the inconveniences to which the methods of former authors ure subject, has had
recourse to the first principles of the method of infinite series, and has entered into a more exact and instructive" detall of the whole method, than is to be met with elsewhere; for which reason, and many others, bis trvatise deserves to be particularly recommended to bepinnew. See also my Tracts, v. 3, p. 369, for an casy method of determining the exponents in the assumed indeterminate serics.

But it is to be observed, that in determining the value of a quuntity by a converging series, it is not always necessary to bave recourse to an indeterminate series: for it is ofteo better to find it by division, or by extraction of roots. See Newton's Meth. of Flux. and Inf. Scries, above cited. Thus, if it were required to find the arc of a circle from its tangent being given, that is, to find the value of \dot{z} in the given fluxional equation, $\dot{z}=\frac{\dot{x}}{1+x a}$, by an infinite series: dividing \dot{x} by $1+x x$, the quotient will be the series $\dot{x}-x^{2} \dot{x}+x^{4} \dot{x}-x^{5} \dot{x} \& c=\dot{z} ;$ and taking the fluents of the terms, there results $:=x-\frac{1 x^{3}}{}+\frac{1}{x^{3}}-$ $4 r^{\prime} \& c$, which is the series often used for the quadrature of the circle. If $x=1$, or the tangent of 49°, then will $z=1-1+\frac{1}{3}-\frac{r}{y} \& c=$ the length of an arc of 45°, or \ddagger of the circumference, to the radtus t, or $\$$ of the circumference to the diameter 1. Consequently, if I be the diameter, then $1-\frac{1}{1}+\frac{1}{3}-4 \& c$ will be the area of the circle, because $\frac{1}{4}$ of the circumference mulhiplied by the diameter, gives the area of the circle. This series was first given by Leibnitx and Janes Gregory.

See the form of the series for the binomial theorem, determined, both as to the coefficients and exponents, in my Tracts, vol. 1, pa. 228.

Harmonical Senies, the reciprocal of arithncticals. See Hateronical.

Hyperbolic Seaies, is used for a series whose sum depends on the quadrature of the hyperbola. Such is the series $\frac{1}{4}+\frac{1}{2}+\frac{1}{1}+\frac{1}{2}$ \&ec. Demoivre's Miscel. Analyi. pa. 111 .

Interpolation of Series, the inserting of some terms between others, Acc. Sie Interpalation.

Interacendent Series. See Inteascennent.
Mixt Series, one whose suin depends parily on the quadrature of the circle, and partly on that of the byperbola. Demoivre, Mincel. Analyt. pa. 111.

Recurting Seares, is used for a series which is so constituted, that having taken at pleasure any number of its terms, each following term shall be related to the same number of preceding terms by some constant law of relation. Thus, in the following series,

$$
\begin{aligned}
& a \\
& 1 \\
& 1
\end{aligned}+2 x+3 x^{4}+10 x^{3}+34 x^{4}+97 x^{5} d c
$$

in which the terms being respectively reprosented by the letters $a, b, c, \& c$, set over them, we shall hase

$$
\begin{aligned}
& d=3 c x-2 b x^{2}+5 a x^{\prime} \\
& c=3 d x-2 c x^{2}+5 b x^{3} \\
& f=3 c x-2 d x^{2}+5 c x^{3} \\
& \& c, \& c
\end{aligned}
$$

where it is evident that the law of relation betweend and $c_{\text {, }}$ is the same as between e and f, each being formed in the same manner from the three terms which precede it in the series.

The quantities $3 x-2 x^{2}+5 x^{3}$, taken together and connected by their proper signs, form what Demoivre calls the index, or the scale of relation; though sometimes the bare coefficients $3-2+5$ are called the scale of

A recurring series being given, the sum of any finte tumber of the terns of that series may be found. This is prob. 3, pa. 73, Demosivre's Misctl. Analyt. and prob. 3, pa. 223 of ot has Doctrine of Chances. The solution is tffected, ly taking the difference betwen the sums of two intinite series, differing by the terms answering to the given number; viz, from the sum of the whole infinite series, commencing from the beginning, subtract the sum of another infinte nunsber uf icrms of the same serics, cortmencing alier su many of the first terms whose sum is required; and the difference will evidently be the sum of that number of terms of the serics. For example, to find the sum of n terms of the intinite geometrical series $a+a s+a x^{2}+a s^{2} d c$. Here are two infinite series: the one beginning with a, and the other with $a x^{n}$, which is the next termafter the first n terms of the original series. By the rule, the sum of the first infinte progression will be $\frac{a}{1-x}$, and the sum of the second $\frac{a^{\prime \prime}}{1-x}$; the difierence of which is $\frac{a-a x^{n}}{2}$, which is therefore the sum of the first n terms of the serics. This quantity
$\frac{a-a s^{2}}{1-x}$ is equal to $\frac{a r^{4}-a}{x-1}$, which last expression, putting $a x^{*-1}=l$, will be equivalent to this, $\frac{t r-a}{x-1}$, which is the conmon rule for finding the sun of any geometric progression, having given the first term a, the last term l, and the ratio x. See Miscel. Analyt. pa. 167, 168.

In a recurring series, ahy term may be obtained whose place is ussigned. For after having taken so many terms of the series as there are terms in the scale of relation. the series may be protracted till it seach the place assigined. But when that place is very distant from the beginning of the series, the continuing the terms is very laborious; and thercfore other methods bave been conirived. See Miscel. Analy. pa, 33, and Doctrine of Cbances, pa. 2:24.

These questions have bern resolved in many casea, be sides those of recurring series. But as there is no universal method for the quadrature of curves, neither is there one for the summation of series; indeed there is a great analogy between these things, and similar difficulties arieo in bath. See the mulurs above cited.
The investigation of Daniel Bernoulli's methot for finding the roots of algebraic equations, which is inserted in the Petersburg Acts, tom. 3, pa. 92, depenis on the doctrine of recurring weries. See Euler's Analysis Infinitorum, tom. 1, pa. 276.

Reversoon of Serbica. Sue Revebston of Serics.
Sunmabie Srerisa, is one whuse sum can be arcurately fouml. Such is the series $\frac{1}{?}+\frac{1}{i} d \mathrm{c}$, the sum of which is said to be unity, or to speak more accurately, the limit of its sum is mity or 1 .

An indefinite number of summable infinite series may be assigned : such are, for iustance, all isfiuite recurring converging serics, and many others, for which, consult Demalvre, Bernoulli, Stirling, Euler, and Maclaurin; viz, Miscel. Analyt. pa. 1 to; De Seriel. Infinit. passim; Method. Different. pa. 34 : Acta Petrop. passion; Fluxions, art. 350.
The obtaining the sums of iufinite scrieses of fractions has been one of the primeipal abjects of the modetim method of computation; and these sums may often be found, and sonetimes not. Thus the sums of the two following scries of gcometrical progressionals are casily found to be-

1 and $\frac{1}{1}$, viz, $1=\frac{1}{2}+\frac{1}{2}+\frac{1}{1}+\frac{1}{1}$ \& k,

$$
\text { and } \frac{2}{2}=\frac{1}{\frac{1}{1}}+\frac{1}{1}+\frac{1}{1 r} v c \text {. }
$$

But the series of fractions that occur in the salation of problenis, can seldom be reduced to geometric progressions; tor can any general rule, in cases so infintely various, be given. The art here, as it most otber cases, is only to be acquired by examples, and by a careful observation of the arts used by great authois in the investigation of such series of fractions as they have considered. And the general methods of infinite serios, which have been carried so far by Demoivre, Stirling, Fuler, \& c , are often found necessary to deacrinine the suin of a very simple series of fractions. See the quotations above.

The sum of a series of fractions, though decreasing continually, is not always finite. This is the case of the series $\frac{1}{1}+\frac{1}{1}+\frac{4}{3}+\frac{1}{4}+\frac{1}{3}$ sic, which is the barmonic series, consisting of the reciprocals of arithaneticals, the sum of which exceeds any given number whaterer; and this is shown from the analogy between this progression and the space conprebended by the coamon hyperbola and its n.ymptote; though the same ntay be shoun also from the nature of progressions. See Janes Bernoulli, de Seriebus Infin. But, what is curious, the sum of the squares of its terms is finite; for the satne terms of the harnonic ceries, $\frac{1}{4}+\frac{1}{2}+\frac{1}{3}$ \&ce, be squared, forming the sesics $\frac{7}{7}+\frac{1}{4}+\frac{1}{9} \& c$, being the reciprocals of the squares of the naturnl series of nombers; the sum of this surics of fractions will nut only be limited, but it is remarkable that this sun will be precisely equal to the bith part of the number which expresses the ratio of the square of the eircumterence of a circle to the square of its dameter. That is, if c denote $31+159 \mathrm{~N}$, the ratio of the circumference to the diameter, then is $\frac{2}{6} c^{2}=\frac{1}{r}+\frac{1}{4}+\frac{1}{t}+\frac{1}{10}+\frac{1}{x^{3}}$ d.c. This property way fist discovered by Joln Bernonll); and his investigation may be seen in the Acta Petrop. vol. 7. And Maclaurin has since oboested, that this may easily be deduced from bis Fluxions, art, s\&2. Pbilos. Trans, numb. 469.

It would require a whole volume to enumerate the various hinds of series of fractions which may or may not be summed. Sumetimes the sum caunot be assignod, cither because it is infinite, as in the harmonic series $i_{i}+$ $\frac{1}{3}+\frac{1}{4} 太 c$, or, though its sum be finite (as in the serics $\frac{1}{r}+\frac{1}{4}+\frac{1}{9} \& \mathrm{c}$), jet its sum cannut be assigned in finite terms, or by the quadrature of the circle or hyperbola, which was the case of thin'serics before liulen's discovery; but yet the suma of any given number of the terms of the serics may be expedtiously found, and the whole sum may be assigned by approximation, independent of the cucle. Sce Stirlitg's Method. Different. and De Maivre's Miscel. Analyt. Atso the works of Juhn Bernoulli, who first summed this series.

Besides the series of fractions, the sums of which converge to a certain quantity, liere sometames occur others, which converge by a continued multiplication. Ot this kind is the series found by Wallis, fur the quadrature of the circle, which he expresses this,

$$
0=\frac{3 \times 3 \times 5 \times 5 \times 7 \times 7 \times 9 \times 9 \times 8 \mathrm{c}}{2 \times+\times 4 \times 6 \times 6 \times 3 \times 5 \times 10 \times 4 \times 5}
$$

where the character \square denotes the ratio of the square of the diatneter to the area of the circle. Hence the dennminator of this fraction, is to its numerator, both infinitely continued, as the circle is to the square of the diameter. It may further be observed that this series is equivalent to
$\frac{0}{8} \times \frac{25}{24} \times \frac{49}{43} \times \& \mathrm{c}$, or to $\frac{3^{*}}{3^{2}-1} \times \frac{3^{*}}{3-1} \times \frac{y^{4}}{y^{\frac{1}{-1}} \times} \times$ $\& c$, that is, the product of the squares of all the odd nunbers $3,5,7,9, \& e$, is to the produce of the samie squares severally diminished by unity, as the square of the diameter is to the area of the circle. See Arithnet. lutinit, prop.191. Oper, vol. 1, pa.469. Id. Oper. vol.2, pa. 819. And these producis of fractions, and the like quantlies arisitg from the continued multiplication of certain lactors, have been particularly cunsidered by Euler, in his Analysis Infint, vol. 1, chap. 15, pa. 221.

For an easy and general method of summang all alternate series, such as $a-b+c-d$ dc, see my Iracts, vol. 1, pa. 176; and in the same vol. inay be secu many other curious tracts on infinite series.
Summation of Infinite Series, is the finding the value of them, or the radix from which they may be raised. For which consult the authors upon this serence, particuiarly Sturling, and Clark's translation of Lorgna.

To find an infinite series by extracting of roots; and to find an infmite series by a presuppused series; see QUAdrature of the circle.
To extract the roots of an infinite series, sce Extraction of Roos.

To raise an infinite series to any power, sec Involutor, and Puwer.
Truacendental Seriks. Sce Transcendental.
There are many other important writugs on the subject of Intinite series, besides those above quoted. A very good elementary tract on this science is thut of lames Berimullt, intituled, Tractatus ele Scriebus Infinitis, and annexed to his Ars Conjectandi, published in $410,1713$.

SF:RPENS, in Astronmy, a constellation in the noribern hemisplere, being one of the 48 old consteliations mentioned by all the anrients, and is called more particularly Serpens $\mathrm{O}_{\text {phonchi, being grasped in the hands }}$ of the colistellation Ophiuchus. The Greeks, in their fables, have ascribed it sometimes to one of Triptolenus's dragons, killed by Carnabos; and sometimes to the serpent of the river Segaris, destroyed by Hercules. This is by some supposed to be the same as the author of the book of Job calls the Crooked Serpent; but this expression more probably meant the constellation Dracn, near the north prite. - The stars in the constellation berpens, in Ptoleniy's catalogue are 18, in 'Tycho's 13, in Hevelius's 22 , and in the Britaunic catalogue 64 .

SEIAPENTALILE, a constellation of the northern bemixphere, tring one of the $\mathbf{4 8}$ old constellations mentioned hy ull the ancients. It is called also Ophiuchus, and anciently Nisculapuss It is in the figure of a man grasping the serpent. The Greeks had different fables about this, and other constellations, because they were ignorant of the true meaning of them. Some of them suy, it represents Cariabos, who killed one of the dragons of Triptolemus. Others say, it was Ifereules, killing the serpent at the riser bigaris. And others again say, it represems the celebrated physician Asculapius, to denote his skill in modicine in curing the lite of the serpent.

The starx in the constellation Serpenturius, in Pterlemy's catalogue are 29, in Tycho's 13 , in Ilevelims's 40, absl in the Butamic catalugue they are 74.

SERPF:NTINE: Line, the same with spiral.
SIS' ? ('t, an expression of a certain ratio, viz, the second ratio of incquality, calied also superparticular ratio; being that in which the greater term contains the
less once, and some certain part over; as 3 to 2, where the first term contains the second unce, and unity over, which is a quota part of 2. Now if this part remaining be just half the liss term, the ratio is called sesquialtera; if the remaining part be a 3 d part of the less terin, as 4 to 3, the ratio is called sesquitertia, or sesquiterza; if a 4th purt, as 5 to 4 , the ratio is called sesquiquarta; and so un continually, still adding to sesque the ordinal number of the smalier term. In Einglish we sometimes say, sesquialteral, or sesquialerate, nespuithird, sesquifourth, \&cc. As to the kinds of triples expresed by the particle sesqui, they are these:

Sk.SQUILATERATE, the greater perfect, which is a triple, where the breve is three measures, of semibreves.

Sesquiatiterate, greater imperfect, which is where the breve, when pointed, contains three measures, and withut any point, two

Sesquialtemate, kess imperfect, a triple, where the semibreve with a point contains three neeasures, and two withert.

Sesqcialeterate, in Arithnctic and Geometry, is a ratio between two nunbers, or lincs, doc, where the greater is equal to once and a hall of the less. Thus 6 and 9 are in a sesquatalerate ratio, as abs 20 and 30.

SESQU'IDITONE, in Music, a concord resulting from the suunds of two strings whose vibrations, in equal umes, are to each other in the ratuo of 5 to 6 .

SESQUIDUPIICATE Rustio, is that in which the greater term contans the less, twice and a bali; as the ratio of 15 to 6 , or 50 to $\% 0$.

SESQUIQU IITRATF, an aspect or position of the planets, when they are distant by 4 signs and a hali, or 135 degries.

SFSQQUIQUINTILE, is an aspect of the planets when they wre distant $\frac{1}{1}$ of the circle and a half, or 108 degrees.

SESQUIIERTIONAL. Proportion, is that in which the greater terin cuntains the less once and one third; as 4 to 3 , or 12 to 9.

SETTING, in Astronomy, the sinking of a star or planet below the horizun. Astronomers and poets count three diflerent kinds of setting of the stars, viz, Acneosical, Cosmical, and Heltacal. See these terms respectively.

Settixg, in Navigation, Surveying, \&ec, denotes the observing the bearing or situation of any distant object by the compass, \&c, to discover the angle it makes with the nearest meridian, or with some other line. See Beaning. Thus, to set the land, or the sen, by the compass, is to observe how the land bears on any point of the compass, or on what point of the compass the sun is. Also, when two ships come in sight of pach other, to mark on what point the chace bears, is termed Setting the chace by the compase.
Setrina also denotes the direction of the wind, current, or sea, particularly of the two Latter.

SEVEN STARs, a commou denomination given to the cluster of stars in the neck of the sign Taurun, the bull, properly called the pleiades. They are so called from their number seven which appear to the naked eye, though some persons can discover only 6 of them; but by the help of telescopes there appears to be a great multitude of them.

SEVENTH, Septima, an interval in Music, called by the Graeks heptachorion.

SEXAGLNAKY, sumething relating to the number 60 . Sexagenary Arithmeric. See Sexagestmal.
Sexagexaky 'Tables, are tables of proportional parts, showing the product of two senagenarkes that are to be multuplied, or the quotient of two that are to be disided.

SL:XAGESIMA, the eighth Sunday before Easter; being so called because near 60 days before it.

SEXAGESMAL or Sexagenaky Arithmetic, a method of computation procreding by 6oths. Such is that used in the division of a degree into 60 minutes, of the minute into 60 seconds, of the second into 60 thirds, \& \& e-
The Grecks pertormed many vi their culculations by means of the sexagesimal division of quantities, particularly their divisions and extraction of roots. This method, thougb sery laborious, was certainly prefirable to what these rules would have been in their cummon notation, as thry appear to have lond no idea, nor indeed did their uotation admit, of finting one figure at a time in the quutient as we du. The Greeks therefore were under the necessity of finding either by trials, or otherwise; the whole quotvent for the fisst preriud, thes the whole quotient again for the second period, and so on. See Notation.

SEXAGESIMaLS, or Sexacesimal Fractions, are fractions whose denominators pruceed in a sexagecuple ratio ; that is, a prime, or the first minute $=\frac{1}{\text { of, }}$ a second $=$ itce, and third $=$ IT tbver. Anciently there were no other than sexagesimals used in astronomical operations, for which renson they are sometimes called astronomical fractions, and they are atill retained in many cases, as in the divisions of time and of a circle ; but decimal arithmetic is now much uned in the calculations, and the French have entirely discarded the sexagesinal division, and employed only the decimal, an improvement in astronomy which may in time be adopted by other nations. See Degaee.- Boxagesinuls were probably first used for the divisiuns of a circte, 560 , or 6 tines 60 making up the whole circumferencr, on account that 560 days ruade up the year of the ancients, in which time the sun was supposed to complete his course in the circle of the ecleptic.-In these fractions, the denominator being always 60 , or a multiple of il, it is usually omitted, and the numerator only set down: Jhus, $3^{\circ}+5^{\prime} 24^{\prime \prime} 40^{\prime \prime \prime} \& c^{\prime}$, is to be read, 3 degrees, 46 minutes, 24 seconds, 40 thirds, Ake.

SEXANGLE, in Geometry, a figure having 6 angles, and consequintly 6 sides also.
sf:XENARY or Sexteple Scale of Notation, is that in which the local value of the digits increase in a sixfold propertion. Sue Scale, and Notattox.

SEXTANS, a sixth part of certain things. The Romans divided their as, which was a pound of brass, into 12 ounces, called nocia, from unum ; and the quantity of 2 ounces was called sextans, as being the 6 th part of the pound.

SExtays was also a mosusure, which contained 2 ouncer of liquor, or 2 cyatbi.

Sextans, the Sextant, in Astronnmy, a ruw constellation, placed across the equator, but on the south side ot the ecliptic, and by Hevelius made up of some unformed stars, or such as were not incluted in any of the 48 old constellations. In Itevelius's catalogue it coutains 11 stars, but in the Britannic catalogue 41 .

SEXTANT; denotes the 6 th part of a circle, or an arch colltaining 60 degrees.
Sextant is more particularly used for an antronomical instrument. It is made like a quadrant, excrpting that its limb only contains to degrees. Its use and application ure the sume with those of the Quadrant; which see.
SEXTARIUS, an ancient Roman measure, containing 2 cutvle, or ${ }^{2}$ hemins.
SEXT'ILE, the aspect or position of two planets, when they are distant the 6th part of the circle, viz, 2 signs or 60 degress; and it is marked thus *.
SEXTUPLE., denotes 6 fold in general. But in music it denotes a inixed sort of triple ume, which is beaten in double time.

SHADOW, Shade, in Optics, a certain space deprived of light, or where the light is weakened by the interposition of some opaque berdy before the luminary. The ductrine of shadows makes a considerable article in uptics, astronomy, and geography; and is the general foundation of dialling. As notbing is seen but by light, a mere shadow is invisible; and therefore when we say we see a shadow, we mean, partly that we see bodies placed in the shudow, and illuminated by light refected from collateral bodies, and partly that we see the confines of the light.

When the opaque body, that projects the shadow, is perpendicular to the horizon, and the plane it is projected on is horixontal, the shadow is called a right one: such as the shadows of men, trees, buildings, mountnins, \&c. But when the budy is placed parallel to the horizon, it is called a versed shadow; as the arms of a man when stretched out, \&e.

Lawa of the Prejection of Shadous.
I. Every opaque body projects a shadow in the same direction with the rays of light ; that is, towards the part opposite to the light. Hence, as either the luminary or the body changes place, the shadow likewise' changes its place.
2. Every opaque body projects as many shadows as there are luminaries to enlighten it.
3. As the light of the lurainary is more intense, the obandow is the deeper. Hence, the intensity of the shadow is measured by the degrees of light that space is deprived of. In reality, the shadow iself is not deeper ; but it appears so, because the surrounding bodies are more vividly illuminated.
4. When the luminous body and opaque one are equal, the shadow is always of the same breadth with the opaque body. But when the luminous body is the larger, the shadow becomes always less and less, the farther it is frora the body. And when the luminous body is the smallet of the two, the sbadow increases always the wider, the farther from the berly. Hence, the shadow of an opaque glube is, in the firt care a cylinder, in the second casc it is a cone verging to a point, and in the third cane a truncated cone that cularges still the more the farther it is from the body. Also, in all these cascs, a transerese section of the shadow, by a plane, is a circle, respectively, in the three cases, equal, less, or greater than a great circle of the globe.
5. To find the length of the shadow, or the axis of the shady cone, projected by a sphere, when it is illuminated by a larger one; the diameters and distance of the two splices being known. Let C and D be the centres of
the two spheres, ca the semidiameter of the larger, and DB that of the smaller, both perpendicular to the side

of the conical shadow BEF , whose axis is DE, continucd to c ; and draw g parallel to the same axis. Then, the two triangles AGB and bLE being similar, it will be $A G: G B$ or CD: : BD: DE, that is, as the difference of the semidiameters is to the disaunce of the centres, so is the semidiameter of the opayue sphere to the axis of the shadow, or the distance of its vertex from the said opaque sphere.

Fix. gr. If ad $=1$ be the semidiameter of the earth, aud $\mathrm{Ac}=101$ the mean semidiameter of the sun, also their distance $C D$ or $G B=24000$; then as 100: 24000 $:: 1: 240=\mathrm{DE}$, which is the incan height of the earth's shadow, in semidiameters of the base.
6. To find the length of the shadow ac projected by an opaque body $\triangle B$; having given the altitude of the luminary, for ex. of the sun, above the horizon, viz, the angle c, and the height of the object AB. Here the proportion is, as tang. $\angle \mathrm{C}$: radius : : AB:AC.

Or, if the length of the shadow $A C$ be given, to find the height $A B$, it will be,

$$
\text { as radius : tang. } \angle C: \therefore A C: A B \text {. }
$$

Or, if the lengti of the shadow AC, and of the object AB, be given, 10 find the sun"s altitude above the hrotizon, or the angle at c. It
 will be,
as $A C: A B::$ radius: tang. $\angle C$ songht.
7. To measure the height of any object, ex. gr. a colnmon AA, by means of its shadow projecied on an horizontal plane-At the extremity of the shadow, at c , erect a stick or pole CD, and measure the length of its shallow CE; also measure the length of the shadow AC of the tower. Then, by similar triangles, it will be, as ke: cD $:: C A: A B$. So if $\mathrm{Ec}=10$ feet, $\mathrm{CD}=6$ feet, and CA $=95 \mathrm{fret}$; then as $10: 6:: 95: 57$ feet $=A \mathrm{~B}$, the height of the tower sought.

Sua dow, in Geography. The inhabinants of the earth are divided, with respect to their Nadows, into Axcir, Amputach, Heteroscit, and Perisch. Sce these several terms.

Suanow, in Perspective, is of great usc in this art. Ilaving given the uppearance of an opaque body, and a luminous one, whese rays diverge, as a candle, or lamp, $\& \mathrm{c}$; to find the exact appearance of the shadow, accenling to the laws of perspective. The method is this: From the Inminous body, which is here consideral as a point, let fall a perpendicular to the perspective plane or table; and from the several angles, or raized pritits of the body. let fall perpendiculars to the same plane; then connert the points on which these latter perpendiculars fall, by
right lines, with the point on which the first falls; continuing these lines beyond the side opposite to the luminary, till they meet with asmany other lines drawn from the centre of the luminary through the seid angles or raised proinls ; so shall the points of intersection of these lines be the extremes or buunds of the shadow.
For example, to project the appearance of the sladow of a primm abcdef, scenngraphically delinated. Herem is the place of the perpendicular of the light m, and $\mathrm{D}, \mathrm{E}, \mathrm{E}$ those of the raised puints A, B, C, of the prism; therefore, draw ment mbc, dc, and L.Ah, LAG, \&c, which will give $D E O H \& C$ for the appearmence of the shadow.

As for thoge shadows that are intercepted by
 other objects, it inay be olserved, that when the shadow of a line falls upon any object, it must necesearily take the form of that object. If it lall upon another plane, it will be a right line; if upon a globe, it will be circular ; and if upon a cylinder or cone, it will be circular, or oval, \&c. If the body intercepting it be a plane, whatever be the situation of it, the shadow falling upon it might be found by producing that plane till it intercepted the perpendicular let fall upon it from the luminous body; for then a line drawn from that point would determine the shadow, just as if no other plane had been concerned. Bet the appearance of all these shadows may be drawn with less trouble, by first drawing it through these intercepted objects, as if they had not been in the way, and then making the shadow to ascend perpendicularly up every perpendicular plane, and obliquely on those that are situated obliquely, in the manner deseribed by Dr. Priestley, in his Perspective, pa. 73 \&c.

Here we may observe in general, that since the shadows of all objects which are cast upon the ground, will vanish into the horizontal line; so, for the same reason, the vanishing points of all shadows, which are cast upon any inclined or other plane, will be sonnewhere in the vanishing line of that plane.

When nbjects are not supposed to be viewed by the light of the sun, or of a candle $\& c$, but oaly in the light of a cloudy day, or in a room iuto which the sun does not shine, there is no sensible shadow of the upper part of tho object, and the lower part only inakes the adjacent objects, or plane of the ground or floor on which it stands, a little darker than the rest. This imperfect obscure kind of shadow is easily made, being nothing more than a shade on the ground, opposite to the side on which the light comes; and it may be continued to a greater or less distance, according to the supposed brightness of the light by which it is inade. It is in this manner (in order to save trouble, and sometimes to prevent confusion) that the shadows in most drawings are made. On this subject, sce Priestley's Perspect. above quoted ; also Kirby's Persp. book 2, ch. 4.

SHAFT of a Column, in Building, is the body of it; thus cslled from its straightuess : but by architects more commonly the Fust.

Sanayt is also used for the spire of a church steeple; and for the shank or tunnel of a chimney.

SHARP (Asrabam), an ingenious mathematician, Vol II.
mechanist, and astronomer, was descended from an ancient family at Little-Horton, near Bradford, in the Weat Riding of Yorksbire, where he was born about the year 1651. At a proper age be was put apprentice to a neerchant at Manchester; but his genius led bims so strongly to the study of mathematics, both theoretical and practical, that he soon became uncasy in that situation of life. By the mutaal consent therefore of his master and himself, though not altogether with that of his father, he quitted the business of a merchant. On this be removed to Liverpool, where he gave bimself up wholly to the stuily of mathematics, astronomy, \&c; and where, for a subsistance, he opened a schoul, and taught, writing and accounts, dc.

He had not been long at Liverpool when he accidentally fell in company with a merchant or tradesman visiting that town from Londin, in whose house it seems the astronomer Mr. Flamsteed then lodged. With the view therefure of becoming acquainted with this eminent man, Mr. Sharp engaged himself with the merchant as a boukkeeper. In consequence he soon contracted an intimate acquaintance and friendship with Mr. Flamsteed, by whose interest and recommendation be obtained a more profitable easployment in the dock-yard at Cbatham: where he continued till liss friend and patron, knowing his great merit in astronomy and mechanics, culled him to his assistance, in contriving, adapting, and fitting up the astrononical apparatus in the Royal Observatory at Greenwich, which had been lately built, namely about the year $16{ }^{-6} 6^{\prime}$; Mr. Flamsteed being then 50 years of age, and Mr. Sharp 25.

In this situation he continued to assist Mr. Flarhsteed in making observations (with the mural arch, of 80 inches radius, and 140 degrees on the limb, contrived and graduated by Mr. Sharp) on the meridional zenith distances of the fixed stars, sun, moon, and planets, with the times of their transits over the meridian; also the diameters of the sun and moon, and their eclipses, with those of Jupster's satellites, the variation of the compass, \&c. He assisted bim also in making a catalogue of near 9000 fixed stars, as to their longitodes and nagnitudes, their right ascensions and polar distances, with the variations of the same while they change their longitude by one degree.

But from the fatigue of continnally ubserving the stars at night, in a cold thin air, joined to a weakly constitution, be was reduced to a bad state of health; for the recovery of which he desired leave to retire to his house at IIorton; where, as soon as be found himself on the recovery, he began to fit up an observatory of his own; having first made an elegant and corious engine for turning all kinds of work in wood or brass, with a maondril for turning irregular figures, as ovals, roses, wreathed pillars, \&cc. Besides these, be made himself most of the tools used by joiners, clockmakers, opticians, mathematical instrumenimakers, \&c. The limbs or arcs of his large equatorial instrument, sextant, quadrait, \&c, he graduated with the nicest accuracy, by diagonal divisions into degrees and minutes. The telescopes he used were all of his own making, and the leuses ground, figured, and adjusted with his own hands.

It was at this time that he assisted Mr. Flamsteed in calculating most of the tables in the second volume of his Historia Coclestis, as appears by their letters, to be seen in the bands of Mr. Sharp's friends at Horton. Likewise the curious drawings of the charts of all the constella-

3 D

S H A

tions visible in our hemisplere, with the still more excellent drawings of the planispheres both of the northern aud southern constellations. And though these drawings of the constellations were sent to be engraved at Amsterdam by a masterly hand, yet the originals far exceeded the engravings in point of beauly and elegance: these were published by Mr. Fiamsteed, and both copiey may be seen at Horton.

The mathematician meets with something extraordinary in Sharp's claborate trealise of Geometry Improved (in 4to 1717, signed A. S. Philomath.), 1st, by a large and accurate table of segreents of circles, its construction and various uses in the solution of several difficult problems, with compendious tables for finding a true proportional part; and their use in these or any other tables exemplified in making logaritbms, of their natural numbers, to 60 places of figures; there being a table of them for all primes to 1100 , true to 61 figures. 2d, his concise treatise of Polyedra, or solid bodies of many bases, both the regular ones und others: to which are added twelve new ones, with various meihods of forming them, and their exact dimensions'in surds, or species, and in numbers: illustrated with a variety of copper-plates, neatly engraved by bis own hands. Also the models of these polyedra he cut out in boxwood with amazing neatness and accuracy. Indeed few or none of the roathematical instrument-makers could exceed bim in exactly graduating or neatly engraving any mathematical or astrunomical instrument, as may be seell in the equatorial instrument ebove-mentioned, or in bis sextant, quadrants and dials of various kinds; also in a curious armillary spbere, which, besides the common properties, bas moveable circles \&c, for exhibiting and resolving all spherical triangles; also his double sector, with many mether instruments, all contrived, graduated and fiushed, in a most elegant manner, by himself. In short, he possessed at once a romarkably cloar bead for contriving, and an extraurdinary hand for executing any thing, not oaly in mechanies, but also in drawing, writing, anal making the most exact and beautiful schemes or figures in all his calculations ant geometrical constructions.

The quadrature of the circle was undertaken by him for his awn priate anusement in the year 1699 , deduced from two diffierent serits, by which the truth of it was proved to 72 places of figures; that is, if ilie diameter of a circle be 1 , the circumference will be found equal to $3 \cdot 14159265358979325846264358527950288419716939$ $9375105820974944599307816+05 \& \mathrm{c}$. He gave alsn ingenious improvements on the making of logarithms, and the constructing of the natural sines, tangents, and secants.

He also calculated the natural and logarithmic sines, tangents, and secants, to every second in the first minute of the quadrant : the laborious investigation of which may probably be seell in the archives of thr Itoyal Socicty, as they were presented to Mr. Patrick Murdoch for that purpuse; exlibiting his sery neat and accurate manner of writing and arranging his figures, not to be equalled perhaps by the best penman now living.

The late ingenious Mr. Smeaton says (Philos, Trans. an. 1786, pa. 5, \&c):-"In thè year 1689, Mr. Flamsteed completed his mural are at Greenwich; and, in the Prolegomena to his Historia Celestis, he makes an ample acknowledgment of the particular assistance, care, and industry of Mr. Abrahan Sharp; whom, in the modth of

August 1688, he brought into the observatory, as his amanuensis ; and being, as Mr. Flamstred iells us, not only a very skilful inathematician, but excecdiogly expert in mechanical operations, he was principally empleyed in the construction of the mural are; whech in the compass of 14 months he finished, so grewily to the satisfaction of Mr. Fiamsteed, that he spraks of him in the bighest terms of praise.
"This celebrated instrument, of which he also gives the figure at the end of the Prolegomena, was of the radius of 6 feet $7 \frac{1}{2}$ inches; and, in like manner as the sextant, it was furnished both with screw and diagonal disisions, all performed by the accurate band of Mr. Sbarp. Yet, whoever compares the different parts of the table for conversion of the revolutions and parts of the scren belonging to the inural arc into degrees, minutes, and seconds, with each other, at the same distance from the zenith on alifferent sides; and with their halves, quarters, \&e, will find as notable a disagreement of the screw-work from the land divisions, as bad uppeared before in the work of Mr. Tonpion : and bence we may conclude, that the mathod of Dr. Hooke, being executed by two such masterly hands as Tompion and Sharp, and found defective, is in reality not to be depended upon in nice matters.
"From the account of Mr. Flamsteed it appears also, that Mr. Sharp obtained the zenith point of the instrument, or line of collimation, by observation of the zenith stars, with the face of the instrument on the east and on the west side of the wall: and that having made the index stronger (to prevent fiexure) than that of the sextant, and thereby heavier, be contrived, by means of pulleys and balancing weighte, to relieve the hand that was to move it from a great part of its gravity. Mr. Sharp continued in strict correspondence with Mr. Fiamsteed as long as he lived, as appeared by letters of Mr. Flanstceal's found aftes Mr. Sharp's death ; many of which I lave seen.
"I bave bren the more particular relating to Mr. Sharp, in the business of constructing this mural arc ; not only because we may suppose it the first good and valid instrumient of the kind, but because I look upon Mr. Sharp to have been the first person that cut accurate and delicate divisions upon astronomical instrunents ; of which, indepeendent of Mr. Flamsteed's testimony, there still remain considerable proofs: for, after leaving Mr. Flanateed, and quitting the department atove-menthonerl, be relired into Yorkshise, to the village of Lattle Hortun, near Bradford, where be ended his days about the year 1742; and where 1 bave seen not only a large and very fine collection of mechanical tools, the principal ones buing made with his own bands, but also a great varicty of scales and instruments made with them, buth it wood and brass, the divisions of which were so expluisite, as wrould not discredit the first artists of the present times: nad 1 believe there is now remaining a quadrant, of 4 or 5 fevt radius, frantel of wood, but the limb covered with a brass plate; the subdivisions being done by lliazonals, the lines of which are as finely cut as those upon tie quadrants at Greenwich. The delicacy of Mr. Sharp's hand will inderal peomanently appear fron the copper-plates in a quarto borok, pelblished in the year 1718, intituled fieometry linproved by A. Sharp, Philomath." (or rather 1717, by A. S. Phlomath.) "s whereof not only the geometrical lines upun the plates, but the whole of the engraving of letters and figures, were done by himself, as I was told by a person in the mathematical line, who very frequenily attended Mr. Sharp in
the latter pare of his life. I therefore leok upon Mr. Sharp as the first peroun that brought the affair of hand division to any degree of perfection."

Mr. Shar; kept up a correspondence by letters with most of the eminemt mathetnaticians and astronomers of bis time, as Mr. Mlamsteed, Sir Isaac Nuwton, Dr. Halley, Dr. Wallis, Mr. Hodgson, Mr. Sherwin, \&ec, theanswees to which letters are all written upon the backs, or empty spaces, of the letters he received, in a short-hand of his own contrivance. From a great variety of letters (of which a large chest full remuin with his friends) from these and many other celebrated mathematicians, it is evident that Mr. Sharp spured neither pains nor time to promote real science. Indeed, being one of the most accurate and indefatigable computers that ever exiated, he was for many years the common resource for Mr. Flamsteed, Sir Jonas Moore, Dr. Halléy, and others, in all sorts of truublesome and delicate calculations.

Mr. Sharp continued all bis life a bachelor, and spent his time as recluse as a herruit. He was of a middle stature, but very thin, being of a weakly constitution; he was remarkably fecbie the last three or four years before he died, which was on the 18 th of July 1742, in the 91st gear of bis age.

In his retirementat Little Horton, he employed four or five roosm or apartments in his house for different purposes, into which none of his fanily could possibly enter at any time without his permission. He was seldom visited by any persons, except two gentlemen of Bradford, the one a nathematician, and the other an ingenious apothecary: these were adinitted, when he chose to be seen by them, by the signal of rabbing a stone agqainst a cortain part of the outside wall of the house. He duly attended the dissenting chapel at Bradford, (of whick he was a member,) every Sunday; at which time he took care to be proviled with plenty of halfpence, which he very charitably suffered to be taken singly out of his band, held behind him during his walk to the chapel, by a number of poor people who followed him, without his ever looking back, or asking a single question.

Mr. Sharp was very irregular as to his meals, and remarkably sparing in his diet, which he frequently took in the following manner. A little square bole, something like a window, made a communication between the room where he was usually etployed in calculations, and another chamber or room in the house where a servant could enter; and before this hole be had contrived a sliding board: the scrvant always placed his victuals in this hole, without speaking or making any the least noise; and when he had a little lesure he visited bis cupboard to see what it afforded to satisfy his hunger or thirst. But it often happened, that the breakfast, dinner, and supper bave semaibed untouched by him, when the servant has gone to remove what was left-so deeply engaged had be beea in calculations. Cavities might casily be perceived in an old English oak table where he sat to write, by the frequent rubbing and wearing of his elbows,-Gutta cavat lapidem, Ac.

By Mr. Sharp's epitaph it appears that he was related to archbishop Sharp. And Mr. Sharp the eminent surgeon, who it seems has lately retired from busioess, is the nephew of our author. Another nephew was the father of Mr. Ramsden, the late celebrated instrumeat-maker, who says that his grand uncle Abrahatn, our author, was some tome in his younger days an exciseman; which oecupation be quitted on coming to a patrimonial estate of about 2001 . a-ycar.

Shamp, in Music, a kind of artificial note, or character, thus for med * this being protixed to any unte, shows that it is to be sung or playedi a semitone or half note higher than the natural note is. When a sharp is placed at the beginning of a stave or movement, it shows that all notes that aro found on the same line, or space, throughout, are to be raised half a tone above their natural pitch, unless a natural intervenc. When a sharpoccurs accidentally, it only affects as many notes as follow it on the same line or space, without a natural, in the compass of a bar.

SHF:AVE, in Mechatics, a solid cylindrical whed, fxed in a chamel, and moveable about an axis, as being used to raise or increase the mechanical powers applied to remave any body.

SHELRS, aboard a ship, an engine used to hoist or displace the lower masts of a ship.

SHEKEL, or Shekle, an anzient Hebrew coin and weight. equal to 4 Attic drachmas, or 4 Roman denarii, or 2s. $y_{\frac{1}{2}} \mathrm{~d}$. sterling. According to father Mersennc, the Hebrew sbokel weighs 268 grains, and is composed of 20 oboli, each obolus weighing 16 grains of wheat.

SHERBURNE (EDwa a D), an ingeniots scholar, was born in Loudon in 1616, and died in 1702. After comspleting his education, he travelled abroad : but returned in 1641, and succeeded, on his father's death, to the office of clerk of the orduance. He was muprisonell for some timue by the parliamont, and on recovering his liberty joined the king, whom he served with great bravery, by which he suffered considicrably in his islate. Afier the battle of Edgehill he went to Oxford, where be was created master of nrts. At the restoration he recovered his place, was knighted, and made commissary-general of the artillery.

Sherburne published a volume of poems, and a translation of Seneca's tragedies. But his chief work was a translation of The Sphere of M Manilius, made an Englisb poem, with annotations and an astronomical appendix : London 1675, is folio. Of the parts of this poem, their distribution and 'order, and of the interpreter's labours in expluining it, both in bis learord notes and considerable appundix, he observes, that the pocm begins with a succinct indication of the origin and progress of arts and scieuces, particularly of sstronony ; of which lasi, besides what the translator has noted in his marginal illustrations, he has added, for the satisfaction of the more curious, a compendious history, continued down to the age of Manilius; with a very instructive catalogue of the most eminent astronomers, from the first parent of all arts, and mankind itself, to the editor's time. A more particular and satisfactory aceouat of this work may be seen in the Philos. Trans. vol.9, pa. 228, or in my Abridg, vol.2, pa .185.

SHILLING, an English silver coin, equal to 12 pence, or the $29 t h$ part of a pound sterligg. This was a Saxon coin, being the 48 th part of their pound weight. Its value at first was 5 pence; but it was reduced to 4 pence about a century before the conquest. After the conquest, the French solidus of 12 pence, which was in use anoong the Normans, was called by the English name of ahilling ; and the Saxon shilling of 4 pence took a Norman name, and was called the groat, or grvat coin, because it was the largest English coin then known. Fropr this cime, the shilling underwent many alterations. - ${ }^{5}$

In the time of Edward the 1st, the pound troy was the same as the pound sterling of silver, consisting of 20 shillinge; so that the shilling weighed the 20 h part of a pound, S D 2
or more than half an outhee troy. But some are of opinion, there were no coins of this denomtnation, till Henry the 7th, in the year 1504, first coined silver pieces of 12 pence value, which we call shillings. Since the reign of Elizabeth, a shilling weighs the 62nd part of a pound troy, or 3 dwts. $20^{\frac{2}{5}} \mathrm{~g}$ grs, the pound weight of silver making 62 shillings. And bence the ounce of silver is worth $5 \frac{1}{6}$ shillings, or 5s, 2 d .

Many other nations have also their shillings. The English shalling is worth about 23 French sols; those of Holland and Germany about balf as much, or 11 is sols; those of Fianders, about 9. The Dutch shillings are also called sols de gros, because equal to 12 gross. The Danes bave copper shillings, worth about one fourth of a farthing sterling.

SIIIVERS, in a ship, the searnen's term for those little round wheels, in which the rope of a pulley or block runs. They tarn with the rope, and have picces of brass in their centres, into which the pin of the bluck gues, and on which they turn.

SHORT (James), a very eminent optician and tele-scopc-maker, was the son of a joiner at Edinburgh, where Jannes was born in 1710. At ten years of age, his parents being both dead, he was placed as a poor buy, in Heriot's charity hospital at that place. Two years after however, baving shown uncommon talents, he was sent to the highschnol of that city, where he so much distinguished himself in classical learning, that lis friends througbt of qualifying bim for a learned profession. After 4 yearv spent st the high-scho 1 , in 1726 he was entered a student in the university of E-linburgh; where he passed through a regular course of sthdy; took bis degree of master of arts; and, at the earnest entreaties of his relations, attended the divinity hall; after wheh, in 173t, he passed bis trials to fit him for a preacher in the church of Scotland.

Sonn after this, however, the mind of our young artist began to revult against the idea of a profession so luttle suited to bis talents; and having had occasion to attend a course of Mr. Maclaurin's mathematical class in the college, he there so much dintipguished himelt, that the prosfessor took great notice of him, and invited bim oftes to his house, where he had opportunitis of knowing more fully the extent of the young man's capacity. In 1732, Mr. M. kindly permitted his pupil to make use of his roons in the college, for his apparatus, where he began to work in his new profession of telescope-making, under the eye of bis eminent master and patron; who, in a letter about two years after to Dr. Jurin, mentions the proficiency made by Mr. Short, in constructing reflecting telescopes, in these words: "Mr. Short, who had begun with making glass specula, is now eroploying himself to improve the metallic. By taking care of the figure, he is enabled to give them larger apertures tban others have done; and, upon the whole, they surpass in perfection all that I have seea of other workmen." The Gigure which Mr. S. gave to his great specula, was parabolic: which be did however not by any rule or canon, but by practice and mechanical devices.

Mr. S. continued from this time to practise his art ass a regular profession, with mucb success; so that when, in the year 1736, he was called up to London, at the desire of queen Caroliae, to give mathematical jnstructions to Wm. duke of Cumberland, he had cleared the sum of 5001 . by the profits of his business. Towards the end of the same year he returned to Edinburgh; and having made
several useful improvements in his art, duning his stay in England, be now prosecuted it with fresh vigour and success. In 1739 , being then again at Loudon, the earl of Morton took Mr. S. with him on a tour to the Orkney isles, and engaged bim there to adjust the geography of that part of Scotland. He returned to London with the earl, and finally established himself there, in the line of bis profession. In 1743, he was employed by lord Thes. Spencer, to make a reflector of 12 feet focus, being the largest that he ever constructed, except those for the king of Spaill, and sume others of she same tucal distance, with great improvements and higher magnificrs. The telescope for the king of Spian was finished in the year 1752, which, witb its whole apparatus, cont 12001 . But the instruinent made for lord 'T homas Spencer, having fewer accompaniments, was purchuseci for 600 guineas. Mr. Short died at Newingtou Buts, near London, in 1768, ut 58 years of age; and, from the great protits and success of bis trade, left at bis death a fortune of 20 thousand pounds.

Mr. S. was a good general scholar, besides well skilled in optics and mathematical leurning. He was a very useful member of the Royal Society, and wrote a great inultitude of excellent papers in the Philos. Trans, from the year 1756 till the time of his death. Among them, his determination of the sun's parallax at about $\delta_{\frac{2}{3}}{ }^{\prime \prime}$, from his ingenious calculations on the transit of Venus, has been pretty generally adopted by matronomers.

SHOHT-SIGHTEDN LSS, myopia, a defect in the conformation of the eye, when the crystalline \&e being too convex, the rays that enter the eye are reiracted yoo much, and made to converge too faut, so as to unite before they reach the retina, by which means vivion is rendered dim and confused.

It is commonly thought that short-sightedness wears off in old age, on account of the eye becoming flatter; but Dr. Smith questiuns whetber this be matter of fact, or only hypothesis. It is remarkable that short-sighted persons commonly write a small hand, and affect a small print, because they can see more of it at one view; that it is custonary with them not to look at the person they converse with, because they cannot well see the motion of his pyes and features, and are therefore attentive to his words only: that they see more distinctly, and somewhat further off, by astroug light, than by a weak one; because a strong light causes a contraction of the pupil, and consequently of the pencils, both here and at the retina, which lesseus their mixture, and consequently the apparent confusion ; and therefore, to see more distinctly, they almost close their eyelids, for whicb reason they were anciently called myopes. Smith's Optics, vol. 2, Rem. pa. 10.

Dr. Jurin ubserves, that persons who are much and long accustomed to view objects at small distances, as students in general, watchmakers, engravers, painters in miniature, \& c, see better at small distances, and worse at great distances, than other people. And be gives the reasons, from the mecbanical effect of habit in the eye. Essay on Dist. and Indist. Vision.

The ordinary remedy for short-sightedness is a concave lens, held befure the eye; for this causing the rays to diverge, or at least diminishing much of their convergency, it makes a compensation for the too great convexity of the crystalline. Dr. Hooke suggests another remedy; which is to employ a convex glase, in a position between the object and the eye, by means of which, the object may be made to appear at any distance from it, and so the eye be
made to contemplate the picture in the same manner as if the object itself were in its place. But here unfortunately the image will appear inverted: for this bowever be has some whmsical expedionts; viz, in reading to turn the book upside down, and to learn to write upside down. As to distant objects, the doctor asserts, from his own experiener, that with a little practice in contemplating inverted objects, one gets as good an idea of them as if seen in their natural pesture.
SHOT, in the Military Art, includes all kinds of balls or bullets for fire arms, from the cammon to the pistot. As to those for mortars, they are usually called shells. Shot are mustly of a round form, though thete are other shapes. Those for cannon are of iron; but those for muskets and pistuls are of lead. Cannon shot and shells are usually set up in piles, or heaps, tapering from the base towards the top; the base being either a trianglr, a square, or a rectangle; from which the uumber in the pile is easily computed. See Pile.
Tbe weight and dimensions of bells may be found, the one from the uther, whether they are of iron or of lead. Thus, the weight of an iron ball of 4 iuches diameter, is 916 , and because the weight is as the cube of the diameter, therefore as $4^{3}: 9:: d^{3}:{ }_{85} d^{3}=w$, the wwight of the iron ball whuse diameter is d; that is, of of the cube of its diameter. And, conversely. if the w-ight be given, to find the dismeter, it will be $\sqrt[3]{8} \boldsymbol{y}^{2}$ wo $=d$; that is, take et or $7 \frac{1}{6}$ of the weight, and the cuber root of that will be the dianneter of the iron ball.
-For leaden balls ; one of $4 \frac{1}{2}$ inches diameter weighs 17 pounds; therefore sas the eube of 44 is 1017 , or nearly as $9: 2:: d^{3}: \frac{2}{5} d^{\prime}=w$, the weight of the leaden ball whose diameter is d, that is, $\frac{z}{g}$ of the eube of the diameter. On the contrary, if the weight be given, to find the diameter, it will be $\sqrt[3]{\frac{9}{2}}=d$; that is, $\frac{9}{2}$ or $4 \frac{1}{2}$ of the weight, and the cuber root of the product. See my Conic tections and Select Exercises, pa. 141; or my, Math. Course, vol. 2, p. 269

SHOULIDER of a Bustion, in Fortification, is the angle where she face and the flank meet.
shoulderinc, in Fortification. See Epaulemext

SHUCKBURGH-EVELYN (Sir Gzorge A. W. bart.) died at his geat in Warwickshire, Sept. 1804, in the 54 th year of his age. He had represented that eounty in three successive parliaments; where his integrity, and independent conduzt as a British senator, procured him the respect of all wise and good men. Sir G. was an elegant elassieal scholar, and had improved his knowledge of men and science by profitable travels through Europe. He was a considerable mathematician and philosopher, and well skilled in astronomy both theoretical and practieal ; int which sciences his deep and laborious resenrches guve him a distinguished rank in the Royal and Antiquarian Societies, whose publications are adorned with several of his learned and ingenious compositions, particularly his paper on the Barometrical Measurements of, Altitudes. Sir Geo. canied his mathematical and logical habits into every purpose in life, in every circumstance of which, he was one of the most correct and methodical of men. Of men, and motives of aetion, Sir Geo. was a most accurate judge, and was always attentive to guard himself against the impositions of the designing. In matters of science too, no man was more wary of raking hasty inferences, or of forming general conclusions from partial or inac-
curate observations. Truth was his darling object; which he endeavoured to discover, and to detect error, by the most patient vigilance. Had Sir Geo. devoted more of his time to thuse pursuits, he would probably have hard few superiors in philosoplucal celrbrity. The pains be took to adjust a regular and uniforin standurd of weights and meavures, the tardy cantiousness of his experiments, the accuracy of his calculations, and the practicability of his schemes, entitle him to the bighest praise, amung such as have laboured for the publie beneft.

SllWAN-pun, a Chinese instrument, composed of a number of wires, with beads upon thens, which they move backwards, and forwards, and which, serves to assist them in their enmputations. See Abacus.

SIDE, latur, in Geometry. The side of a figure is a line making part of the periphery of any superficial figure. In triangles, the sides are alsu called legs. In a rightangled triangle, the two sides that inelude the right angle, are called eatheti, or sometimes the base and perpendicular is and the third side, the hypethenuse.

Side of a Polygonal Number, is the number of terms in the arithmetieal progression that are summed up to form the number.

Side of a Power, is what is usually called the root.
Sides of Horn-works, Crown-works, Double-tenailles, \&c, are the ramparts and purapets which inclose them on the right and left, from the gorge to the thead.

SIDEREAL, something relating to the stars. As sidereal year, day, \& e, being those marked out by the stars. Sidereal Year. Sue Yeab.
Sidereal Day, is the time in whieb any star appears to revolve from the meridian to the meridian again; or the time in which the carth makes one complete revolution on its axis, which is 23 hours $56^{\circ} 4^{\text {th }} 6^{\text {th }}$ of mean solar time; there being 366 sidereal day, in a year; that ix, the earth makes 366 revolutions on its axis, though we only see the sun rise $\$ 65$ times ; so that 366 terrestrial revolumons would be exactly equal tu 363 diurnal revolutions of the sun, if the equinoctial poins were at rest in the beavens. But these points go backward, with respect to the stars, at the rate of $50^{\prime \prime}$ of a drgree in a Jutian year; which causeth the stass to heve an apparent progressive motion eastward $50^{\prime \prime}$ in that time. And as the sun's inean motion in the ecliptie is only 11 signs $29^{\circ} 45^{\prime}$ $40^{\prime \prime} 15^{\prime \prime \prime}$ in 365 days, it follows, that at the end of that time he will be $14^{\prime} 19^{\prime \prime} 43^{\prime \prime \prime}$ short of that point of the eelipuc from which be set out at the beginuing; and the stars will be advanced $30^{\prime \prime}$ of a degice with respect to that point.

Consequently, if the sun's centre be on the ineridian with any star on any given day of the year, that star will be $14^{\prime} 19^{\prime \prime} 45^{\prime \prime \prime}+50^{\prime \prime}$ or $15^{\prime} 9^{\prime \prime} 45^{\prime \prime \prime}$ east of the sun's eentre, on the 365 th day afterward, when the sun's eentre is on the merridian; and therefore that star wilk not come to the moridian on that day till the sun's centre has passed it by $1^{\prime} 0^{\prime \prime} 38^{m \prime \prime} 57^{\prime \prime \prime}$ of mean solar time; for the sun takes so much time to go through an arc of 15^{\prime} $9^{\prime \prime} 45^{\prime \prime \prime}$; and then, in $363^{4} 0^{h} 1^{\prime} 0^{\prime \prime} 38^{\prime \prime \prime} 57^{\prime N M}$ the star will have just completed its 366 th revolution to the meridian.

In the following table, of sidereal revolutions, the firat column contains the number of revolutions of the stars; the others exhibit the times in which these revolutions are made, as shown by a well regulated clock; those on the right haad show the daily accelerstions of the stars,
that is, how much any star gains upou the tine shown by such a clock, in the cormesponding revolutions.

Frreh of the Sunta.	Tines in which the ievolutiona are made.						Arevteration of 				
1	$d s$ 0		$\begin{aligned} & \mathrm{m} . \\ & 36 \end{aligned}$	He. 4		$\begin{array}{r} \mathrm{f}_{12} \\ 0 \end{array}$	$\begin{gathered} \text { hw } \\ 0 \end{gathered}$	$\begin{array}{r} 14 \\ 3 \end{array}$	$\begin{aligned} & 4= \\ & \$ 3 \end{aligned}$		$\begin{array}{r} 14 \\ 0 \end{array}$
2	1	2)	32	4	14	i	0	7	31	47	34
3	3	24	45	11.	18	1	0	11	47	41	89
4	3	23	44	16	24	2	0	1)	43	75	5 s
3	4	23	40	20	30	2	0	17	7)	99	54
6	5	21.	36	24	16	a	0	23	33	27	37
7	6	23	32	4 H	42	0	0	27	31	17	37
$*$	7	2.1	Is	32	44	4	0	31	32	11	56
9	4	13	24	36	\$4	1	0	33	3.3	3	36
10	9	21	20	41	0	\$	0	19	18	39	53
11	10	21	16	45	6	\$	0	43	14	31	35
12	11	23	12	49	11	6	0	47	10	47	34
13	12	2.3	6	33	18	6	0	31	6	41	34
14	13	23	4	37	24	7	0	33	2	as	313
15	14	23	1	1	30	7	0	34	35	29	35
16	15	23	57	5	36	8	1	2	34	23	53
17	16	21	33	9	42	4	1	6	30	17	\$2
13	17	22	49	13	43	9	1	10	46	11	31
19	18	22	45	17	34	9	1	14.	12	5	\$1
20	19	22	41	19	0	10	1	15	a7	59	30)
41	20	22	37.	26	6	10	1	22	13	5.1	30
22	21	29	33	30	12	11	1	26	29	47	49
20	22	22	29	34	18	11	1	310	25	41	49
14	23	29	35	ds	24	12	1	34	21	35	4*
35	24	22	81	42	D0	12	1	35	17	29	$4{ }^{4}$
26	35	22	17	46	36	13	1	42	13	23	47
27	26	22	13	30	42	13	1	46	9	17	$4 i$
28	27	22	9	34	48	14	1	30	3	11	46
21	24	22	5	\$4	54	14	1	34	1	3	46
30	39	22	3	3	0	13	1	87	56	39	43
40	39	31	22	44	0	19	2	37	13	39	41
50	49	20	43	23	0	24	J	16	44	39	\$6
100	99	17	26	30	0	49	6	21	9	39	12
900	199	10	53	40	1	37	13	6	19	50	33
700	209	4	20	80	2	23	19	49	29	37	3.3
360	359	0	24	46	2	54	21	35	2.1	37	6
365	364	0	4	56	32	36	21	55	3	27	4
3366	363	0	1	0	94	37	21	34	50	21	3

This table will not differ the $279,936,000,000 \mathrm{~h}$ part of a second of time from the truth in a whole year. It was calculated by Mr. Ferguson; and it is the only table of the kind in which the recension of the equinoctial points mas boen taken into the calculation.

SIGN, in Algebra, a symbol or character, employed to denote some particular operation. I'hose most commonly used are, - for addition, - for subtraction, x or - for multiplication, \div for division, $\sqrt{ }$ for the square root, $\sqrt[3]{ }$ for the cube rool, and $\sqrt[V]{ }$ for the ath root; also $=$ for equality, \&c.

Signs, like, positive, negative, radical, \&c. Sre the adjectives.

Sign, in Astroneny, a 12 h part of the ecliptic, or zodiac; or a portion contuning 30 degrees of the same.

The ancients divided the rodiac into 12 segments, called signs; conmencing at the point where the ecliptic and equinoctial intersect, and so counting forward from west to east, according to the course of the sun; these signs they named from the 12 constellations which possessed those segments in the time of Hipparchus. But the constellations have since so changed their places, by the precession of the equinox, that Aries is now found in the sign called Taurus, and Taurus in tbat of Gemini, \&c.

The names, and characters, of the 12 signs, and their order, are as follow : Aries $\boldsymbol{\gamma}$, Taurus $\boldsymbol{\gamma}$, Gemini II, Cancer 5 , Leo Ω, Virgo m, Libra \triangle, scorpio m, Ssgittarius 4 , Capricornus is; Aquarius $=$, Pisces X;
tach of which, with the stars in tivem, se unier its proper article, Aries, Taurvs, Ac.

The signs are distiuguished, with regaral to the seasno of the gear when the sin is in them, into vernal, astivati, autumnal, and brumal.

Vernal or Spricg Sienss, are Azies, Taurus, Gemini.
Astival or Summer Sacss, are Cancer, 1eo, Virgo.
Autumal Signs, are I ibra, Scoipio, Sagittary.
Brumal or Winter Sions, are Cupricorn, Aquariis, Hisces. The vernal and summer signs are also called northern signs, because they are on the north side at the equinoctial ; and the autuminat and wister signs are called southern ones, because they are on the south side of the same.

The signs are also distinguished into nseending and descending, accorditg as they are ascending toward the north, or descending toward the south. Thus, the

Ascending Sions, ure the winter and spring signs, or those six from the winter solatice to the summer solstice, viz, the signs Capricurn, Aquarius, Pisces, Aries, Taurus, Gemini. And the

Descenaing Sifins are the summer and autumn signs, or the signs Cancer, Leo, Virgo, Lilra, Scorpio, Sagittary.

Sigxs, Fired, Masculine, \&c ; se the arljectives.
SILLON, in Furtification, an elesation of carth, made in the middle of the moat, to iortify it, when too broad. It is more usualiy called the Envelope.

SIMLLAR, in Arithmetic and Gcometry, the same with like. Nimilar things bave the same disponition or conformation of prarts, and ditier in aothing but as to their quantity or magnitude; as two squariw, or two circles, \&c. In Hathemalic, similar parix, as A, a, bave the same ratio to their wholes B, b; and if the wholes bave the same ratio to the parts, the parte are similar.
similara angles, arealso equal angles.
Similararcs, of circles, are such as are like parts of their whole periplecriss. And, in general, similar ares of any like curess, are the like parts wit the wholce.

Similan bodics, in Natural Pbilosophy, are such as have their parlicles of the same kied and nature one with another.

Similar Cerves. Two argments ol two curves are said to be similar when, any righi-lited figure being inscribed within one of them, we can inscribe always a similar rectilineal figure in the other.

Sistlar Conic Sectione, aye such as are of the same kind, and huve their principal axes and parameters proportional. So, two cllipses are figures of the same kind, but they are not sinilar unless the axes of the one have the same ratio as the axes of the other. And the same of two hyperbblas, or two parabolas. And generatly, those curves are similar, that are of the same kind, and have their corresponding dimensions in the same ratio.-All circles are smilar Ggures.
Similar Diameters of Conic Sections, are such as make equal angles with their ordinates.

Similaa Figuren, or plane figures, are such as have all their angles equal reapectively, each to tacth, and their sides about the equal angles ptoportional. And the same of similar polygons.-Símslar plane figures lave their areas or contents, in the dupticate ratio of their like sides, or as the squares of those sides.
Similan Plane Nimbers, are such as may be ranged into the form of similar rectangles; that is, into rectan-
gles whose sides are proportional. Such are 12 and 48 ; for the sides of 12 are 6 And 2 , and the sides of 48 are 12 and 4, which are in the same proportion, viz, 6:2::12:4.

Similail Polygons, are polygons of the sume number of angles, and the angles in the one equal sevirally to the angles in the other, also the sides about those angles proportional.

Similar Rectangles, are those that have their sides about the like angles proportional.-All squares are similar.

Sımilar Segments of circles, are such as contain equal angles.

Similaa Solids, are such as are contained under the saine number of similar planes, alike situated.--Sinilar solids are to each other as the cubes of their like linear dimensions.

Stmilar Solid Numbers, are those whose little cubes may be so ranged, as to form similar paralfelopipedtons.

Similar Triangles, are such as are equiangular ones, or have all their three angles respectively equal in each triangle. For it is sufficient for triangles to be similar, that they be equiangular; because, being equiangular, they necessarily have their sides proportional, which is a condition of similarity in all figures. As to other figures, having more sides than three, they may be equiangular, without having their sides proportional, and therefore without being similar.-Similar triangles are as the squares of their like sides.

SIMILITUDE, in Arithmetic and Geonetry, denotes the relation of things that are similar to each other. Euclid and, after him, most other authors, demonstrate every thing in geometry from the priaciple of congruity. Wolfius, instead of it, substitutes that of similitude, which, he says. was communicated to him by leibnits, and which he finds of very considerable use in geometry, as serving to demonstrate many things directly, which are only demonstrable from the principle of congruity in a very tedious manner.

SIMPLE, something not inixel, or not compoundel ; in which sense it stands opposed to compound. The elements are simple bodies, from the composition of which there ensult all sorts of mixed bodies.

Simple Eyuation, Fraction, and Surd. See the substantiver.

Simple 2unntities, in Algebra, are thnse that consist of one terin only; us a, or $-a b$, or Sabc: in opposition to compound quantitics, which consist of two or more terms; as $a+b$, or $a+2 b-3 a c$.

Sivple Flank, and Tcraille, in Fortification. See the sulstantives.

Stuple. Machine, Motion, Pendulum, and Wheel, in Mechanics. See the substantives. The simplest inachines are always the mast esteemed. And in geometry, the most simple demonstrations are the best.

Simple Problem, in Mathematics. See Livear Problem.

Simptef Vision, in Optics. Sce Vision.
SIMPSON (Thomas), r. R.s. a very cminent mathematician, and professor of mathematics in the Royal Mihary Academy at Woolwich, was born at Market Bosworth, ill the county of Leicester, the 20th of August 1710. His father was a stuffi weaver in that town ; and though in tolerable circumstances, yet, intending to bring up his son Thomas to his own business, he took so little care of his education, that he was only taught to read Euglish. But
nature had furnished him with talents and a genius for far other pursuits; which led him afterwards to the highest runk in the manemutical and philosophical sciences.

Young Simpson very soon gave indications of bis turn far study in general, by cagerly rrading all books he could meet with, trachug limself to write, and embracing every opportunity be could find of deriving knowledge from other pensons. His father observing him thus to neglect his business, by spending his time in reading what he thought useless books. and following other similar pursuits, used all his endeavours to check such proceedings, and to inIluce him to follow his prufession with stcadiness and better effect. A nd after inany siruggles for this purpose, the differences thus produced between them at length rose to such a beight, that our author quitted his father's house entirely.

On this occasion he repaired to Nuneaton, a town at a stuall distance from Bosworth, where he went to lodge at the house of a tailor's widow, of the name of Swinfield. who had been left wihh two children, a daughter and a son, by her husband, of whoin the son, who was the younger, being but about two years older than Simpson, had become lis intimate friend and companion. And here be continued some time, working at bis trade, and improving his knowledge by reading sucb books as he could procure.

Among several other circumstances which, long before this, gave occasion to show our author's carly thirst for knowledge, as well as proving a fresh incitement to acquire it, was that of a large solar eclipse, which took place on the 11th day of May, 1724. This phenomenon, so awful to many who are ignorant of the cause of it, struck the mind of young Simpson with a strong curiosity to discover the reason of it, and to be able to predict the like surprising events. It was however several years before he could obtain his desire, which at length was gratified by the following accident. After he had treen some time at Mrs. Swinfield's, at Nuncator, a travelling pedlar came that way, and took a lodging at the same house, accordithg to his usual custom. This man, to his profession of an tinerant merchant; hat joined the more profitable one of a fortune-teller, which be performed by means of judicial astrology. Every one knows with what regard persons of such a cust are treated by the inlabitants of country villages; it cannot be surprising therefore that an untutored lad of 19 should look upon this man as a prodigy, and, regarding him in this light, sluuld endeavour to ingratiate himedf into his faveur; in which he succeeded so well, that the sage was no less taken with the quick natural parts and genius of his now acquaintance. The pediar, intending a journey to Bristol fair, left in the hands of young Simpson an uld edition of Cocker's Arithmetic, to which was subjoined a short Appendix on Algebra, and a book upon Genitures, by Partridge the almanac-maker. These books he had perused to so good purpose, during the abseuce of his friend, as to excite his amazement upon his return; in consequence of which he set himself about erecting a genethliacal figure, in order to a presage of Thomas's future fortunc.
This position of the heavens having been maturely considered secundurn artem, the wizard, with preat contidenee, pronoonced, that, " within two grars time Simpson would turn out a greater man than himself!"

In fact, our author profited so well by the encouragement and assistance of the pedlar, afforded him from time to tine when he occasionally came to Nuneaton, that, by
the advice of bis friend, he at length made an open profession of casting nativities himself; from which, together with teaching an evening school, be derived a pretty pittance, so thut he greatly neglected his weaving, to which indeed be had never manitisted any great attachment, and soon becane the oruele of Nuneatun, Bosworth, and the environs. Scarce a courlship advanced to a match, or a bargain to a sule, without previously consulting the iufallible Simpson about the consequences. But as to belping people to stolen goods, be always declared that above his skill; and over life and death he declared be had no power: all those called lawful questions be readily resolved, provided the persuns were certain as to the horary data of the boroscope : and, he has often declared, with such success, that if from very cogent reasons he bad not been thoroughly convinced of the vain foundation and fallaciousness of his art, he never should have dropt it, as he afterwards found himself in conscience bound to do.

About this time be married the widow Swinfield, in whose house he lodged, though she was then alnost old enough to be his giandmother, leing upwards of fifty years of age. After this the family lived comfortably enough together for some short time, Simpson occasionally working at his business of a weaver in the day-time, and teaching an evening school or telling fortunes at night; the family being also further assisted by the labours of young Swinfield, who had been brought up in the profession of his father.

But this tranquillity was soon interrupted, and our author driven at unce from his bome and the profession of astrology, by the following accident. A young woman in the neighbourhood had long wished to hear or know something of her lover, who had been gone to sea; but Simpson had put her off from time to time, till the girl grew at last so importunate, that he could deny her no looger. He asked her if she would be afraid if he should raise the devil, thinking to deter her; but she declared she feared neither ghost nor devil : so he was obliged to comply. The scene of action pitched on was a barn, and young Swinfield was to act the devil or ghost; who being concealed under some straw in a corner of the barn, was, at a signal given, to rise slowly out from among the straw, with his face marked so that the girl might not know bin. Every thing being in order, the girl canc at the time appointed; when Stunpson, after cautioning her not to be afraid, begatn muttering some mystical words, and chalking round about them, till, on the signal given, up rises the tailor slow and solemn, to the great termor of the poor girl, who. before she had scen half his shoulders, fell into violent fits, crying out, it was the very image of her lover; and the effect upon her was so dreadful, that it was thought either death or madncss must be the consequence. So that poor Simpson was obliged immediately to abandon at unce both his home and the profession of a conjuror.

On this occasion it would seem be fied to Derby, where he remained about two or three years, viz , from 1793 till 1735 or 1736; instructing pupils in an eveuing school, and working at his trade by day.

It would seem that Simpson had an early turn for versifying, both from the circumstance of a song written here in favour of the Cavendish family, on occasion ot the parliamentary election at that place, in the year 1739; and from his first two mathematical questions that were published in the Ladies Diary, which were both in a set of verses, not ill written for the occasion. These were printed
in the Diary for 1736 , and therefore must at latest have been written in the year 1735. These two questions, being at that time pretty difticult ones, show the great progress he bad even then made in the mathematics; and from an expression in the first of them, viz, where be meations his residence as being in lavitude 52°, it appears he was not then come up to London, theugh he must have done so very soon after.

Together with his astrology, be had soon furnished limself with arithmetic, algebra, and geometry sufficient to be qualified for looking into the Ladies Diary (of whichs he had afterwards for several years the direction), by which he came to understand that there was a still higher branch of ibe mathematical knowledge than any he had yet been acyuainted with; and this was the metbod of Fluxions. But our young analynt was quite at a loss to discover any English authur who had writen on the subject, except Mr. Hayes; and his work being a tolics, and then pretty scarce, exceeded his ability of purchasing: however an acquaiutance lent him Mr. Stone's Fluxions, which is a translation of the Marquis de l'Hospital's Analyse des Infinimens Petits: by this one book, and his own penctrating talents, he was, as we shall see presenily, enabled in a very few years to compose a much more aceurate treatise on this subject than any that had before appeared in our language.

After he lad quitted astrology and its emoluments, he was driven to hardships for the subsistence of his family, while at Derby, notwithstanding his other industrious endeavours in his own trade by day, and teaching pupils at evenings. This determined him to repair to London, which be did in 1735 or 1736 .

On his first coming to London, Mr. Simpson wrought for some time at his business in Spitalfields, nnd taught mathematics at evenings, or any spare hours. His indnstry turned to so good account, that he returned down into the country, and brought up his wife and three children, she having produced her first child to bim in his absence. The number of his scholars increasing, and bis abilities becoming in some measure known to the public, he was encouraged to make proposals for publishing by subscription, "A new Treatise of Fluxions : wherein the Direct and Inverse Methods are demonstrated after a new, clear, and concise Manner, with their Application to Physics and Astrononay: also the Doctrine of Infinite Series and Reverting Series universally, are amply explained, Fluxionary and Exponential Equations solved: together with a variety of new and curious Problems."

The book was putlished in 4 to, in the year 1737, though the author had beell frequently interrupted from furnishing the press so fast as he could have wished, through his unavoidable attention to his pupils for his immediate support. The principles of fluxions treated of in this work, are demonstrated in a method accurately true and genuine, not different from that of their great inventor, being entirely exprounded by finite quantities.

In 1740, Mr. Simpson published a Treatise on The Nature and Laws of Cbance, in 4to. To which are annexed, Full and clear Investigations of two important Problems added in the 2 d edition of Mr. Demoivre's Book on Chances, as also two New Methods for the Summation of Series.

Our author's next publication was a 4 to volume of Essays on several curious and interesting Subjects in Speculative and Mixed Mathematics; printed in the same
year 1740. Soon after the publication of this book, he was chosen a member of the Royal Academy at Stockholm.

Our author's next work was, The Doctrine of Annuities and Reversions, deduced from general and evident Principles: with useful Tables, showing the Values of Single and Joint Lives, \&cc, in $8 \mathrm{vo}, \mathbf{1 7 . 2}$. This was followed, it 1745, by an Appendix containing some Remarks on a late book on the sume Subject (by Mr. Abr. Demoivre, F. R. s.) with Answers to some personal and maliguant Representations in the Preface thereof. To this answer Mr. Demoivre never thought fit to reply. A new edition of this work has lately been published, augmented with the tract on the same subject that was printed in our author's Select Exercises.
In 1743 also was published his Mathematical Dissertations on a variety of Physical and Analytical Subjects, in 4to; containing, among other particulars,

A Demonstration of the true Figure which the Earth, or any Planet, must acquire from its Rotation about an Axis. A general Investigation of the Attraction at the Surfaces of Bodies nearly spherical. A Determination of the Meridional Parts, and the Lengths of the several Degrees of the Meridian, according to the true Figure of the Earth. An Investigution of the Height of the Tides in the Ocean. A new Theory of Astronomical Refractions, with exact Tables deduced from the same. A new and very exact Method for approximating the Roots of Lquations in Numbers; which quintuples the Number of Places at each Operation. Several new Methods for the Summation of Serics. Some new nud very useful Improvements in the lnverse Method of Fluxions. The work being dedicated to Martin Folkes, esq. president of the Royal Society.

His next book was A Treatise of Algebra, wherein the fundamental Principles are demonstrated, and applied to the Solution of a Variety of Probiems. To which he added, The Construction of a great Number of Geometrical Prohlems, with the Method of resolving them numerically.
This work, which was designed for the use of young beginners, was printed in 8 vo, 1745. A new edition appeared in 1755 , with additions and improvements; among which was a new and general method of resolving all biquadratic equations, tbat are complete, or baving all their terms. The work has gone through several other editions since that time: the 6 th, or last, was in 1790 .

His next work was, "Elements of Geometry, with their Application to the Mensuration of Superficies and Solids, to the Determination of Maxima and Minima, and to the Construction of a great Variety of genmetrical Problems:" first published in 1747 , in 8 vo. And a second edition of the same came out in 1760 , with great alterations and additions, being in a manner a new work, designed for young beginners, particularly for the gentlemen educated at the Royal Military Academy at Woolwich, and other cditions have appeared since.

Mr. Simpson met with some troable and vexation in consequence of the first edition of his Geometry. First, from sume reflexions made upon it, as to the accuracy of certain parts of it, by Dr. Robert Simson, the learned professor of mathematics in the university of Glasgow, in the notes subjoined to his edition of Euclid's Elements. This brought an answer to those remarks from Mr. Simpson, in the notes added to the 2d edition as above; to some perts of which Dr. Simson again replied in his notes Vol. 11.
on the next edition of the said Elements of Euclid.The second was by an illiberal charge of having stolen his Elements from M r. Muller, the professur of fortification and artillery at the saine academy at Woolwich, where our author was prufessor of geometry and inathematics. This charge was made at the end of the preface to Mr, Aluller's Elements of Mathematics, in two volumes, printed in 1748; which was fully refuted by Mr. Simpson in the preface to the 2 d edition of his Geometry.

In 1T'48 came out Mr. Simpson's Trigonomerry, Plane and Spherical, with the Construction and Application of Logarithms, 8vo. I'tis little book contains several things new and useful.

In 1750 came out, in two volumes, 8vo. The Doctrine and Application of Fluxions, containing, besides what is common on the Subject, a Number of new Improvernents in the Theory, and the Solution of a Variety of new and very interesting Problems in different Branches of the Mathematics.-In the preface the author offers this to the world as a new bnuk, rather than a second edition of that which was published in 1737, in which he acknowledges, that, besides errors of the press, there are several obscurities and defects, for want of experience, and the many disadvantages he then laboured under, in his first sally.

The idea and explanation here given of the first principles of fluxions, are not essentially different from what they are in his former treatise, though expressed in other terms. The consideration of time iatroduced into the general definition, will, he says, perhaps be disliked by those who would have fluxions to be mere velocities: but the advantage of considering them otherwise, viz, not as the velocities themselves, but as magnitudes they would uniformly generate in a given time, appears to obvinte any objection on that head. By taking fluxions as mere velocities, the inagination is contined as it were to a point, and without proper care insensibly involved in metaphysical difficulties. But according to this other mode of explaining the matter, less caution in the learner is necessary, and the higher orders of fluxions are rendered much more easy and intelligible. Besides, though sir Isaac Newton defines fluxions to be the velocitics of motions, yet he has recourse to the increments or moments generated in equal particles of time, in order to determine those velocities; which be afterwards teaches to expound by finite magnitudes of other kinds. This work was dedicated to George earl of Macclesfield.

In 1752 appeared, in 8vo, the Select Exercises for young Proficients in the Mathematics. This nest volume contains, A great Variety of algebraical Problems, with their Solutions. A select Number of Geometrical Problems, with their Solutions, both algebraical and geometfical. The Theory of Gunnery, independent of the Conic Serctions. A new and very comprehensive Method for finding the Roots of Equations in Numbers. A short Account of the first Principles of Fluxions. Also the Valuation of Annuities for single and joint Lives, with a Set of new Tables, far more extensive than any extant. This last part was designed as a supplement to his Doctrine of Annuities and Heversions; but being thought too small to be published alone, it was inserted bere at the end of the Select Exercises ; from which however it has been removed in the last editions, and weferred to its proper place, the end of the annuities, as before mentioned. The examples that are given to each problem in this last piece, are according to the London bills of mortality; but the 3 E
solutions are general, and may be applied with equal facility and advantage to any other table of observations.

Mr. Simpson's Miscellaneous Tracts, printed in 4to, 1757, were his last legacy to the public: a most valuable bequest, whether we consider the dignity and importance of the subjects, or his sublime and accurate manner of treating them. The, first of these papers is concerned in determining the Precession of the Equinos, and the different Motuons of the Earth's Axis, arising from the Attraction of the Sun and Moon. It was drawn up about the year 1752, in consequence of another on the same subject, by M. de Sylvabelle, a French mathematician. Though this gentioman had gune through une part of the subject with success and perspicuity, and his conclusions were perfectly confurmable to Dr. Bradley's observations ; it nevertheless appeared to Mr. Simpson, that he had greatly failed in a very material part, and that indeed the only very difficult one; that is, in the determination of the momentary alteration of the position of the earth's uxis, caused by the forces of the sun and moon; of which forces, the quatities, but not the effiects, are truly inveatigated. The second paper contains the Investigation of a very exact Metbod or Rule for finding the Place of a Planet in its Orbit, from a Correction of Bishop Ward's circular Hypntbesis, by Means of certain Equations applied to the Motion about the upper Focus of the Ellipse. By this Method the Result, even in the Orbit of Mercury, may be found within a Second of the Truth, and that without repeuting the Operation. The thirll shows the Manuer of transferring the Motion of a Comet from a parabolic Orbit, to an elliptic one; being of great Use, when the observed Places of a new Conet are fround to differ sensibly from those computed on the Ilypothesis of a parabolic Orbit. The fourth is an Attempt to show, from mathematical Principles, the Advantage arising fiom tahing the Mean of a Number of Observations, in practical Astronomy; wherein the Odds that the Result in this Way, is more exact than from one single Observution, is evinced, and the Utility of the Method in Practice clearly made appear. Tbe fifth contains the Netermiuation of certain Flucuts, and the Resolution of some very useful Equations, in the bigher Orders of Fluxions, by Means of the Measures of Angles and Ratios, and the right and versed Sines of circular Arcs. The 6th ireats of the Resolution of algebraical Equations, by the Method of Surddivisors; in which the Grounds of that Method, as laid down by Sir luac Newton, are investigated and explained. The 7th exhibits the Investigation of a general Rule for the Resolution of Isoperimetrical Problems of all Orders, with some Examples of the Use and Application of the said Kule. The Bth, or last part, comprehends the ResoJution of some general and very important Problems in Mechanics and Physical Astronomy; in which, among other Things, the prineipal Parts of the Sd and 9th Sections of the first llook of Newton's Principin are demonstrated in a new and concise Manner. But what may perhaps best recommend this excellent tract, is the application of the general equations, thus derived, to the determination of the Lunar Orbit.

According to what Mr. Simpson had intirnated at the conclusion of his Doctrine of Fluxions, the greatest part of this arduous undertaking was drawn up in the year 1750. About that time M. Clairaut, a very eminent mathematician of the French Acarleny, had started an objectiou against Newtut's general law of gravitation. This
was a motive to induce Mr. Simpson, among some others, to endeavour to discover whether the motion of the moon's apogee, on which that objection had its whole weight and foundation, could not be traly accounted for, without supposing a change in the reccived law of gravitation, from the inverse ratio of the squares of the distapces. The success answered his hopes, and induced him to look. farther into other parts of the theory of the moon's motion, than he had at first intended: but before lie had completed his design, M. Clairaut arrived in Ingland, and paid Mr, Simpson a visit; from whom lie leamn, that he had a little before printed a piece on that subject, a copy of which Mr. Simpron allerwards received as a present, and found in it the same things demonatrated, to which he himself hat directed bis enquiry, besides several others.

The facility of the methon Mr. Sumpson fell upon, and the extensiveness of it, will in some measure appear from this, that it not only determines the motion of the apoger, inthe sanic manacr, and with the same case, as the other equations, but utterly excludes all that daygerous kind of terms that had enobarrassed the greatest mathe'maticians, and would, after a great number of revolutions, entirely change the tigure of the moon's orbit: whence this important consequence is derived, that the moon's mean motion, and the greatest quantities of the several equations, will remain unchanged, unless disturlaed by the intervention of some forcign or accidental cause.
llesides the foregoing, which are the whole of the regular books or treatises that were published by Mr. Simpson, he wrote and compused scveral other papers and iugutive pieces, as follow:

Several papery of his were read at the mectings of the Royal Socicty, and printed in their Transactions; but as most, if nut all of them, were afterwards inserted, with alterations or additions, in his printed volumes, it is needless to take any farther notice of them here.

He proposed, and resolved many questions in the Iadies Iharies, \&c; sometimes uoder his own naane, as in the years 1735 and 1736 ; and sometimes under feigned or fictinious names; such as, it is thought, Hurlothrumbo, Kubernetes, Patrick U'Casenuh, Marmaduke Hodgson, Anthony Shallow, Esq. and prohably several others; see the Diaries for the years $1733,1736,42,43,33,54$, $55,56,57,58,59$, and 60 . Mr. Simpson was also the editor or compiler of the Diarics from the year $175 \neq$ ull the year 1760 , both inclusive, during which time lie raised that work to the highest degree of respect. He was succeeded in the editorship by Mr. Edw. Rallinson, who continued till his death in the year 1773. See my Diarian Miscellany, vol. 3.

It bas also been commonly supposed that he was the real editor of, or had a principal share in, tw.) other periodical works of a miscellaneous mathematical nature; viz, the Mathematician, and 'Turner's Mathematical Exercises, two volumes, in Svo, which came out in periodical numbers, in the years 1750 and 1751 , \&cc. The latter of these scems especially to have been set on foot to afford a proper place for expusing the errors and absurdities of Mr. Robert Heath, the then conductor of the Ladies Diary and Palladium; and which controversy between them ended in the disgrace of Mr. Heath, and expulsion from his office of editor to the Ladies Diary, and the substitution of Mr. Simpson in his stead, in the year 1753.

In the year 1760, when the plans proposed fur erect-
ing a new bridge at Blackfriars were in agitation, Mr. Simpron, among other gentlenen, was consulied on the best form for the arches, by the New-bridge Committee. On this occasion he gave a preference to the semicircular form; and, besides his report to the Cormmittee, some betters also appeared, by himself and others, on the same subject, in the public newspapers, particularly in the Daily Advertiser, and in Lloyd's Evening Post. The same were also collected in the Gentleman's Magazine for that year, page 143 and 144.

It is probable that this reference to him, gave occasion to the turning his thonghts more seriously to this subject, so as to form the design of composing a regular treatise upon it: for his family have often informed me, that he lahoured hard upon this work for some time before his death, and was very anxious to have completed it, frequently temarking to them, that this work, when published, would procure him more credit than any of his former publications. But he lived not to put the 6inishing hand to it. Whatever be wrote upon this subject, probably fell, together with all his other remaining papers, into the hands of Major Henry Watson, of the engineers, is the service of the India Company, being in all a large chest full of papers. This gentleman had been a pupil of Mr. Simpson's, and had lodged in his house. After Mr. Simpson's death, Mr. Watson prevailed upon the widow to let him have the papers, promising either to give her a sum of money for them, or else to print and publish them for her benefit. But weither of these was ever done; this gentleman always declaring, when urged on this point by myself and others, that no use could be made of any of the papers, owing to the very imperfect state in which he said they were left. And yet he persisted in his refusal to give them up again.

From Mr. Simpson's writings, I now return to himself. Through the interest and solicitations of William Jones, Psct. he was, in 1743, appointed professor of mathematics, then vacant by the death of Mr. Derham, in the Royal Academy at Woolwich; his warrant bearing date August 25th. And in 1745 he was admitted a fellow of the Royal Socicty, having been proposed as a candidate by Martin Folkes, esq. president. William Jones, esq. Mr. George Graham, and Mr. John Machin, secretary ; all very eminent mathematicians. The president and council, in consideration of his very moderate circumstances, were pleased to excuse his admission fees, and likewise bis giving bond for the settled future pay* ments.

At the academy he exerted his faculties to the utmost, in instructing the pupils who were the immediate objects of his duty, as well as others, whon the superior officers of the ordnance permittex to be boarded and lodged in his bouse. In his manner of teaching, he bad a peculiar and happy address ; a cortain dignity and perspicuity, tempered with such a degree of mildress, as engaged both the attention, esteem, and friendship of his scholary; of which the good of the service, as well as of the community, was a necessary consequence.

In the latter of stage of his existence, when liis life was in danger, exercise and a proper regimen were preseribed him, but to litte purpose; for he sank gradually into such a lowness of spirits, as often in a manter deprived him of his mental faculties, and at last rendered him incapable of performing his duty; or even of reading the letters of his friends; and so trifling an accident as the
dropping of a tea-cup would flurry him as much as if a house had tumbled down.
The physicians advised his native air for his recovery; and in February, 1761, he set out, with much reluctance (believing be should never return), for Bosworth, along with some relations. The journcy fatigued him to such a degree, that on his arrival be betook himself to his chamber, where he grew continually worse and worse, to the day of his death, which hapliened the 14th of May, in the fifty-first year of his age.

SIMSON (Dr. Robert), professor of inathematics in the university of Glasgow, was the eldest son of Mr. John Simson, of Kirtonhall in Ayrshire, and was born on the 14th of Oct. 1687. Being designed by his father for the church, after having got the usual school education, he was sent to the university of Glasgow about the year 1701, where be was distinguisbed loy his proficiency in classical learning, and in the sciences. At this time, from temporary circumstances, it happened, that no inathematical lectines were given in the college; but young Simson's inquisitive mind, from some fortunate incident. having been directed to geometry, he soon found the study of that science to be congenial to his taste and capracity. This taste however, from an apprehension that it mught obstruct his application to subjects more connected with the study of theology, was anxiously discouraged by his father, though it would seem with little effect.

Having procured a copy of Euclid's Elements, with the aid only of a few preliminary explanations from some more advanced students, be entered on the study of thet oldest and best introduction to mathematics. In a short time he read and understood the first six, with the 11th and 12th books, and afterwards proceeding still farther in his mathematical pursuits, by his progress in the more difficult branches he laid the foundation of his future eminence. He did not however neglect the other sciences then taught in the college; but in proceeding through the regular course of acadenical study, he acquired the principles of that variety of knowledge, which he retained through life, and which contributed much to the estimation of his conversation and manners in society. His chicf attention, however, was directed to his tivourite science; so that bis reputation as a mathematician in a few years became so high, and his general character so much respected, that in 1710 , when he was only 22 years of age, the members of the college voluntarily made him an offer of the mathematical chair, in which a vacancy in a short time was expected to take a place. From his natural modesty however, he felt much reluctance, at so early an age, to advance abruptly from the state of a student, to that of a professor in the same college; and therefore be solicited permission to spend one ycar at least in London, where, besides other obvious advamages, he might have opportunities of becoming acquainted with some of the eminent mathematicians of England, who were then the most distinguished in Europe. In this proper request he was readily indulged; and without delay he proceeded to London, where he remained about a year, diligently employed in the improvement of his mathematical knowledge.

This journey turned ovt very favourable to his views; and he had much satisfactiou in the acquaintance of some rispectable mathematicians, particularly of Mr. Jones, Mr. Caswell, Dr. Jurin, and Mr. Diton. With the latter, indred, who was then inathematical master of Christ'so

3 E ?

Hospital, and well esteemed for his learning \&c, he was more particularly conuected. It appears from Mr. S.'s own account, in his letter, dated London, Nov. 1710, that he expected to have had an assistant in his studies chosen hy Mr. Caswell; hut, from some mistake, it was onitted, and Mr. S. Limself applied to Mr. Ditton. He went to him not as a schular (his own words), but to have general infurmation and advice, about his mathematical studies. Mr. Caswell afterwards mentioned to Mr. S. that he meant to have procured Mr. Jolls's assistance, if he bad not been engaged.

When the vacancy in the professurship of mathematics at Glasgow did occur, in the following year, by the resignation of Dr. Robert Sinclair, or Sinclar (a descendant or other relative probably of Mr. George Sinclar, who died in that office in 1696), the university, while Mr. Simson 'was still in Londou, appointed hinu to fill it; and the minute of election, which is dated March 11, 1711, concluded with this very proper condition, "That they will admit the said Mr. Robert Simson, providing always, that he give satisfactory proof of his skill in mathematics, previous to his admission." He returned to Glasgow before the ensuing session of the college, and having gone through the form of a trial, by resolving a geonuetrical problem proposed to him, and also by gising "a satisfactory specimen of his skill in mathematics, and dexterity in teaching geometry and algebra;" having produced also respectable certificates of his knowledge of the science, from Mr. Caswell and others, he was duly admitted professor of mathematics, on the 20th of November of that year.

Mr. Simson, immediately after his admission, entered on the duties of his office, and his first occupation necessarily was the arrangement of a proper course of instruction for the students who attended his lectures, in two dastinct classes. Accordingly he prepared elenientary sketcbes of some branches on which there were not suitahle treatises in general use. Both from a sense of duty and from inclination, he now directed the whole of his attention to the study of mathematics; and though be had a decided prelerence for geometry, which. continued through life, yet he did not devote himsilf to it to the exclusion of the other branches of mathematical science, in most of which there is sufficient evidence of his being well skilled. From 1711, he continued uear 50 years to teach mathematics to two separate classes, at different hours, five days in the week, during a continued session of seven months. His manner of teaching was uncommonly clese and successful; and among bis scholars, several rose to distinction as mathematicians; among which may be mentioned the celebrated names of Dr. Matthew Stewart, professor of mathematics at Edinburgh; the two rev. Dr. Williamsons, one of whom succeeded Dr. Simson at Glasgow ; the rev. Dr. Trail, formerly professor of mathematics at Aberdeen; Dr. James Moor, Greek professor at Glasgow : and professor Robison, of Edinburgh, with many others of distinguished merit. In the year 1758, Dr. S. being then 71 years of age, found it necessary to employ an assistant in teaching; and in 1761, on his recommendation, the rev. Dr. Williamson was appointed his assistant and successor.

During the remaining ten years of his life, he enjoyed a pretty equal share of good health; and continued to occupy bimself in correcting and arranging some of bis mathematical papers, and occasionally for amusement,
in the solution of problems, and demonstration of theorems, which occurred from his own, studics, or from the suggestions of others. His conversation on mathematical and other subjects continued to be clear and accurate; yet be had some strong impressions of the decline of his memory, of which he frequently complained; and this probably protracted, and fivally prevented his undertaking the puhlication of some of his works, which were in so advanced a state, that with little trouble they might have been completed for the press. So that his only puhlication, after resigning bis uffice, was a new and improved edition of Euclid's Data, which in 1762 was annexed to the $2 d$ edtuon of the Elements. But from that period, though much solicited to bring lorward some of his other works on the ancient geonetry, though he hnew well how much it was desired, and though he was fully applised of the universal curiosity excited respecting his discovery of Enchd's l'orisms, be resisted every impurtunity on the subject.
A life like Dr. Simson's, purrly academical and perfectly uniform, seldom contains oceurrences, the recording of which could be either interesting or useful. But his mathematical labours and inventions form the important part of his character; and with respect to them, there are abundant materials of information in his printed works; and some circumstances also may be gathered from a number of MS. papers which be left; and which, by the direction of his executor, are depusited in the library of the college of Glasgow. It is to be regretted, that, of the extensive correspondence which he carried on through life, with many distinguished matbematicians, a amall purtion only is preserved. Through Dr. Jurin, then secretary of the Royal Suciety, he had some intercuurse with Dr. Halley, and other distingnished numben of that Society. And both about the same time, and afterwards, he had frequent correspondence with Mr. MacLaurin, with Mr. James Stirling, Dr. Jumes Morr, Dr. Mathew Stewart, Dr. Wm. Trail, and Mr. Williamson of Lisbon. In the latter part of his life, his mathematical correspondeuce was chiefly with that eminent geometer the late earl Stanhope, and with George Lewis Scott, esq.

As to his character, Dr. S. was originally pessessed of great intellectual powers, an accurate and distinguishing understanding, an inventive genius, and a retentive memory: and these powers, being excited by an ardent curiosity, produced a singular capacity lor investigating the truths of mathematical science. By such tatents, with a correct taste, formed by the study of the Greek geometers, he was also peculiarly qualificd for communicating his knowledge, both in his lectures and in his writings, with perspicuity and elegance. He was at the same time modest and unassuming; and, though not indifferent to literary fame, he was cautious, and even reserved, in hringing forward his own discoveries, but always ready to do justice to the merits and inventions of others. Though his powers of investigation, in the carly part of life, were admirahle, yet before any decline of his benth appeared, he felt strong impressions of the decay both of his memory and other faculties ; occasioned probably hy the continued exertion of his mind, in those severe studies, which for a number of years be pursued with unremitting ardour.

Besides bis mathematical attainments, from his liberal education he acquired a considerable knowledge of other sciences, which he preserved through lifi, by occasional
reading, and, in some degrec, by his constant intercourse with many tearned men in bs coltege. He was estermed a good classical scholar; and, though the simplicity of geometrical demonstration dots not admit of much variety of style, yet in bis works a goned taste in that respect may be distingnished. In his Latin prefaces also, in which there is some history and discussion, the purity of lanauage has been gencraliy approved. It is to be regretted, indecd, that he bad not had an opportunity of employing, in carly life, his Greek and mathematical learning, in giving an edition of Pappus in the original language.

Dr. Sumson never was married; and the uniform regularity of a long life, spent wittin the walls of his colloge, naturally produced tised and peculiar habits, which howerer, with the sincerity of his mamers, were unuffending, and becance even moterrsting to thnge with whom be lived. The strictness of these habits, which indeed pervaded all his occupations, probubly bad an intlucuce also on the direction and success of some of his scientific pursuits. His hours of study, of amusentent, and of exercise, were all regulated with unition precision. The walks even in the squares or garden of the college were all measured by his stepa, and he took his exercises by the bundreds of paces, according to lis time or inctination.
It has been mentioned, that an ardent curiosity was an eminent feature in his character. It contributed essentially to bis sucecss in the mathematical investigations, and it displayed itselt in the small and even trifling occurreaces of common life. Almost every object and event excited it, and suggested some problem which he was impatient to resolve. This disposition, when opposed, as it oficu necessarily was, to his maturni modesty, and to the formal civility of his manners, occasionally produced an embarrassment, which was nmusing to his friends, and sometimes a little distressing to himself.

In his dispusition, Dr. S. was both chearful and sociable; and his conversation, when he was at ease anong his friends, was animated and various, enriched with much anecdote, especially of the literary kind, but always unaffected. It was enlivened also by a certain degree of natural bumour; and even the slight fits of absence, to which in company lie was occasionally liable, contributed to the entertaimment of his friend, without diminishing their affection and respect, which bis excellent qualitics were calculated to inspirc. One evening (Friday) in the weck he devoted to a club, chicfly of his own selection, which met in a tavern near the college. The first part of the evening was employed in playing the game of whist, of which he was particularly fond; but, though he took no small trouble in estimating chances, it was remarked that he was often unsuccessful. The rest of the evening was spent in chearful conversation; and, as be had some taste for music, he did not scruple to amuse his party with a song; and it is said that be was rather fond of singing some Greek odes, to which modern music had been adapted. On Saturdays he usually dined in the village of Anderston, then about a mile distant from Glasgow, with some of the members of his regular club, and with a variety of other respectable visitors, who wished to cultivate the acquaintance, and enjoy the society of so eminent a person. In the progress of time, from his age and character, it became the wish of
his company that every thing in these meetings should be directed by him; and though bis authority, growing with his years, was scunewhat absolute, yet the good humour with which it was administered, rendered it pleasing to every body. He bad his own chair and place at table; be gave instructions about the entestainment, regulated the time of breaking up, and adjusted the expense. These partie's, in the years of his severe study, were a desirable and useful relaxation to his mind, and tbey continued to amuse him tlll within a few months of his deatb.
Strict integrity and private worth, with corresponding purity of morals, gave the lighest value to a character, which, fron other qualities and attainments, was much respected and estecnued. On all occasions, even in the gayest hours of sucial intercourse, the Doctor maintained a constant attestion to prepriety. He bad scrious and just impressighs of religion; but he was uniformly reserved in exprefsing particular opiniuns alout it; and, from his sentiments of decorunt, he never introduced religion as a subject of conversation in mixed society, and all attenpts to do so in his clubs were checked winh gravity and decision.
In his person, Dr. S. was tall and erect; and his counteuance, which was handsome, conveyed a pleasing expression of the superior character of his mind. His manner had always somewhat of the fashion which prevailed in the early part of his life, but was uncommonly graceful. He was seriousty indispused only for a few werks before his death, and through a very lung life had enjoyed a uniform state of good licalth. He died on the firat of October 1768 , when his 81 st year was alroost completed; having bequeathed his small paternal estate in Ajrahire to the eldest son of his next brotber, probably of his brother Thomas, who was professor of medicine in the university of St_{t}. Andrews, and who is known by some works of reputation, particularly a Dissertation on the Nervous System, occusioned by the Dissection of a Brain completely Ossified.

The preceding account of Dr, S. has been abridged and extracted from some other accounts of him; as, the Account of his Life and Writings by the rev. Dr. William Trail, lately published (1812); and from the account of Dr. S. and his works, by the late professor llobison, in the Encyclopadia Britannica; and partly from an ingenious MS. account of his life and writings, written and communicated by Mr. James Miller, the present mashematical professor of Glasgow ; hut more closely from Dr. Trail's work, where a very learned and critical account of Dr. Simson's writings is to he seen.

The writings and publications of Dr. S. were almost exclusively of the pure geometrical kind, after the genuine manner of the ancients. He bas only two pieces printed in the volumes of the Philosophical Transactions: viz,

1. Two General Propositions of Pappus, in which many of Euclid's Porisms are included, vol. 32, ann. 1723.These two propositions were afterwards incorporated into the author's large posthumous Works, published in 1776, by Philip, earl Stanhope.
2. On the Extraction of the Approximate Roots of Nurobers by Infinite Series: vol, 48, ann. 1753.

The separate publications in his life-time, were:
3. Conic Sections, in $1735,4 t 0$.
4. The Loci Plani of Apollonius, restored; in 1749 , 4 to.
4. Euclid's Elements; in 1736, 4to, and since that time, many edituons in 8vo, with the addition of Euclid's Data.
3. After his death, carl Stanhope was at the expense of a publication, in 177 G , of several of Dr. S.'s posthumous pieces; which were (1) Apollonius's Determinate Section: (2) A Treatise on Porisms: (3) A Tract on Logarithms: (4) On the Limits of Quantities and Ratios: (5) Sume Select Geometrical Problems.

Besides the tracts published in these posthumous works, Dr. S.'s manuscripts contained a great variety of geometrical propositions, and other interesting observations on different parts of the mathematics; though not in a state fit for publication. Among other things, was an rdition of the works of Pappus, in a state of con*iderable advancement, and which, had be lived, pe pertaps might have published. The copy of Pappus," with all Dr. S.'s noter and explanations, it seems were, soon after his death, sent by his executor to the University of Oxford, with a riew to publication; but which however it does not appear has yet been accomplished. It is true indeed, Dr. S.'s copy contains a large collection of materials, from which to make a proper selection would probably require considerable labour, as well as judgrent.

SINCLAR (Geunge), was profersur of plilosophy in the university of Glasgow, and author of sevefal works on mathematical and physical subjects. He was dismissed from bis professorship soon after the restoration, on account of his political principles; but was recalled to it on the change of govermment at the revolution in 16 ss ; he died in 1696 . Mr. Suclar's publications were, 1. 'Iyrocinia Mathematica, 12 mo . Glasc. 1661 ; 2. Ars Nova et Magua, acc, 4to. Roterod. 1669; 3. Hydrostatics, 4 to, Edinb. 1672 ; 4. Hydrostatical Experiments, with a Discourse on Coal, 8vo. Ediab. 1680; 5. Principles of Astronomy and Navigation, 12 mo . Fdinb. 16s8. Ihesides which, a very extravagant production, called, "Satan's Invisible World discovered" has been ascribed to him; it bears the initials, G. S. of his name.

Mr.Sinclar's writings are not destitute of ingenuity and research; though they may contain some erroneoses and excentric views. His work on Hydrostatics, and his Ais Nova et Magna Gravitatis et Levitatis, and pethups also his political principles, provoked the indignation of some persons; on which occasion Mr. James Gregory, author of the Optica Promota, \&ce, and then profossor of mathematics at Saint Andrews, animadverted on bim rather severely in a treatise entitled, "The Great and Now Art of weighing Vanity, \&c. under the name of Patrick Mathers, Archbedal of St. Andrews."

Considerable attention secins to have been paid by Mr. Sinclar to such branches of liydrustatics as were of a practical nature; and it has been said he was the first person who suggested the proper method of draining the water from the numerous coal mines in the south-west of Scotland. During the period be was deprived of his office, he resided about the southern and border counties, collecting and affording useful information on the subjects of mining, etigineering, de: particularly he was employed by the raggistrates of Elimburgho on the then new plan for supplying the city with water, \& c.

SINE, of an arc, in Trigonometry, a right line drawn from one extremity of the are, perpendicular to the radius drawn to the other extremity of it: Or, it is half the chord of double the arc. Thus the line de is the sine of the are
en; being drawn from oncend on of that are, perpendicular to CB the radius drawn to the other extremity in. For the same reason also DE is the sinc of the are AD, which is the supplement of nd to a semicircle or 180 degrees; so that every sine is common to two arcs, which are supplements to each other, or
 whise sum is equal to 180 degrecs .

Hence the sines increase always from nothing at B , till they become the radius $c u$, which is the greatest, being the sine of the quadrant mo. Fron bence they decrense throughout the second quadrant from G to A, till they quite vanish at the point A; thereloy showing that the sine of the semicircle AGA, or 180 degrees, is nothing. Aftur this they are negative in the next semicircle, or 3d and 4th qua:lrants $A F n$, being drawn on the upposite side, or downwards from the diameter $A B$.

Whole Sin f., or Sinus Totus, is the sine of the quadrant bC, or of 90 degrees; that is, the whole sine is the same with the radius ca.

Sixe-Complement, or Conine, is the sine of an are da, which is the complement of another arc BD, to a quadrant. That is, the line dH is the cusine of the are mo ; becanse it is the sine of DG which is the complement of BD. Andl for the same reason DE is the cosine of DG. Hence the sine and cosine and radius, of any arc, form a right-angled triangle $\mathbf{C D E}$ or CDH , of which the radus Cn is the hypothenuse; and therefore the square of the radius is equal to the sum of the squares of the sine and cosine of any arc, that is, $C D^{2}=C E^{2}+E D^{2}$ or $=C H^{2}+D N^{2}$. It is evident that the cosine of 0 or nothing, is the whole ratius CB. From a, where this cosine is greatest, the cosine derreases as the arc increases from g along the quadrant atce, till it become O for the complete quadrant ne. After this, the comines, dicreasing, becone negative from henee to the complete semicircle at A. Then the cosines incrase again all the way from a through ito es at i the tegation is destroyed, and the cosine is equal to 0 or nothing; from 1 to s it is pontive, and at B it is again becone equal to the radius. So that, in general, the cosines in the 1st and tho quadrants are positire, but in the 2d and 3 3l negative.

Versed-Sine, is the part of the diameter between the sine and the arc. So be is the versed sine of the are ad, and $A E$ the versed sine of $A B$, also G the versed sine of bg, de. All versed sines are affirmative. The sum of the versed sine and cosine, of any arc orangle, is equal to the radius, that is, $\mathrm{BR}+\mathrm{EC}=\mathrm{AC}$.

The sines sec, of every degree and minute in a quadrant, are calculated to the radius 1 , and ranged in tables for use. But because operations with these natural sines require much labour in multiplying and dividing by them, the logarithins of them are taken, and ranged in tables also; and these logarithmic sines ure commonly used in practice, instead of the natural ones, as they riguire only additions and subtractions, instead of multiplications and divisions. For the method of constructing the scakes of sines \& c , sce the article Scale.

The sines were introduced into trigonometry by the Arabians. And for the erymology of the word Sine, cer lnstroduction to my Logarithms, pa. 17 \&c. Also the various ways of calculating tables of the sincs, may be seen in the same place, pa. 13 \&c.

$S 1 \mathrm{~N}$

The relation which subsists between the sines and cosines of any ares of a circle, and thuse of their sums, differences, and multiples, constitute what is sometimes terased the arithometic of sines. This branch of calculatoon has its orgin in the application of algebra to geometry, and is of great importance in the more difficult parts of the mathematics, as well us it their application to physics. Tthe following theorems are those of the greatest utility, and of the most extensive application; the investigation of which may be seen in my Course of Mathematics, and other works on trigonomenry.

Previous however to exhibiting those formula, we may make the following cornected observations, which are immediately deduced from what has beets before said in the definition of the sime of an are : namely, in the

Sin is	1 st quad.	2d quad.	Sd quad.		4th quad.
Cos	$+$				
Of	0°	90°	180°	270°	$0^{+} 960^{\circ}$
Sill is	0	rad.	0 -	- rad.	.
Cos is	rad.	0	- rad.	0	r.

Again, if p be made to represent the semicircumference of a circle, the radius of which is r, and n be 0 , or any whole number, then we shall have the following general results.

$$
\begin{array}{l|l}
\operatorname{Sin} \frac{n p}{}=0 & \operatorname{Cos} \frac{2 n p=r}{} \begin{array}{l}
\operatorname{Cos} \frac{4 n+1}{2} p=0 \\
\operatorname{Sin} \frac{4 n+1}{2} p=r \\
\operatorname{Sin} \frac{4 n+2}{2} p=0 \\
\operatorname{Sin} \frac{4 n+3}{2} p=-r
\end{array} \\
\operatorname{Cos} \frac{4 n+2}{2} p=-r \\
\operatorname{Sin} \frac{4 n+\frac{4}{2} p=0}{} \frac{4 n^{2}+3}{2} p=0 \\
\operatorname{Sin} \frac{4 n-1}{2} p=-r & \operatorname{Cos} \frac{4 n+4}{2} p=r \\
\operatorname{Cos} \frac{4 n-1}{2} p=0 .
\end{array}
$$

Also, $\sin a=\sin (p-a)=\sin (2 p-a)=\sin$ $(3 p-a) \& c$.

Now, Irom the annexed figure, and what bas been already observed of the similur triangles, we casily deduce the following formula, expressing the sine and cosine of any arc a, in terms of the cangent, secuint, radius, \&c.
$\sin a=\sqrt{ }\left(r^{2}-\cos ^{2}(b)=\frac{r \cdot \cos a}{\sin a}=\right.$ $\frac{\cos a \cdot \tan a}{r}=\frac{r, \tan a}{\sqrt{ } r^{2}+\tan ^{\left.\frac{1}{\prime} \alpha\right)}}$

$$
\begin{aligned}
& =-\frac{r^{2}}{\sqrt{\left(r^{2}+\tan ^{2} a\right)}}=\frac{r^{\prime}}{\cos a+\cos a}=\frac{\tan a}{\sec a}=\frac{\operatorname{con} a \cdot \sec a}{\operatorname{cosec} a} \\
& =\frac{\sin a+\cos a}{\operatorname{cosec} a}=\frac{r \sqrt{ }\left(\sec ^{3} a-r^{2}\right)}{\sec a} .
\end{aligned}
$$

$C_{\cos a} a=\sqrt{ }\left(r^{2}-\sin ^{2} a\right)=\frac{r \sin a}{\sin a}=\frac{\sin a \cdot \cot a}{r}=$

$=\frac{\sin a . \operatorname{cosec} a}{\sec a}=\frac{\tan a \cdot \cot a}{\operatorname{vec} a}=\frac{r\left(\operatorname{cosen}^{\prime} a-r^{\prime}\right)}{\cos a c a}$.
Vers $a=r-\cos a ;$ covers $a=r-\sin a ;$ supvers
$a=r+\cos a_{n}$ $a=r+\cos a$.

Also, for the sine of the sum and difficrence of any lwo ares to radius 1 , we have the following theorems:

1. $\sin (a+b)=\sin a \cdot \cos b^{\circ}+\cos a \cdot \sin b$
2. $\operatorname{Sin}(a-b)=\sin a \cdot \cos b-\cos a \cdot \sin b$
3. $\operatorname{Cos}(a+b)=\cos a \cdot \cos b-\sin a \cdot \sin b$
4. $\cos (a-b)=\cos a \cdot \cos b+\sin a \cdot \sin b$.

Hence again,
5. $\sin (a+b)+\sin (a-b)=2 \sin a \cdot \cos b$
6. $\sin (a+b)-\sin (a-b)=2 \cos a \cdot \sin b$
7. $\operatorname{Cos}(a-b)+\cos (a+b)=2 \cos a \cdot \cos b$
8. $\operatorname{Cos}(a-b)-\cos (a+b)=2 \sin a \cdot \sin b$.

And if in these last four formulx, we substitute na for a, and a for b, we obtain,
9. $2 \operatorname{Cos} a \cdot \sin n a=\sin (n+1) a+\sin (n-1) a$
10. $2 \operatorname{Sin} a \cdot \cos n a=\sin (n+1) a-\sin (n-1) a$
11. $2 \operatorname{Cos} a \cdot \cos n a=\cos (n+1) a+\cos (n-) a$
12. $2 \sin a \cdot \sin n a=-\cos (n+1) a+\cos (n-1) a$

And from these we may deduce the powers of the sines and cosines of arcs, in terms of the sum and difference of certain inultiples of those arcs, thus:

$\sin a$	$=\sin a$
$2 \operatorname{Sin}^{2} a$	$=-\cos 2 a+1$
$4 \operatorname{Sin}^{3} a$	$=-\sin 3 a+3 \sin a$
$8 \operatorname{Sin}^{4} a$	$=\cos 4 a-4 \cos 2 a+3$

$16 \operatorname{Sin}^{5} a=\quad \cos 4 a-4 \cos 2 a+3$
$16 \operatorname{Sin}^{5} a=\sin 5 a-5 \sin 3 a+10 \sin a$
$32 \sin ^{4} a=-\cos 6 a+6 \cos 4 a-15 \cos 2 a+10$
$64 \operatorname{Sin}^{7} a=-\sin 7 a+7 \sin 5 a-21 \sin 3 a+33 \sin a$. And generally
 $\sin (n-4) a \& c$; Or
$2^{n-1} \sin ^{0} a \cdot= \pm \cos n a \mp n \cos (n-2) a \pm \frac{n \cdot n(n-1)}{2}$ $\cos (n-4) a \& c$.
In the first of which series, the upper sign must be used when n is an odd number of the form $4 m+1$, and the luwer sigu, when n is of the form $4 m-1$.

In the second series, the upper sign must be used when n is of the form $4 m$, and the lower sign when n is of the form $2(2 m+1)$.

Similar formulz may also be found for the successive powers of the cosines of any simple arc, which are as follows:
$\operatorname{Cos} a=\cos a$
$2 \operatorname{Cos}^{2} d=\cos 2 a+1$
$4 \operatorname{Cos}^{3} a=\cos 3 a+3 \cos a$
$8 \operatorname{Cos}^{\prime} a=\cos 4 a+4 \cos 2 a+3$
$16 \operatorname{Cos}^{5} a=\cos 5 a+5 \cos 3 a+10 \cos a$
$52 \cos ^{6} a=\cos 6 a+6 \cos 4 a+15 \cos 2 a+10$
$64 \operatorname{Cos}^{7} n=\cos 7 a+7 \cos 5 a+21 \cos 3 a+35 \cos a$.
And generally
$2^{2-1} \operatorname{Cos}^{n} e=\cos n a+n \cos (n-2) a+\frac{n \cdot n-1}{2} \cos$ $(n-4) a \& c$.
Again, the sines and cosines of the multiple arcs, may be expressed in terms of the sines and cosines of the inferjor arcs, as below.
$\operatorname{Sin} a=\sin a$
$\operatorname{Sin} 2 a=2 \cos a \cdot \sin a$
$\operatorname{Sin} 3 a=2 \cos a \cdot \sin 2 a-\sin a$
$\sin +a=2 \cos a \cdot \sin 3 a-\sin 2 a$
$\sin 5 a=2 \cos a \cdot \sin 4 a-\sin 3 a \& c$
$\sin n a=2 \cos a \cdot \sin (n-1) a-\sin (n-2) a$
$\operatorname{Cos} a=\cos a$
$\operatorname{Cos} 2 a=2 \cos a \cdot \cos a-1$
$\cos 3 a=2 \cos a \cdot \cos 2 a-\cos a$
$\operatorname{Cos} 4 a=2 \cos a \cdot \cos 3 a-\cos 2 a$
$\operatorname{Cos} 5 a=2 \cos a \cdot \cos 4 a-\cos 3 a \& c$
$\operatorname{Cos} n a=2 \cos a \cdot \cos (n-1) a-\cos (n-2) a$

And if now, in order to abbreviate, we make $\cos a=c$, and sine $a=s$, and observing at the same time that $c^{2}=$ $1-s^{1}$, we derive
$\sin a=$
$\operatorname{Sin} 2 a=2 c z$
$\operatorname{Sin} 3 a=+c^{2} s-s=-4 s^{3}+3 s$
$\operatorname{Sin} 4 a=8 c^{3} s-4 s c=c\left(-8 r^{3}+4 s\right)$
Sin $5 a=16 c^{4} s-12 c^{2} s+s=16 s^{5}-20 s^{3}+5 t$
$\operatorname{Sin} n a=n s c^{\infty-1}-\frac{n \cdot n-1 \cdot n-2}{1,2}, s^{3} c^{-1}+$
$\frac{n \cdot n-1 \cdot n-2 \cdot n-3 . n-4}{1.2 .3 .4 .3} s^{5} c^{n \rightarrow} \& c$
Cos $a=c$
$\operatorname{Cos} 2 a=2 c^{3}-1$
Cos $5 a=4 c^{3}-3 e$
$\operatorname{Cos} 4 a=8 c^{4}-8 c^{2}+1$
$\operatorname{Cos} 5 a=16 c^{5}-20 c^{3}+5 c$
$\operatorname{Cos} n a=2^{n-1} c^{n}-\frac{n \cdot 2 n-1}{1 \cdot 2} c^{\infty-1}+\frac{n \cdot n-3 \cdot 2^{2-1}}{1 \cdot 2 \cdot 2^{2}} c^{-1}-$
$\frac{n \cdot n-4 \cdot n-3 \cdot 2^{m-1}}{1.2 \cdot 3 \cdot 2^{+}} c^{-\infty} \& c$.
Or if, instead of the above substitution, we make 2 cos $a=y+\frac{1}{y}$, we readily deduce the following elegant formula for the cosines of the multiple arcs.

$$
\begin{aligned}
& 2 \operatorname{Cos} \quad y+\frac{1}{y} \\
& 2 \operatorname{Cos} 2 a=y^{4}+\frac{1}{y^{4}} \\
& 2 \operatorname{Cos} 3 a=y^{3}+\frac{1}{y^{4}} \\
& 2 \operatorname{Cos} 4 a=y^{4}+\frac{1}{y^{4}} \\
& 2 \operatorname{Cos} 5 a=y^{3}+\frac{1}{y^{4}} \\
& 2 \operatorname{Cos} n a=y^{n}+\frac{1}{y^{4}}
\end{aligned}
$$

We might pursue this subject to much greater length, but the above are the principal formule which occur in the doctrine of sines \&c. We shall conclude this article with the following formulx, expressing the \log. of the sine of an are, the arc in terms of the siae, the sine in terms of the arc, \&e; where it is to be observed, that s is the sine, c the cosine, a the arc, and r the radius: $s=a-\frac{a^{\prime}}{2.3 r^{2}}+\frac{a^{*}}{2.3 .4 .5 r^{4}}-\frac{a^{\prime}}{2.3 .4 .5 .6 .7 r^{2}} \& c$, $a=s+\frac{s^{2}}{2.3 r^{0}}+\frac{1.3 r^{\circ}}{2.4 .3 r^{6}}+\frac{1.3 .3 s^{5}}{2.4 .6 .3 r^{\circ}} \& c$.
$\log . s=\log . a-m\left(\frac{a^{*}}{6}+\frac{a^{4}}{180}+\frac{a^{4}}{2835}+\frac{a^{*}}{37800} \& c\right)$ or Log, $s=-\frac{1}{i} m\left(c^{2}+\frac{1}{1} c^{4}+\frac{1}{\frac{1}{4}} c^{4}+\frac{1}{4} c^{4} d s\right)$
or Log. $z=-2 x\left(z+\frac{1}{3} z^{3}+\frac{1}{y^{2}} z^{3}+\frac{1}{7} z^{7} \& c_{0}\right)$
where $s=\frac{1-s}{1+s}$, radius 1 , and $m=\mathbf{4} 3429448$ \& c.
If $A=2 \cdot 718281828 \& c$, the number whose byp. log. is 1 ; thea

$$
\begin{aligned}
& \operatorname{Sin} a=s=\frac{a^{a V-1}-h^{-a V-1}}{2 \sqrt{-1}} \\
& \operatorname{Cos} a=c=\frac{h^{a V-1}+h^{-a V-1}}{2}
\end{aligned}
$$

See many other curious expressions of this kind in Bougainville's Calcul Iotegral, and in Bertrand's mathematics.

From theorems 1,2, \&c, the sincs of a great variety of angles, or number of degrees, may be computed. Ex. gr, as below.

Angles.
90°
75
72
$67!$
60
54
45
36
30
$22!$
18
15
Of the Tables of Sines, \&o.
In estimating the quantity of the sines $\$ \mathrm{c}$, we assume radius for unity; and then compute the quantity of the sines, tangents, and secants, in fractions of it. From Ptolemy's Almagest we learn, that the ancients divided the radius into 60 parts, which they called cegrees, and thence sletermined the chords in minutes, seconds, and thirds; that is, in sexagesimal fractions of the radius, which they likewise used in the resolution of triangles. As to the sines, tangents and secants, they are modern inventions; the sines being introduced by the Moors or Saracens, and the tangents and secants afterwards by the Europeans. See Introd. to my Logs. pa. 1 to 19.

Regiomonanus, at first, with the ancirnts, divided the radius into 60 degrees; and determined the sines of the several degrees in decimal fractions of it. But he afterwards found it would be more convenient to assume 1 for radius, or 1 with any number of ciphers, and take the sines in decimal parts of it; and thus be introduced the present method in trigonometry. In this way, different aulhors have divided the radius into more or fewer decimal parts; but in the common tables of sines and tangents, the radius is conceived to be divided into 10000000 parts; by which all the sines are estimated.

An idea of some of the modes of constructing the tables of aines, may be conceived from what follows : First, by commun geometry the sides of some of the regular polygons inscribed in the circle are computed, from the given radius, which will be the chords of certain portions of the circumference, denoted by the number of the sides; viz, the side of the triangle the chord of the 3 d part, or 120 degrees; the side of the pentagon the chord of the 5 th part, or 72 degrees; the side of the lexagon the chord of the 6th part, or 60 degrees; the side of the octagon the chord of the 8th part, or 45 degrees; and so on. By this means there are obtained the chords of several of such ares; and the halves of these chords will be the sines of the halves of the same arcs. Then the theorem $c=\sqrt{ }\left(1-s^{2}\right)$ will give the cosines of the same half arcs. Next, by bisecting these arcs continually, there will be found the sines and cosines of a continued serics as far at we please by these two theorems,

SI N
$\sin \frac{1}{2} n=\sqrt{\frac{1-c}{2} ;}$ and $\cos \frac{1}{\frac{1}{2}} a=\sqrt{\frac{1}{2}+r}$,
Then, by the formula for the sums and differences of arcs, from the foregoing series will be derived the sines and coshes of varionsother arcs, till we arrive at length at the arc of 1^{\prime}, or $1^{\prime \prime}, \& c$, whose sine and cosine thus become known. Or, ratber, the sine of 1 minute will be much mare easily found from the series $s=n-\frac{5}{6} a^{3}+\frac{1}{10} a^{2}$ \&c, because the are may be considered as equal to its sine in small arcs; whence $s=a$ only in such small arcs. But the length of the are of 180° or 10800° is known to be $3 \cdot 14159265 \mathrm{dc}$; therefore, by proportion, as 10806': $1^{\prime}:: 3 \cdot 14159 \pm 65: 00002908882=a$ the arc or s the sine of 1^{\prime}, whisch number is true to the last place of decimals. Then, for the cosine of 1^{\prime}, it is $c=\sqrt{ }\left(1-s^{\prime}\right)=$ 0.9999499577 the cosine of the same 1^{\prime}.

Hence we shall readily obtain the sines and cosines of all the inultiples of 1^{\prime}, as of $2^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, \& x c$, by the application of these two iheorems,
$\sin (n+1) a=2 c \times \sin n a-\sin (n-1) a$,
$\cos (n+1) a=2 c \times \cos n a-\cos (n-1) a ;$
for supposing $a=$ the arc of 1 , then $c=0.9099999577$, and taking n successively equal to $1,2,3,4$, \&cc, the throroms for the sines and cosines give severally the sines and cosines of $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}, \& \mathrm{~B}$; viz, the sines thus:
$\sin 1^{\circ}=s-\cdots=\cdot 0002908882$
$\sin 9^{\prime}=9 c \times \sin 1^{\prime}-\sin 0^{\prime}=\cdot 0005817764$
$\sin 3^{\prime}=2 c \times \sin q^{\prime}-\sin I^{\prime}=00008726645$
$\sin 4^{\prime}=2 c \times \sin 3^{\prime}-\sin \mathfrak{g}^{\prime}={ }^{\prime} 0011635526$
$\sin 5^{\prime}=2 c \times \sin 4^{\prime}-\sin 3^{\prime}=0014544406$ \&c.
And the cosines thus,

$$
\begin{aligned}
& \cos 1^{\prime}=c-c={ }^{\prime} 99999995 \pi 7 \\
& \cos z^{\prime}=2 c \times \cos 1^{\prime}-\cos 0^{\prime}={ }^{\prime} 99999983308 \\
& \cos 3^{\prime}=2 c \times \cos 2^{\prime}-\cos 1^{\prime}={ }^{\prime} 9999996192 \\
& \cos 4^{\prime}=2 c \times \cos 3^{\prime}-\cos 2^{\prime}={ }^{\prime} 99999933231 \\
& \cos 5^{\prime}=2 c \times \cos 4^{\prime}-\cos 3^{\prime}={ }^{\prime} 99999989423 \\
& \text { \&c. }
\end{aligned}
$$

In this manner then all the sines and cosincs are made, by only one constant multiplication and a subtraction, up to 30 degrees, forming thus the sines of the first and lase 30 degrees of the quadrani, or from 0 to 30° and from 60° to 90^{8}; or, which will be much the same thing, the sines only may be thus computed all the way up to 60°.
Then the sines of the remaining 30°, from 60 to 90 , will be found by one addition only fur each of them, by means of this theorem, viz, $\sin .(60+a)=\sin .(60-a)+\sin . a$; that is, to the sine of any are below 60°, add the sive of its defect below 60 , and the sum will be the sine of another arc which is just as much above 60 .
The sines of all ares being thus found, they give also very easily the versed sines, the tangents, and the secants. The versed sives are only the arithmetical complenemts to 1, that is, each cosine taken from the radius 1 .

The tangents are found by these three theurems:

1. As cosine to sine, so is radius to tangent.
2. Radius is a mean propurtional between the tangent and cotangent.
3. Half the difference between the tangent and cotangent, is equal to the tangent of the difference between the are and its complement. Or, the sum arising from the addition of duuble the tangent of an arc with the tangent

Vol. II.
$40 t$
51 P
of half its complement, is equal to the langent of the sum of that are and the suid half complement.

By the 1st and 2d of these theorems, the tangents are to be found for one half of the quadrant: then the oher half of them will be found by one single addition, or subtraction, for each, by the 3 d theorem.

This done, the secants will be all found by addition or subtraction only, hy these two theorems: Ist. The secaut of an arc, is equal to the sum of its tangent and tiee thengent of hulf it complement, 2nd. The secant of an are, is equal to the difference between the tangent of that arc and the tangent of the arc added to half its complument.

Sines, de, by a new Division of the eluadrant. In the 2d vol. of my Tracts, pa. 122, Ace, is described a new mode of dividing the quadrantal arc, for which to construct new tables of sines, tangents, and secants, which would be very useful, and is different from all other methods of dividing it, and of constructing the tables. In this method the ares of the quadrant are divided into, und expressed by the equal parts of the radius, the same as the sines and taugents theniselves; being divisions in the coun' mon decimal scale of numbers. In this project I have made many thousands of calculations for the sincs; and a spoccimen of the tables may be seen inserted in the volume above mentioned.

The French have also made and printed very extensive tables of sines \&c, on a plan of divisions diffiering both from the old sexagesimal way, and from mise, above mentioned : those being to decimal divisions of arcs, the quadrant beng divided into 10000 equal parts, each part being nearly equal $30^{\prime \prime}$ in the sexagesimal division.

Arrificial SIN Es, are the logarithmic sines, or the logarithins of the sines.

Arithemetic of Sin Es. . See chap. iii, p. 33, vol. 3, of my Course of Matbematics ; also the furegoing article in this dictionary.

Curve or Figure of the Sines. See Fioune of the Sines, \&c. To what is there said of the figure of the sines, nay be here added as follows, from a property just given ebove, viz, if x denote the absciss of this curve, or the corresponding circular arc, and y its ordinate, or the sine of that are; then the equation of the curye will be this,

$$
y=\sin x=\frac{h^{x V-1}-h^{-x V-1}}{2 \sqrt{-1}}
$$

where $h=2.718281828 \& \mathrm{c}$, the number whose hyp. \log. is 1 .

Line of Sines, is a line on the sector, or Gunter's scale, $\$ c \mathrm{c}$, divided according to the sines, or exprossing the sincs. See those articles.

Sixe of Incidence, or of Reflection, or of Refraction, is used for the sine of the angle of incidence, \&c.

SINICAI. Duadrant, is a quadrant, made of wood or metal, with lines drawn from each side intersecting one another, with an index, divided by sines, also with 90 degrees on the limb, and two sights at the edge. Its use is to take the altitude of the sun. Instend of the sines, it is sometimes divided all into equal parts; and then it is used by seamen to resolve, by inspection, any problem of plane sailing.

SIPHON, or Syphon, in Hydraulics, a crooked pipe or tube used in the raising of fluids, emptying of versels, and in various hydrostatical experiments. It is otherwise called a crane. Wolfius describes two vessels under the name of Siphons; the one cylindrical in the middle and conical at the two extremes; the other globular in the

3 F
middle, with two narrow tubes fitted to it axis-wise; both serving to take up a quantity of liquid, and to retain it when up.

But the most usual syphon is that which is here represented; where ABC is any crouked tube, having two legs of unequal lengths; but such however that, in any position, the perpendicular altitude BD , of B above A, when $A B$ is filled with any fluid, the weigbt of that fluid may not be more than about 13 lb . upon every square inch of the base, or equal to tbe pressure of the atmosphere, because the pressure of the atmosphere will raise or suspend the fluid so high, when the tubee is exhausted of air. This height is about 30 inches when the fluid is quicksilver, and about 34 feet when it is water; and so on for other fluids, according to the rarity of them.

To use the siphon, in drawing off any fluid; immerse the shorter end A into the fluid, then suck or draw the air out by the other or lower end c, and the fluid will presently follow, and run out by the siphon, from the vessel at a to the vessel at C ; till such time as the surface of the fluid sink us low as the orifice at A, when the decanting will ccase,
 and the siphon will empty itself of the fluid, the whole of that uhich is in it running out at \mathbf{c}. The principle upon which the siphon acts, is this: when the tube is exhausted of air, the pressure of the atmosphere upon the starface of the fluid at D , forces it into the tube by the orifice at A , as in the barometer tube, and down the leg BC, if B is not above the suiface at D more than 34 feet for water, or 30 inches for quichsilver, \&c. Here, if the external leg of the siphon terminate at E, on a horizontal level with the jmmersed end at A, or rather on a level with the water at D, the perpendicular pressures of the fluid in each leg, and of the external air, against cach orifice, being alike in both, the fluid will be at reat in the siphon, completely filling it, but without ruming or preponderating either way. But if the external end be the lower, terminating at c , then the fluid in this end being the heavier, or having more pressure, will preponderate and run out by the orifice at c; this would leave a vacuum at a but for the continual pressare of the atmosphere at D , which forces the fluid up by a to B , and so producing a contanued motion of it through the tube, and a discharge or strvan at c .

Intead of sucking out the air at c , mother method is, first to fill the tube completely with the fluid, in an inverted pasition wath the angle B downward; and, stopping the two orifices with the fingers, revert the tube again, and immerge the end A in the fluid; then take off the fingers, and immediately the stream commences from the end c.

Either of the two foregoing methods can be conveniently practised when the siphon is small, and easily managed by the hand; as in decanting of liquors trom casks, \&c. But when the siphon is very large, and many feet in height,
as in exhausting water from a valley or a pit, the following method is then recommended: Stop the oritice $c_{\text {- }}$; and, by means of an opeuing made in the top at s , fill the tube completely with water; then stop the openng at B with a plug, and open that at \mathbf{c}; upon which the water will presently flow out there, and so continue till that at

A is exhausted. And this method of conveying water over a bill, from one valley to another, is descrited by Hero, the chief author of any consequence on this subject ansung the ancients. But in this experiment it muss be noted, that the effect will not be produced when the hill at s is more than 33 or 34 fiet above the surface of the water at A.

In an experiment of this kind, it is even said that the water in the legs, unless it be purged of its air, will not rest at a height of quite so feet alove the water in the vessels; because air will extricate itself out of the waver, and getting above the water in the legs, press it downward, so that its height will be less to balance the pressure of the atmosphere. But with very fine, or capillary tubes, the experiment will succeed to a beight somewhat greater; because the attraction of the mathr of the very fine tube will raise the fluid, and support it at sume certain height, independent of the pressure of the atmosphere. For which reason also it is, that the experii.ent succeeds for small heights in the exhausted receiver; as has been tried both with water and mercury, by Desaguliers and many other philosophers. Exper. Pbilus. vol. 2, pa. 168.

The figure of the vessel may be varied at pleasure, provided the orifice c be but below the level of the surface of the water to be drawn off, but still the farther it is below it, the quicker will the fluid run off. And if, in the coarse of the efflux, the orifice a be drawn out of the fluid; all the liquor in the siphon will issue out at the lower orifice c ; the fluid in the leg oc dragging, as it were, that in the shorter leg AB after it.

But if a filled siphon be so disposed, as that both orifices, A and c, be in the same horizontal line; the fluid will remain pendant in each leg, how unequal soever the length of the legs may be. So that fluids in siphons seem, as it were, to form one continued body; the heavier part descending like a chain, and drawing the lighter after it.

The Wirtemberg Sipios, which is represented in the annexed figure, is a very extraordınary machine, perform-

ing several things which the common siphon will not reach. This siphon was projected by Jordan Pelletier, and executed at the expence of prince Frederic Charles, admi-
distrator of Wirtemberg，by his mathematician Shaharkard， who made each branch 20 feet long，and set them 18 feet apart；and the discription of it was published by Reiselius， the duke＇s physician．This gave occasion to Papın to in－ vent another，which performed the same things，and is de－ scribed in the Philos．Trans，vol．14．Reselius，in another paper in the same volume，ingenuously owns tbat this is the same with the Wirtemberg siphon．

In this engine，though the legs be on the same level， yet the water rises up the one，and descends through the other．The water rises even through the aperture if the less leg be only balf imnerged in water．＇The siphon has its effect after continuing dry a long time．Enher of the apertures being opened，the other remaining shut for a whole day，and then opened，the water flows out as usual． Lastly，the water rises and falls indifferently through either log ．

Musscbenbroek，in accounting for the operation of this siphon，observes that no disclarge could be made by it，if the water applied to either log did not cause the one to be shorter，and the other longer by its own weight．Introd． ad Phil．Nat．tom．2，pa．853，ed． 4 to， 1762.

SIRIUS，the Dog－star ；a very bright star of the first magnitude，in the mouth of the constellation Canis Mujor， or the Great Dog．This is the brightest of all the stars in our firmainent，and therefore probably，says Dr．Maske－ lyne，the nearest to us of them all，in a paper recommend－ ing the discovery of its parallax，Pbilon．Trans．vol．51， pa．889．Some however suppose Arcturus to be the nearest．The Arabs call it Aschers，Elschecre，Scera；the Greeks，Sirius；and the Latins，Canicuta，or Canis can－ dens．See Canicula．

This is one of the earliest named stars in the heavens． Hesiod and Homer mention only four or five constellations， or stars，and this is one of them．Sirius and Orion，the Hyades，Pleiades，and Arcturus are almost the whole of the old poetical astrgnomy．The three last the Greeks formed of their ownobservation，as appears by tbe names； the two others were Vigyptian．Sirius was so called from the Nile，one of the names of that river being Siris；and the Egyptians，seeing that river begin to swell at the time of a particular rising of this star，paid divine honours to the star，and called it by a name derived from that of the river，expressing the star of the Nile．

SITTUS，in Algebra and Gcometry，denotes the situation of lines，surfaces，\＆c．Wolfius delivers some things in geometry，which are not deduced from the common analy－ sis，particularly matters depending on the situs of lines and figures．Leibnitz has even founded a particular kind of analysis upon it，called Calculus Situs．

SKY，the blue expanse of the air of atmosphere．The azure colour of the sky is attributed，by Newton，to va－ pours beginning to condense，having attained consistence enough to reflect the most reflexible rays，viz，the violetones； but not enough to reflect any of the less reflexible othes．

Labire attributes it to our viewing a black object，viz， the dark space beyond the regions of the atmosphere， through a white or lucid one，viz，the air illuminated by the sun；a mixture of black and white nlways appearing blue．But this hypothesis is not originally lis；being as old as Leonardo da Vinci．

SLIDING，in Mechanics，is when the same point of a body，moving along a surface，describes a line on that surface．Such is the motion of a parallelopipedon moved along a plane．－From sliding arises friction．

Sliding Rule，a mathematical instrument serving to perform computations in gauging，measuring，\＆c，withut the use of compasses；merely by the sliding of the puits of the instrument one by another，the lines and divisions of which give the answer or amount by inspection．Thas iustrument is variously contrived and applied by different authors，particularly Gunter，Partridge，Hunt，Everard， and Coggeshall；but the most usual und uscful ones are thuse of the two latter．

Everard＇s Sciosng Rule is chiefly used in cask gauging． It is commonly made of box， 12 inches long， 1 iuch broad，and ${ }^{6}$ of ans inch thick．It consists of three parts；viz，the stock just mentioned，and two thim slips， of the same length，sliding in small grooves in tho oppo－ site sides of the stock：consequently，when both these picces are drawn out to their full extent，the instrument is 3 feet long．

On the first broad face of the instrument are four logna－ rithmic lines of numbers；for the properties \＆c，of which，sce Gonten＇s Line．The first，marked a，consist－ ing of two radii numbered $1,2,3,4,5,6,7,8,9$, t； and then， $2,3,4,5, \& c$ ，to 10 ．On this line are four brass centre－pins，two in each radius；one in each of them buing raarked $\mathbf{M B}$ ，for malt－bushel，is set at 215042 the number of cubic inches in a malt－bushel；the other two are marked with A，fur ale－gallon，at 282，the number of cubic inches in an ale gallon．The 2d and 3d lines of numbers are on the sliding pieces，and are exactly the same with the first；but they are distinguished by the letter 8．In the first radius is a dot，marked Si ，at $\cdot 707$ ， the side of a square inscribed in a circle whose diameter is 1．Another dot，marked $\$ c$ c．stands at＇$\$ 86$ ，the sice of a square equal to the area of the same circle．A third dot，marked w ，is at 231 ，the cubic inches in a wine gallon．And a fourth，marked c，at 3．14，the circume ference of the same circle whose diameter is 1 ．The fourth line of numbers，marked $m \mathrm{D}$ ，to signify malt－ depth，is a broken line of two radin，unmbered ？ 10,9 ， $8,7,6,5,4,3,2,1,9,8,7$, 太e ；the number 1 beng set directly against wa on the first rudus．

On the second broad face，marked cd ，are several lines：as 1 st ，a line marked d ，and numbered $1,2,3, \& \mathrm{c}$ ， to 10．On this line are four centre pins：the first， marked wo，for wine－gauge，is at $\mathbf{1 7} 15$ ，the gange－point for wine gallons，being the diameter of a cylinder whoye height is one inch，and content 231 cubic inches，or a wine gallon：the second centre－pin，marked AG，for ale－ gauge，is at 18.95 ，the like diameter for an ale gallon ： the 3 d ，marked m 3 ，for malt－square，is at $46 \cdot 3$ ，the squase root of 2150.42 ，or the side of a square whose content is equal to the number of inches in a solid bushel：and the fourtb，marked $m a$ ，for nualt－round，is at 52.32 ，the dia－ meter of a cylinder，or bushel，the area of whose base is the same 2150．42，the inches in a bushcl．2dly，Two lines of numbers on the sliding piece，on the other side， marked c ．On these are two dols；the one，tmarked c ， at 0795，the area of a circle whose circumference is 1 ； and the other，marked d ，at 785 ，the arra of the circle whuse diancter is 1．Sdly．＇Two lines of segments，each nunibered 1．2，3，to 100；the first for finding the ullage of a cask，taken as the niddle frustuin of a splervid， 1 ing with its axis parallel to the horizon；and the other for finding the ullage of a cask standing．

Again，on one of the narrow sides，thoted c ，are，1st，a line of inches，numbered $1,2,3, \& c$ to 12 ，each subili－ 3 ド 2
but Vegetius ascribes it to the inhabitants of the Balearic
vided into 10 equal parts. 2dlly, A line by which, with that of inches, is found a mean dameter for a cask, in the figure of the middle frustum of a spheroid: it is marked Spheroid, and numbered 1,2,3, \& e to 7. Jdily, A lime for finding the mean dameter of a cank, in the turn of the muidle frustum of a parabolic spuidle, which gaugers call the secomi variety of cash-; it is therefore marhed Second Vaniety, and is numbered 1, 2, 3, אe. 4thly; A line by which is found the mesh diameter of a cash of the thind varsity, consisting of the trustums of two parabolic cononis, abutung on a conmon base; it is therefore marked thard Varnety, and is numbered 1, 2, 3, \&c.

On the other narrow face, marhed f, are, 1st, a line of a fout divided into 100 equal parts, marked vm. Sdly, A line of inches, like that before memothod, marked in. $3: 1 \mathrm{y}$, A line for finding the mean dimencter of the fourth variety of cashs, which is formed of the frustums of two cones, abutung on a common base. It is numbered 1, is, 3, \&c ; and marhed sc, for frusinm of a cone.

Ont the back stile of the two sliding prects is a line of inclies, from 12 to 36 , for the whule extent of the 3 feet, when the peeces are put end aise; and against that, the correspondent gallous, and 100 ih parts, that any small tub, of the like open vessel, will contaia at I inch deap. For the various uscs of this instrunemt, see the authors mentioned above, and tuost other writers on gauging.

Coggeshall's SumiNg Rule in chofly used in measuring the superficies and solidity of timber, masonry, brickwork, \&c. This consi-ts of $(w a)$ rulers, tach a foot long, which are united together in various ways. Sumetimes they are made to slide by one another, like glaziers' rules: sometimes a groove is made in the side of a common two-foot joint rule, and a thin slidiog pisce in one sode, and Cogges,hull's lines added on that side; thus forming the common or carpenter's zule: and sometimes one of the two rulers is made toslicle in a groove marle in the side of the other.

On the sliding side of the rule are four hines of numbers, three of wbich are Ilouble, that is, are lines to two ravii, and the fourth is a single broken lise of numbers. The first three, marked A, B, C, are tigured $1,2,3, \& c$ to 9 ; then 1, 2, 3, \&e to 10 ; the contruction and use of them being the saine as those on Eiverard's Sliding rule. The single lase, called the girt line, and marhed d , whase radius is equal to the two radii of atay of the other libes, is broken for the easier measuring ot timber, and ligured $4,5,6,7,8,9,10,20,30,8 \mathrm{c}$. From 4 to 3 it is divided into 10 parts, and each 10th subdivided intu2 ; and so on from 5 to 10, \&c.

On the back side of the rule are, lst, a line of inch mensures, from 1 to 12 ; cach inch being dwided and subdivided. 2dly, A line of foot measure, consisting of one fort divided into 100 equal parts, and figured $10,20,30$, *c. The backside of the sliding piece is divided into inches, halves, 太sc, and figured from 12 to 94 ; so that when the slide is out, there may be a measure of 2 feet.

In the carpener's rule, the inch measure is on one side, continued aff the way from 1 to 24 , when the rule is unfolded, and subdivided into sths or hall-quarters: on this side are also some diagonal scales of equal parts. And upon the edge, the whole length of 2 feet is divided into 200 equal parts, or 1001 ls of a foot.

SLING, a string instrument, sorving for the casting of stones \&c with the greater violence. Pliny, lib. 76, chap. 5, atributes the invention of the sling to the Pherniciaas;
islands, who were celebrated in antiquity for the deatrous management of it. Florus and Strabo say, those perple bore three kinds of slings; some longer, others shorter, which they used according as their enelmies were more remote or nearer hand. Diodorus adds, that the first simied them for a headuand, the 2 d fragirdle, and that the third they constantiy carned with them in the hatud. But it must be inpossible to tell who were the first inventors of the slugg, as she instrument is so sumple, and has been in general use by almost all nations. The instrument is much spoken of in the wars and history of the Israelices. David was so expert a slanger, that he ventured io go out, with one in his lund, ugainst the giant and champion Goliah, and at a distance slruck lim on the forchead with the stonc. And there were a number of left-handed men of one of the tribes of Israel, who, it is said, could sling a stone at un harr's breadth. Juilges, ch. 20, v. 16 .

The motion of a stone discharged from a sling arises from its centritugal force, when whirled round in a circle. The velocity with which it is discharged, is the same as that which it had in the cirche, being much grenter than what can be given to it by the hand alone. And the direction in which it is discharged, is that of the tangent to the circle at the point of discharge, Whence its motion and effect may be computed as a projecile.

SLUICE, a watergate, a floodgate, a vent for water.
SLUSE, or Slesius (René Francis Willer), of Vise, a small town in the county of Licge, where lie enjoged honours and prefernent. He becume abbé of Amas, canon, counsellor and chancellor of Liege, and made his name famuus for his knowledge in theology, physics, and inathematics. The Royat Society of London clected him one of their members, and inserted several of his compositions in their Tiantactions. This very ingenous and learned man died at Liege in 1685 , at 63 years of age.-Of Slusius's works there have been published, some learned letters, and a work intitled, Mewolatium et Probleniala soIda; bevides the following pieces in the Philosophical Trabsactions, siz,

1. Short and Easy Method of drawing Tangents to all Gemmetrical Curves; vol. 7, pa. 5143.
2. Deronstration of the same ; vol, 8, pa. 6059.
3. On the Optic Angle of Athazen; vul. 8, pa. 6139.

SMEATON (Joux), F. R. 5. and a very celebrated civif rngineer, was born 1724, at Austhorpe, near Laeds, in a house built by his grandfather, where the ciamily base resided ever since, and where our author died the 28th of October 1792, in the 69tb yenr of his age.

Mr. Sameaion seems to have been born an engineer. The originality of his genius aud the strength of his understanding appeared at a very early age. His playthings were not those of children, but the tools men work with; and he had always more amusement in observing artiticers work, and asking them questions, than in any thing clse. Thus had Mr. Smetaton, by the strength of lus gevius, and indelatigable industry, acquired, at 18 years of ags, an extensive set of tools, and the art of working in noost of the mechanical trades; which he continued to nork with occasionally to the end of bis life, part of every day when at the place where his tools were: and few men could work belter.

Mr. Smeaton's father was an attorney, and was desirous of bringing his son up to the same profeston. He was therefore sent up to Londou in 1742, wbere for some time
he attended the courts in Westminster Hall. Rut, finding that the professiun of the law did not suit the bent of his genius, as his usual expression was, be wrote a strong memorial to his father un the subject, whose good sense from that moracut left Mr. Smeaton to pursue the bent of his genius in bis own way.

Mr. Smeaton witer this continued to reside in London, and about the year 1750 he conmenced philosonflical instrument maker, which he continued for some time, and becane acyuainted with movt of the ingenious men of that time. This same year he made his firnt communication to the Royal tuciety, boing an accuont of Dr. Knight's improvements of the anariner's compass. Cominuing his very metul labours, and mahing experiments, he cominnmeated to that leaned berly, the two following years, a number of other ingenions improvenuents, in the arts and sctences.

In 17.53 he was elected a momber of the Royal Society; and in 1759 he was honoured with their gold medal, for his paper concerning the matural powers of water and wind to zurn mills, and other machones deponding on a circular motwin. This paper, he says, was the result of experiments marie on working models in the yrars 1752 and 1753 , but not communicated to the Soctety till 1759, having in the interval found opporiunites of putting the result of these experinents into real practice, in a variety of case ky and for varime purparse, so as to assure the Suciety he had found them to anscer.-In 1754 his great thirst after experimental knowledge Ifd him to undertake a voyage to Holland and the Low Countries, where he inade binself acquainted with most of the curious works of art.so frequent in those places,

In December 1755 , the Edystone lighthonse was burnt duwn, and the pr"prictors, heing destrons of rebulding it in the most substantial mannor, inquired of the easl of Macclestiold, then president of the Rayal Suciety, who be thought might he the fittest person to rebuild it, when he immediately recominended our author. Mr. Smeaton accordingly undertuak the work, which he completed with stone in the summer of 1739 . Of this work he gives an ample description in a folio volume, with plates, published in 1791; a nork which contains, in a great measure, the history of four years of bis life, in which the originality of his genius is fully desplayed, as well as his activity, industry, and perseverance.

In 1764 Mr . S. was appointed one of the receivers of the forfeited Ikerwentwater cotat's, which were applied to the Lenefit of Greenwich Hospital ; which office he held till 1777, when he was prevailed on to resign it, in favour of Sir John Turner, said to be a son of Earl Sandwich, whe was then governor of that hmopital, and first lord of the admiralty. After this, Mr. S. going into full employment as an engincer, it would be endless to attempt to particularize all the great works he so ably conducted; as mills, wheels, engues, levels, canals, bridges, barbours, \&c, in all of which he was equally cminent. Particularly, he saved from destruction London Bridge, after the opening of its great arch. Indeed, as a civil. engineer, Mr. S. was perhaps unrivalied, certainly not excelled by any one.

Astronomy was also, for amusement, a favourite pursuit of Mr. S., and he made several curious instruments of this kind for his friends, as well as for himself; with Which, to the time of his death, be continued to make many observations. The chicf of Mr. S.'s publications,
was his History of E.dystone lighthouse. Besides which, many of his reports and memorials, on the ditticrent works lie was concerned in, were occasionally printed in his liketine, which have since been conlected and pronted, in 3 vols. tho, to which is prefixed a pretty full account of his life and labours. He had also unserted in the Philos. Transe a considerable nunber of salunble pmpers, both mechanical and astronomical, in must wf the volumes Irom the year 1750 th 1776 .

In 1771, he became, jointly with his friend Mr. Holmes, proprietor of the warks for supplying Daptford and Greenwich with water ; which by their unteil endeavours they brought to be of general ose to those they were made for, and inowerately beneficial to themselses. Abont the gear 1785, Mr. Smeaton's health began to deceline; in conserfuence of which he took the resolution to avioid any new undertakiags in business as much as he could, that he might thereby also have the more teisure to publish some account of his inventions and works. Of this plan linwever he got no mure executed than the account of the Eflystone lightiouse, and some preparations for bis intended tetatise on malls. It had tor many yoars been the practice of Mr. Smeaton to spend part ot the yefir in London, and the remsinder in the country, at his house nt Austhorpe; on one of these excursions in the country, while walking in his garden, on the 16th of Soptember 1792, he was struck with the palsy, which put an end tul his usuful life the 28th of Octiber following. to the great regret of a numerous set of friends and acyuaintances.

In his person, Mr. Sineaton was of a middle stature, but broad and strong made, and posessed of an excellrnt constitution. Ite had a great simplacity and plainness in his manners: he liad a warnith of expression that might appear, to these who did not know him well, to border on harshness; but such as were more cloctly acquainted with him, knew it arose from the intense application of his mind, which was always in the pursuit of teuth, or engaged in the investigation of dificult subjects. He would sometimes break out hastily, when uny thing was said thint was contrary to his ideas of the subject; and he would not give up uny thing he argued for, till his mind wat convinced by sound reasoning. As a counpanion, he was always entertaning and instructive, and none could spend their time in lis company without improvement.

As to the list uf his writing'; besides the large work above mentioned, being the Bistory of Edystone Lighthonse, and numbers of reports and memorials, which have been printed ill 3 vols. 4 to, us befure-mentioned, his communications to the Royal Suciety, and ioserted in their Transactions, are ny follow:

1. Account of Dr. Knight's Improvements of the Mariner's Conipass; an. 1730, pas. 513.
2. Some Improvenents in the Air-pump; an. 1752.
3. An Engine for raising Water by Fire; leing an improvement on Savary's construction, to render it capable of working itself; an. 1752 .
4. Description of a new Combination of Pulleys. lb.
5. Experiments on a machine for measuring the Way of a Ship at Sea. An. 175 :
6. Description of a new Pyrometer. Ib.
7. Effects of Lightning on the Steeple and Church of Lestwinhial in Cornwall. An, 1757.
8. Remarks on the different Tereperature of the Nir at Elystone Light-house, and at Plymouth. An. 1758.
9. Experimental inquiry concerning the natural powers of Water and Wind to turn mills and other machines depending on a circular motion. An. 1759.
10. On the Menstrual Parallax arising from the mutual gravitation of the earib and moon, its influence on the observation of the sun and planets, \&c. An. 1768.
11. Description of a new method of observing the beavenly bodies out of the meridian. An. 1768 .
12. Observations on a Solar Eclipse. An, 1769.
13. Description of a new Hygrometer. An, 1771.
14. An Experimental Examination of the quantity and proportion of Mechanical Power, necessary to be employed in giving different degrees of velocity to heavy bodics from a state of rest. An. 1776, pa. 450.

In two of those articles, viz, the experiments of 1759 and of 1776 , it may be remarked that Mr. Smeaton bas manifested sevcral inconsistencies and inaccuracies, apparently from crroncous notions concerning the Newtonian dactrine of the force of boilies in motion. Hence, though the experiments are good in themselves, frum reasoning wrongly upon them, be fallaciously infers that their results are contrary to the theory, which, rightly managed, they tend to contirm. He does not properly distinguish between what he calls Mechanical Power, and the Newtonian term Momentum, or quantity of motion. These two powers arr, from their very deffititions, as well as from their nature, of different kinds. The one being measured or estimated by its momentary or instantaneous action; the other by its action during some certain time. The one, by its definition, is in the compound ratio of the mass of a body and its velocity; or as the product of the body and its selocity, and therefore simply as the velocity in a given body: whereas the other, by its detinition, is estimated by the mass or weight compounded with the space it bas fallen, or described, in acquiring its velocity : and since, us is well known, the space fallen by a body, is as the square of the velocity acquired; it follows, that this force must needs be as the square of the velocity in a given body. The Newtonian momentum or force, therefore, and Mr. Smeaton's mechanical furce or power, are two things that are quite different in their nature or measure, and in their mode of action; though both may produce true results when applied to their proper objects.

SMITH (Rosekt) D. D. and F. R. s. It seems not a little remarkable that I have not met with any account of the liff, or death, or works of Dr. Smith, a man who, from his connections and situation and works, has so well deserved of the literary world. It barily appears, that he was the materual cousin of the celubrated Roger Cotes, whom he succeeded, in the year 1716, as Plumian professor at Cambridge; that he became master of 'Trimity Collcge there; that he published some of the works of his cousin Cotes; as, his Hydrovtatical and Pneunutical Lectures, in $8 \mathrm{vo}, 1737$; also a cullection of Mr. Cotes's pieces from the Philosophical Transactions, and clsewhere, and his Harmonia M-nsurarum, with a large commentary, \&c, ift one vol. 4 to, 1722 : that Dr. Smith published also two "racellent works of his own, viz, his complete System of Optics, in 2 vols. 410,1728 ; and his Harmonics, or the Puilusophy of Musical Sounds, \& c.
sNOKr., or Smonk, a humid matter exhaled in form of vapour by the action of heat, either exturual or internal; or sminke consists of palןable particles, elevated by meuns of the rarefying lical, or by the force of the ascending current of air, from certain bodies exposed to heat;
which particles vary much in their properties, according to the substances from which they are produced.

Sir lsanc Newton observes, that smoke ascends in the chimney by the impulse of the air it floats in: for that air, being rarefied by the heat of the fire underneath, has its specific gravily diminished; and thus, being disposed to ascend itself, it carries up the smoke along with it. The tail of a comet, the same author supposes, ascends from the nucleus after the same manner.-Smoke of fat unctuous woods, as fir, beech, \&cc, makes what is called lamp-black.

There are various inventions for preventing and curing smokey chimneys : as the æolipiles of Vitruvius, the ventiducts of Cardan, the windmilly of Bernard, the capirals of Serlio. the little drums of Paduanus, and several artifices of De Lorme. See also the philosophical works of Dr. Franklin. Pans, resembling sugar pans, placed over the tops of chimneys, are useful to make them draw better; and the fire-grates called register-atoves, are always a sure remedy.

In the Pbilosophical Transactions is the description of an engine, invented by M. Dalesme, which consunves the smoke of all hinds of wood so effectually, that the eye cannot discover it in the room, nor the nose distinguish the smell of it, though the fire be made in the middle of the floor. It consists of several iron hoops, 4 or 5 iuches in diameter, which shut into one another, and is placed oll a trevet.

The late invention called Argand's lamp, also consumes the smoke, and gives a very strong light. Its principle is a thin broad cotton wick, rolled into the form of a hollow cylinder; the air passes up the hollow of it, and the smoke is almoat all consumed.

Smoke Jack, is a jack for turning a spit, turned by the smoke of the kitchen fire, by m-ans of tbin iron sails set obliquely on an axis in the flue of the chimney. Sce Jack.

SNELL (Rodolpi), a respectable Dutch philosopber, was born at Outlenwater in 1546 . He was some tima professor of Hebrew and mathematics at Leyden, where he died in 1613, at 67 years of age. He was author of several works on geometry, and on all parts of the philosophy of his time.

Snele(Willenrord), sonof Rodulph abuvementioned, anexcellent mathematician, was born at Leyden in 1391, where he succeeded his father in the mathematical chatr in 1613, and where he died in 1626, at only 35 years of age. Willebrord Snell was author of several ingenious works and discoveries. Thus, it was he who first discovered the true law of the refraction of the rays of light ; a discovery which he made before it was announced by Descartey, as liuygens assures us. Though the work which Snell propared on this subject, and on optics in general, was never publisled, yet the discovery was sery well known to belong to him, by several authors about his time, who had seen in in his manuscripts.-He undertook also to measure the carth. This he effected by measuring a space between Alchuer and Bergen-op-zoom, the difference of latitude between these places being $1^{\circ} 11^{\prime} 30^{\prime \prime}$. He also measured another distance between the parallels of Alcmaer and Leyden : and from the mean of both these incasurements, be made a degree to consist of 55021 French toises or fathoms. These measures were afterwards repeated and corrected by Muschenbroek, who found the degree to contain 57033 toises,- He was author
of a great many learned mathematical works, the principal of which are,

1. Apollonius Balavus; being the restoration of some lost pieces of Apollonius, concerning Determinate Section, with the Section of a Ratio and Space: in Ho, 1608, published in his 17 th year.
2. A curious tract, De Re Nummaria; in $12 \mathrm{mo}, 1613$.
3. Etaosthenes Batavus; in 410,1617 . Being the work in which he gives atl account of his operations in measuring the earth.
4. A tramslation out of the Dutch language, into Latin, of Ludolph van Collen's book De Circulo \& Adsciiptis, \&ce; in 4to, 1619.
5. Cyclometricus, De Circuli Dimensione \& c ; 4to, 1621. In this work, the author gives several ingenious approximations to the meusure of the circle, both arithmetical and geonetrical.
6. Tiphis Batavus; bring a treatise on Navigation and Naval Aflairs; in 4to, $16 / 4$; a very well-written work.
7. A pasthumous treasise, bcing four booky Doctrive Triangularum Canonice; in 8vo, 1627. In which are contained the canon of secants; and in which the construction of sines, tangents, and secants, with the dimension or calculation of triangles, both plane and spherical, are briefly and clearly treated.
8. Hessian and Bubemian Observations ; with his own notes.
9. Libra Astronomica \& Philosophica; in which he undertakes the exammation of the principles of Galileo concerning comets.
10. Concerning the Comet wheh appeared in 1618 , \& c.

SNOW, a will known meieor, formed by the freezing of the vapours in the atmoxphere. It differs from hail and hoar-frost in being as it were chrystallized, which they are thet. Ithis appears on examination of a flake of snow by a magnifying glass; when the whole ol it appears to be composed of tine shining spicula deverging like rays from a centre. As the flakrs descend through the atmosphere, they are continually joned by more of these radiated spicula, and thus increase in bulk like the drops of rain or hailstonex; so that it serms as if the whole body of snow were an infinite mass of icicles irregularly figured. The ligheness of snow, though it is firm ice, is owing to the excess of its surface, in comparison to the natter contaised under it ; s, even gold itself may be extended in surface, till it will float upon the least breath of air.

Accurding to Beccaria, clouds of snow differ in nothing from clouds of rain, but in the circumstance of cold that freezes them. Both the regular duffusion of the snow; and the regularity of the structure of its parts, show that cloids of snow are acted on by some uniform cause like electricity; and be endravours to show how electricity is capable of forming these figures. He was confirmed in his conjectures by observing, that his apparatus for showing the electricity of the atmosphere, never failed to be electrified by snow as well as by rain. Professor Wintrop sometimes found his apparatus electrified by snow when driven about by the wind, though it bad not been affected by it when the snow itself was falling. A nore intense electricity, according to Beccaria, unites the particles of hail more closely than the more moderate electricity does those of snow, in the same manner as we see that the drops of rain which fall from the thunder-clonds, are larger than those which fall from others, though the former descend through a less space.

In the northern countries, the ground is covered with snow for several montbs; which proves excedingly favovourable for vegetation, by preserving the plants from those intense frosts which are common in such countries, and which would certainly destroy them. Bartholin ascribes great virtues to snow-water, but experience does not seem to warrent his amertions. Snow-water, or icc-water, is always deprived of its fixed air: and those nations who live among the Alps, and use it for their constant drink, are subject to affections of the throat, which it is thought are* ocrasioned by 1 .

From some late experiments on the quantity of water yietded by snow, it appears that the latter gives only about one-tenth of its bulk in water.

SOCIETY, an asseinblage or union of several learned persons, for their inutual assistance, improveruent, or information, and for the promotion of philosophical or other knowledge. There are various philosophical societies instituted in different paits of the world. See Royal Society.

Ruyal Suciety of England, is an academy or body of persons, supposed to be eminent for their learming, instituted by king Cattles the 24, for promoting natural knowledge. This society originated from an aswmbly of ingenious men, residing in London, wher, being inquisitive into natural knowledge, and the new and experimental philusophy, agrevd, about the year 1645, to meet weekly. on a certain day, to discourse upon such subjects. These meetings, it is sand, were suggested by Mr. Theodore Haak, a native of the Palannate in Germany; and they were held sometimes at Dr. Godderd's lenigings in Woodestreet, somrtumes at a convenient place in Cheapside, and sometimes in or near Greshain College. This assembly seems to be that mentioned under the title of the Invisible, or Philosephical College, by Mr. Bayle, in some letters written in 1646 and 1647 . About the years 1648 and 1649 , the company which formed these mextings, began to be divided, sonse of the gentiomen removing to Oxford, as Dr. Wallis, and Dr. Goddaril, where, in conjunction with other gentiemen, they held meetings also, and brought the study of natural and experimental philosoply into fashion there; meeting first in Dr. Pctty's lealgings, afterwards at Dr. Wilkins's apartments in Wadham College, and, on his remosal, in the lodgings of Mr. Robert Boyle; while those genilemen who semaned in London continued their meetings as before. The greater part of the Oxford Society coming to London about the year 1659, they met once or twice a week in term time at Gresham College, till they were dispersed by the public distractions of that year, the place where they matt being made a quarter for soldiers. OII the restoration, in 1660, their unectings were revived, and attented by many gentlemen, eminent for their character and learning.

They were at length noticed by the government, and probably by the aidvice of Sir Jonas Moore, the king granted them a charter, first the 15 th of July 1602, then a more ample one on the 22d of April 1663, and thirdly the 8th of April 1669 ; by which they were erected into a corporation, " consisting of a president, council, and fellows, for promoting natural knowledge," and endued with various privileges and authorties.

Their manner of electing rnembers is by balloting; and two-thirds of the members present are necessary to carry the clection in favour of the candidate. The council consists of 21 members, including the president, vice-president,
treasurer, and two secretaries; ten of whom go out annually, and ted new members are elected instead of them, all chusen on 't, Andrew's day. They had formerly also two curators, whose business it was to perform experiments before the society.

Each member, at his adinission, subscribes an engagement, that he will endeavour to promote the good of the society; from which he may be freed at any time, by signifying to the president that he desires to witbdraw.

The charges are five guineas paid to the treasurer at admission ; and one shilling per week, or 52 s . per year, as long as the person continues a member; or, in lieu of the annual subacription, a composition of 25 guineas in onc payment.

The ordinary meetings of the society, are once a week, from Nuvember till the end of Trinity term the next summer. At first, the Hine of meeting was from 30^{\prime} clock till 6 in the afternoon. Afterwards, it was from 6 till 7 in the evening, to allow more time for dinner, which continued for a long series of years, till the hour of meeting was removed, by the present proidrni, to between 8 and 9 at night, that gentemen of fashion, as was alleged, might bave the opportunity of coming to attend the meeting after diuner; which has not boen found to answer the purpose; besides that many members, especially elderly persons, find it inconvenient to be so late out as 9 or 10 o'clock at night.

Their design is to " make faithful records of all the works of nature or art, which come within their reach ; so that the present, als well as after ages, may be enabled to puta mark on errors which have been strengthened by long prescription; to restore truths that have been long neglected; to push those already known to move various uses ; to make the way more passable to what remains unrevealed, \& c."
To this purpose they have made a great number of experiments and observations on most of the works of nature; as eclipses, comets, planets, meteors, mines, plants, earthquakes; inundations, springs, damps, fires, tides, currents, the magnet, \&c: their motto being Nullius in Verba. They have registered experiments, histories, relations, observations, \&c, and reduced them into one common stock. They have, from time to time, published sonne of the most useful of these, under the title of Pbilosophical Transactions, \&c, usually one volume each year. Those papers that are not printed, are laid up in their registers.

They have a gond library of books, which has been formed, and continually augmenting, by numerous donations. . They had also a museum of curiosities in nature, kept in one of the rooms of their own bousc in Crane Court, Fleet-street, where they beld their meetings, with the greatest reputation, for many years, keeping registers of the wealher, and making other experiments; for all which purprises those apartinents were well adapted. But, disproing of these apartments, in order to remove into those allotted thein in Someret Place, where having neither ronm nor convenience for such purposes, the museum was obliged to be disposed of, and their usetul meteorological registers discontinued for many years.

Sir Godfrey Copley, bart. left 5 guineas to be given annually to the person who should write the best paper in the year, under the head of experimental philosophy: this reward, which ia mow changed to a gold medal, is the highest honour the society can bestow; and it is conferred
on St, Andrew's day: but the communications of late years have been thought of so little importance, that the prize medal remains sometimes for years undispused of.
Indeed, this society now consists of a great proportion of honorary members, who do not ustally communicate papers ; and many scientific members being discouraged from making their usual communications, by what is deemed the present arbitrary government of the socirty, the annual volumes have in consequence become of mucli less importance, both in respect of their bulk and the quality bf their contents. The number ot home members has increased to about 600 ; the foreign raembers are about 44 in nutuber.

American Philosophical Society, was established at Philadelphia in the year 1769, for promoting useful knowledge, under the direction of a pairon, a presulent, three vice-presidents, a treasurer, four secretaries, and three curators. The first volume of their 'Transactions comprehends a period of two years, viz, fromi Jan. 1, 1769, to Jan. 1, 1771. Their labours seem to have been interrupted during the troubles in America, which commenced soou after; but since their termination, other volumes have been published, containing a number ol very ingenious and useful meinoirs.

American Academy of Arts and Sciences, was established by a law of the Commonwealth of Massachusetts in North America, in the year 1780.

Boston Acadewy of Arts and Sciences. This is a society similar to the furmer, which has lately been established at Buston in New England, utider the title of the Academy of Arts and Sciences \&c.

Berlin Society. The Society of Natural Historians at Berlin, was founded by Dr. Martini. There is also a philosophical society in the same place.

Brussels Socipty. The Imperial and Royal Academy of Sciences and Belles Lettres of Brussels was founded in 1773. Several volumes of their Transactions have since bern published.

Dublin Society. This is an experimental society, for promoting natural knowledge, which was instituted in 1777 : the members meet onec a week, and diatribute three honarary gold medals annually for the most approved discovery, invention, or essay, on any mathematical or philosophical subject. The society is under the direction of a prisident, two vice-presidents, and a secretary.
Edinburgh Royul or Philosophical SucikTY, succeeded the Medical Society, and was formed upon the plan of including all the difierent branches of natural knowledge and the antiquities of Scotland. The meetings of this som cecty, interrupted in $\mathbf{1 7 4 5}$, were revived in 1752; and in 1754 the first volume of their collection was published, under the title of Fissuys or Observations Physical and Literary, which has been succeeded by other volumes. Thia society has been latcly incorporated by royal charter, under the name of the Royal Society of scotland, instituted for the advancement of learning and useful knowledge. The members are divided into two classes, physical and liternry; and those who are near enough to Edinburgh to attend the mectings, pay a guinea on admission, and the same sum annually. The first neccting was held on the first Monday of August 1783; when there were chosen, a president, two vire-presidents, a secretary, treasurer, and a council of 12 persons. Several of the volumes of their Transactions have been published, which are very respectable both for their magnitude and conteats.

In Franoe there have been several instilutions of this kind for the improvement of science, besides those recounted under the word Academy: As, the Royal Academy at Soissons, founded in 1674 ; at Villefrancbe, Beaujolois, in 1679; at Nismes, in 1682; at Angers, in 16*5; the Royul Society at Montpelier, in 1746, which is so intimately connected with the Royal Academy of Sciences of Paris, as to form with it, in sume respects, one body: the Jiterary productions of this society are published int the memors of the academy: the Royal Academy of Scunces and belles Lettres at Lyons, in 1700 ; at Bunrdeans, in 1;03; at Marselles, in 1726; at Rocleello, in 1734; at Dijun, in 1740; at Pau in Bern, in 1721; at Ik-ziers, in 1; 3 ; at Montauban, in $17+4$; at Kısuen, in $17+4$; nt Δ raiens, in 1750; at Tuulouse, in 1750 ; at líssançon, in 1732; at Metz, in 1760 ; at Arras, in 1773; and at Chalons sur Maine, in 1775 . And the National Institute, established at Paris in 1794. For other institutions of a similar nature, and their literary productions, see the urtlcles Academy, dournal, and Transactions.

Manchester Literaty and Philosophical Society, is of considerable repuration, and has been lately established there, under the direction of two presidents, four vice-presidents, and two secretaniss. The number of members is limited to 50 ; besides these there are several honorary menbers, all of whom are elected by ballot; and the officers are chosen annually in April. Several valuable esways have heen already read at the meetungs of this society.

Newcastleupon-Tyne Literary and Philusophical Sucivar. This society was intituted the 7th of Frbruary 1793, under the dircction of a presilent, fisur vice-presidents, two secretaries, a treasurer, which together with four of the ordinary members form a committee, all annually elected at a general meeting. The subjects proposed for the comsideration and improvement of this suciety, comprelund the mathematics, natural philosoplyy and history, chemistry, pulite literature, antiguity, civil history, biography, questions of general law and policy, commerce, and the arts. From such ample scope in the objects of the society, with the known respectability, zeal, and talents of the members, the grestest improvements and discoveries may be expected to be made in those important branches of useful knowiedge.

Several other similar societies bave been since instituted at other places.

SOCRATES, the chief of the ancient philosophers, was born at Alopece, a small village of Attica, in the th year of the 77 th olympiad, or about 467 years before Christ. Sophroniscus, bis father, being a statuary or carver of images in stove, our author fullowed the same profession for some time, for a subsistence. But being naturally averse to this employment, be only followed it when thecessity compelled him; and on getting a little befure-hand, would for a while lay it aside. These intermissions of his trade were bestowel upon philosophy, to which he was naturally addicted; and this being observed by Crito, a rich phutosopher of Athets, Socrates was at length taken from his shup, and put into a condition of philosophising at his ease and leisure.
He had various instructors in the sciences, as Anaxagoeas, Archylate, Damon, Prodicus, to whom inay be adhled the iwo learned women Diotyma and Aspasia, of the last of whom he learnel shetoric: of Euenus he learned pocVol. II.
try ; of Icbomachun, husbandry ; anil of Thwodurus, geo metry.
At leugth be began himself to teach; and wus so sloquent, that he could lead the mind to apprave nr dasapprove whatever he pleased ; but never uset this taient for any oher purpose than to conduct his fellow-ritizems into the path of sutue. The academy pf the Ly caum, and a pleasant meadow without the cisy on the side of the siver IIyssos, were places where bec luedy delisered his instructhons, though it seems he was never out of his wiy in that respect, as he nade use of all times and places for that purpose.

He is represented by Xenophon as excellent in all himbla of learniong, and paracularly instances arithmetic, g'omeery, and ast rology or astronoiny: I'lato mentions lutaral philosophy ; Idomencus, rbetoric; Laertius, medicine. Cicero aftirms, that by the lestimony of all the learnewi, and the judgreent of all Grecte, lee was, as will in wisdom, acutencss, politeness, and subtlety, as in eloquence, variety, aisd richness, in whatever be applied limetli to, without exception, the prince of all.

It has been obsersed by many, that Socrates litile affected travel; his life being wholly spent at home, exrepting when be went out uponmaltary bervices. In the Pelononnesaun war be was thate personally engaged: un whach urcasions it is sat he ourwent all the soldures in hardiness: and it at uny ume, sinth Alcibiades, as it often happens in war, the provioums failed, there were none wion could bear the want of meat and drink like Sucrates: yet, on the other hand, til tines of Feasting, he alone seemed to enjoy them; and though of himsift be wooli not drink, yet being invited, he tar outdrank every one, though lie was never seen intoxicated.

To this great philusopher Greece was principally indebted for ber glory and splendor. He formed the matiwers of the most celebrated persons of Greece, as Alcibiades, Xenophon, I'lato, \&c. But his great services and the excellent qualities of his mind could not secure him from envy, persecution, and calumny. The thirty tyrunts forbad his instructing youth; and as he derided the pluruhty of the Pagin deities, be was accosed of impiety. The day of trial being come, Socrates made his own defence, without procuring an advocate, as the custom was, to plead for hitu. He did not defond humself with the tone and language of a suppliant or guilty person, but, ns if he were master of the judges themselves, with freedom, frmness, and some degree of contunacy. Many of his friends alsu spoke in his behalf; and lastly, Plato went up ilto the chair, and began a speech in these words: "Though I, Athenizas, am the youngest of those that cone upinto this place"-but they stopped hion, crying out, " of therse that go down," which he was thereupon constrained to do ; and then proceeding to sote, they condemnd surrates to death, which was cffected by means of poison, when he was 70 years of agy. Plato gives an affecing account of his imprisonment and death, and concludes," This was the end of the best, the wisest, and the justest of men." . Ind that account of it by Plato, 'Jully protesses, be could never read withoot tears.

As to the person of Sucrates, he is represented as very homely ; he was bald, had a dark complexion, a that nose, eyes sticking oot, and a severe downcast lock. But due defects of his persin were amply compensated by the virtues and accomplishments of his mind. Sucrates was in3 G
deed a man of all virtues; and so remarkably fragal, thut how little soever he had, it was olways enough. When be was amidst a great sariety of ricb and expensive objects, he would atten say to himself, "How many things are there which I do not want!"

Socrates had two wives, one of which was the noted Xantippe; whom Aulus Gellius describes as an accursed froward wonan, nlweys chiding and sculding, by day and by night, nud whom it was sail he made choice of as a trial and exercise of his temper. Several instances are recorded of ber impatience und his forbearance. One day, before some of his titiends, she fell into the usual extravagances of her passion; when he, without answerng a word, went abroad with them: but on his guing out of the door, she rall up into the chamber, and threw down water upon his bead; upon which, turning to his friends, " Did not I tell you (mays he), thut atter so much thunder we should have rain f" Another time she pulled bis cloak from his shoulders in the open forum; sud sume of lis friends advising him to beat her, "Yes (says be), that while we two fight, you may all stand by, and cry, Well done, Socrates; to him, Xuntippe."

They who affirm that Soctates wrote nothing, mean only in respect to his philosophy; for it is attested and alJowed, that he assisted Euripides in composing tragedics, and was the author of some picces of poetry. Dialogues also and epistles are ascribed to him: but his philosophicul disputations were committed to writing-only by his scleolars: and that chicfly by Platu and Xetoophon. The latter set the example to the rest in doing it first, und aho with the grealest punctuality; as Plato did it with the most liberty, intcrmixing so much of his own, that it is luardly possible to know what part belings to each. Hence Sucrates, hearing him recite his Lysis, cried out, "How many things doth this young man feign of me!" Accordingly, the greatest part of hin philosophy is to be found in the writings of Plato. To socrates is ascribed the first introduction of moral philosophy. Man having a (wofold relation to things divine and human, his doctrines were with segard to the former metaphysical, to the latter moral. His metaphysical opinions were chiefly, that, There are three primeiples of all things, God, matior, and idea. God is the universal intellect; matter the subjeet of gencration and corruption ; idea, an incorporral substance, the intellect of God; Giod the intellect of the warld. God is one, perfect in bimself, giving the being and nell-being of every creature. - That God, not chance; made the worid and all ciratures, is demomatrable from the reasonable diaposition of their parts, as well for une as defence; from their care to preserve themselves, and conLinue their specirs.- That he particularly regards man in his body, apperars from his noble upright fiem, and from the gift of speech; in his soul, from the excellency of it above others. -That God takes care of all creutures, is demomsable from the benefit he gives them of light, wuter, fire, and fruits of the earth in due season. That he hath a particular regard of man; from the destination of all plants and creatures for his service ; from their subjection so man, though they may exceed him ever 50 much in strength; from the variety of maniv sense, accommodated to the variety of objects, for necessity, use, und pleasure; from reason, by which be discounsth through reminiscence from sensible objects; from speech, by which he communicates all be knows, gives laws, and governs states. Fi -
nally, that God, though invisible himself, at onee sees all, licars all, is every where, und orders all.

As to the other great object of metaphysical researeh, the soul, Socrates taught, that it is pre-esustent to tha body, endued with the knowledge of eternal idens, whieh in It union to the body it loseth, as stupefied, until awakened by dincouse from sensible nbjects ; on which account, all its learning is only reminiscence, a recovery of its first knowledge. 'That the bedy, being compound. ed, is dissolved by death; but that the ooul, being simpte, passeth into abother life, incapable of corruption. That the souls of men are divine. That the souls of the geod after deaih are in a happy state, united to God in a blessed inaccessible place; that the bad in convenient places suffer condign punishment.

All the Girecian sects of philosophers refer their origin to the discipline of Socrates; particularly the Platonics, Peripatetics, Academics, Cyrenaics, Stuics, \&c.
bOI.AR, something relating to the sun. Thus, we say solar fire in contrudistinction to culinary fire.

Solar Civil Month. Sice Month.
Solar Cycle. Suecycle.
Solar Comer. See Disces.
Solar Eeliper, is a privation of the light of the sun, by the interposition of the opake body of the moon. See ECLIPs.

Sular Month, Rising, Spots. See the sulatantives.
Solat System, the order and disposition of the several Incavenly bodirs, which revolve round the sun as the crnire of thesr motion; viz, the plancts, primary and accondasy, and the comets. See Srsten.

Sular Year. Sce Year.
SOLID, in Physics, a body whose minute parts are connected trogether, so as not to give way, or blip from each other, on the smallest impression. The word is used in this seune, in contradistinction to floid.

Solid, in Geometry, is a maguitude extended in every possible direction. Though it ts commonly said to be endued with three dimensions only, lingth, breadth, and depth or thickness. Hence, as all bodics have these three dimensium, and nothing but bodies, solid and body ara often uxd indiscriminately. The extremes of solids are surfaces. That is, sotids are terminated cither by one surlace, as a globe, or by several, cither plane or curved. And framtio circumstances of these, sefids are distinguisted into rugular or irregular.

Regalar Solids, are those that are terminated by regular and rqual planes. These are the tetrardron, hexaedron, or cube, octaedron, dodecaedron, und icosaedron; nor can there possibly be more than these five regular solids or bodirs, unless perhaps the sphere or globe be considered as one of an isfinite uumber of sides. Sec these articles severally, also the article Regular Boor.

Itregular Solids, are all such as do not come under the definition of regular ones: such as cylinder, cone, pristh, pyramid, \&c. Similar solids are to one another in the triplicate ratio of their like sides, or as the cubes of the same. And all sorts of prisms, as also pyramids, are to one another in the compound ratio of therr bases and altitudes.

Sot.10 Angle, is that formed by three or more plane angles mecting in a point; like an angle of a die, or the point of a diamond well cut. The sum of alt the plane angles forming a solid angle, is always less thau 360°;
other wise they would coustitute the plane of a circle, and not a solid. Siee a disquisition on the nature and measure of solid angles in my Course of Mathematics, vol. 3.

Atmosphere of Solids. See Atmosyhive.
Sulid Bation. See Bastion.
Cubahure of Sulids. Ste Cubature and Solidttr. Measure of a Solid. Sce Measure.
Solid Foot. See Foot.
Solid Numbers, are those which arise from the multiplication of a plane number, by any other number whatever. Thus, is is a solid number, produced from the plane number 6 and 3 , or trun 9 and 2.
Solid Place. See Locus.
Solid Problen, is one which cannot he constructed geometrically; but by the intersection of a circle and a cuuic section, or by the intersection of two conic sectious. Thus, to describe an isosceles triangle on a given base, so that either angle at the base sball be triple of that at the vertex, is a solid problem, resolved by the intersection of a parabola and circle, and it serves to inscribe a regular heptagou in a given circle.

In like manner, to describe an isosceles triangle having its angles at the base each equal 104 times that at the vertex, is a solid problem, efficted by the intersection of an hyperbola and a parabola, and serves to inscribe a regular nonagon in a given circle. And such a problem as this has four solutions, and no more; because two conic sections can intersect in 4 points only.-How all such problems are constructed, is shown by Dr. Halley, in the Philos. Trans. num. 188.

Solid of Least Resisiance. See Resistance.

Surfaces of Solids. See Amek, and Superficies.
Solid Theorem. See Thsomem.
SOLIDITY, in Physics, a property of matter or body, by which it excludes every other body from that place which is possessed by itself. Solidity in this sense is a property common to all bodies, whether solid or fluid. I_{1} is usually called impenetrability; but solidity expresses it better, us carrying with it somewhat more of positive than the other, which is a negative idea.
The idea of solidity, Mr. Lucke observes, arises from the resistance we find one body makes to the entrance of another into its own place. Solidity, he adds, seems the most extensive property of body, as being that by which we conceive it to fill space; it is distinguished from mere space, by this latter not being capable of resistance or motion.- It is distinguished from hardness, which is only a firm cohesion of the solid parts.

The difficulty of changing situation gives no more solidity to the hardest body than to the softest; uor is the hardest diamond properly a jot more solid than water. By this we distinguish the idea of the extension of body, from that of the extension of space : that of body is the continuity or coliesion of solid, separable, muveable parts; that of space the continuity of unsolid, inseparable, itomoveable parts.

The Cartesians however will, by all means, deduce solidity, or, as they eall it, impenetrability, from the nature of extension; they contend, that the idea of the former is conlained in that of the latter; and bence they argue against a vacuus. Thus, say they, one cubic foot of extension cannot be added to another without having two cubic fect of exteusion; for each las in itself all that is required to constifute that magoitude. And hence they cunclude, that every part of space is solid, or impenetra-
ble, as of its own aature it excludes all other. But the conclusion is false, and the instance they give follows from this, that the parts of space are immoveable, not from their being impenetrable or solid. See Matter.

Solidity is also used for hardness, or firmness; as opposed to fluidiny; viz, when body is considered either as fluid or solid, or hard or firm.

Solidity, in Geometry, denotes the quantity of space contained in a solid body, or occupied by it ; called also the solid content, or the cubical convent; for all solids are measured by cubes, whose sides are inches, feet, or yards, \&ec; and hence the sulidity of a body is said to be so many cubic inches, feet, yards, \&ce, as will fill its capacity or space, or another of an equal magnitude.

The solidity of a cube, parallelopipedon, cylinder, or any other prismatic body, i. e. one whose parallel sections are all equal and similar throughout, is found by multiplying the base by the beight or perpendicular altitude. And of any cone or other pyramid, the solidity is equal to one-third part of the sume prism, because any pyramid is equal to the 3 d part of its circumseribing prism. Also, because a sphere or globe may, be comidered as made up of an infinite number of pyranuds, whose bases form the surface of the globe, and their vertices all meet in the centre, or having their common altitude equal to the radius of the globe; therefore the solid content of it is equal to one-third part of the product of its radius and surface. For the solidity of other figures, see each figure scparately.

The forcgoing rules are such as are derived from common geometry. Hut there are in nature numberless other forms, which require the aid of other methods and principles, as folluws.

Of the Solidiry of Bodies formed by a Plane reoolving abowt any Axis, cither within or withowt the Body.-Concerning such bodies, there is a remarkable property or relation between their solidisy and the path or line described by the cenure of gravity of the revolving plane; viz, the solidity of the budy generated, whether by a whole revolution, or only a part of one, is always equal to the product arising from the generating plane drawn into the path or line described by its centre of gravity, during its motion in describing the body. And this rule holds true for figures generated by all kinds of motion whatever, whether rotatory, or direct or parallel, or irregularly zigzag, $\& \mathrm{c}_{\text {s }}$. provided the generating plane does not vary, but continue the same througbout. And the same law holds truc also for all surfaces any how generated by the motion of a right line. This is called the Centrobaric method. See Centhobabic, andmy Mensuration, sect. 3, part 4.

Of the Solidity of Bodies by the Method of Fluarions.This method applies very advantageously in all cases also in which a body is concelved to be generated by the revolution of a plane figure about an axis, or, which is much the same thing, by the parallel motion of a circle, gradually expanding and contracting itself, according to the nature of the generating plane. It is also particularly useful for the solids generated by any curvilineal plana figures. Thus, let the plane aED revolve about the axis $A D$; then it will generate the solid $\triangle B F E C$. But as every ordinate DE, perpendicular to the axis AD, describes a circle BCEF in the revolution, therefure the same solid may be conceived as generated by a circle acer, gradually expanding itself larger and larger, nod moving

3 G 2
perpendicularly along the axis AD. Consequently the area of thut circle being drawn into the tluxion of the axis, will produce the fluxion of the solid; and therefore the fiuent, when taken, will give the solidity of that body. That is, AD \times circle BCF, (whose radius is ne, or dameter BE) is the fluxion of the sulidily.

Hence then, puting $\mathrm{AD}=\mathrm{D}, \mathrm{DE}=$
 $y, c=3.1416$; because $c y^{2}$ is equal to the area of the circle BCP; therefore $\mathrm{Cy}^{2} \dot{x}$ is the fluxion of the solid. Consequantly if the value of either y^{2} or \dot{x} be found in ternis of each other, from the given equation expressing the nature of the curve, and that value be substituted for it in the fluxional expression ${c y^{2}}^{2} \dot{x}$, the fluent of the resulting quantity, being taken, will be the required solidity of the body.

Fur Ex. Suppose the figure to be a parabolic conoid, generated by the rotation of the common prabola atog about its axis a n . In this case, the equation of the curve of the parabola is $p x=y^{2}$, where p denotes the parameter of the axis. Substtuting therefore prinstend of y^{2}, in the fluxion $c y^{2} \dot{x}$, it becomes ' $p r x$; and the fluent of this is $\frac{1}{2} c p x^{2}=\frac{1}{2} c x y^{2}$ for the solidity; thut is, half the product of the base of the solid drawn into its altitude; for $C y^{2}$ is the area of the circular base scF, and x is the altitude. And so on for other such figures. See the content of each'solid under its proper artucle.

For the Sowimity of Irregular Solids, or such as cannot be considered as grnerated by any rugular motion or description ; they must either be considered as cut or divided into several parts of known forms, as prisms, or pyramils, or wedges, \&ce, and the contents of these parts fonnd separately. Or, in the case of the smaller botiles, of forms so irregular as not to be casily divided in that way, put thein into some bollow regniar sessel, as a hoilow cylinder or parallclopipedon, \&e: then pour in water or sand so that it may till the vessel exactly to the tup of the incloned irregular body, noting the height it rises to; then take out the binly, and wite the height the fluid again stands at ; the difficrence of these two heights is to be considered as the altitude of a prism of the same base and form as the hollow vessel; and consequently the product of that altitude and base will be the accurnte solidity of the immerged body, be it over so irregular.

SULSTICL ${ }^{2}$, in Astronoun, is the time when the sun is in one of the solstitial points, that is, when be is at the greatest distance from the equator, which is now nearly $23^{\circ} 28^{\prime}$ on either side of it. It is so called, because the sun then seems to stand still, and nut to change his place, as to declination, either way. There are two solstices, in each ycar, when the sun is at the greatest distance on the north and south sides of the equator ; viz, the estival or summer solstice, and the hyemal or winter solstice.

The summer solstice is when the sun is in the trupic of Cancer; which is about the 21st of June, when he makes the longrst day. And the winter solstice is when he enters the tirst degree of Cupricorn; which is about the 22d of Decenuber, when be uakes the shortest day.-This is to be understood, as in our northern hemisphere; for in the southern, the sun's entrance into Capricorn makes their summer solstice, and that into Cancer the winter onc. So that it is more precise and determinate, to say the northern aud southern solstice.

SOLSTITIAL Points, are those points of the ecliptic the sun is in at the times of the two solstices, being the first points of Cancer and Capricorn, which are diumetrically opposite to each other.

Solstitial Colure, is that which passes through the solstitial points.

SOLU'TION, in Mathematics, is the answering or resolving of a question or problem that is proposed. See Resoletios, and Reduction of Equations.

Solution, in Physics, is the reduction of a solid or firm body, imto a fluid state, by means of some menstru-um.-Solution is often confounded with what is called dissolution, though there is a difference.

SOSIGENLS, was an Egyptran mathematician, whose principal studies were chronology and the mathematics in general, and who foursbed in the time of Julius Casar. He is represented us well versed in the mathematics and the astromomy of the ancienis ; particularly of those celebrated unathematicians, Thales, Archimedes, Hipparchus, Calippus, and many others, who had undertaken to determine the quantity of the solar year; which they had ascertained much searer the truth than one can well imagine they should, with instruments so very imperfect; as may appear by reference to Ptolemy's Almage st.

It seems that Sosigenes made great improvements, and gave proufs of his being able to demonstrate the certainty of his discoveries ; by which means be became popular, and obtained repute with those who had a genius to understand and relish such inquiries. Hence be was sent for by Julius Cæsur, who being convinced of his capacity, employed him in reforming the calendar; and it was he who formed the Julian year which begons 45 years before the birth of Christ. His other works are lost sunce that period.

SOUND, in Geography, denotes a strait or inlet of the sea, between two capes or head-lands.

The Sousd is used, by way of eminence, for that celebrated strait which connects the German sea to the Batic. It is situated between the island of Zealand and the coast of Schonen. It is ahout 16 leagues in length, and in general about 5 in breadth, except near the casile of Cromenberg, where it is but one; so that there is no passage for vessels but under the cantion of the fortress.

Sound, in Plysics, a peracption of the mind, communicated by means of the car; being an effect of the collision of botlies, and their consequent tremulous motion, communicated to the umbient iluid, and so propagated through it to the orgar:s of hearing.

To illustrate the cause of sound, it is to be observed, 1st, That a motion is necessary in the sonorous body for the production of sound. 2dly, That this motion exists first in the small and insensible parts of the sonorous bodies, and is excited in them by their mutual collision against rach other, which provluces the tremulous motion so observable in hodies that have a clear sound, as bells, musical chords, \&c. Sdly, That this motion is communicated to, or produces a like motion in the anr, or such parts of it as are fit to receise and propagate it. Lastly, That this motion must be communicated to those parts that are the proper and imnediate instruments of hearing.

Now that motion of a sonorous body, which is the immediate cause of sound, may be owing to two different causes; either the percussion between it and other hard
bodics, as in drums, bells, chords, \&c; or the beating and dashing of the sonornus body and the air inmedately against each other, as in flutem, trumpets, \&c.

But in both these cases, the motion, which is the consequence of the mutual action, as well as the immediate cause of the sonorous motion which the air conveys to the ear, is supposed to be an invisible, tremulous or undulating motion, in the small and insensible parts of the body. P'errault adits, that the visusle motion of the groser parts contributes no otherwise to sound, that as it causes the invisible motion of the smaller parts, which he calls partieles, to distinguinh them irom the sensible ones, whinch he calls party, and from the smallest of all, which are called corpuscles.
The sonorous body haviug made its impression on the contignous air, that impression is propagated from one particle to another, according to the laws of proumatics. A few particles, for instance, driven from the surface of the body, push or press their ndjac-nt particles into a less space; and the medium, as it is thus rarelied in one place, becomes condensed in the other; but the air thus compressed in the second place, is, by its elasticity, returned back again, both to its former place and its former state ; and the air contiguous to that is compressed; and the like obtains when the air less compressed, expanding itself, a new compression in generated. Therefore from each agitation of the nir there arise's a motion in it, analogous to the motion of a wave on the surface of the water; which is called a wave or undulation of air. In each wase, the particles go and return back again, through very short equal spaces; the motion of cach particle being analogous to the motion of a vibrating peadulum while it perfroms two uscillations; mont of the laws of the pendnlum, with very little alteration, being applicable to the firmer.

Sounds are as various as are the means that concur in producing them. The chief varieties result from the figure, constitution, quantity, \&c, of the sonorous body; the manner of percussion, with the velocity, \&ce, of the consequent vibrations; the state and constitution of the mediuin; the disposition, distance, \&cc, of the orgas; the obstacles between the organ and the sonorous object and the adjacent bodics. The most notable distinction of sounds, arising from the various degrees and combinations of the conditions above mentioned, are into lond and low (or strong and weak); into grave and acute (or sharp and flat, or high and low) ; und imto long and short. The management of which is the office of music.

Euler is of opinken, that no sound making fewer vibrations than 30 in a second, or more than 7520, is distinguislable by the human rar. According to this doctrine, the limit of our hearing, as to acute and grave, is an interval of 8 octaves, Tentam. Nov. Theor. Mus. cap.,1, sect. 13.

The velucity of sound is the same with that of the aerial waves, and does not vary much, whether it go with the wind or against it. By the wind indeed a certain quantity of air is carried from one place to another; and the sound is accelerated while its waves move through that part of the air, if their direction be the same as that of the wind. But as sound moves vastly swifter than the wind, the acceleration it will hereby receive is but inconsiderable; and the chief effect we can perceive from the *wind is, that it increases and diminishes the space of the
waves, so that by help of it the sound may be heard to a greater distance than otherwise it would.

That the aır is the usual medium of sound, appears from various expeliments in rarclied and condensed air. In an unexhausted receiver, asmall bell may be heard to some distance; but when nuch exhausted, it can soatce be heard at the smallest distance, not at all in a periect vacuum. When the air is condensed, the sound is louder in proportion to the condensation, or quanticy of nir crowded in; of which tbere are many instances in thauksbee's experiments, in Dr. Priestley's, unt others. Besides, sounding bodies commumcate tremors to distant bodies; for example, the vibranag anestons of a musical string put athers in motion, whose tension and quantity of matter alspase their vibrations to heap time with the pulses of ait, piopagated ifron the string that was struck. Galilen explains this phensmenon hy observing, that a heavy pondelum may be put in motion by the least breath of the mouth, provided ibe hlasts be rejeated, so as to keep tinie casactly with the vibrations of the pendulum; and also by attending to the same circuastances of vibration, the rasing a large bell is easily etfected.

It is not air alone that is capable of the impressions of sound, but water atso; as is namifest by striking a bell under water, the sound of which may planly enough be heard, only not so loud, and also a fourth deeper, according to good judges in musical notes. And Mersenne says, a sound made under water is of the same tone or note, as if made in air, and beard under the water.
The real vehicle of sound, or that by which it is transmitted from the sonorous body to the ear, is a subject that has much engaged the attention of philosophers. From the above-mentioned experiments in an exhausted receiver some have concluded, rather hasuly, that air is this whicle; but though air will convey sound, and even though it cannot be transmitted through a vacuum, yet it dees not follow that air is the only medium of transmission: this indeed is proved by the experiment of striking a bell in water, which, as above obscrved, may be heard nearly as well as when sounded in the uir. Again, solid bodies transmit sound mituch more readily than the air: it has been Intely determined, by some experiments accurately made and irequently repented in France by Mr. Biot, that sound is transmitted through a solid body in $0^{\prime \prime \prime} 29$, which in open air would require $2^{14} 79$ to be conveyed to the same distance, accorting to the experiments of the Academy of Sciences.

The velocity of sound, or the epace through which it is propagated in a given time, has been very duverimily estimated by authors who have written on this suhject. Roberval states it at the rate of 560 feet in a second ; (iassendus at 1473; Mersenne at 1474; Duhamel, in the History of the Acatlemy of Sciences at Paris, at 1.338; Newton at 968 ; Derham, in whose measure Flamsteed and Halley acquiesce, at 1142.-The reason of this variety is ascribed by Derbam, partly to wime of those gentlemen using strings and plummets instead of regular pendulums; and partly to the too small distance betwern the sonorous body and the place of observation; and partly to no regard being had to the winds.

But by the accounts since publislied by M. Cassini de Thury, in the Memars of the R-yal Acud. of Scremes at Paris, 1738 , where cannon were fired at varbous gutat distances, under many vanetics of weather, wind, and
other circunstances, and where the messures of the different places had been settled with the utmost exactness, it was found that sound was propagated, on a medrum, at the rate of 1038 French fect in a second of tome. But the French foot is in proportion to the English as 15 to 16; and consequently 1038 French feet are equal tn 1107 Einglish feet. 'Therefore the difference of the measures of Derhann and Cassini is 35 English feet, or 33 French feet, in a second. Whence the medium velocity of sound is nearly at the rate of a mile, or 5280 fect, in $4 \frac{2}{3} \mathrm{se-}$ eonds, or a league in 14 seconds, or 13 miles in a minute. But geographical inales are to Einglish miles nearly as 7 . to 6 ; and therefore sound moves over a geographical mile in 31 seconis nearly, or a sea league in 16 seconds.

Farther, 'it is a common obscrvation, that persons in good health have about 75 pulsations, or beals of the artery at the wrist, in a mipute: consequently in 75 pulsations, sound fies about 13 Einglish mules, or $11 \frac{4}{7}$ sea miles, which is about 1 Einglist mile in 6 pulses, or a leagoe in 20 pulses. And hence the distance of objects may be found, by knowing the time employed by scound in moving from those objects to an observer. For ex. On seeing the flash of a gun at sea, if 54 beats of the pulse at the wrist were counted before the report was heard; the distance of the gon will easily be found by dividing 54 by 20 , which gives 27 leagues, or about 8 miles.

On the nature, prodnction, \&ec, of sound, see the article Phonics and Ecno; also the Menoirs of the Acad. and the Philos. Trans. in many places ; Newton, Principia; Kircher, Mesurgin Universalis; Mersenne; Borelli, Del Suono; Bermoulli and Everer, \&ce, in the Petersburg Memoirs; Priestley, Exper, and Observ, vol. 5 ; Hales, Sonorum Doctrona rationalis et experimentalis, $4 t 0,1778$; Dr. Matthew Inung on Sounds and Musical Strings; see also an ingenious treatise published 1790 , by Mr. Geo. Saunders, on 'Theatres; its which he relates many experiments made by himself, on the nature and propagation of sound. In this work, he shows the great effect of water, and some other bodies, in conducting of sound. Some of his conclusions and observations are as follow:

Earth may be supposed to have a twofold property with respect to sound. Being very proms, it absorbs sound, which is counteracted by its property of cone ducting sound, and occasions it to pass on a plane, in an equal pruportion to its progress in air, unencumbered by any body. If a sound be suthiciently intense to impress the earth in its tremulous qualisy, it will be carried to a considerable distance, as when the earth is struck with any thing hard, as by the inotion of a carriage, horses ieet, \&c. Plaster is proportionally better than loose earth for conducting sound, as it is more compact. Clothes of every kind, particularly woollen cloths, are very prejudicial in sound: their absorption of sound may be compared to that of water, which they greedily imbibe.

A number of people seated before others, as in the pit or gallery of a sheatre, do considerably prevent the voice reaching those brlinit; and bence it is, that we hear so much better in the front of the galleries, or of any situaltion, than behind others, though we may be nearer to the speaker. Our seats, rising so little above each other, occasion this defect, which would be remedied, could we
have the seats to rise their whole height above each other, as in the ancient theatres. Paint has gencrully been thought unfavourable to sound, from its being so to musical instruments, whose effects it quite destroys.

Musical instraments mostly depend on the vibrative or tremulous property of the material, which a body of colour hardened in oil must very much alter; but we should distinguish that this regards the formation of sound, which may not altogether be the case in the progress of it. Water has been little noticed, with respect to its conducting sound; but it will be found to be of the greatest consoquence. I had often perceived in newlyfinished houses, that while they were yet damp, they produced echoes; but that the echoing abated as they dried.

Exp. When I made the following experiment there was a gentle wiod; consequently the water was proportionally agitated. I chose a quiet part of the river Thames, near Chelsea Hospital, and with two boats tried the distance the voice would reach. On the water we could distinctly heara person read at the distance of 140 feet, on land at that of 76 . It should be observed, that on land no noise intervened; but on the river some noise was occasioned by the flowing of the water against the boats; so that the difference on land and on water must be much more.

Watermen observe, that when the water is still, and the weather quite calm, if no noise intervene, a wbisper may be heard acruss the river; and that with the current it will be carried to a much greater distance, and vice versa against the current.-Mariners well know the difference of sound on sea and land. When a canal of water wis laid under the pit floor of the theatre of Argentinu, at Rome, a surprising diffirence was observed; the voice has since been heard at the end very distinctly, where it was before scarce distinguishable. It is observable that, in this part; the canal is cowered with a brick arch, over which there is a quantity of earth, and the timber fioor over all.

The villa Simonetta near Milan, so remarkable for its echnes, is entirely over arcades of water. Another villa near Rouen, remarkable for its echo, is built over subterraneous cavities of water. A reservioir of water domed over, near Stanmore, has a strong echo. I do not remember ever being under the arches of a stone bridge that did not echo; which is nut always the case with similar structures on land. A house in lambeth Mursh, inhabited by Mr. Turtle; is very damp during winter, when it yields an echo which abates as the house becomes dry in summer. Kircher observes, that echoes repeat more by night than during the day: he makes the difference to be double. Dr. Mort says, the echo in Woodstock park, repeated 17 times by day, and 20 by night. And Addison's experiment at the Villa Simonetta was in a fog, when it produced 36 rejectitions.

After all thesp instances, I think little doubt can remain of the influence water has on sound; and I conclude that it conducts sound more than any other body whatever. After water, stone may be reckoned the best conductor of sound. To what cause it may be attributed, I leave to foture enquiries: I have confined myself to spesk of facts only as they appear. Stone is sonorous, but gives a harsh disagreeable tone, unfavourable to music. Brick, in respect to sound, has nearly the same properties as stone. Part of the garden wall of the late
W. Pitt, esq. of Kingaton in Donsetshire, conveys a whisper to the distance of near 200 feet. Wood is sonorous, conductive, and vibrative; of all materials it produces a tone the most agrevable and melodions; and it is therefore the fittest for musical instruments, and for lining of rooms and thentres.

The common notion that whispering at one end of a long piece of timber would be heard at the other end, I found by experiment to be erroneous. A stick of timber 65 feet long being slightly struck at one end, n sound was heard at the other, and the tremor very perceptible: which is ensily accounted for, when we consider the number or length of the fibres that campose it, each of which may be compared to a string of catgut.
For the Reflection, Refraction, de, of Soux D ; see E.cuo, and Paovics.

Articulate Sound. See Abticulate.
Socnd, in Music, denutes a quathy of the several agitutions of the air, so as to make music or harmony: Sound is the object of music; which is nothing but the art of applying sounds, under such circumstances of tone and time, as to raise agrecable sensations. The principal affection of sound, by which it becomes fitted to have this end, is that by which it is distongushed into acute and grave. This dilerence depends on the nature of the sonorous body ; the particular tigure and quantity of it; and even in some caves, on the part of the body where it is atruck: and it is this that cunstitutes what are called different towes.

The cause of this difference appears to be no other than the dofferent velocities of the vibrations of the sounding body. Indeed the tone of a sound is fomad, by numerous experiments, to deperid on the nature of those vibrations, whose differences we can conceive no otberwise than as having different velocitios: and since it is proved thet the small vibrations of the same chord are all performet in equal timey, and that the tone of a sound, which continues for some time after the stroke, is the same from first to last, it follows, that the une is necessarily connected with a certain quantity of time in makiug each vibration, of each wave; or that a certain number of vibrations or waves, made in a given time, constitute a certain and determinate tone. From this principle are all the phenomena of tune diduced.

If the vibrations be isochronous, or performed in the same line, the sound is calied musical, and is said to continue at the same pitch; and it is also accounted acuter, sharper, or higher than any other sound, whose vibrationg are slower, and therfore graver, tlatter, or lower, than any other whose nibrations are quicker. See Unison.

From the same principte arise what are called concords, $\$ \mathrm{c}$; which result from the frequent unions and coincidences of the vibrations of two sonorous bodiss, and consequently of the pulses or the waves of the air occasioned by them. On the contrary, the result of less frequent coincidences of those vibrations, is what is called discord.
Another eonsiderable distinction of musical sounds, is that by which they are called long and short, owing to the continuation of the impulse of the efficient cause on the sonorous body for a longer or shorter time, as in the notes of a violin \&c, which are made longer or shorter by strokes of different length or quickness. This continuity is properly a succession of several sounds, or the effect of several distinct stroker, or repeated impulses, on the sono-
sous body, so quick, that we judge it one continued sound, especially where it is continued in the same tlegree of strength; and bence arises the doctrine of ancasure and tines.

Musical sounds are also divided into simple and compound; and that in two diffetent ways. In the first, a sound is said to be compound, when a number of successive vibratoons of the sumorous body, and the air, come so fast upon the ear, that we judge them the anme contonued sound; like as in the phenomenon of the circle of fire, caused by putting the lighted end of a stick in a quick circular motion; where suppusing the end of the stick in any point of the circle, the idea we receive of it bere contthues till the umpression is renewed by a sudden retirn.

A Simple Sou sid then, with regard to this composition, should be the effect of a siugle viltation, or of as many vibrathons a* are necessary tu raise in us the iden of sound. In the second sense of composition, a simple sound is the product of one voicr, or one instrument, ac.

A Compoand SOU ND consists of the sounds of several distinct voices or instruments all united in the same individual time, and measuse of duration, thnt is, all striking the air together, whatever this other dafferences may be, But in this sonve again, there is a twofold compusition ; a natural and an artiticinl one. The naturat composition is that proceedng fron the manifold reflections of the first sound from adjicent bodieq, where the reflections ate not so sudden as to occavion cchoes, but are all in the same tune with the first note.

The artiticial compusition, which alone comes under the musician's province, is that mixture of several souuds, which being made by art, the iugredient sounds are separable, and distingushinble fioni une another. In this sense the distinct soundy of several voices or instruments, or aeveral motes of the same instrument, are cailed simple sounds, in contradistinction from the cumpound oaes, which, in order to answer the end of inusic, the simples must have such an agreement in all relatoons, chiefly as to acuteuess and gravity, us that the ea: may receive the mixture with pleasure.

Another distinction of sounds, with regard to music, is that by which they are said to be smovth or even, and rough or harah, alyo clear and hoarse: the cause of which difference depende on the dispusition and state of the sonorous bolly, or the circumatances of the place; but the ideas of the differences must be aroight from ibservation.

Smooth and rouelt munds depend chiefly on the sounding body; of which we have a remarkable instance in strings that are uneven, and not of the sume dimension and constutution throughout.

As to clear and hoarse sounds, they depend on circomstances that are accidental to the smorous body. Thus, a voice or instrument will be hollow and hoarse if sounded within an empty hogshead, that yet is clear and bright out of it: the effiret is owing to the mixture of different sounds, raised ty reflections, which corrupt and change the species of the prisnitive sound.

For sounds to be fit to ohbain the end of music, they ought to be smusth and clear, esprcially the first; since, without this, they cannot have one certain and discernible tone, capable of heing compared to others, in a certain relation of acuteness, which the ear may judge of. So that, with Malcolm, we call that an harnoonic or musical sound which, being clear and even, is agrecable to
the car, and gives a certain and discernible tune (hence called tunable sound , which is the subject of the whole theory of harmony.-Wood hus a particular vibrating quality, owing to its elasticity ; and all musical instruments made of this matter, are of a thicknas proportinned to the superficies of the weral, and the tone they are to produce.- Metals are somorous and vibrative, producing a harsh tone, very serviceable to some parts of music. Must wind instrumems are made of metal, which is acted on in its clastic and tremulous quatity, being capable of being reduced very thin for that purpose. Instruments of this kind ure such as homs, irumpets, \&c. Some instruments however depend more on the form than the material ; as Nutes, for instance, which, if their lengtis and bore be the satue, have very tittle diffierence in their sounds, whatever the matter of them may be. Sec Harmonical.

SOUND-Board, the principal part of an organ, and that which makes the whole machme play. This soundboard, or sunmer, is a reservoir into which the arr, drawn in by the bellows, is coaducted by a port-vent, and thence distributed into the pipes placed over the boles of its upper part. This wind enters them by valves, which open by pressing upon the stops or krys, after drawing the registers, which ptevent the air from going into any of the other pipes lesides those it is required in.

Soưs d-board denotes alsu a thin broad board placed over the head of a public speaker, to calarge and extend or strengthen his voice. Sound-buards, in theatres, are found by experience to be of no sewice; their distance from the speaker being too great, to be impressed with sufficient force. But sound-boards immediately over a pulpit have often a good effect, when the case is made of u just thickness, and uccording to certain priuciples.

Sousd-Post, is a pust placed withinside of a violin, \&c, as a prop between the back and the belly of the instrumens, and nearly under the bridge.

SOUNDING, in Navigation, the act of trying the depth of the water, and the quality of the bottom, by a line and plummet, or other artifice. At sea, theres are two plummets used for this purpose, both shaped like the frustuin of a cone mr pyramid. Ore of these is called the hand-lead, weighing abnut 8 or 916 ; and the other the decp-sea-lead, weighing from 25 to 30lb. The former is used in shallow waters, and the latter at great distances from the shore. The line of the band-lead, is about 25 tathoms in lenyth, and marked at every two or three fathoms, in this manner, viz, at 2 and 3 fathons from the lead there are marks of black leather; at 5 fathons a white rag, at 7 a red rag, at 10 and at 13 black leather, at 15 a white rag, and at 17 as red one.

Sounding with the hand-lead, which the scaman call heaving the lead, is generally poiformed by a man who stands in the main-chans to windward. Husing the line all ready to run out, without interruption, be holds it nearly at the distance of a fathom from the pluminet, and hav* ing swung the latter back wards and firwards three or four times, in order to acquire the greater velocity, he swimgs it round his bead, and thence as far forward us is necessary; so that, by the lead's sinking whilst the ship advances, the line may be almost perpendicular when it renches the buttom. The person sounding then proclaims the depth of the water in a kind of song resembling the cries of hawkers in a city; thus, if the mark of 3 be close to the surface of the water, he calls, 'by the mark
$5, '$ and as there is no mark at $4.6,8, \& \mathrm{ec}$, he estimutes thine numbers, and calls, "by the dip four, sec." If he judges it to be a quarter or a half more than any particular number, he cults, 'and a quarter 5,"' and a hali 4' acc. If he conceives the depth to be three quarters more than a particular number, be calls it a quarter less than the next : thus, at 4 fathom $\frac{3}{4}$, be calls, * a quarter less 5,' and so on.

The deep-sea-lead line is marked with 2 kuots at 20 fathom, 3 at $30,+$ at $40, \$ \mathrm{c}$, to the end. It is also marked with a single knot at the middle of each interval, as at $25,35,45$ fathoms, \&cc. To use this lead more effectually at sea, or in deep water on the swa-coast, it is usual previously to bring-to the ship, in order to retard her cousse: the lead is then thrown as far as possible from the ship on the line of her drift, so that, as it sinks, the ship drives more perpendicularly over it. The pilot feeling the lead strike the bottom, readily discovers the depth of the water by the mark on the line nearest its surface. The truttom of the lead, which is a lutle holtowed there for the purpose, being also well rubbel over with tallow, retains the distinguishing marhs of the bottom, as shells, voze, gravel, \&e, which naturully adhere to in.

The ilcpth of the water, and the nature of the ground, which are called the soundings, ate carefully marked in the log-book, as well to determine the distance of the place from the shore, as to correct the obscrvations of former pilots. Falconer. For a machine to measure unfathomable depths of the sea, see Altirude.

Soundika the pump, at sea, is dune by letting fall a small line, with sume weight at the end, down into the pump, to know what depth of water there is in it.

SOUTH, one of the four cardinal points of the wind, or compass, being that which is directly opposite to the north.

Soutil Direct Dials. See Prime Verticals.

SOUTHERN Hemisphere, Signs, \&c, those in the south side of the equator.

SOUTHING, in Navigation, the difference of latitade: made by a ship in sailing to the southward.
SPACF, denotes room, place, distance, capacity, extension, duration, \&c. When space is considered barely in length between any two bodies, it gives the saine idea as that of distance. When it is considered in length, breadth, and thickness, it is properly callel capacity. And when considered between the extremities of matter, which fills the capacity of space with something solid, tangible, and moverable, it is then called extension. So that extension is an itlea belonging to body only; but space may be considered without it. Therefore space, in the general signification, is the same thing with distance considered every way, whether there be any matter in it or not.

Spuce is usually divided into absolute and relative.
. Theolute Spses. is that which is considered in its own nature, without regard to any thing external, which always remains the same, and is infinite and immoveable.

Kelative Space is that moveable dimension, or measure of the furmer, which our tenses define by its positions to bodins withon it; athl this is the vulgar use for inmoveable tpace. Relative space, in magnitude and figure, is always the same with absolute: but it is not necessary it should be so tumerically. Thus, when a ship is perfectly it rest, then the places of all things within ber are the same both
absolutely and relatively, and nothing changes its place : but, or the contrary, when the ship is under sail, or in motion, she continually passes through new parts of absolute space; though all things on board, considered relatively, in respect to the ship, may yet be in the same places, or have the same situation and position, in regnerd to one another.

The Castesians, who make extension the essence of matter, assert, that the space any body takes up, is the same thing with the body ilselt; and that there is no such thing in the univelse as mere space, void of all matter; thus making space or extension a substance. See this disproved under Vacuem. Among those too who admit a vacuum, and consequently an essental difference between space and matter, there are some who assert shat space is a substance. Ainong these we fiad Gravesande, Intrud, ad Pailos. seet. 19.

Others again put space in the same clats of beings as time and number; thus mathing it to be no more than a notion of the mind. So that according to these authors, absolute space, of which the Newtonians speak, is a mere chimera. See the writings of the late bishop Berkeiey: Space anil time, according to Dr. Clarke, are attributes of the Deity; and the impossibility of annihilating these, even in clea, is the samee with that of the necessary eaistence of the Deily.

Space, in Geometry, denotes the area of any figure; or that which fills the interval or distance between the lines that ternunate or bound it. Thus, the parabolic space is that included in the whole parabola. The conchordal space, or the cissuidal space, is what is included within the cavity of the conchoid or cisomil. And the asymptotic space, is what it included betweet an hyperbolic curve and its asymptote. By the application of algelera to geometry, it is demonstrated that the conchoidal uud cissoidal spaces, though infinitely extended in length, wre get only finite maguitudes or spaces.

Space, in Mechanics, is the line a moveable body, considered as a point, is conceived to describe by its motion.

SPANDRELL, or SpANDRIL, with builders, is the space included betheen the curve of an arch and the straight or right lines which inclose it;
 as the space a, or b.
SPEAKING Trumper, See Speaking Taumpet.
SPECIES, in Algebru, are the letters, symbols, marks, or characters, which represent the quantities in any operation or equation. This short and advantageous way of notation was chiclly introluced by Vieta, about the year 1590 ; and by means of which be made many discoveries in algebra, and the theory of numbers. The reason why Vieta gave this name of species to the letters of the alphabet used in algubra, and lience called Arithmetica Speciora, serins to have been in imitation of the civilians, who call cases in law that are put ubstractedly, between John a Nokes and Tom n Stules, between A and 8; supposing those letters to stand for any persons indefinitely, such cases they call species: whence, as the letters of the atphabet will also as well represent quantities, as persons, and that also indefinitely, one quantity as well as another, they are properly enough called species ; that is, general symbols, inarks, or characters. Whence the literal algebra has since been often called Specious Arithmetic, or Agebra in Species.
Spucips, in Optics, the innge painted on the retina by Vol. II.
the rays of light refiected from the several points of the .surface of an object, neceived in by the pupil, and collected in their passage through the crystalline, \&cc. Philosophers have been in great doubt, whether the species of objects, which give the soul an occasion of seeing, are an pfliusion of the substance of the body ; or a mere impression which they make on all ambient bodies, and which these all reflect, when in a proper dispositiou and distance; or lastly, whether they are not some other more subtile borly, as light, which receives all these impressions from bodies, and is continually sent and returning frotn one to anotber, with the different impressions and figures it has taken. But the moderns have decided this point by their itivention of artificial eyes, in which the species of objects are received on a paper, in tbe same manner as they are received it the natural cye.

SPECIFIC, in Philosophy, that which is proper and peculiar to any thing ; or that characterises it, and distinguishes it from every other thing. Thus, the attracting of iron is specific to the toadstone, or is a specific properiy of it. A just definition should contain the spectific nd. tion of the thing defined, or that which specifies and distinguishes it frow every thing else.

Specific Gravity, in Hydroitatics, is the relative proportion of the weight of bodics of the same bulk. Siec Specific Gravity.
Spectific Gratity of living men. Mr. John Robertson, late hibrarian to the Royal Society, it order to determme the specific gravity of inen, prepared a cistern 78 inches long, 30 inches wide, 30 inches deep; and having procured 10 men for his purpose, the height of each was taken and bis weight; and afterwards they plunged suecessively into the cistern. A ruler or scale, graduated to inehes and decimal parts, was fixed to one end of the cistern, and the beight of the water shown by it was noted befure each man went $i n$, and to what height it rose when le isomersed himself under its surface. The following table contains the several results of his experiments:

$\begin{gathered} \mathrm{Now,} \mathrm{of} \\ \text { Men. } \end{gathered}$	11 right. F_{1}. In.	$\begin{gathered} \text { Weight. } \\ 16 n . \end{gathered}$	$\begin{aligned} & \text { Watere } \\ & \text { nimed } \\ & \text { lanes. } \end{aligned}$	Solidity. Feet.	$\begin{gathered} \text { Weight } \\ \text { of water. } \\ \text { the. } \end{gathered}$	$\left[\begin{array}{l} \text { Spccifie } \\ \text { Wevity } \\ \text { Wat. i.) } \end{array}\right.$
1	62	161	1.90	2.573	1608	1.001
2	5101	147	1.91	2.586	$161 \cdot 6$	0.901
3	598	156	1.85	$\because 505$	156.6	0.991
4	$5{ }^{3}$	140	2.04	2.763	178.6	0.801
5	5 37	158	2.08	2.817	176.0	0.900
6	5 31	158	2.17	2.939	183.7	0.849
7	$5 \quad 4 \frac{1}{31}$	140	2.01	$2 \cdot 722$	170.1	0.823
8	$\begin{array}{ll}5 & 4 \\ \\ 5\end{array}$	121	1.79	$2 \cdot 424$	151.5	0.800
9	5 31	146	1.73	$2 \cdot 343$	$140^{\circ} 4$	0.997
10	5 5it	132	1.85	$2 \cdot 505$	156.6	0.848
min	$5{ }^{5} \quad 4$	146	t.933	2.618	1636	0.891

One of the reasons, Mr. Robertson says, that induced Lim to make these experiments, was a desire of knowing what quantity of timber would be sufficient to keep a man afloat in water, thishing that most men were specifically heavier than river or common fresh water; but the contrary appears from the trials above recited; for, except the first, wery man was lighter than an equal bulk of fri-h water, and mucb mure so than that of sea-water. So that if persons who fall into water had presence of minul enough to avoil the fright usual on such occasions, they inight be preserved from drowning; and a piece of wond

3 H
not larger than an oar, would buoy a man partly above water as long as he had strength or spirits to keep his hold. Philos. Trans. vol. 50, att. 5.-From the last line of the table appears the medium of all the circumstances of height, weight, \&c ; particularly the mean specific gravity, $0^{\circ} 891$, which is about $\frac{1}{y}$ less than common water.

SPECTACLES, an optical machine, consisting of two lenses set in a frame, and applied on the nose, to assist in cortecting defects of the organ of sight.-Old people, and all presbytim, use spectacles of convex lenses, to make amends for the flatness of the cye, which does not make the fays converge enough to have them meet in the retina. Short-sighted people, or myopes, use concave lenses, to prevent the rays from converging so fast, on actount of the greater roundness of the eye, or smalliness of the sphere, which is such as to make them meet before they reach the retina.-F. Cherubin, a capuchin, describes a kind of spectacle telescopes, for viewing remote objects with both eyes; and hence called binoculi. Though F. Rheits had mentioned the same befure him, in his Oculus Enoch et Elis. See Binoctg. The same anthor invented a kind of spectacles, with three or four glasses, which performed very well.

The invention of spectacles has been much dispured. They were certainly not known to the ancients. Francisco Redi, in a learned treatise on spectacles, contends that they were first invented between the ycurs 1230 and 1311, probably about 1290; and adds, that Alexander de Spina, a monk of the order of Predicants of St. Catharine, at Pisa, first commanicated the secret, which was of his own Invention, on learning that another person had it as well as bimself. The author tells uf, that in an old manuscript still preserved in his library, composed in 1299, spectacles are mentioned as a thing invented about that time: and that a celebrated Jacobin, one Jourdon de Rivalto, in a treatise composed in 1305, nays expressly, that it was not yet 20 years since the invention of spectacles. He likewise quotes Bernard Gordon in his Lilium Medicine, written the same year, where he apeaks of a collyrium, proper to enable an old man to read without spectacles.

Muschenbroek observes, (Introd, vol, 2, pa.786) that it is inscribed on the tomb of Sulvinus Armatus, a nobleman of Florence, who diel in 1317, that be was the irventor of spectuches. Du Cange, however, carries tbe invention of spectacles further back; assuring us, that there is a Greek poem in manuscript in the French king's library, which shows that spectacles were in use in the year 1150 ; Lhowever the dictionary of the Academy Delin Crusca, under the word Occhiale, inclines to Redi's side; and quotes a passage from Jourdon's sermons, which says that spectacles had not been 20 years in use; and Sulvati has observed that thase sermons were composed between the years 1390 and 1336 .

It is probable that the first hint of the construction and use of spectacles, was derived from the writiogs either of Alhazen, who lived in the 12th century, or of our own countryman Roger Bacon, who was born in 1214, and died in 1292, or 1294. The following remarkable passage occurs in Bacon's Upus Majus by Jebb, pa. 352. Si vero homo aspiciat literas et alias res minutas per medium crystulli, vel vitri, vel alterius perspicui suppositi literis, et sit portio minor sphere, cujus convexitas sit versus oculum et oculus sit in aëre, longe melius videbit literas, et apparebunt ei majores.-Et idco boc instrumentum est utile senibus et habentibus oculos debiles: nam literam
quantumcunque parvam possunt videre in sufficienti magnitudine. Hence, and from other passages in his writings, much to the same purpose, Molyneux, Plott, and others, have attributed to bim the invention of reading-glasses Dr. Smith indeed, observing that there are some mistakes in his reasoning on this subject, has disputed his claim. See Molyneux's Dioptr. pa. 256. Smith's Optics, Rem. 86-89. Also the artiele Bacon, R . in this dictionary.

SPECULATIVE Geonetry, Mathematics, Music, and Philosophy. See the Suastantives.

SPECULUM, or Mirror, in Optics, any polished body, impervions to the rays of light: such as polished metals, and glasses lined with quicksilver, or any other opaque matter, popularly called Looking-glasses; or even the surface of mercury or of water, \&cc. For the several kinds and forms of specula, plane, concave, and convex, with their theory and phenomena, see Mineor. And for their laws and effects, see Reylection and Burs-ing-Glass.

As for the specala of refiecting telescopes, it may here be observed, that the perfection of the metal of which they should be made, consists in its barduess, whitenes, and compactness; for upon these properties the reflective powers and durability of the specula depend. There are various compositions recommended for these specula, in Smith's Optics, book 3, ch. 2, sect. 787; also by Mr. Mudge in the Philos. Trans. vol. 67 ; and in various other places, as by Mr. Edwards, in the Naut. Alm. for 1787, whose metal is the whitest and best of any that I have seen.-For the method of griading, see Gain ding.

Mr. Hearne's method of clenning a tarnished speculum was this: get a little of the strongest sonp ley from the soap-makers, and having laid the speculum on a tnble with its face upwards, put on as much of the ley as it witl hold, and let it remain about an hour: then rub it softly with a silk or muslin, till the ley is all gone; then put on some spirit of wine, and rub it dry with another part of the silk or muslin. If the speculum will not perform well ufter this, it must be new polished. A few faint spots of tarnish may be rubbed off with spirit of wine only, without the ley. Smith's Optics, Rem. p. 107.

SPHERE, in Geometry, a solid body contained uniler one single uniform surface, every point of which is equally distant from a certain point in the middle called its centre. The sphere may be supposed to be generated by the revolution of a semicircle ABD about its diameter AB, which is also called the axis of the sphere, and the extreme points of the axis, a and B, the poles of the sphere; also the middie of the sxis c is the centre, and
 half the axis, $A C$, the radius.

Properties of the SPHERE, are as follow.-1. A sphere may be considered as made up of an infinite number of pyramida, whose common altitude is equal to the radius of the sphere, their bases forming the surface of the sphere. Therefore the solid content of the sphere is equal to that of a pyramid whose altitude is the radius, and its base is equal to the surface of the sphere, that is, the solid content is equal to $\&$ of the product of its radius and surface.
2. A sphere is equal to $\frac{3}{3}$ of its circumseribing cylinder, or of the cylinder of the same beight and diameter, and thetefore equal to the cube of the diameter zaulti-
plied by $\mathbf{5 2 3 6}$, or $\frac{2}{2}$ of 7854 ; or equal to double a cone of the same base and heigbt. Hence also different spheres are to one another us the cubes of their diameters. And their surfaces as the squares of the same diameters.
3. The surface or superficies of any sphere, is equal to 4 times the area of its great circle, or of a circle of the same diameter as the sphere. Or,
4. The surface of the whole spbere is equal to the area of a circle whose radius is equal to the diameter of the spbere. And, in like manner, the curve surface of any segment EDF, whether greater or less than a hemisphere, is equal to a circle whose radius is the chord line Dk, drawn from the vertex D of the segment to the circumference of its base, or the chord of half its arc.
5. The curve surface of any segment or zone of a sphere, is also equal to the curve surface of a cylinder of the same height with that portion, and of the same diameter with the sphere. Also the surface of the whole sphere, or of a hemisphere, is equal to the curve surface of its circumscribing cylinder. And the curve surfaces of their corresponding parts are equal, that are contained between any two planes parallel to the base. And consequently the surface of any segment or zone of a sphere, is as its height pr altitude.

Most of these properties are contained in Archimedes's treatise on the sphere and cylinder. And many other rules for the surfaces and solidities of spheres, their seginents, sones, frustums, \&c, may be seen in my Mensuration, part 3 , sect. 1, prob. $10, \& c$. Hence, if d denote the diameter or axis of a sphere, s its curve surface, c its solid content, and $a=7854$ the area of a circle whose diameter is 1 ; then we shall, from the foregoing properties, have these following general values or equations, viz,

$$
\begin{aligned}
& s=4 a d^{2}=\frac{6 c}{d}=6 \sqrt[3]{\frac{2}{4} a c^{2}} \\
& c=\frac{t}{d} d s=\frac{3}{4} a d^{3}=\frac{1}{4} \sqrt{\frac{2}{a}} \\
& d=\frac{6}{d}=\sqrt{\frac{t}{4 a}}=\sqrt[3]{2 a}
\end{aligned}
$$

Doctrine of the Spurre. See Spherice.
Projection of the Sphere. See Projectiox.
Sphere of Activity, of any body, is that determinate space or extent all around it, to which, and no farther, the effluvia or the virtuc of thet body reaches, and in which it operates according to the nature of the bedy. See Activity.

Sparre, in Astronomy, that concave orb or expanse which invests our globe, and in which the beavenly bodies, the sun, moon, stars, planets, and comets, appear to be fixed at an equal distance from the eye. This is also called the sphere of the world; and it is the subject of spherical astronomy.

This aphere, as it includes the fixed stars, whence it is sometimes called the spbere of the fixed stars, is immeuseIy great. So much so, that the diameter of the eanh's orbit is incomparably small in respect of it; and consequently the cratre of the sphere is not sensibly changed by uny alteration of the spectator's place in the several parts of the orbit: but still in all points of the earth's surface, and at all times, the inbabitants have the same appearance of the spbere; that is, the fixed stars seem to pessess the same points in the surface of the spbere. For, our way of judging of the places \& c of the stars, is to cunceive right liacs drawn from the eye, or from the cen
tre of the earth, through the centres of the stars, and thence continued till they cut the sphere; aud the points where these lines so meet, are the apparent places of those stars. The better to determine the places of the heavenly bodies in the sphere, several circles are conceived to be drawa in the surface of it, which are called circles of the sphere.

Sphere, in Geography, \&cc, denotes a certain disposition of the circles on the surface of the earth, with regard to one another, which varies in the different parts of it. The circles originally conceived on the surface of the sphere of the world, are almost all transferred, by analogy, to the surface of the earth, where they are conceived to be drawa directly undernesth those of the sphere, or in the same positions with them; so that, if the planes of those of the earth were continued to the sphere of the stars, they would coincide with the respective circles on it. Thus, we have an hurizon, meridian, equator, $\& c$, on the carth. And as the equinoctial, or equator, in the heavens, divides the spbere, into two equal parts, the one north and the other south, so does the equator on the surface of the earth divide its globe in the same manner. And as the meridians in the heavens pass through the poles of the equinoctial, so do those on the earth, \&ec. With regard then to the position of some of these circles in respect of others, we have a right, an oblique, and $\$$ parallel sphere.

A Right or Direct SpheaE, (fig. 4, plate 32), is that which has the poles of the world Fs in its horizon, and the equator EQ in the zenith and nadir. The inhabitants of this sphere live exactly at the equetor of the earth, or under the line. They have therefore no latitude, nor no elevation of the pole. They can see both poles of the world; all the stars rise, culminate, and set to them; and the sun always rises at right angles to their horizon, mak. ing their days and nights of equal length at all times of the year, because the horizon bisects the circle of the diurnal revolution.

An Oblique Spnere, (fig. 5, plate 32), is that in which the equator EQ , as also the axis Fs , cuts the horizon 140 obliquely. In this sphere, ove pole P is above the horizon, and the other below it; and therefore the iahabitants of it see always the former pole, but never the latter; the sun and stars \&ce all rise and set obliquely; and the days and nights are always varying, becoming altermately longer and shorter.

A Parallel Sphere, (fig. 6, plate 32), is that which has the equator in or parallel to the horizon, as well as all the sun's parallels of declination. Heace, the poles are in the zenith and nadir; the sun and stars move always quite around parallel to the horizon, the inhabitants, if any. being just at the two poles, having 6 months continual day, and 6 months nigbt, in each year; and the grestest height to which the sun rises to them, is $23^{\circ} 28^{\prime}$, or equal to his greatest declination.

Armillary or Artificial Spnere, is an astronomical instrument, representing the several circlus of the sphere in their natural order; serving to give an idea of the office and position of each of them, and to resolve various problems relating to astronomy. It is thus called, as consisting of a number of rings of brass, or other matter, called by the Latins armille, from their resenbling bracelets or rings for the arm. By this, it is distinguished from the globe, which, though it has all the circles of the sphere on its surface, yet is not cut into armillae $3 \mathrm{H}_{2}$
or tiugb, to represent the circles simply and alone; but rxlibits also the intermediate spaces between the circlec.

Armillary spheres are of different kinds, with regard to the position of the earth in them; whence they becone distiuguished into Pielemaic and Copernican spheres: it the first of which, the earth is in the centre, and in she latter thear the circumference, according to the position which that planet obtains in those systems.

The Prolemaic Sphere, is that commonly in use, and is represented in fig. 6, plate 2, vol. 1, with the names of the several circles, lines, \&c of the sphere inscribed upon it. In the middle, on the axis of the splefe, is a ball T_{3} representing the carth, on the surfare of which are the encles $\& c$ of the earth. The sphere is made to revolve about the said axis, which remaios at rest; by which weans the sun's diurnal and annual courses about the earth are represented according to the P'olenuaic hypothesis: and even by means of this, all problems relating to the phenomena of the sun and earth are resolved, as upon the celestial globe, and after the same manner; which see described under Grome.

Copernican Spuskr, fig.7, plate 32, is very different from the Ptolemaic, both is its constitution and use; and is more intricate in Loth. Indeed the instrument is in the bands of so few people, and its use so inconsiderable, except what we have in the other more common instruments, particularly the globe and the Piolemaic sphere, that any further account of it is unuceessary.

Dr. Long had an armillary sphere of glass, of a rery large size, whicls is described and represented in his astronomy. And Mr. Ferguson constructed a similer one of brass, which is exhibited in his Lectures, p. 194 Ecc

SPHERICAL, something relating to the sphere.
SPRemical. Angle, is the angle formed oin the surface of a spliere or glube by the circumferences of two great circles. This angle, formed by the circumferences, is equal to that formed by the planes of the same circles, or equal to the inclination of those two planes; or equal to the angle made by their tangents at the angular point. Thus, the inclination of the two planes caf,
 CRP, forms the spherical angle ACE, equal to the tangentual angle pCa.

The measure of a spherical angle, ACE, is an are of a grest circle $A \mathrm{E}$, described from the vertex C , as from a pole, and intercepted between the legs ca and ce. Hence, Ist, Since the inclination of the plane cer to the plane rap, is every where the same, the angles in the opposite intersections, c and p, are equal.-2d, Hence the measure of a spherical ougle ACX, is an arc described at the interval of a quadrant CA or ce, frum the vertex c between the legs CA, CE.-Sd, If a circle of the sphere Ctyo cut another AEBG, the adjacent angles Abc and nec nre together equal to two right angles; and the vertical nngles AEC, BEP are equal to one another. Also all the angles formed at the same point, on the same side of a circle, are equal to 2 right angles, and alt those quite around any point equal to 4 right angles.

Spherical Triangle, is a triangle formed on the surface of a sphere, by the intersecting arcs of three great circles; as the triangle ack.
-pherical triangles are either right-angled, oblique, rquileteral, isosceles, or scalene, in the same maminer as
plane triangles. They are also said to be quadrantat. when they have one side a quadrant. Two sides or the nugles are said to be of the same affection, when they ate at the same time cither both greater, or both less than a quadrant of a right angle or 90°; and of difierent affections, when one is greater and the other less than 00 degrees.

Properties of Srufrical Triang/es-1. Spherical triangles have many properties in common with plane ones : such as, That, in a triangle, equal sides suhte nd equal augles, and equal angles are subtended by equal sides : That the greater angles are subtended by the greater sides, and the lens angles by the less sides.
2. In every spherical triangle, each side is less than a semicircle: any two sides taken togetber are greater tha: the third side: and all the three sides taken together bie less than the whole circumference of a circle.
3. In every spherical triangle, any angle is less that. \& right angles; and the sum of all the three angles taken together, is greater than 2, but less than 6 , right angles.
4. In an oblique spherical triangle, if the anglen at the base be of the same affection, the perpetadicular from the other angle falls within the thiangle; Lut if they to of different afiections, the perperdicular balts without the triangle.

Dr. Maskelyne's remarks on the properties of spherical triatgles, are as follow : (see the Introd. til my Lngs. pi. 171, 5th edition.)
5. "A sphericul triangle is equilateral, isoscrlar, or scalenc, according as it has its three angles all equal, or two of them equal, or fill three unequal: und sice versa.
6. The greatest side ix always nppesite the greatest angle, and the sinatlest side opposite the smallest angle.
7. The shm of any tho sides i greater, and their difference lass, than the third side.
8. If the three angles are all acute, or all right, or all ubtuse; the three sides will be, accordingly, wll less than 91°, or equal to 90°, or greuter than 90°; and vice versh.
9. If from the three angles A, B, C, of a triangle $A \operatorname{ta}$, , as poles, there be described, on the surface of the where, threc arches of a great circle DE, DF, VE, forming by their intersections a new oplectical triangle wey; cach side of the new, triangle will be the stepptement of the angle at its pole; and each angle of the same triangle, will be the supplement of the side opposite to it in the triangle $A \mathrm{BC}$.

10. In any triangle $G H 1$, or $\mathrm{c} h \mathrm{r}$, right angled at $\sigma, 1 \mathrm{st}$, The angles at the hypothenuse are always of tie same kind us their opposite sides; $\mathbf{2 d l y}$, The hypothenuse is less or greater than a quadrant, according as the sides including the right angle, are of the same or different kinds; that is to say, according as these same sides are cither both acute, or both obtuse, or as ore is acute and the other obtuse. And, vice versa, 1st, The sides including the right angle, are always of the same kind as their opposite angles; 2dly, The sides ineluding the fight angle will be

S P 11

uf the same or different hinds, according as the bypotheuuse is less or greater than 90°; but one at least of them will be of 90°, if the bypothennse is so."

Of the Area of a Spiterical Triungle. The mensuraition of spherical triangles and polygons was first found out by Albert Girard, about the year 1600 , and is given at large in his Invention Nouvelle en l'Algebre, pa. 50, Ac; 4to, Amst. 1629. In any spherical triangle, the area or surface inclosed by its three sides upon the surface of the globe, will be found by this proportion:

As 8 rght angles or 720°,
Is to the whole surfice of the sphere;
O_{r}, as 2 right angles or 180°,
To one great circle of the sphere ;
S_{0} is the excess of the 3 angles above 2 right angles,
To the area of the splerical triangle.
llence, if a denute 7854 ,

$$
d=\text { diam. of the globe, and }
$$

$s=s u m$ of the 3 angles of the triangle;
then add $\times \frac{3-15 n}{140}=$ area of the spherical triangle.
Hence also, if r denote the radiux of the sphere, and e its circumference; then the area of the triangle will be thus variously expressed; viz, area $=$

$$
a d^{2} \times \frac{-180}{150}=c d \times \frac{y-180}{720}=c r \times \frac{3-150}{360} ;
$$

or barely $=r \times\left(s-180^{\circ}\right)$, in square degeress, when the radius r is estimated in degrees; for then the circumference c is $=360^{\circ}$.

Further, because the radius r, of any circle, when estimated in degrees, $i s,=\frac{140}{3.14159 \mathrm{Kc} .}-=57.2957795$, the lust rule $r \times(s-180)$, for the area A of the spherical triangle, in square degrees, will be larcly

$$
\begin{aligned}
& A=57-2957795 \mathrm{~s}-10313-24, \text { or } \\
& A=57 \mathrm{~T}^{0} 5-1031.34 \text { very nearly. }
\end{aligned}
$$

Hence may be tound the sums of the tirre angles in any spherical triangle, having its area A hnown; for the last equation gives the sum
$s=\frac{A}{r}+180=\frac{A}{3 F-29 \& c}+180=\frac{169 A}{2653}+180$.
So that, for a triangle on the surface of the earth, whose three sides are known; if it be but small, as of a few miles extent, its area may be found from the known lengths of its sides, considering it as a plane triangle, which gives the value of the quantily A; and then the lase rule above will gire the value of s, the sum of the three angles; which will serve to prove whether those angles are nearly exact, that have been taken with a very nice instrunsent, as in large and extensive measurements on the surface of the earth. Hence $A \div 57.29$ \& c is the spherical cxcess,

Resolution of Spherical Triungles. Sce Tbiangle, m. Theigonometry.

Spaenical. Polygon, is a figure of more than three sides, formed on the surface of a globe by the intersecting arcs of great circles.

The area of any spherical polygon will be found by the fullowing proportion ; viz,

As 8 right angles or 720°,
To the whole surface of the sphere;
Or, as 2 right angles or 180°,
Tn a great circle of the sphere;
So is the excess of all the angles above the product of 180 and 2 less than the number of angles,

Tu the area of the spherical polygon.

That is, phting $n=$ the number of angles, $s=$ sum of all the angles,
$d=$ diam. of the sphere,
$a=78539$ \&c ;
Then $A=a d^{2} \times \frac{-(n-2) 100}{180}=$ the area of the spherical polygon.- Heuce other rules might be found, similar to thuse for the area of the spherical trinngle. Hence also, the sum s of all the angles of any sphericnl polygon, is always less than 180n, but greater than $180(n-2)$, that is less than a times y right angles, but greater than $n-2$ times 2 right angles.

Spuebical Astronomy, that part of astronomy which considers the universe such as it appears to the cye. See Astronesis. Under spherical astronemy are included all the phenomena and appearances of the heavens and heavinly bodies, such as we perceive them, without any inguiry into the reason, the theory, or truth of them. By which it is distinguished from theorical astronomy, which considers the real structure of the universe, and the causes of those phenomena. In spherical astronomy, the world is conceived to be a concave sphericul surface, in whose centre is the earth, or rather the eye, about which the risible frame fivvolves, with stars and planets fised in its circumference. And on this supposition all the other phenomena ure determined. Theorical astronomy teaches us, from the laws of optics, \&c, to correct this scheme and reduce the whole to a juster system.

Spuerical Compases. Sce Compasses.
Sphericaf. Excess. See Excess.
Spherical Geometry, the doctrine of the sphere; particulally of the circles described on its surface, with the method of projecting the same on a plane; and measuring their arches and angles when projected.

Spiebical Numbecs. See Circulaar Numbers.
Spilericil Trigonometry. See Triconometry.
SPHERICITY, the quality of a spliere; or that by which a thing becomes spherical or round.

SPHERICS, the doctrine of the sphere, particularly of the several circles described on its surface; with the method of prijecting the same on a plane. See Projection of the Sphere.

A circle of the sphere is that which is made by a plane cutung it. If the plane pass through the centre, it is a great circle: if not, it is a small circle. The pole of a circle, is a point on the surface of the sphere equidistant from every point of the circumference of the circle. Hence every circle has two poles, which are diametncally opposite to each other; and all circles that are paallel to each other bave the same poles.

Properties of the Circles of the Sphere.-1. If a sphere be cut in any manuer by a plane, the section will be a cirele; nad a great cincle when the section passes through the centre, otherwise it is a small circle. Hence, all great circles are equal to each other: and the line of section of two great circles of the sphere, is a diameter of the sphere: therefore two. great circles intersect each other in points Jiametrically opposite; and make equal angles at those points; and divide eacts other into two equal parts; also any great circle divides the whole sphere into two equal parts.
2. If a great circle be perpendicular to any other circle, it passes through its poles. And if a great circle pass through the pole of any other circle, it cuts it at right nugles, and mito two equal parts.
3. The distance botween the poles of two circles, is equal to the angle of their inclination.
4. Two great circles passing through the poles of another great circle, cut all the parallels to this latter into similar arcs. Hence, an angle made by two great circles of the sphere, is equal to the angle of inclination of the planes of these great circles. And bence also the lengths of thuse parallels are to one another as the sines of their distances from their common pole, or as the cosines of their distances from their parallel great circle. Consequently, as radius is to the cosine of the latitude of any point on the globe, so is the length of a degree at the equator, to the lepgth of a degree in that latitude.
5. If a great circle pass through the peles of another; this latter also passes through the poles of the former; and the two circles cut each other perpendicularly.
6. If two or more great circles intersect each other in the poles of another great circle; this latter wiil pass through the poles of all the former.
7. All circles of the sphere that are equally distant from the centre, are equal; and the further they are distant from the centre, the less they are.
8. The shortest distance on the surface of a sphere, between any two points on that surface, is the arc of a great circle passing through those points. And the smaller the circle in that passes through the same points, the longer is the are of distance between them. Hence the proper measure, or distance, of two places on the surface of the globe, is an arc of a great circle intercepted between the same, See Theodosius and other writers on spherics.

SPHEROID, a solid body approaching to the figure of a sphere, though not exactly round, but having one of its dianeters longer than the other. This solid is usually considered as generated by the rotation of an oval plane figure about one of its axis. If that be the longer or transverse axis, the solid so generated is called an oblong spheroid, and sometimes prolate, which resembles an egg, or a lemon; but if the oval revulve about its shorter uxis, the solid will be an oblate spheroid, which resembles an orange, which is the figure of the earth, and the other planets.

The axis about which the oval revolves, is called the fixed axis, as $A B$; and the other $C D$ is the revolving axis: whichever of them happens to be the longer.

When the revolving oval. is a perfect ellipse, the solid generated by the revolution is properly called an ellipsoid, as distinguished from the spheroid, which is generated from the revolution of any oval whatever, whether it be an ellipse or net. But generally speaking, in the common acceptation of the word, the term spheroid is used for an ellipsoid; and therefore, in what follows, they are considered as one and the same thing.

Any section of a spheroid, by a plane, is an ellipse (except the sections perpendicular to the fixed axe, which are circles); andall parallel sections are similar ellipses,
or have their transverse and conjugate axes in the same constant ratio ; and the sections parallel to the fixed axe are similar to the ellipse from which the solid was generated. See ny Tracts, vol. 2, pa. 134.

For the Surface of a Spheroid, whether it be oblong or oblate. Let f denote the fixed axe, r the revolving axe ; and $a={ }^{\circ} 7854$, and $q=\frac{f^{4}-r^{*}}{f^{\prime}}$; then will the surface : be expressed by the following series, using the upper signs for the ablong spheroid, and the under signs for the oblate one; viz,

$$
=4 \operatorname{arf} \times\left(1 \mp \frac{1}{2.3} q-\frac{1}{2.4 .5} q^{2} \mp \frac{3}{2.4 .6 .7} q^{3} \& c\right) ;
$$

where the signs of the terms, after the first, are all negative for the oblong spheroid, but alternately positive and negative for the oblate one. Hence, because the factor $4 a r f$ is equal to 4 times the area of the generating ellipse, it appears that the surface of the oblong spheiord is less than 4 times the generating ellipse, but the surface of the oblate spheroid is greater than 4 times the same: while the surface of the sphere falls in between the two, being just equal to 4 times its generating circle.

Huygens, in his Horolog. Oscillat. prop. 9, has given two elegant constructions for describing a circle equal to the superficies of an ublong and an oblate spheroid, which he says he discovered towards the later end of the year 1657. As he gave an demonstrations of these, I have demonstrated them, and also rendered them more general, by extending and udapting them to the surface of any segment or zone of the spleroid. See my Mensuration, pa. $226 \& \mathrm{Kc}, 4 \mathrm{th}$ ed, where also are several other rules and constructions for the surfaces of spheroids, besides those of their segments, and frustums.

Of the Solidity of a Spheroid. Every spheroid, whether oblung or oblate, is, like the sphere, exactly equal to twothirds of its circumseribing cylinder. So that, if f denote the fixed axe, r the revolving axe, and $a=7854$; then $\frac{2}{3} 4 r^{2}$ denotes the solid content of either spheroid. Or, which comes to the same tbing, if t denote the transverse, and c the conjugate axe of the generating ellipse;
then $\frac{3}{3} a c^{2} t$ is the content of the oblong spheroid,
and $\frac{2}{\mathbf{r}}$ acf ${ }^{\text {c }}$ is the content of the oblate spheroid. Consequently, the ratio of the former solid to the latter, is as c to t, or as the less axis to the greater.

Further, if about the two axes of an ellipse, there be gro nerated two spheres and two spheroids, the four solids will be continued proportionals, and the common ratio will be that of the two axes of the ellipse; that is, as the greater sphere, or the sphere upon the greater axe, is to the oblate spheroid, so is the oblate spheroid to the oblong spheroid, and so is the oblong spheroid to the less sphere, and so is the transverse axis to the conjugate. See my Mensuration, pa. $248 \& \mathrm{~s}, 4 \mathrm{th}$ ed. where may be seen many other rules for the solid contents of spheroids, and their various parts. See also Archimedes on spheroids and conoids.

Dr. Halley has demonstrated, that in a sphere, Mercator's nautical meridian line is a scale of logarithmic tangents of the half complements of the latitudes. But as it has been found that the shape of the earth is spheroidal, tbis figure will make some alteration in the numbers resulting from Dr. Halley's theorem. Maclaurin has therefore given a rule, by which the meridional parts to any spheroid may be found with the same exactness as in a sphere. There is also an ingenious tract by Mr. Murdoch
on the same subject. See Phitos. Trans. No. 219. Mr. Cotes has also demonstrated the same proposition, Harm. Mens. pa.20, 2t. See Meaidiomal Peris.

Universal SpHEnOID, a name given to the solid generated by the rotation of an ellipse about some other diameter, which is neither the transverse nor conjugate axis. This produces a figure resembling a heart. See my Mensuration, pa. 266, 4th ed.

SPINDLE, in Geometry, a solid body generated by the revolution of some curve line about its base or double ordinate AB; in opposition to a conoid, which is generated by the rotation of the curve about its axis
 or absciss, perpendicular to its ordinate. The spindle is denominated circular, elliptic, hyperbolic, or parabolic, \&c, according to the figure of its generating curve. See my Mensur. in several places.

Spis die, in Mechanics, sometimes denotes the axis of a wheel, or roller, \&c ; and its ends are the pivots.

See also Double Cone.
SPIRAI, in Geometry, a curve line of the circular kind, which, in its progress, recedes always more and more from a point within, called its centre; or beginning its motion at a distance from the centre; it approaches nearer and nearer to that point. A spiral may be supposed to be thus generated.

Divide the circumference of a circle App \&ce into any number of equal parts, by a continual bisection at the points $p p$ \&c. Divide also the radius $A C$ into the same number of equal parts, and make $\mathrm{cm}, \mathrm{cm}, \mathrm{cm}, \& \mathrm{c}$, equal to 1 , 2,3 , \&ce of these equal parts; then a line drawn, with a steady hand, through all the points $m, m, m, \& c c$, will truce out the spiral. This is more particularly called the first spiral, when it has made one complete revolution to the point A; and the space included between the spiral and the radius C_{A}, is the spiral space. The first spiral may be continued to a second, by describing another circle with double the radius of the first; and the second may be continued to a third, by a third circle; and so on.

Hence it follows, that the parts of the circumference $A p$, are as the parts of the radii $c m$; or $A p$ is to the whole circumference, as cm is to the whole radius. Consequently , if c denute the circumference, r the radius, $\mathrm{x}=\mathrm{cm}$, and $y=A p$; then there arises this proportion $r: c:: x: y$, which gives $r y=c x$ for the equation of this spiral; and which therefore it has in common with the quadratrix of Dinostrates, and that of Tachirnhausen: so that $r^{n} y^{m}=$ $c^{0} x^{n}$ will serve for infinite spirals and quadratrices.

The first treatise on the spiral was by Archimedos, who thus gives the description of it, by a continued uniform motion. If a right line, as AB (last fig. above) baving one end moveable about a fixed point at n, be uniformly turned round, so as the other end a may describe the circumference of a circle; and at the sume time a point be con-
ceived to move uniforiuly forward from a towards A, in the right line or radius A B, so that the point may describe that line, while the line generates the circle; then will the point, with the double zotion, describe the curve $1,1,2$, $3,4,5, \& c c$, of the same spiral as before.

Again, if the point a be conceived to move only half as fust as the line a a revolves, so that it shall get but half way along ma , when that line shall have formed the circle; and if then you imagine a new revolution to be made of the line carrying the point, so that they shall end their motion at last together, there will be formed a double spiral line, as in the last figure. From the manner of this description may easily be drawn these corollaries:

1. That the lines $812, n 11, n 10$, \& c, making equal angles with the first and second spiral (as also B12, a 10 , 88), \& c , are in arithmetical progression.
2. The lines $n 7$, B10, \&c, drawn any how to the first spiral, are to one another as the arcs of the circle intercepted between BA and those lines; because whatever parts of the circumference the point A describes, as suppose 7, the point a will also have run over 7 parts of the line ab.
3. Any lises drawn from s to the second spiral, as $\mathbf{m 1 8 , ~} \mathbf{2 2 2}$, \&ce, are to cach other as the aforesaid arcs, together with the whole circumference added on both sides: for at the sane time that the point a runs over 12, or the Whole circumference, or perhaps 7 parts more, shall the point is have run over 12, and 7 parts of the line AB, which is now supposed to be divided into 24 equal parts.
4. The first spiral space is equal to $\frac{j}{2}$ of the first or circumscribing circle. That is, the area cabdes of the spiral, is equal to it part of the circle described with the radius ce. In like manner, the whole spiral area, generated by the ray drawn from the point c to the curve, when it makes two revolutions, is $\frac{2}{3}$ of the circle described with the radius 9ce.

And, generally, the whole ares generated by the ray from the beginning of the motion, till after any number n of revolutions, is equal to $\frac{5}{3}$ of the circle whose radius is $n \times \mathbf{c g}$, that is equal to the 3 d part of the space wbich is the same multiple of the circle described with the greatest ray, as the number of revolutions is of unity.
In like manner also, any sector or portion of the area of the spiral, terminated by the curve cma and the right line ca, is equal to $\frac{1}{3}$ of the circular sector cag terminated by the right lines $\mathbf{C A}$ and $\mathbf{C G}$, this latter being the situation of the revolving ray when the point that describes the curve sets out from c. See Maclaurin's Flux. Introd. pa. 30, 31 ; also Quadaature of the Spiral of Archimede'; and Emerson's neat tract on spirals, added to his Conic Sections.

A brief synopsis of the first treatise on spirals, by Archimedes, is as follows:-Propositions 1 and 2 are of the nature of lemmas, and are employed to demonstrate the
ratios of lines that are described by the equable motion of points.-Prups. 3, 4, 5, 6, 7, 8, 9 demunstrate the possibility of tahing, in a circle, chords, tangents, secants, dec as, well as certan parts of them, in a given ratio,-P'rop, to shows that, in a serics of quantites proeerding from 0 , and equally exceeding ote another, (viz, a continucd arithmetical series,) the sun of the rectangles of the least term drawn into all the terms, together with as many times the syuare of the greatest term as is denoted by one more than the number of the terrus, is equal to 3 times the sum of the squares of all the terins: that is,
$a_{(}^{\prime} a+b+c+d+d c,(10 z)+(a+1) z^{2}=$ $3\left(a^{2}+b^{2}+c^{2}+d^{4}+\& c, \ldots z^{2}\right)$;
where $a, b, c, d k c$, are the terms of series whose common difference is a, the greatest term 2 , and number of terms n. -Prop. 11 is also emplosed about the squares of the terms of such a progression.

Having delivered these preparatory propositions, the auther comes to the defimitions of the behix of spiral, and of the several parts, lines, and circles attending it; in particular, his helix is the curve described by a point noving uniformly through a right line revolving equably about the end from which the point sets ont.-The next 6 props. are employed about the proportions of the several parts and radii, \& c , of the belix, till, in the 1 sth prop, it is shown that the circutaference of the first circle, is equal to a line drawn from the contre perpendicular to the radius, and bounded by a tangent to the spiral at the extremity of the said radius.

Prop. 19 shows that such a perpendicular, as above, from the centre to the end of the 2d, 5d, 4th, \&c spiral, and bounded by the tangent at the same point, is equal to double, triple, quadruple, \&c, of the circumference of the circle described through the same tangent point.Prop. 20, in hike manter shows that such a perpendicular to a radius at any proint, not at the end of the spiral, is as multiplex less by one of the circumference, ugether with as much more as is contained between that pont anil the beginning. So that here we have the rectification of the circular arc by means of the construction of the spiral.

Props. 21, 22, 23, are employed in showing that figures may be described in, and about spirals, that shall differ from them liy less thun any assignable quantity.-And then prop. 24 shows that the 1 st spiral space is equal to $\frac{f}{f}$ of the lat, or its circumscribing circle. And prop. 25 shows the ratio of the 2d, 3d, 4th, \&ec spiral space, to the 2d, 3d, 4th, \&re circle.

Then the remaining thrre props. show the ratios of different paris of spirals to their corresponding sectors of the circles. After which ix added a theorem showing the proportions of different sectors of a spiral, viz, that they are as the culves of their reapective radii. To which is subjoined a preblem, to cut an nngle, or a circular arc, in any ratuo, by means of the spiral.

Spiral, Iagistic, or Lagaridhmic. Sec Logistic, nnd Quadraturf.

Sparal of Pappus, a spiral formed on the surface of a sphere, by a motion similar to that by which the Spiral of Archimedes is described on a plane. This spiral is sor called from its inventor Pappus. Collect. Mathem. lib. 4 prop. 30. Thus, if c be the centre of the sphere, arba a great circle, F its pole; and while the quadrant rma revolves about the pole \mathbf{F} with an uniform motion, if a point pruceeding from P move with a given velucity along
the quadrant, it will trace upon the splierical surface the spiral raza.

Now if we suppose the quadrant PMA to make acomplete revolution in the same time that the point, which taaces the spiral on the surface of the sphere, describes the quadrant, which is the case considered by Pappus; then the portion of the splerical surface terminated by the whole spiral, and the circle ARBA, and the quadrabt rma. will be equal to the square of the diameter a B . In any uther case, the area pmaarzer is to the square of that diameter $A B$, as the are $A G$ is to the whole circumference ARBA. And this area is always to the spherical triangle pad, us a square is to its corcumscribing circle, or as the diameter of a circle is to half its circumference, or as 2 is to $3 \cdot 1+159 \& \mathrm{c}$. See Machaurm's Fluxions, Intronl. pa. 31-33.

The portion of the sylherical surface, terminated by the quadrant $P \times A$, with the arches $A k, F k$, and the spral rze, admits of a perfect quadrature, when the ratio of the arch $A Z$ to the whole circumferenice can be assignet. See Maclanrin, ibid. pa. 33.

Parabolic trital. sce Helicotd.
Propertional Splisal, is generated by supposing the radius to revolse untormly, and a point from the circumference to move towards the centre with a mation decreasing in peometical progression. See Logistic.

From the nature of a decreasing geometrical progression, it is easy to conceive that the radius ca may be continually divided; and though wach successive division becomes shorter than the next preceding one, yet there must be an infinite number of divisions or terms before the last of them become of no finite magnitude. Whence it follows, that this spiral winds continually round the centre, wishout ever falling into it th any finite number of reo volutions.

It is also evident that any proportional spiral cuts the lutercepted radii ut equal angles: for if the divisons ad, de, cf, $f g, \& c$, of the circumference be very small, the several radii will be so close to ane another, that the intercepted parts $A D, B E, E T, F G, \& C$, of the spiral may be taken as right lines; and the trimagles $C A D$, CDE, CEY, \&C, will be
 similar, having equal angles at the point c, and the sides about those angles proportional; therefore the angles at A, $\mathrm{n}, \mathrm{R}, \mathrm{r}$, Acc, are equal, that is, the spiral cuts the radii at equal angles. Robertsen's Elem. of Navig. book 2, pa. 87.

Proportional spirals are such spiral lines ws the rhumb lines on the ter rayucous globe; which, because they make equal angirs with every meridian, must also make equal angles with the gieridians in the stereographic projection on like plane of the equator, and therefore will be, as 1)r. Halley observes, Proportional spirals about the polar point. Whence he demonstrates, that the meridian hne is a scale of log. tangents of the half complements of the latitudes. See Ruvas, Loxodromy, and Mratdional. Parts.

Spimal. Pump. See drchimedes; Screw.

Spinal, in Architecture and Sculpture, denotes a curve that ascends, winding about a cone, or spipe, so that all the points of it continually approach the axts. By this it is distinguished from the belix, which winds in the same manner about a cylinder.

SPOLIADES, in Astronomy, a name by which the ancients distinguisbed such stars as were notincluded in any constellation. These the moderns more usually call unformed, or extraconstellary stars. Many of the sporades of the ancients have been since formed into new constellations: thus, of those between Ursa Major and Loo, Hevelius has formed a constellation named Leo Minor; and of those between Ursa Minor and Auriga, be also formed the Lynx; and of those under the tail of Ursa Minor, another called Canis Venaticus; \&c.

SPO'TS, in Astmonomy, are dark places observed on the disks or faces of the sun, moon, and planets. The spots on the sun are scldom if ever visible, except through a telescope. I bave indeed met with persons whose ryes were so strong that they have declared they could distinguish the solar spots; and it is mentioned in Jessephus a Costa's Natural and Moral History of the West Indies, book 1, ch. 2, before the use of telescopes, that in Peru there are spots to be seen in the sun, which are not to be seen in Europe. See a memoir by Dr. Zach, in the Astronomical Epliemeris of the Acad. of Berlin for 1788, relating to the discoveries and unpublished papers of Thomas Hurriut the celebrated algebraist. In that memoir it is thown, for the first time, that Harriot was also an excellent astronomer, both theoretical and practical; that he made innumerable observations with telescopes Irom the year 16to, and, among them, 199 observations of the solar spots, with their drawings, calculations, and the determinations of the sun's revolution round his axis. These spota were also discovered near about the same time by Galileo and Scheiner. See Joh. Fabricius Phrysius De Maculis in Sule observatis \& apparente corum cum sole conversione narratio, 1611; also Galileo's Isturia e Demonstrazioni intorse alle Machie Solare e loro accidenti, 1613.

Some distinguish the spots into Macula, or detk spots; and Facula, or brigbt spots. They are very changeable as to number, form, \& c; and are sometimes in a multirude, and sometimes none at all. Some imagine they muy become so numerous, as to hide the whole face of the sun, or at least the greater part of it; and to this they ascribe what Plutarch mentious, viz, that in the first year of the reign of Augustus, the sun's light was so faint and obscure, that one might look steadily at it with the naked eye. To which Kepler adds, that in 1547, the sun appeared reddish, as when viewed through a thick mist; and bence he conjectures that the spots in the sun are a kind of dark smoks, or clouds, floating on his surface.

Some again will have them stars, or planets, passing over the body of the sun: but others, with more probability, think threy are opaque bodies, in the manner of crusts, furmed like the scums on the surface of liquors.

Mr. Gascoigne, the inventor of the micrometer, and some others, fancied them to be planets revolving very near the sua. But his friend Mr. Crabtric explained to him very good reasons against such a notion; stating. from his observations, that they are no stars; but mere " fading bodies, unconstant (in regard of their generation) and irregular excrescences arising out of, or proceeding Vol., II.
from the sun's body." Abridg. Philos. Trans, vol. 5, pa. 6so, \&c.

Dr. Derham, from a variety of particulars, which be has recited, concerning the solar spots, and their congruity to what we observe in our own globe, infers, that they are caused by the croption of some new volcano in the sun, which, pouring out at first a profligious quantity of smoke and other opaque matter, causeth the spoits: and as that fuliginous matter de cays and spends itecif, and th. volcano at last becomes more torrid aad thaming, so the sponts decay and become umbere, and at last facule : which facule be supposes to be no other than more flaming lighter parts than any other parts of the sun. Plailos. Trans. vol. 23, pa. 1504, and vol. 27, pa. 270; or my Abridg. vol. 5, pa. 79 and 622.

Dr. Franklin (in his Exper, and Olserv. pa. a66.) sug* gests a conjecture, that the parts of the sun's sulphur separated by fire, rise into the atmosphere, and there being freed from the immadiate action of the fire, they coliect into cloudy masses, and gradually becoming two heavy to be longer supported, they descend to the son, and are burnt over again. Hence, he says, the spots appearing on his face, which are observed to diminish daily in size, their consuming edges being of particular brightiness.

Dr. Alex. Wilson, of Glasgow, from abservations and a train of reasoning, is of opplion that all spots, small as well as great, which consist of a dark uucleus and surrounding umbra, are excavations in the luminots matter of the sun. He has also endeavoured to gise a general idea of the production, changes, and decay of the solar spots, considered as excavations in the body of the sun, But concerning the nature of that mighty agency, which occasions those amazing commotions in the luminous matter, or concerning the density, viscidity, and other qualities of the matter, and many other questions, he freely confesses' that they far surpass his knowledge. Abridg. Ph. 'Tr. v. 13, pu. 866 , and v. 15, pa. 482.

To this opinion of Dr. Wilson several persons exhibit objections; amung others M. Lalande, in the Memoirs of the French Acad. 1776, contends on the contrary, that the spots are phenomena arising from dark bodies like rocks, which, by an alternate flux and reflux of the liquid igncous matter of the sun, sometimes raise their heads above the general surface. That part of the opaque rock, which at any time thus stands above, gives the appearance of the nuel-us, while those parts which lie only a litile under the igneous matter, appear to us as the surroundinf umbra.

Some other respectable remarks on these phenomena are given by Mr. H. Marsball and the Rev. F. Wollaston. See the Abr. Ph. Tr. v. 13, pat. 529, 532.

Dr. Herschel's explanation of these phenomena is different from all the rest. The sun, he supposes, has an atmosphere resembling that of the earth; and this atmosphere consists of various clastic tluids, some of which exbibit a shining brilliancy, while others are merely transparent. Whenerver the lucid fluid is removel, lie body of the sun may be seen through thoee that are transparent, as a dark spot. Like as an obwrwer, placed on the moon, sees the solid borly of our earth only in those places where the transparent duids of our anmospliere permit him. In others, the opaque vapours reliect the light of the sun, without permitting his view to penctrate to the surface of our globe. By changes in the atmosphere of Jupiter. Dr. H. accounts for the phenomena of his belts; and on 31
the same principle be illustrates the vamous appearances of a spot, which he observed on the sun ill 1779. This spot extended more than 50 thousand miles; and be says that, 'the idea of its beng occasioned by a volcanic explosion, violently driving away a fiery fluid, which on its return would gradually Gill up the vacancy, and thus restore the sun in that place to its former splendeur, ought to be rejected on many accounts,' Dr. 11. apprebends there are considerable inequalities in the surface of the snn; and that there may be elivations not less than 5 or 600 miles high. 'A very high country, or chain of mountains, may oftener become visible, by the removal of the obstructing tluid, than the lower regions, on account of its not being so deeply covered with it; and some of the solar monntains may be lagh enough occasionsily to project above the shining clastic fluid, when, by some agitation, or other cause, it is not of the usual height. And this opinion is inuch strengtiened by the return of some remarkable spots, which served Cassini to ascertain the period of the sun's rotation - According to Dr. H's bypothesis, the black spots are the opaque ground or body of the sun; and the luminous part is an atmosphere, which, being interrupted or broken, gios us a transient glimpse of the sun itself. These spots appear, with a-7-fvet refector, much depressed below the surface of the luminous part. The facula, as Hevelius calls them, are elevated bright places, which appear at different times, and in different circumstances, of very various figures, which, with the lower opaque parts, gives the sun at times a kind of motled appearance. Philos. Trans. Abr, v. 17, pa. 478.

In short, Dr. Herschel, who bas paid great attention to the spots of the sun, considers that luminary as similar to the planets, and not a flaming body.-It contains mountains, soine of which be suppuses ta be 900 lengues in beight. Its atmosphere is composed of different elastic fluids, some of which are luminous or phosphoric, and others only tranoparent. Tite former make the sun appear like a mass of light or fire; but the parts of that atmosphere which are only transparint, suffer his body to be seen. 'These are the spots. He belicves the sun to be inbabited like the other planets.

Lalande, on the other hand, thinks that the sun is really a solid body, but that his suiface and part of his mass are composed of an incandescent fluid. This fluid, by any movement, leaves uncovered smetimes a portion of the body of the sun or his mountains, and these are the spots. Wilson considers the spots of the sun as eruptions or volcanoes.

For another solution of these phenomena, see Macula. Variuus other accounts and hypotheses of these spots may be seen in many of the other volumes of the Philos. Trans. In one of these, viz, vol. 37, pa. 398, Dr. Horsley attempts to determine the bright of the sun's atmosphere from the beight of the solar spots above his surface.

By menns of the observations of these spots, has been determined the period of the sun's rotation ubout his axis, via, by ubserving their periodical return.

The lunar spots are fixed: and astronomers reckon about 48 of then on the moon's face; to each of which they have given names. The 21st, culled Tycho, is one of the most considerable.

Circular Spots, in Electricity. See Circular Spots and Coloura.

Lacid Spors, in the heavens, are several little whitish spots, that appear magnified, and more luminous when
seen through telescopes; and yet without any stars in them. One of thesc is in Andremeda's girdle, and was first observed in 1612, by Sinob Marius: it bas some whitish rays near it, middle, is liable to several changes, and is sometimes invisible. Anolber is near the ecliptic, between the head and buw of Sagittarius; it is small, but very lu* spinous. A third is in the back of the Centaur, which is too far south to be seen in Britain. A fourth, of a smaller size, is before Antinuus's right foot, haviag a star in it, which mahes it appear more bright. A Gfth is in the constellation Hercules, between the stars 5 and y, which is visible to the naked eye, though it is but small, when the shy is clear and the moon aboent. It is probable that wilb more powerful telescoper these Jucid spots will be found to be congeries of very minute fixed stars. See Nebulous.

Planetary Spots, are those of the planets. Astronomers find that the planets are not without their spots. Japiter, Mars, and Venus, when viewed through a telescope, show several very remarkable ones: and it is by the motion of these spots that the rotativn of the planets about ther axes is concluded, in the same manner as tieat of the sun is deduced from the apparent motion of his maculx.

SPOU'T, or Water Spout, an extraordinary meteor, or appearance, consisting of a moving column or pillar of water ; called by the Latins typho, and sipho; and by the French trompe, from its shape, which resembles a speaking trumpet, the wirlest end uppermost. Its first appearance is in form of a deep cloud, the upper part of which is white, and the lower black. From the lower part of this cloud there hangs, or rather falls down, what is proporly called the spout, representing a conical tobe, largest at top. Under this tube is always a grent agitation of the water of the sen, as in a jet d'eau. For some yards above the surface of the sea, the water stands like a column, or pillar ; from the extremity of whech it spreads, and goes off, as in a kind of smoke. Fisequently the cotu descends as low as the middle of this column, and continues for some time contiguous to it; though sometimes it only points to it at some distance, either in a perpendicular, or in ant obtique line.

It frequently happens that it can scarcely be distinguished, whether the cone or the column appears the first, both rushing as it were to each other iustantabeously. But sonctimes the water boils up from the sea to a great height, without any apperarance of a spout pointing to it, either perpendiculaily or obliquely. Indeed, generally, the beiling or flying up of the water has the priority, this always precreling its being formed into a coloma. It more conimondy luppens that the cone does not appear hollow till twards the end, when the sea water is violently thrown up along its middli, as smoke up a chimn.y : sown after this, the spout or canal breaks and disappears; the boiting up of the water, and even the pillar, contunuing to the last, and for some time afterwards; sometimes till the spout form itself again, and appenr nnew, which it will do several limes in a quarter of an hour. bee a description of seseral water-spouts by Mr. Gordon, and by Dr. Stuart, in Phit. Trans. Abr. vol. jv, pa 504 , and 647.
M. de l: Pryme, from a near observation of two or three spouts in Yorkshire, described in the Philosophical Transactions, num. 281, or Abr. vul. iv, pa. 709, concludes, that the water spout is nothing but a gyrution of clouds by contrary winds meeting in a point, or centre; and
there, where the greatest condensation and gravitation is, falling down into a pipe, or great tubs, sonew hat like Archimedcs'x spiral screy; and, by its working and whirling motion, absorbs and raises the water, in the same manner as the apiral scow does; thus diatroying evell the largest ships ic.

In the noonth of June he obsirved the clouds very much agitated above, and driven tosether ; upon which they becarne very black, and were hurried round; whence proceeded a most audible whirling noise like that usually heard in a mill. Soon after there issucd a long tube, or spout, from the centre of the congregated clouds, in which he ubserved a spiral motion, like that of a screw, by which. the water was ruised up.
Again, August 15, 1687, the wind blowing at the same time out of the several quatters, created a great vortex and whirling among the clouds, the centre of which every now and then dropt down, in the shape of a long thia black pipe, in which he could distinctly behold a motion like that of a screw, continually drawing upwards, and screwing up, as it were, wherever it touched.

In its progross it moved slowly over a grove of trees, which bent under it like wands, in a carcular motion. Proceeding farther, it ture off the thatch from a barn, bent a huge oak tree, broke one of ts greatest branches, and threw it to a considerable distance. He adds, that whereas it is commonly said, the water works and rises in a column, before the tube comes to touch it, this is doubtless a mistake, owing to the fineness and transparency of the tubes, which to most certainly tuuch the surface of the sea, before any considerable notion can be raised in it; but which do not become oparpue und visible, till after they have imbibed a considerable quantity of water.

The dissolution of water spouts he ascribes to the great quantity of water they have gathered: which, by its weight, impeding their motion, upon which their force, and even existence depends, they break, and let go their contents; which frequently proves fatal to whatever is found undernesth.

A remarkable instance of this may be seen in the llhilosophical Transactions (bam. 363, or Abr. vol, vi, pa. 440) related by Dr. Richardson. A spont, in 1718 , breaking on Emmotmoor, nigh Coln, in Lancashire, the country was immediately inundated; a brook, in a few minutes, rose six feet perpendicularly high; and the ground upon which the spout fell, which was 66 feet over, was tom up to the very rock, which was no less than 7 feet deep; und a deep gulf was made for above half a mile, the warth being raised in vast beaps on each side. See a description and figure of a water-spout, with an attempt to account fur it in Franklin's Exp. and Obs. pa. 226, \&c.

Signor Beccaria bas taken pains to show that waterspouts have an electrical origin. To make this the more evident, he first describes the circumstances attending their appearance, which are the following.

They generally appear in calro weather. The sea seems to boil, and to send up a spoke under them, rising in a hill towards the spout. At the same time, persons who have been near them bave heard a rumbling noise. The form of a water-spout is that of a speaking trumpet, the wider end being is the clouds, and the narrower end towards the sea.

The size is various, even in the same spout. The co-
lour is sometimes inclinug to white, and sometimes to black. Their position is sumetimes perpendicular to the sea, soneetimes oblique; and sumethares the spout itself forms a curve. 'I'heir continuance is very various, some disappearing as soon as formed, and some conthuing a considerable time. One that he had henrd of continued for an hour. But they often vansh, and presently appear again in the same place. The very same things that water-spouts are at sem, are some kinds of whirlwinds and hurricanes by land. They bave been known to tear up trees, th throw down buildings, and make caverns in the earth; and in all these cases, to scatter earth, bricks, stones, timber, \& c , to great distances in every direction. Great quantities of wuter have been left, of raised by them, so as to make a kind of veluge; and they have always been attended by a prodigitus rumbling noise.

That tbese phenomena depend upon electricity cannot but appear very probable from the nature of several of them; but the conjecture is made inore probable from the following addinonal circumstances. They generally appear in noonths peculiarly subject to thunder-storms, and are commonly preceded, accompanied, or followed by lightning, rain, or hail, the previous state of the air being similar. Whitish or yellowish flashes of light have sometimes been seen moving with prodigious swiftness about them. And lattly, the manner in which they terminate exactly resembles what inight be expected from the prolongatiun of om of the uniform protaberances of electrified clouds, mentioned before, towards the sea ; the water and the cloud inutually attracting each vether: for thry suddenly contract themselves, and disperse almust at once; the cloud rising, and the water of the sea under it filling to its level. But the mont remartable circumstance, and the most favourable to the supposition of their depending on electricity, is, that they have been dispersed by presenting to them sharp pointed knives or swords. This, at least, is the constant practice of mariners, in many parts of the world, where these water-spouts abound, and he was assured by several of thern, that the method has often been undouhtedly effectual.

The analogy between the phenomena of water-spouts and electricity, he says, may be made visible by hanging a drop of water to a wire communicating with the prime cunductor, and placing a vessel of water under it. In these circumstances, the drop assumes all the various appearances of a water-spout, both in its rise, form, and manner of disappearing. Nothing is wanting but the smoke, which may require a great force of electricity to become visible.

Mr. Wilcke also considers the water-spout as a kind of great electrical cone, raised between the cloud strongly electrified, and the sea or the earth, and be relates a very remarkable appearance which occurred to himself, and which strongly confirms his supposition. On the 20th of July 1758, at three o'clock in the afternoon, he ohserved a great quantity of dust rising from the ground, and covering a Geld, nad part of the town in which be then was, There was no wind, and the dust moved gently towards the east, where appeared a great black cloud, which, when it was near its zenith, electrified his apparatus positively, and to as great a diegree as ever he had obscrved it to be done by ratural electricity. This cloud passed his zenith, and went gradually towards the west, the dust then following it, and continuing to rise higher and higher till it composed a thick pillar, in the form of a sugar-loaf, and at lenget seemed to be in contact with the cloud. At 318
some distance from this, there came, in the same path, another great cloud, together with a long stream of smaller clouds, moving faster than the preceding. These clouds electrified hos apparatus negatively, and when they came near the positive cloud, a llash of lightning was sen to dert throngh the cloud of dust, the prastive cluod, the large negative clond, and, as far as the eye could dis-tingu-h, the whole train of smaller negatise elouds which folloned it. Dipon this, the negatise elouds spread sery much, and dissobsed in rain, and the air whe presemtly clear of all the duat. 'T he whale apprarance lasted not above Lalf an hour. Sce Priestlcy's Electr. vol. i. pat 4is, isc.

This theory of water ponts has been farther cotifirmed by the account whech Mr. I oroter gives of one of them, in his Voynge round the World, vol. i, pa. 191, de. (In the const of Niw Vealand he had an opportunity of sueing several, one of which he bas particularly descrited. The water, lie says, in a space of 51) or to fathoms, moved towards the cenire, and there rising into sapour, by the force of the whitling motion, ascended in a spiral form towards the clouds. Directly wer the whiripool, or agitated spot in the sea, a clotul gradually tupered intos a hong sleider tuise, which seemed to dascend to meet the rising spiral, and swon united with it into a straight column of a cylindrical torm. The water was whirled up. wards with the greatest volence in a spiral, and appeared to leave a hollow space in the conise; so that the water seened to form a hollow tube, instad of a solid column; and that this was the case, was rendered still more probuble by the colour, whech was exactly like liat of a hollow glass tube. Ater sonue thue, this lasi colunin was incurvated, and broke hite the others; and the appearance of a Rash of hghtuing which attemked ita diyjunctoon, us well as the hath-stones which fell at the time, seemed plainly to indicate, that waterspous cinher one their furmation to the electric matter, or, al least, that thery hure sume contiexion with it.

In Pliny's time, the seamett used to pour vinegar into the sea, 10 assuage and lay the spout whell it appreached them: our modern seamen think to keep it off, hy making a noise with filing and seratehing violenily on the deck; or by discharging gernt guns to disperse it.

See bie Ggure of a water-spout, fig. 1, plate 33.
Sl'RING; in Natural History, a leruntain or source of water, rising out of the ground. - The mont general and prohable opinion ainong philosopbers, on the tormation of springs, is, that they are formed from the ratn-water which pelietiates the earib till such tione as it bueres a clayey sul, or stratum; which proving a buttom suthciently solid to shstain and stop its descem, it gledes along it that way to which the earth declines, tull, meeting with a place or aperture on the surface, through which it may escape, it forms a spting, and pethaps the head of a stream or brook. Now, that the rain is sufficient for this effect, appears from hence, that upon calculating the quantity of ram and snow which falls yearly on the tract of ground that is to furmish, for instance, the waier of the Soine, it is found that this river does not take up ahove ouc-suxth part of it.

Springs commonly rise at the bottom of mountains: the reason is, that mountains collect the most waters, and give them the greatest dereent the same way. And if we some limes see springs on high grounds, and even on the tops of mountains, they must conse from other remoter
places, considerably higher, along beds of clay, or claycy ground, as in their natural channels. Su that if thine happen to te a valley belween a mountain on whose top is 14 spring:, und the mountain which is to fornish it with water, the spring must be considered as water conducted from a reserviar of a certaia beight, through a subterraucous channel, to make a jet of analmust equal height.

As to the manner in which this water ts collected, so as to furmareservors of the ditterent kitads of springs, it seans to be this: the tops of mountains usually abound with cavitics and subterianeous caverths, formed by nat ure to serve as reservinits: and their pointed suminits, wheh seem to picree the elouds, slop thome vapours which flont in the athoophere; which baing thus comenwer, they precipitate in water, and by their gravity and fundity ravly penctrate through beds of sand and ihe lighter cuith, tith they become stopped in their descem by the denser strata, such as beds of clay; stone, Ace, where they form a basun or cawern, mud working a pussage borizontally, of a little deelining, they issue out at the sides of the mountains. Many of these springs discharge water, wlich runting down beiween the ridges of hills, ume their sticams, and form rwulets ar brooks, and many of these uniting again on the plain, become a river.

The perpetuity of some springs, always yielding the same quantity of water, as well when the least rain or vapour is afforded as when they are the greatest, furnish, in the opinion of some persons, conviderable objections to the universalny or sufficiency of the above theory. Dr. Derham mentions as spring in his own parish of Epminster, which he could newer perccive by his eye was diminidicd in the greatest droughts, even when alf the pouds in the conntry, as well as an a.ljoining brook, had bren dry fier several months together; nor ever to be increased in the must raiby seusons, excrpling perbaps for a few hours, or at most for a day, from sudden and violemt rans. Had this spring, he thenght, deriveal its origin from ram or vapours, thete would be fuund an increase and derreace of its water correspending to thowe uf its cnuses; as we actually find in such temporary spritgs, as have undeubiedly their fise hom rain und vapmur.

Sume naturalist thevefore have neourse to the sea, and derive the arigin of sprugn immediately from thence. But how the sca-water stould be raised up to the surface of the earth, and even to the tops of the mountans, is a diflicully, it the selution of which thay cannot agree. Some fancy a kind of hoflow subter ranean rock, to reccive the whisry sapours rained from channels communicating with the sag, by menns of an internal fire, and to act the part of alembics, in froming then from their saline particles, ns well as condensing and converting them into watur. Thus kind of subteriznean laboratory, soiving for the distillation of sea-water, was the intention of Descartes: sec his Princip. pari 4. § 64 . Others, as Lahire \& (Mem. de I'Acad. 1703) set aside the alembics, und thisk it enough that there be large sublerranean reservoirs of water at the height of the sen, from whence the waunth of the botton of the carth, \&e, may raise vapours; which pervade not ouly the intervals and tissures of ibe strata, But the buories of the strata themselves, and at length arrive near the surface; wbere, being cutadensed by the cold, they glide along on the first bed of clay thry meet with, till they issuc forith by some aperture in the ground. Labire adtls, that the salts of stone and minerals may contribute to the detaining and fixing the vapours, and convert-
ing them into water. Again, it is urged by others, that there is a still more natural and ensy wny of exhlibiting the rise of the sca-water up imo mountain \& c , viz, by putting a Itutle beap of sand, cir ashes, or the like, moto a basen of water; in which case the sand Ac will represent the dry land, or anl island; and the bawn of water, the sed aluut it. Here, say they, the water in the bison will rise to the tup of the beap, of nearly so, in the same manuer, and from the same principle, as the waters of the sea, lakes, dec, rise in the hills. The priaciple of ascent in both is accordingly supposed to be the same with that of the ascent of liquids in capillary tuhes, or between contiguens planes, or in a tule filled with ashes; all whicl, are now generally accounted for by the doctrine of attraction.

Against this last theory, Perrault and others have unged several unanswerable objections. It supposes a varicty of subterramenn passages and caverns, communicating with the sea, and a complicated apparatus of alembics, with heat and cold, \&c, of the existence of all which we have no sort of proof. Besides, the water that is supposed to ascend from the deptiss of the sea, or from subterranean cnnals proceeding from it, through the porous purts of the earth, as it rises in capillary tubes, ascends to no great height, and in much too small a quantiny co lurnish springs nith water, as Perrault lias sufficiently shown. And though the saud and earth through which the water nscends may ucquise some saline particles from it, thry are nevertheless incapable of rendering it so fresh us the water of our fountains is generally found to be. Not to add, that in pracess of time the saline partieles of which the water is deprived either by subterrancan distillation or filtration, must clog and obstruct those canals and alembics, by which it is supposed to be conseyed to our springs, and the sea must lihewise gradually lise a considerable quantity of its salt.

- Defferent kinds of Springs. Springs are either such as run continually, called percnnial; or such as run only for a time, and at certain senvons of the year, and themefore called temparary springs. Others again are called intermitiug spring, because they flow and tben stop, and flow and stop again; and reciprocating springs, whose waters rie and call, or How and ebb, lyy regular intervals.

In order to acerunt for these differevices in spiings, let ABCDE (fig. a, pl. 33) ripresent the declivity of a hill, along which the rain descends; pabsing through the fissures or chanmek BF, CG, bII, and 2 L , inte the cavity or reservoir vgnkmi ; from this cavity let there be a narrow drain or duct KE , which discharges the water at E . As the capacity of the riservior is supposed to be large in proportion to that of the drain, it will furnish a constant supfly of water to the spring tht E . But if the reservoir rinkmi be small, and the drain large, the water contained in the former, anliss it is supplied by rain, will be wholly discharged by the latter, and the spring will become dry: and as it will continue, even though it rains, till the water has liad time to penetrate through the earth, or to pass through the channels into the reservoir; and the time necessary for furnishing a new supply to the drain ke will depend on the size of the fissures, the nature of the soil, and the depth of the cavity with which it communicates. Hence it may happen, that the spring at e nay remain dry for a considerable time, and even while it rains; but when the water has found its way into the cavity of the hill, the spring will begin to run. Springs of this kind, it is evident, may be dry in wet weather, espe-
cially if the duct Kz be not exactly level with the bottom ol ihe cavity in the hill, and discharge water in dry weather; and the intermissions of the spring may continue several days. But if we suppose Xop to represent another cavity, supplicd with water by the chantel no, as well as by fissures and clefts in the rock, and by the draining of the adjacent earth; und another channel stv, communicating with the bottom of it at s, ascending to T , and terminating on the surface at v, in the form of a siphon; this dispostion of the internal cavities of the earth, which we may reasonably suppose that nature has formed in a variety of places, will serve to explain the principle of reciprocaling springs; for it is plain, that the cavity xop must be supplied with water to the height QPT, before it can pass over the bend of the chamel at T , and then it will flow through the longer leg of the siphon $T V$, and be discharged at the end r, which is-lower than s. Now if the channel stv be considerably larger than No , by which the water is principally conveyed into the reservoir XOP, the reservoir will be emptied of its water by the sjphon; and when the water descends below its orifice s, the wir will drive the rernaining water out of the channel stv, and the epring will cease to flow. But in time the water in the reservair will again rise to the height QPr, and be discharged at v as tefore. It is casy to conccive, that the diameters of the channels no and srv may be so pioportioned to one annther, as to afford an intermission and renewal of the spring v at regular interials. Thus, if no communicales with a well supplied by the tide, during the time of How, the quantity of water conveyed by it into the cavity xup may be sufticient to fill it up to QPT; and stv may be of such a size as to emply it, during the time of ebb. It is cacy 10 apply this reasoning to more complicuted cuses, witere several resersoirs and siphoas communicating with each other, may supply springs with circumstances of greater varety. Sce Musschenbroek's Introd. ad Phil. Nat.tom. ii. pa. 1010. Desagu. Exp. Phil. vol. iti, pe. 173, \&c. And Nicholson's Philos. Journal, v. 35, p. 178, \&c.

We shall bere observe, that Desaguliers calls those reeiprocuting springs which flow constantly, but with a stream subject to inere ase and decrease ; and thus be distinguishes them from intermiting springw, which flow or stop aternately. It is said that in the diucrse of Puderborn, in Westphala, there is a spring which disappears after twen-ty-fuili hours, and always returns at the end of six hours with a great noise, and with so much force, as to turn three mills, not far from its source. It is called ihe Bolderborn, or boisterous sping. Phil. Trans. No. 7. There are mally springs of an extraordinary nature in our own country, which it is needless to recite, as they are explicable by the general priaciples already illustrated.

SpRivg, Ver, in Astronomy and Cusmography, denotes one of the seasons of the year; commencing, in the northern parts of the earth, on the day the sun cuters the first degree of Aries, which is about the 21 st day of March, and ending when the sun enters Cancer, at the summer solstice, about the ! Ist of June; spring ending when the summer begins. Or, more strictly and generally, for any part of the earth, or on either side of the equatur, the spring season begins when the meridian altitude of the sum, being on the increase, is at a medium between the greatest and least; and ends when the meridian altitule is at the greatest. Or the spring is the season, or time, frum the moment of the sun's crossing the equator till he rise to the greatest height above it.

Elater Spaing, in Physic, demstos a natural faculty, or endeavour, of certain bodies, to return to thear first state, after having ben violently put out of the same by compressiag, or bending then, or the like. This faculty is usually called by philosophers, elostic force, or clasticity.

Sprixg, in Mechanics, is used to siguify a body of any shape, perfectly elastic, or nearly so.

Elanticity of a Sping. Siee Elastictity.
Length of a Sprino, may, from its etymology, signify the length of any elastic body ; but it is parricularly used by Dr. Jurin to signify the greatest length to which a spring can be forced inwards, or drawn nutwards, without prejudice to its elasticity. He observers, this woutid be the whole length, were the spring considered as a mathematical line; but in a material spring, it is the difference between the whole length, when the spring is in its natural situation, or the situation it will rest in when not disturbed by any external force, and the length or space it takes up whea wholly onmpressed and closed, or when drawn out.

Sirength or Force of a Spaing, is used for the force or weight which, when the spring is wholly compressed or closed, will just prevent it from unbending itself. Also the force of a spring partly bent or closed, is the force or weight which is just sufficient to keep the spring in that state, by preventing it from unbending itself any farther.

The theory of springs is founded on this principle, ut intensio, sic vis: that is, the intensity is as the compressing force; or if a spring be any way forced or put out of is natural situation, its resistance is proportional to the space by which it is removed from that siruation. This principle has been verified by the experiments of Dr. Hooke, and since him by those of others, particularly by the accurate hand of Mr. George Grabain. Lectures De 1'ocentia Restitutiva, 1678.

For elucidating this principle, on which the whole theory of springs depends, suppose a spring cL, resting at I against any immoveable support, but otherwise lying in its natural situation, and at full liberly. If this spring be pressed inwards by any force p, or from c towards 1 , through the space of one inch, and can be there detained by that force p, the resistance of the spring, and the force p, exactly counterbalancing each other; then will the double force $2 p$ bend the spring through the apace of 2 inches, and the triple force $3 p$ through 3 inches, und the quadraple force $4 p$ through 4 inches, and so on. The space CL through which the spring is bent, or by which its end c is removed from its natural situation, being always proportional to the force which will bend it so fur, and will just detain it when so bent. On the other hand, if the end c be drawn outwards to any place λ, and be there detained frota returning back by any force p, the

space c)., through which it is so drawn outwards, will be also propurtional to the furce p, which is just able to retain it in that situation.

It may here be observel, that the spring of the air, or its elastic force, is a power of a different nature, and governed by diflierent laws, from that of a palpable rigid spring. For supposing the line ee to represcont a cylindricnl voluine of air, which by compression is reduced to $2 /$, or by dilation is extended to $L \lambda$, its elastuc forcie wal be reciprocally as L or $\mathrm{L} \lambda$; wherens the force or respstance of a sping is directly as $\mathrm{c} l$ or c ..

This principle being premised, Dr. Jurin hays down a general theorem cuncerning the action ot a body striking on one end of a spring, while the other the is supposed to rest against an inmonveatle support. Thus, if a spring of the strength P, and the length $C L$, lying at full liberty upon as horizontal plane, rest with one ead L against an immoveable suppor1; and a body of the weight m , moving with the velocity v , in the direction of the axis of the spring, strike di-
 rectly on the other end c, and so force the spring iuwards, or bend it through any space CB; and if a mean proportional ce be taken between $\frac{3}{2} \times \mathrm{cL}$ and $2 a$, where a denotes the beight to which a body would ascend in vacuo with the velocity v; and further, if upon the radius $n=$ co be described the quadrant of a circle ofa: then,

1. When the spring is bent through the right sine CB of any arc GF, the velocity w of the body m is to the original velocity v , as the cosine ar is to the radius CG ; that is $\mathrm{D}: \mathrm{v}:: \mathrm{Br}: \mathbf{c}$, or $\mathrm{v}=\frac{\mathrm{aF}}{\mathrm{n}} \times \mathrm{v}$.
2. The time t of beading the spring through the same sine CB, is to T, the time of a heavy body's uscending in vacuo wih the velocity v, us the corresponding are is to 2a; that is $t: \mathrm{T}:$: of: $2 a$, or $t=\frac{a p}{2 a} \times \mathrm{T}$.

The doctor gives a demonstration of this theorem, and deduces a great many curious corollaries from it; which he divides into three classes. The first contains such cro rollaries as are of more particular use when the spring is wholly clused before the motion of the body ceases: the second comprehends those rrlating to the case, when the motion of the body ceases before the spring is wholly closed: and the third when the motion of the body ceases at the instant that the spring is wholly closed.
3. We shall here mention some of the last class, as being the most simple; having first premised, that $\mathrm{P}=$ the strength of the spring, $L=i t s$ length, $v=$ the initial velocity of the budy closing the spring, $y=i=$ its mass, $t=$ time spent by the body in clusing the spring, $4=$ height from which a beavy body will fall in vacuo in a seennd of time, $a=$ the height to which a body would ascead in vacuo with the velocity $\nabla, c=$ the velocity gained by the fall, $m=$ the circumference of a circle, whose diameter is 1 . Then, the mation of the striking body ceasing when the spring is wholly closed, it will be, $1 \mathrm{st}, 2 \mathrm{~d}$, and 3 d ,
 first momentum.
4. If a quantity of motion $m \mathrm{~F}$ bend a apring through its whole length, aad be deatroyed by it; no ethet guan
tity of motion equal to the former, as $n \times \times \frac{v}{n}$, will close the saine spring, and be wholly desiroyed by $\mathrm{ft},-5$. But a quantity of motion, greater or less than mv, in any given ratio, maly close the same spring, and be wholly destroyed in closing it; and the time spent in clusing the spring will be respectively greater or less, in the same given ratu.6. The inutial vis viva, or $M v^{2}$ is $=\frac{c^{2} r L}{2 A}$; and $2 a m=P L$; also the initial vis siva is us the rectangle under the length and sirength of the spring, that is, $\mathrm{m} \mathrm{x}^{2}$ is as $\mathbf{P L} .-7$. If the vis vivat Nr^{2} bend a spring through its whole length, and be destroyed in closing it; any other vis viva, equal to the former, as $n^{2} \times \times \frac{v^{7}}{n^{i}}$, will close the same spring, and be destroyed by $t,-8$. But the time of closing the spring by vis viva $n^{2} x \times \frac{v^{\prime}}{m}$, will be to the time of closing it by the vis viva m^{2}, as a to $\mathrm{I} .-9$. If the vis viva mv^{2} be wholly consumed m closing a spring, of the length L, and strength P; then the vis viva $n^{2} \mathrm{~m}^{2}$ will be sufficient to cluss, lst, Lither a spring of the lengtb z and strength $\eta^{\prime \prime} \mathrm{P}$. 2d, Or a spring of the length nL and strength $n \mathrm{P}$. Sd, Or of the length $n^{a} L$ and strength p. 4 th , Or, if n be a whole number, the number n^{4} of springs, each of the lemgth L and strength $\mathbf{P} .-$ It may be added, that t apperars from hence, that the number of similar and equal springs a given body in motion can wholly close, is always proportonal to the squares of the veloetity of that body. And it is from this principle that the chief argument, to prove that the force of a body in mution is as the square of its velocily, is dieduced. See Fonck.
The theorem given abover, and its corollaries, will equally hold arod, if the spring be supposed to have been at first beut through a certain space, and by unbending inself to pross upon a body at rest, and thus to drive that body before it, during the time of its expansion : only ∇, instead of being the mitial velocity with which the body struck the spring, will now be the final velocity with which the body parts from the spring when totally expainded.

It may also be observed, that the theorem, \&c, will equally hold gored, if the spring, instead of being pressed inward, be drawn outward by the action of the body. The like may be said, if the spring be supposed to have been already drawn ontward to a certaia length, and in restoring itself draw the body after it. And lastly, the theurem extends to a spring uf any form whatever, provided 2 be the greatest length it can be extended to from its natural situation, and F the force which will confine it to that length. See Philos. Trans num. 472, sect. 10 , or vol. 49, art. 10.

Spung is more particularly used, in the Mechanic Arts, for a pisec of tempered steel, put into various machines to give them motion, by the endeavour it makes to unbend insulf. In watches, it is a fine piece of well-benten steel, coited up in a cylindrical case, ur frame; which by stretching itself fortb, gives motion to the wheels, \& c.

Spring Arbor, in a Wutch, is that part in the middle of the spring bux, about whicb the spring is wound or turned, and to which it is booked at one end.

Sprixg Bor, in a Watch, is the cylindrical case, or frame, cuataining within it the spring of the watch.

Sprisg Compaser. See Compasses.
]
Spheso of the Air, or its elastic force. See Ain, and Elasticity.
Sprino-Fides, are the higher tides, about the times of the new and full moon. See Tide.

Sprivgt, of Elastic Body. See Elastic Body.
SQUARE, in Geometry, a quadriateral figure, whose angles are right, and sides equal. Or it is an equilateral rectangular paralkelogram. A square, and indeed any other parallelogram, is bisected by its diagonal; but the side of a square is incommensurable with its diagonal, being in the ratio of 1 to $\sqrt{ }$ 2.

To, find the Area of a Square. Multiply the side by itself, and the product is the area. So, if the side be 10 , the area is 100 ; and if the side be 12, the area is 144.

Square Foot, is a square each side of which is equal to a foot, of 12 incles; and the area, or square foot is equal to 144 square inches.

Geonetrical Squate, a compartment often added on the fuce of a quadrant. Sec Line of Sila dow s, and Quadrant.

Gumner's Square. See Quadrant. Magic Sqliatz. Sce Magic Square.
Squa a e Measmres, the squares of the lineal measures; as in the following table of square measures:

Squa. Inches.	Sq. Fret.	Sq. Yands.	Nq Poles	SCha		$\xrightarrow{\text { Sq.Milee. }}$
144	3					
1296	9	1			-	
99204	279	3 O	1			
6a7 264	4,356	484	16	1		
6278640	43sA0	4840	160	10	1	
4014489600	278; ${ }^{\text {a }}$ (00	3097600	101400	6400	640	1

Normal Square, is an instrument, made of wood or metal, serving to describe and measure right angles; such is asc. It consists of two rulers or branches fastened togetber per-pendicularly.When the two legs are moveable on a joint, it is called a bevel.-
 To examine whether the square be exact or not. Describe a semicircle DaE, with any radius at pleasure; in the curcumference of which apply the angle of the square to any point as 8 , and the edge uf one leg in one end of the diameter as D, then if the other leg pass just by the other extremity at E, the square is true; otherwise not.

Square Number, is the product arising from a number multiplied by itself. Thas, 4 is the square of 2 , and 16 the square of 4.
The series of square integers, is $1,4,9,16,25,36, \& \mathrm{c}$;
which are the squares uf $.1,2,3,4,5,6, \& c$.
 which are the squares of - $\frac{4}{4}, \frac{2}{3}, \frac{1}{4}, \frac{4}{3}, \frac{4}{7}, 8 \mathrm{c}$. A square number is so called, either because it denotes the area of a square, whose side is expressed by the root of the square number; as in the annexed square, wbich consists of 9 little squares, the side being equal to 3 ; or else, which is much the same thing, because the points in the number may be ranged

is the form of a square, by making the root, or factor, the side of it, thus,

Some properties of squares are as follow: 1. Of the

Natural sesies of squares, $\quad 1^{2}, 2^{2}, 3^{2}, 4^{2}, \$ c$, which are equal to $1,4,9,16, \& c$;
The mean proportional mn between any two of these squares m^{2} and n^{2}, is equat to the liss square plus its root multiplied by the difierence of the roots; ur also equal to the greater square minus its root multiplied by the said difference of the roots. That is,
$m n=m^{4}+d m=n^{4}-d n ;$
wheic $d=n-m$ is the difference of their routs.
2. An arithmetical mean between any two squares m^{2} and n^{2}, exceeds their geonctrical mean, by half the square of the difference of their roots.

$$
\text { That is, } \frac{1}{} m^{2}+\frac{1}{2} n^{2}=m n+\frac{1}{1} d^{2}
$$

3. Of three equidistant squares in the scries, the grometrical mean between the extremes, is less than the middle square by the square of their common distance in the series, or of the common difference of their roots.

$$
\text { That is, } m p=n^{4}-d^{2} \text {; }
$$

where m, n, p, are in arithmetical progression, the common difference being d.
4. The difference between the two adjacent squares m^{2}, and n^{2}, is $\quad n^{2}-m^{2}=2 m+1$; in like manner, $p^{2}-n^{2}=2 n+1$, the difference between the next two adjacent squares n^{3} and p^{2}; and so on, for the next following squares. Hence the difference of these differences, or the second diffirence of the squares, is $2 n-2 m=2 \times(n-m)=2$ only, because $n-m$ $=1$; that is, the second differences of the squares are each the same constant number 2: therefure the first differences will be found by the continual addition of the number 2; and then the squares themselves will be found by the continual addition of the first differences; and thus the whole series of squares is constructed by addition ouly, as here below :

2d Dif.	2	2	2	2	2	2	$\& c$.
1st Dif.	1	3	5	7	9	11	13
\&c.							
Squares	1	4	9	16	25	36	49
Sc.							

And this method of constructing the table of square numbers was first noticed by Pelctanius, in his Algelira.
5. Anozher curious property, also noted by the same suthor, is, that the sum of any number of the cubro of the natural serics $1,2,3,4$, A.c, taken from the brginning, always makrs a square number; and that the merics of squares, so formed, have for their roots the numbers

$$
1,3,6,10,15,21, \$ c,
$$

thediffs. of which are $1,2,3,4,5,6, \& c$,
riz, $1^{3}=1^{3}$,

$$
\begin{aligned}
& 1^{3}+2^{3}=3^{2} \\
& 1^{3}+2^{3}+3^{3}=6^{3} \\
& 1^{3}+2^{3}+3^{3}+4^{3}=10^{\prime} ; \text { and in general } \\
& 1^{3}+2^{3}+3^{3}+n^{3}=(1+2+3+n)^{2}=1 n(n+1)
\end{aligned}
$$

where n is the number of the terms or cubes.
6. Fivery odd square number, when divided by 8 , leases a remainder 1. Or every odd square is of the form $8 n+1$.
7. Every even square is of the form $4 n$. Therefore no number of the form $4 \pi+2$, or $4 n+3$, is a square number.
8. No number of the form $2 t^{2} \pm 3 n^{2}$, can be a square. No number of the form $2 t^{2} \sim 5 n^{3}$ can be a iquare. The following table shows roany of the impossible forms for square number, arranged according to every modulus
from 2 to 11; that is, no number contained in any one of these forms can be a square.

Table
Of the impossible Forms for square numbers.

Modulus 3.	Modulue 4.	Modalus 3.
$2 t^{4} \pm 3 q^{n^{2}}$	$22^{2}-+q n^{2}$	$2 t^{2}-3 q n^{2}$
$3 t^{1} \pm 3 y^{2}$	$3 r^{2} \pm 4 \mathrm{~cm}^{2}$	$3 r^{2}-5 q n^{3}$
$5 t^{2}$ 土 $34 n^{2}$	$6 r^{2}-4 q n^{2}$	$7 t^{2}-5 q n^{2}$
$s t^{2} \pm 3 q n^{2}$	$7{ }^{\circ}$ ($4{ }^{\text {a }}$	$8 t^{2}-3 \varphi \pi^{4}$
$116^{2} \pm 3 q n^{2}$	$106^{2}-49^{3}$	$122^{2}-5 q n^{4}$
14^{2} ㅍ $3 q n^{2}$	$11^{2} \pm 4 \chi^{n^{2}}$	$13 t^{2}-5 y n^{2}$
eral Furms.	Generis	
$\begin{array}{r} (3 p+2) t^{2} \pm 6 q n^{2}(4 p \pm 2) r^{2}-4 q n^{2} \\ 3 p t^{2} \pm 3 q m^{2} \mid(4 p+3) r^{2} \pm 4 q n^{2} \end{array}$		$(5 p \pm 2) t^{2}-5 q n^{4}$
M $\times 1$	M	dula
$2 a^{2} \pm 6 y^{3}$	$9^{2} \pm 7 \mathrm{ma}^{2}$	$26^{3} \pm 8 q n^{4}$
$3 a^{2} \pm 6 \varphi n^{2}$	$5 t^{2} \pm 7 g^{2}$	$3 t^{2} \pm 89 n^{2}$
$5 s^{2} \pm 6 q n^{2}$	$6 t^{2} \pm 7 q n^{4}$	$s r^{8} \pm 8 q^{4}$
$8 t^{2} \pm 6 q^{2}$	$10{ }^{2} \pm 7 q n^{8}$	$6 t^{\prime} \pm 8 q n^{2}$
$111^{2} \pm 6 y^{2}$	$122^{2} \pm 79^{2}$	$100^{2} \pm \mathrm{Sqn}^{3}$
$14 i^{2} \pm 6 q^{3}$	$136^{2} \pm 79^{4}$	$1 t^{2} \pm 8 q n^{3}$
General Forns.	eneral Forns.	General Formi
$p+2) t^{2} \pm 6 q m^{2}$	$(7 p+3){ }^{2} \pm$	$(8 p \pm 2) t^{2} \pm 89 r^{4}$
$3 p s^{2}+6 y n$	$(7 p+5) r^{2} \pm 7 y z^{2}$	
	$(7 p+6) r^{2} \pm 7 y^{-2} \mid$	
Mulular 9	Mextús 10.	Midu'tos:
$2 t^{*} \pm 9 q n^{4}$	$2 t^{2}-109^{2}$	
$3 r^{2}-9 y^{3}$	$33^{2}-10 \mathrm{Ca}^{2}$	$61^{2} \pm 11 y^{2}{ }^{2}$
$5 t^{4} \pm 9 y^{\text {n }}$	$77^{4}-10 \mathrm{~T}^{2}$	$7 c^{2} \pm 11 q N^{2}$
$6 i^{2}-97^{\text {n }}$		$88^{9} \pm 11 \mathrm{fm}^{2}$
$84^{4} \pm!2 m^{2}$	$122^{4}-10 j^{m^{2}}$	$10 s^{2} \pm 11 \mathrm{gn}^{2}$
$114^{2} \pm 9 q n^{2}$	$13 t^{4}-10 q^{n^{4}}$	$13 r^{\text {a }} \pm 11 g^{n e}$
General Firma.	F F	General Forma
$\begin{aligned} & (9 p+2){ }^{2} \pm 9 q^{n} \\ & (9 p \pm 3) v^{2}-9 q^{n} \\ & \& c \end{aligned}$	$31 \pm 2)^{2}-10 q n^{2}$	$11 p+2) \theta^{4} \pm 11 q n^{*}$
		$(11 p+6) r^{2} \pm 11 q n^{2}$
		sc

In this table it is only necessary to remark that q must always be taken prime to the modulus.

Square Root, a number considered as the mot of a scomal power or square number: or a number wbich multiplied by itwelf, produces the given number. Sec Eitraction of Roots, and also the article Root, where tables of squares and roots are inserted.
T. Square, or Tce Squalle, an instrument used in drawing, so called from its resemblance to the capital letter T . This instrument consi-ts of two straight ruters $A B$ and $C D$, fixed at right augles to each other. To which is sometimes added a third EF, moveable about the pin c, to set it to make any angle with CD.It is very useful for drawing parslIel and perpendicular lines, on the face of a smooth drawing-board.

SQUARED-square, SQUAbed* cube, \&c. Sce Power.

SQUARING. Sce Quadrature.
Squanina the Circle, is the making or finding a square whose area shall be equal to that of a given circle. The best mathematicians have not yet been able to resolve this problem accurately, and perhaps never wilf. But they can eavly come to any proposed degree of approximation whatever ; lur instance, so near tas not to err so much in the area, us a grain of sand would cover, in a circle whose thameter is equal to that of the orbit of Sa turn. The following proportion is near enongh the truth for any real use, viz, as 1 is to -85622692 , so is the diameter of any circle, to the side of the square of an equal area. Therefore, if the diameter of the circle be called d, and the side of the equal square s;

$$
\begin{aligned}
& \text { then is } s=\cdot \$ 8622692 d=\frac{10}{40} d \text { nearly, } \\
& \text { and } d=\frac{1}{{ }^{5 n 6+1691}}=\frac{4}{5} \frac{1}{5} \text { nearly; }
\end{aligned}
$$

See Circle, Dia meter, and Quadraturf.
STADIUM, an ancient Greck long measure, said to contain 145 grometrical paces, or 625 Roman feet ; cormesponding to our furlong. Eight stadia make a geometrical or Homan mile; and 20, according to Dacier, a French league: but according to others, 800 stadia make $41 \frac{1}{3}$ leagues-Guilletiere observes, that the stadium was only 600 Athenian feet, which amount to 625 Roman, or 566 Freneh, or 604 English feet: so that the stadium should have been only 1 is geometrical paces. It must be observed however, that the stadium was different at different times and places.

Thus, according to the measures of Hipparchus, 769 stades inake a degree on a great circle of the earth, or about 11 to the English mile. By the result of Ptolemy's measures $716 \frac{1}{3}$ stades make a degree, or 101 an English mile. According to Vernon, Stuart, and Chaudler, all of whom measured $i t$, the Pannthenaan stade was rather more than 600 Greek feet in lengtb. Now the Greek foot is to the English, as 107*29 to 100; therefore the length of that stade was abyut 604 English fiet, or $9 f$ nearly Panathxan stades were cqual to an English mile. - For an interesting disquisition on the different kinds of stades, see the Quarterly Review, vol. 5, p. 278 \&c.

Eratusthenes, in his measurement of the earth, makes the circumference of it eyual to $90,000,000$ stadia, or one degree equal to 230,000 studia. Now if in this vaIuation we make use of the Egyptian stadium, 60 of which make 3024 toisey, we shall have for the length of the degree about 5,5000 toises, which is too little by the modern measurement, its true length being about 57050 tuises.

The Olympic stadium, it is said, was about 94 feet 3 inches French measure; and supposing this to have been that employed by Eratosthenrs, we should have for the length of a terrestrial degree $6 \leq 625$ toises, which is muth too great.

It fullows therefore, either that we are unacquainted with the truc length of the stadium, at least that comployed by Eratosthenes, or that this celebrated ancient astronmener was much deccived in bis measurement: both of those are probable; and perhaps some of the other stadia, which are mentioned by different authors, are in a great measure the result only of their own imagination: thus, M. Picard, after supposing this measurement of Eratosthenes to be exact, thence deducea the value of the stadium, making it equal to 51 toises 10 inches.

Vol. II.

STAFF, Almucantar's, Augural, Beck, Cross, Fore, Ofist, \&c. See these several articles.

STANLEY (Tisom 4s), f. b.s. a learned writer, son of Sir Thomus Stanley, of Hertfirdstire, died in Wessminster April 12, 1678 . He studied at Pembroke 1/all in the utiversily of Cambridge, with great credot, where he book the degree of $A .9,1640$, after which he went on his travels. On his return he entered of the Middle Temple, but did nut follow the law." He was one of the early fellous of the Royal Society, being electeds in July 1661 , and was estemed a very learned and wontliy member. He edited sume of the ancient classics, with notes; and publishal sweral ingenious poems of his own, as well as sume translations. But the work on account of which be claims a place in this Dictionary, is his History of Philumphy and Lires of Philosophers, in solio. This was first published in 3 parts, in 1653, 1636, and 1660. And in 1662 came out his Chalduic Philosophy ulso.
STAR, Stella, in Avtontmy, a genersl name for all the heavenly bodks. The stars are distinguislied into fixed and crratic or wandening.

Erratic or Wandering Staks, are these which are continually changing their places and disances, with regard to each other. These are what are property called planets. Though to the same class unay likewise be referred comets or blazing stars.

Fired Staks, called also barely Stars, by way of eminence, are those which have usually boen obsersed to kerp the same distance, with regard to cuch other. The chief circumstances observable in the fixed stars, are their distance, magnitude, number, nature, and motion. .

Distance of the Fixed Stans. The fixed stars are so extremely remote fron us, that we have no distances in the planetary system to compare to thens. Their immense distance appears from bence, that they have no sensible parallax ; that is, that the diameter of the carth's annual orbit, which is nearly 190 millions of miles, bears no sensible proportion to their distance.

Mr. Huggens (Cosmotheor. lib, 4) attempts to determine the distance of the stars, by making the aperture of a telescope so small, that the sun through it appears no larger than Sirius; which he found to be ouly as 1 to 27664 of his diameter, when well with the nakel cye. So that, were the sun's distance 27,064 times as unuch as it is, it would then be seen of the same diameter with Sirius. And lience, suppesing Sirius to be a sun of the same magnitude with our sun, the Jlstance of Sirius will be found to be $27,66+$ times the distance of the sun, or 345 million times the carth's diameter.

Dr. David Gregory investigated the distance of Sirius by supposing it of the sanue magnitude with the sun, and of the same apparent diameter with Jupiter in opposition: as may be seen at large in his Astronomy, lib. 3, prop. 47.

Cussini (Mem. Acad, 1717), by comparing Jupiter and Sirias, whell viewed through the same telescope, inferred, that the diameter of that planet was 10 times as great as that of the star; and the dameter of Jupiter being $50^{\circ "}$ " he concluded that the diameter of Sirius was about $\mathrm{s}^{\prime \prime}$; supposing then the real magnitude of Sirius to be equal for that of the sun, and the ditance of the sun from us 12,000 diameters of the earth, and the apparent drameter of Sirius being to that of the sun as ito $38 t$, the 3 K
distance of Sirius becomes equal to $\mathbf{4 , 6 0 5 , 0 0 0}$ diameters of the earth.

These methods of Huygens, Gregory, and Cassini, are conjectural and precurions; buth because the sun and Sirius are supposed of equal magnitude, and also because
" it is supposed the dianeter of burius is determined with sufficient exactness.

Mr. Michell has proposed an inquiry into the probable parallax anal magntude of the fived stars, from the quantity of light which they affurd us, and the peculiar circumstances of their situation. With this view he supposes, that they are, on a mediuna, equal in magninude and natural brightmess to the sinf and then procecds (t) illquire, what would be the parallas of the sun, if he were to be renoved so far from us, as to make the quantity of the light, which we should then receive from him, no mare than equal to thas of the fixed stars. Accordingly, he assunes Saturuin opposition, as equal, or nearly equal in light to the brightrost fixed star. As the mand dintatice of Saturn from the sin is cqual to about 2052 of the sun's semidameters, the density of the sun's light at Saturn will consequently be less than at his own surface, in the ratio of the square of 2082 or $\$ \mathbf{8 3 4 . 7 2 4}$ to $1:$ if Saturn therefore reflected all the light that falls upon him, he wodid be less luminous in the same pros portion. And benides, his apparent diameter, in the opposition, being but about the 105th part of that of the sun, the quantity of light which we receive from bim must be again liminished in the ratio of the square of 105 or 11,025 to 1. Consequently, by multiplying these two numbers together, we shall bave the whole of the light of the sun to that of Suturn, as the square nearly of 220,000 or $48,400,000,000$ th 1 . Hence, remoring the sun to 220,000 times his present distance, he would still appear at least as bright as Saturn, and bis whole paralluax upon the diameter of the carth's orbit would be liss than 2 seconds: anl this must be assumed for the ptrallax of the brightest of the fixed slars, on the suppersition that their light does not exceed that of Saturn.

By a like computation it may be found, that the distance, at which the sun would afford us as much light as we receive from Jupitur, is not less than 46,000 times bis present ilistance, and bis whole parallax in that case, on the diamster of the earth's orbit, would not be mare than 9 secunds; the light of Jupiter and Suturn, as seen from the earth, being in the ratio of about 22 to 1 , when they are both in opposition, and supposing them to refiect equally int proportion to the whole of the light that falls upon them. But if Jupitor and Saturn, instead of reflecting the whole of the light that falls upon them, should really reflect only a part of it, as a 4 th, or a 6 th , which may be the case, the above distances must be increased in the ratio of 2 or $2 \frac{1}{9}$ to 1 , to make the sun's light no more than equal to theirs; and his parallax would be less in the same proportion. Supposing then that the fixed stars are of the same magnitude arid brightness with the sun, it is no wonder that their parallax should hitherto have escaped observation; since in this case it could hardly amount to a seconds, and probably not more than one in Sirius himsclf, though he bad been placed in the pole of the ecliptic; and in those that appear much less luminous, as γ Draconis, which is only of the Sd magnitude, it could hardly be expected to be sensible with such instrumenth as have bitherto been used.

Howevcr, Mr. Michell suggerts, that it is not impracticable to cunstruct instrumont, capable of distinguishing even to the qoth part of a secund, provided the air will admit of that degree of exactows, This ins ainus writer apprebends that the quantity of light which we receive tiom Sirius, dees not eaceed the light we receive frum the keast fived star of the 6 th magmiude, in a greater ratio than that of 1000 tu 1 , nur lass than that of 400 to 1 ; and the smaller stars of the 2 d magnitude sectu to be about a man proportional between the ohher two. Hence the whole parallax of the liant fixed stars of the Gith namgitude, supposiag thom of the satne siz. and native Lrightdess with the sun, should be from abme $2^{\prime \prime}$ to $3^{\prime \prime \prime}$, and their distance from about 8 tv 12 million times that of the sun: and the parallax of the smaller stars of the 241 magntud, on the same supposition, should be about $12^{\prime \prime \prime}$, and their distance about 2 million times that of the sm.

This author further suggests, thut, from the ajparent situation of the stars in the hearens, it is bighly probable that the stare are cullected tugether in clusters ilt some placer, where they form systems, while in others theie are cither few or none of them; whether this slisposition be owing to their muthal gravitation, or to some mher law or apposintment of the Creator. Hence it may br inferred, that such duuble stars, \&c, as appear to consist of two or more stars placed very near together, do really consist of stars placed near tugether, and under the influcnce of some general law: and he proceeds to inquire whether, if the stars be collected tuto systems, the sun does not likewise make one of some system, and which fixed stars those are that helong to the same system with him.

Thuse sturs, be appsebends, which are firund in clusters, and surrounded by many others at a small distance from them, bolong probably to other systems, and not to ours. And those stan, which are surroutded with nebula, are probably ouly very large stars which, of wecount of their superior inagnituic, are singly visible, while tie others, which compose the remaining parts of the came system, are so sinall as to escape our sight. And thess nubule in which we can discover either none or only a few siers, even with the assistance of the best telescepies, are probably systems that are still more distant than the rest. For other particulars of thys inquiry, see Philos. Trans, vol. 57 .

As the distance of the fixect stars is best determined by their parallax, varions methods hase been pursued, though hitherto without success, far invertigating it; the result of the most accurate observations having given us lutle more than a distant approximation; from which however we may conclude, that the nearest of the fixell stars cannot be less than 40 thousand drameters of the whole annual orlit of the earth distant from us.
The method pointed out by Gulileo, and attempted by Hooke, Flamsteed, Molyneux, and Badley, of tahing the distances of such stars froto the zenith as pass very mear it, has given us a more just ivlea of the iminense distance of the stars, and furnished an approximation to their parallax, much nearer the truth, than amy we had before:

Dr. Bradley assures us (Philos. Trans. No. 406) that had the parallax amounted to a single second, or two at most, he should have perceived it in the great number of observations which he made, expecially upon γ Draconis ; and that it seemed to binn very probuble, that the annual parallax of this star docs not amount to a single second
and consequently that it is above $\mathbf{4 0 0}$ thousand times further from us than the sun.
But Dr. Herschel, to whose industry and ingenuity, in exploring the heavens, astronomy is so much ind-Lted, iemarks, that the instrument used on this oceasion, being the same with the prescut zenith sectors, can hardly bealJowed capable of showing an angle of one or even two scconds, with accuracy: and besidex, the star on which the observations were made, is only a bright star of the 3 d magnitude, or a small star of the 2d; and that therefore its parallax is probally much less than that of a star of the first magnitude. So then we are not warranted in inferring, that the parallax of the stars in general does not exceed $1^{\prime \prime}$, whercas thove of the firat mngnitude may have, notwithstanding the result of Dr. Bradley's observations, a parallex of several seconds.

As to the method of zenith distances, it is liable to considerable errors, on account of refraction, the change of pasition of the carth's axis, arising from nutation, precession of the equinoxes, or other causes, and the aberration of light.

Dr. Herschel has proposed another method, by means of double stars, which is free from these errors, and of such a nature, that the annual parallax, even if it should not exceed the 10th part of a second, may still become visible, and be ascertained at least much nearer than herotofure. This method, which was first proposed in an imperfort manner by Galileo, and bas been also inentioned ly other authors, is capable of every improvenent which the teflescope and mechanisin of - wicrometers can furnish. To gire a general ielea of $i t$, let 0 und z be two opposite points of the annual orbit, taken ill the same plane with two star, A, B, of uncqual magnitudes. Let the angle ans be observed whin the earth is at o, and $A E A$ be obscrved when the earth is at e. From the ditference of these angles, when there is any, the parallax of the stais may be computed, according to the theory subjoined. These two stars ought to be us near as possible to each other, and also to differ as much in nagnitude as we can
 find them.
This theory of the annual parallax of double stars, with the method of computing from thence what is usually called the parallsx of the fixed stars, or of single stars of the first magnitude, such as are nearest to us, supposes ist, that the stars are all about the size of the sun; and 2 dly , that the diffirmence in their apparent magnitudes, is owing to their different distances, so that a star of the $2 \mathrm{~d}, 3 \mathrm{~d}$, or 4 th magnitude, is 2, 3, or 4 .times as far off as one of the first. These principles, which Dr. Herschel premiscs as postulata, have so great a probability in their favour, that they will scarcely be objected to by those who are in the least acquamted with the floctrine of chances. Set Mr. Michell's Inquiry, dec, already cited. And Philos. Trans. vol. 57 , pa. $234 \cdots 240$. Also Dr. Halley, on the Number, Order, and Light of the fixed Stars, in the Philos. Trans. vol. 31.

Therefore, let so be the whole diameter of the earth's annual orbit; and let A, B, C be three stars situated in the echptic, in such a manner, that they may appear all in one line oanc when the earth is at 0 . Now if OA, AB, bc be equal to each other, a will be a star
of the first magaitude, \boldsymbol{B} of the seond, and c of the third. Lat us next suppose the angle oas, or parallax of the whole orbat of the carth, to be $1^{\prime \prime}$ of a digree; then, because very small angles, huving the sume subtense En, may be considerea as in the inverse ratio of the linersos, OB, oc, \&c, we whall have Ebo $=\frac{1^{\prime \prime}}{}$, and tco $=1^{\prime \prime}$, Acc, also because $\mathrm{Es}=\mathrm{A} B$ neurly, the angle $A E B=A B E=\frac{1}{2}{ }^{\prime \prime}$; and becanse ne $=1$ no $=1$ ine wearly, the angle aLC $=\frac{1 \text { ace }}{}=\frac{t^{\prime \prime}}{6}$, and bence $\mathrm{AKC}=\frac{1}{2}+\frac{1}{0}=\frac{2^{\prime \prime}}{3}$; whence it follows that, when the earth is at E, the stars A and 8 appear at $\frac{18}{1 / 2}$ distant from each other, the stars a and c at $\frac{3^{\prime \prime}}{3^{\prime \prime}}$ distant, atad the stars a and c only $\frac{8^{\prime \prime}}{}$ distant. In like munner may be deduced a general expression tor the parallax that will become visible in the change of distance between the two
 stars, by the removal of the earth frotn one extreme of her orbit to the other. Let \boldsymbol{P} denote the total parallax of a fixed star of the magnitude of the M order, and m the number of the order of a smuller star, p denoting the partial parallax to be observed by the change in the distance of a double star; then is $p=\frac{m-M}{\text { id }-P}$, or $P=\frac{m p}{m-M}$, which gises P, when p is fuund by obscrvation.

Fur İx. Suppose a star of the ist magnitude should have a small star of the 121 h magnitude near it ; then will the partial parallax we are to expect to sce be $\frac{12-1}{12} P=\frac{1}{1} P$, or $1 \frac{1}{2}$ of the total parallax of the larger star ; and if we should, by observation, find the partial parallax hetween two such stars to amount to 1^{7}, then will the total parallax $P=\frac{1^{2}}{\frac{1}{2}} P=1^{1} \mathrm{~T}^{\frac{t}{T}} \quad$ Again, if the stars be of the 3d und 24th magnitude, the totul parallax will be $P=\frac{24}{24-3} p={ }_{3}^{2} \frac{2}{3} p=\frac{7}{7} p$; so that, if by observation p be found to be T^{2} of a second, the wbole parallax P will amount $\frac{3}{T 0}=0.11428^{\prime \prime}$.

Further, the stary being still in the ecliptic, suppose they should appear in one line, when the earth is in some otber part of her orbit between E and 0 ; then will the parallax be still expressed by the same algebrajc formula, and one of the maxima will still lie at R , the other at 0 ; but the whole effect will be divided into two parts, which will be in proportion to each other, as radius - sine to radius \rightarrow sine, of the star's distance from the nearest conjunction or opposition.

Whell the stars are any where out of the ecliptic, situated so as to appear in one line oabc perpendicular to Eo, the maximum of parallax will still be expressed by $\frac{m-M}{m} P$; but there will arise anotber additional parallax in the conjunction and opposition, which will be to that which is found 90° before or after the sun, as the sine (s) of the latitude of the stars seen at 0 , is to radius (1); and the effect of this parallax will be tivided into two parts; half of it lying on one side of the large star, the other half on the other side of it . And this lutter parallax will ulso be compounded with the former, so that the distance of the stars in the conjunction and opposition will then be

SK 2
represented by the diagonal of a parallelogram, whose sides are the two semiparallaxes; a general expression for which will be $\frac{m-M}{2 m} P \sqrt{1+s^{2}}$, or $\frac{4}{2} p \sqrt{1+s^{2}}$.
When the stars are in the pole of the ecliptic, s will be $=1$, and the last formula becomes $\frac{1}{2} p \sqrt{2}=7071 \mathrm{p}$.

Again, let the stars be at some distance, is $3^{\prime \prime}$, from nach otber, and let them be both in the eclipuc. This case is resolvable into the first; for magite the star a to be situated at 1 ; then the angle asi may be accounted equal to sOr; and as the foregoing forraula, $p=\frac{m-M}{m} P$, gives us the angles AEB, AEC, we are to aid AFI or $5^{\prime \prime}$ to AEB, which will give 1 EB. In genctal, let the distance of the stars be d, and let the observed distance at E. be D ; then will $D=d+p$, and therefore the whole parallax of the annual orbit will be expressed by $\frac{D-d}{m-N} D d=P$.

Suppose now the stars to differ only in latitude, one being in the ecliptic, the other at some distance as 3 " north, when sernat o. This case may alon be resolved by the former; for imagine the stars B and c to be cevated at right angles nbove the plaue of the figure, so that Aon, or Aoc, tmay make an angle of $5^{\prime \prime}$ at o; then instead of the lines oanc, ea, ea, ec, imagine them all to be planes at right anglev to the figure; and it will applear that the parallax of the stars in longitude, must be the same as if the small star had been without latitude. And since the stars B, C, by the motion of the earth from o to e, will not change their latitude, we shall have the following conatruction for finding the distance of the stars $A B$ and $A C$ at E , and from thence the parallax P ?

Let the triangle ab β represent the situation of the stars; $a b$ is the subternse of $5^{\prime \prime}$, the angle under which they are suppered to be seen at 0 . The quantity 63 by the former sheorem is found $=\frac{m-M}{m} P$, which is the partial parallax, that would have been seen by the carth's moving from u to E , if both stars had been in the ecliptic; but, on ac-
 count of the difference in latitude, it will now be represented by $a \beta$, the lyppothenuse of the triatgle $a b \beta$: therefore in gencral, putting $a b=d, a \beta=D$, we have
$\frac{m}{m-M} \sqrt{D^{2}-d^{2}}=P$. Hence, D being found by observation, and the three d, m, M given, the total parallax is obtained.

When the stars differ in longitude as well as latitude, this case may be resolved in the following manner. Let the triangle $a b \beta$ represent the situation of the stars, $a b=d$ being their distance seen at $0, a \beta=D$ their distance scen at E . That the change b3, which is produced by the earth's motion, will be truly expressed by $\frac{n-N}{m} P$, may be proved as before, by supposing the star a to have been
 placed at z. Now let the augle of position baz be taken by a micrometer, or by any other method sufficiently exact; then, by resolving the triangle aba, we obtain the longitudinal and latitudinal differences aa and ba of the
two stars. Put $a x=x, b \alpha=y$, and it will be $x+b \hat{\beta}$ $=a q$, whence'
$D=\sqrt{ }\left(\left(x+\frac{m-M}{m} P\right)^{2}+y^{2}\right) ;$ and $P=\frac{\sqrt{ } D^{\prime}-y^{\prime}-x}{m} x_{m}^{M}$.
If neitber of the stars should be in the ecliptic, nor hare the same longitude or latitude, the last theoren will suill scrve to calculate the totul parallax, whose ntavimum will lie it e There will also arise another parallax. whose maximun will be iut the conjunction and opposition, which will be dwaded, and lie ot diturent sides wh the large star; but as the whole parallax is extremely small, it is not Decessury to investigate esery particular case of this kind; for by reason of the division of the parallax, which renders observations taken at any other ume, except where it is greates:, very unfavourable, the formula weuld be of hithe use.

Dr. Henchel cluses his account of this theory, with a general observation on the tinue and place where the haxima of parallax will happen. Thus, when two unequal stars are both in the eclaptic, or, bot being in the echptic, have equal latitudes, north or south, and the larger star has moot longhude, the maximun! of the apparent distance will be when the suais longitude is 90° more than the star's, or whin ubserved in the morning: and the mininium, when the longitude of the sun is 90° lezs thats that of the star, or when observed in the evening. But when the small star hav most longitude, the maximum and minimum, as well as the time of observation, will be the revence of the furmer. And when the stars differ in latitude, this makes no altcration jn the place of the maximum or minimum, nor in the time of observation; thut is, it is immaterial which of the two stars bus the greater latitude. Plulos. Trans. vol. 7:2, art. 11.

The distance of the star γ Draconis appears, by Bradley's observations, alreatly ricited, to be at least 400,000 times that of the sun, and the distance of the nearest fixed star, not less than 40,000 dianeters of the earth's annual orbit: that is, the dintance fiom. the earth, of the fornuer at least - - $38,000,000,000,000$ miles, and the latter $n-t$ less than - $7,600,000,000,000$ miles. As these distances are immensely grat, it may both be amusing, and assist in giving a more familiar idea, to compare them with the velocity of some moving body, by which they may be measured.

The swiftest motion we know of, is that of light, which passes from the sun to the earth in about 8 minutes; and yet evell this would be above 6 years traversing the first space, und near a year and a quarter in passing from the nearest fixed star ta the earth. But a cannon ball, moving on a medium at the rate of about 20 milcs in a minute, would be 3 million 8 bundred thousand years in passing from γ Draconis to the earth, and 760 thousand years is passing from the nearest fixed star. Sound, which moves at the rate of about 13 miles in a minute, would be 5 million 600 thousand years in traversisg the former distance, and 1 millivu 128 thousand, in passing through the latter.

The celebrated Huygens pursued speculations of this kind so far, as to believe it not impossible, that there may be stars at such inconceibable distances, that their light has not yet reached the earth since their creation.

Dr. Halley has also advanced, what he says seems to be a metaphysical paradox (Philus. Trans. number 364), viz, that the number of fixed stars must be mose than
finite, and some of them at more than a finite distance from others: and Addison has justly observed, that this thought in far frum being extravagant, when we cunsider that the universe is the work of infinite power, prompted by infinite goodness, and having an iutinite space to exert ibselfin; so shat our imagination can set tho bounds to it.

Magnitude of the fired Stans. The tuaguitudes of the stars appear to be very different from one another; which difference may probably arise, partly from a diversily in therr real magnithde, but primeipally from their diftetent distances. To the bare eye, the stan appear of some sensible magnitude, owing to the glare of light arishg from the numbenloss reflectious from the aêral particles \&e about the eye; this makes usimagine the stars to be much larger than they would appear, if we saw them only by the fow rays whicis come directly from them, so as to enter our egis without beingintermixed with others. Any person may be stusible of this, by luoking at a star of the first thagntude through a long tuarrow tube; which, though it takes in as much of the sky as would hold a thousand such stars, scarce renders that one visible.

The sars, on anceount of their apparently various sizes, bave been distributed intu several classes, called magaitudes. The lst ctass, or sturs of the first magnitude, are those that appar largest, and may probally le nearest to us. Nest t") these, are thow of the Sd magnitude; and so on to the Gih, whirh ennupehends the suallest stars visible to the naked rye. All beyond these, that can be percetived by the help of telesconpus, are called telescopic stars. Not that all the stars of each class appar exacily of the same magntude; there being qreat difuence in this respect; and those of the first magntude appearing almnst.all different in lusire and size. There are also other stars, of intermedinte magnitudes, which astronomers cunnot refer to one class nuare than anather, and therefore they place them betwen the two. Procyon, for instatice, which Ptolemy makev of the first magointude, and Tyche of the 2d, Flausteed lass down as between the ist and 2 d . So that, instead of 6 magniteder, we may say there are ulmost as many ordersot slare, a there are stars; on accuant of the great sarnations observable in the magnitude, colour, and brightnens of thein.

There seems to be but little prohatility of discovering with ecrtainty the real size of any of the fixed stars; we must therefore be content with an upproximation, deduced from their parallax, if this should ever be found; and the quantity of light they afford us, conpared with that of the sun. And to this purpore, Dr. Herselhel informs us, that with a magnifying power of $6+50$, and by means of his new micrometer, he found the apparent diameter of a lyra to be $0^{\prime \prime} 335$.

The stars are also distiuguished, with regard to their situation, into asterisms, or constcllatists; which are only assemblages of several neighbouring stars, considered as constituting some determinate figure, as of an animal, \&c, from which it is therefure denominated : a division as ancient as the book of Job, in which mention is made of Orion, the Pleiades, \&c.

Besides the stars thus distinguished into magnitudes and constellations, there are others not reduced to either. Those not reduced into constcllations, are called informes, or unformed stars; of which kind several, so leftat large by the ancients, have since been formed tuto new constellations by the modern astronomert, and especially by ISevelius. Those not reduced to classes or magnitudes,
are called nebulous stars; but such as only appear faintly in clusters, in form of litth lucid spots, nebulæ; or cluads.

Ptolemy mentions five of such nebula, viz, one at the extrenity of the right hand of Perseus, which appears through the telescope, thick set with stars; one in the middle of the crab, culted Рrawpe, or the Manger, in which Galileo counted above 40 stars; one unformeal near the sting of the Scorpion; another in the rye of Sagittarius, in which two slurs may be seen in a clear sky with the naked cye, and several more with the telescope; and the fifth in the bead of Orion, in which Galileo counted 21 stars.

Flamsteed observed a cloudy star before the bow of Sagittarius, which consists of a great number of simall stars; and the star d above the right shoulder of this constellation is encompassed with several nute. Flam. steed und Cassini also discover-d one between the great and hitle dog, which is wery fuil of stan, that are visible onty by the telescope.

But the most remarkable of ull the cluudy stars, is that in the middte of Orion's sword, in which Haygens and Dr. Iang observed 12 stars, 7 of which (3 of them, now known to be 4, being very clase together) sem to shine throngh a cloud, very lucid wear the middile, but faint and ill defined about the cages. But the grealest discoveries of nebula and clustis of sturs, we owe to the powerful telescopes of Dr. Herscliel, who has given accounts of some thousands of such nebula, it many of which the stars scem to be innumerable, like graites of sand on the soa shore, on, us Milton has so leeautufully described the milky way, they seem pewdered with stars. See Philus. Trans. 1784, 1785, 1786, 1789. See Galaxy, and Magficianic Clouds, und fucid Srots.

Cassine is of upinion, that the brightuens of these proceed from stars so minule, as twot to be distinyuished by the best glasses: and this opiniom is folly confirmed by the observations of 1 Ir . Herschel, whase powerful telescopes show those lucid specks to be compused entirely of masses of small stars, hie heapu of sand.

There are also many stars which, though they appear single to the naked cye, are yet discovered by the telescope to be double, tiple, de. Of these, several have been observed by Casomi, llooke, Long, Markelyne, Hornsby, Pigott, Mayer, \&c ; but Dr. Herschel has been much the most successful in observations of this kind; and his success hav been chiefly owing to the very extraordinary magnifying powers of the New tonian 7 feet retlector which he has used, and the advantage of an excellent microncter of his own construction. The powers which he has used, have been $146,227,278,460,754,932$, $1159,1536,2010,3168$, and cien 6430 . He has alrearly formad a catalugue, containing 269 double stars, 297 of which, as far as he knows, have not beren noticed by any other person. Among these there are also some stars that are treble, double-donble, quadruple, doubletreble, and multiple. His cutalugue comprehends the names of the stars, and the number in Flamsteed's catalogue, or such a description of those that are not contained in it, as will be found sufficient to distinguish them ; also the comparalive size of the stars; their colours as they appeared to his view; their distances determined in several difirent ways; their angle of pusition with regard to the parallel of declination; and the dites when lie first perceived the stars to be double, treble, \& c. His obser*
vations appear to commence with the year 1776. but I Imust all of them were made in the ycars 1779,1780 , 1781 .
Dr. Herschel has distributed the double stars contained in his catalogue, into 6 different closses. In the first he has placed all those which require 14 viry superior tellscope, with the utmost clearnens of air, and every other favourable circumstance, to be sevn at all, or well enotugh to juige of them; and there are 24 of thene. To the id class belong all those double stars that are proper for estimations by the eye, and very delicate measures by the micrometer; the number being 38. The 3d class comprehendy all those double stars, that ute between $5^{\prime \prime}$ und $1 \mathrm{~s}^{\prime \prime}$ avoulder; the number of thom being 46 . The 4 h , 5 th, and 6 th clusses contain double stars that are frota $13^{\prime \prime}$ to $30^{\prime \prime}$, and from $30^{\prime \prime}$ to $1^{\prime \prime}$, and from 1^{\prime} to 2^{\prime} or more asunder; of which there are +4 in the tih class, 51 in the 5 th class, and 66 in the 6 th class: the last of this class is a Tauri, number 87 of Flamsteed, whose apparent diameter, en the meridian mensured with a power of 460 at a mean of two obsersations $1^{\prime \prime}+6^{\prime \prime \prime}$, a nd with a power of 932 at a mean of two observations $1^{\prime} 12^{\prime \prime \prime}$. See the hat ut large, Philos. Trans, vol 72, art. 12.

The stars are abo distinguisheal, in vach convtellation, by sumbern, or by the letters of the alphubet. This hind of distinctoon was intruluced by Jobn Bayer, ith his U' ranomettia, 1654 ; where he denetes the stars, in cach constellation, by the letters of the Greek alphabet, α, β, γ, $\delta, \varepsilon, \Delta c$, viz, the most remarkuble star of each by a, the 2d by β, the $3 d$ by $\gamma, \& c$; and whin there are more stars in a constellation than the characters it the Greck mphabet, be denotes the rest, in their ordir, by the Rommate letters $A, b, c, d, d x c$. But afs the number of the stars. that have been olserved and registered in catalognes, since Bayer's time, in greally incroased, as by Flamsteed and others, the adilnonal ones have beem tuarked by the ordinal nombers 1, 2, 3, 4, 5, \&.C.

The Number of Sitars. The number of the stars appears to be immensely great, perhups infinite; yet have astronomers long since ascertained the number of such as are visible to the eyr, which are much ficwer than at first sight could be imagined. See Catalogue of the Bars.Of the 31,00 contained in Flamsteed's catalogue, there are many that are only visible through a telescope; and a good eye acarce ever sees more than a thousand at the same time in the clearest heaven; the appearance of that immense number which are frequent in clear winter nights, arising from our sight's being deccived by their twinkling, and from our viewing them confusetly, and not reducing them to any order. But meverthelens we cannot but imagine that the stars are almost, if fort altogetber, in finite. Sce Halley, on the number, order, and light of the fiaed stars, Philus. Trans, nuniber 364.

Riccioli, in his Now Almogrst, affirms, that aman who shall say there are above 20 thousand times 20 thousand, would say nothing improbable. Fisr a good telescope, dirccud indificrently to almost anty point of the heavens, discovero multitules that are lost to the naked eye; particularly in the midky way, which some take to be an assemblage of stars, tho remote to be seen singly, but so clowly dexposed as to give a luminous appearance to that part of the bearens where they are. And this fact has benn confirmed by Herschel's ohservations: though it is disputed by others, who contend that the milky way must be owing to some other cause.

In the single cunsteilation of the Pleiales, instead of 6 , 7, or 8 stars seen hy the liest eye; Dr. Honkr, with a tclescope 12 fert lang, told is. and with larger plasses many more, of dificretst magntudes. And F. de Rheita uffirms, that he has observed ahave dow slars in the single constellation of Orian. The smme author found abone 188 in the Phiadis. Ant laygens, lacking at the stir in the middle of Orion's sword, instead of ons, found that thete were 12. (Gatiteo found 8) in the space of the belt of Orinn's sword, 11 in the mbulues star of his beat, and atove 300 in uncther part on him, within the compass of the or two adgrees sflace, and mure than 40 in the neblelous star I'rasepe.

The Changes that have happened in she Stars are very consuderable. The firat change that is ot recoril, was about 120 years before Clirist; whon Hipparchus, discovering a new star to appear, was first induced to make a Cataligue ef the stars, theat posteriny might gerccive any furure changes of the like nature.

In the year 1572, Cornclius Gimma and Tycho Brabé obresed another tuw star in the constellation Cassiopeia, whech was likeraise the occasion of Tyefoo's making a new catalogue. At first as majnitude and brightuess exceeded the laricot of the stare, Sumanand Lyra; and even equailed the planet Venus when nearest the tarth, and was segn in fanr day-light. It continued 16 months; twatils the latter end nf which it began to dwindie, and at l.ngth, in March 1574, it tutally disappared, without uny change of place in will that tume.

Iavovicius tells of of another star apporaring in the same constellation, atoont the yeur 9t5, which resembled that of 1572 ; ond he quotes amother ancient observanom, by wheb it appears that a new stur was seen about the same place in 1864. Dr. Kill thinhs these were all the same stur; and inded the pertiodical intervals, or dintance of time betwecn these appearance, were nearly cynal, being from 318 to 3 ty jears; und if so, its next appearance may be eapreted ahorut 1890 .

Fabricins, in $\mathbf{3 5 6}$, discovered anther new star, called the stella mira, or wonderimi star, in the neck of the whale, which inas since been funted to appear and disappear periodically, 7 tinnes in 6 jears, continuing in its greatest lustre for 15 days togetier; and is never quite extinguished. Its course and motion are described by Bulliald, in a tratise printed at Paris in $\mathbf{t 6 6 7 \text { . Dr. Ilerschet has }}$ latcly, viz, in the years $1777,1778,1779$, and 1780 , made several obervations on this star, an account of a bich may be seed in the Phitus. Trans, wh. ;0, art. 21.

In the year 1600 , William Jansen discenered a changeable star in the meck of the Swan, which gradually decreased till it becane se small as to be thought to disappear entirely, thll the gears 1637,1658 , and 1659, when it regained its former lustre and magnitude; but soon decayed again, and is now of the stnallest size.

In the jear 1604, a new star was scen ly Kepler, and seseral of his frionds, near the heel of the right foot of Serpentarius, which was particularly bright and sparkling; and it was ab-erved to be every moment changing inca some of the colours of the rainbeaw, excrpt when it is near the horizon, at which time it was generally white. It surpassed Jupter in magniture, but was casily distinguished from linn, by the steady light of the planet. It dionppeared abcut the end of the year 1603, and has not been suen since that tiene.

Simon Marius discovered auother in Andromeda's girdle,
in 1618 and 1613 ; though Bulliald says it had been seen before, in the 15th century.

In July 1070, Hew lius discovered a sacond changrable star in the Swan, which was so duninished in October as to be scarce perceptible. In April following it regained its furmer luatre, but wholly dasappeared in Angut. In March 1672 it was seell again, but appeawed very small, and has not been visible since.

In 16:6 a third changeable star was discoveled by Kirchius in the Swan, viz, the stor χ of that constellation, which returned periodically in ubout 405 thays.

In 1672 Cassini saw a star in the neek of the Bull, which he thought was not visible in'Tycho's time, nor when Bayer made lis figures.

It is certain, from the old catalogues, that many of the ancient stars are not now visible. Thus has been particularly remarked wish regard to the Pleiades.
M. Montanari, in his letter to the Royal Socicty in 1670, observes that there are now wanting in the heavens two stars of the 2 d ma_nitude, in the stern of the ship Argo, and its yard, which hat been scen till the year 1664. When they first disuppeared is not known; but he ansures us thare was not the least glimpse of them in 1668. He adds, that he has observed many more changes in the fixed stars, even to the number of a bundred. And many other changes of the stars bave been noticed by Cassill, Muraldi, and other observers. Sce Gregory's Astron. lib. 2, prop. 30.

But the gratest numbers of variable stars have been observed of late years, and the most accurate observations made on their periuds, $\& c c$, by Herschel, Goodricke, Pigott, \&ec, in the late volumes of the Pbilos. Trans. particularly in the vol. for 1786, where the last of these gentlemen has given a calalugue of all that bave been hitherto observed, with accounts of the observations that bave been made upon them. *

Various hypotheses bave been devised to account for such changes and appearances in the stars. It is not probable they could be comets, as they had no parallax, even when largest and brightest. It has been supposed that the periodical stars have vast dark spots, or dark sides, and very slow rotations on their axes, by whict means they must disappear when the darker side is turned towards us. And as for those which break out suddenly with such lustre, these may perbaps be suns whose fuel is almost spent, and again supplied by some of their comets falling upon them, and occasioning an uncommon blaze and splendor for some time; which it is eunjectured may be one use of the cometary part of our system.

Maupertuis, in bis Dissertation on the Figures of the Celeytial Bodies (pa. 61-63), is of opinion that some stars, by aheir prodigious swift rotation on their axes, may not only assume the figures of oblate spheroids, but that by the great centrifugal force arising from such rotations, they may become of the figures of mill-atones, or be reduced to flat circular planes, so thin as to be quite invisible when their edges are turned towards us, as Saturn's ring is in such position. But when very excentric planets or comets go round any flat star in orbits much incloned to its equator, the attraction of the planets or comets in their perihelions must alter the inclination of the axis of thet star ; on which account it will appear more or lesi large and luminous, as its broad side is more or less turued towards us. And thus he imagines we may account for the apparent changes of magnitude and
lustre of those stars, and also for their appearing and disappearing.

Hevelus apprebends (Cometngraph. pa. 380), that the sun and stas are surrominded with atmospheres, and that by whirling mond their axes wibh great rapidity, they throw of great quantitus of mater inte thase atmospheres, and so cause great changes in them; and that thus it may come to puss that a star, which, wben its atmosphere is clear, shmes out winh great lustic, nay at another time, when it is full of clouds and thick vapunrs, appear greatly diminushed in brightness and madmitude, or even becóme quite iminible.

Nicture of the fired Stars. The immense distance of the stars leaves us greatly at a liss about the nature of them. What we can gather for certain from their phenomena, is as follows: Ist, That the fixed slars are greater than our earth: because if that were not the case, they could not be visible at such an immense distance. 2nd, The fixed stury are firther distant from the earth than the farthest of the plaucts. For we frequently find the fixed stars hid behind the body of the planets: and besides, they have no paraliax, which the planets have. Srd, The fixed stars shine with thear own light; for they are nuch farther frum the sun than Saturn, and appear much smaller than Suturn ; but since, notwithetanding this, they are found to shine much brighter than that planet, it is evident they cannot burrow their light from the same suurce as Satura does, viz, the sun; but since we know of no other luminous body besid the sun, whence they night derive their light, it follows that they shine with their own pative light.

Besides, it is known, that the more a telescope magnifies, the less is the aperture through which the star is seen; and consequently, the fower mys it adnits into the eye. Nuw since the sturs appear less in a telescope which magnifies two hondred times, than they do to the naked eye, insomuch that they seen to be only indivisible poins, it proves at once that the stars are at immense distances from us, and that they shine by their own proper light. If they shote by borrowed light, they would be as invivible witho our telescopes as the sutellites of Jupiter are; for these sa-tellites apprar larger when viewed with a good telescope than the largest fixed stars. Hence, 1. We deduce, that the fixed stars are so many suns; for they have all the characters of suns. 2. That in all probabiliny the stars are not smaller than our sun. 3. That it is highly probable each star is the centre of a system, and has planets or earths revolving round it, in the same manner as round our sun, i. e. it has opaque bodies illuminated, warmed, and cherished by its light and heat. As we have incomparably more light from the moon than from all the stars together, it is absurd to imagine that the stars were made for no other purpose than to cast a faint light upon the earth; especially since many more require the assistance of a good telescope to find them out, than are visible without that instrument. Our sun is surrounded by a system of planets and comets, all which would be invisible from the nearest fixed star; and from what we already know of the immense distance of the stars, it is easy to infer, that the sun, scen from such a distance, would appear no larger than a star of the first magnitude.

From all this it is highly probable, that each star is a sun to a system of worlds moving round it , though unseen by us; especially as the ductrine of a plurality of worlds is rational, and greatly manifests the power, the widom,
and the goodncss of the great Creator. How immense, then, does the unvere appenr! Indeed, it must eitber be infinite, of intinitely near it.

Kepler, it is true, denies that each star can have its system of planets as ours has; and takes them all to be fixed in the same surface or sphere; urging, that were one. twiece or thrice as retonte as another, it would be twice or thrice as small, supposing their real magnitudes equal; whereas there is no diffirence in their upparent magnitudes, jusily observed, at all. But to this it is opposed, that Huygens has not only shown, that fires and flames are visible at distances where other bodics, comprehended under equal angles, disappear; but it should likewise seem, that the optic theorem atout the mparent dameters of objects, being reciprocally propertional to their distances from the eye, does unty bold while the object has some xensible ratio to its distance.

For periudical atars, \&ec, see Cuances, \&c, of Stars, supra.

Motion of the Stars. The fived stars have several kinds of apparent motion; one called thu first, cummon, or diurnal motion, arising from the carth's rotation about its axis; and by which they seem th be carried along with the sphere or firmument, it which they appear fived, round the earth, from rast to west, in the space of 24 hours.

The other, called the second, or proper motion, is that by which they appear to go backwards irom west to east, round the poles of the ecliptic, with an excceding slow mution, as describing a degree of their circle only in the space of $71 \frac{1}{2}$ years, or $50 \frac{1}{\text { s seconds in a year. This ap- }}$ parent motion is owing to the recession of the equinoctial points, which is $50 \frac{1}{f}$ seconds of a degree in a year backward, or contrary to the order of the signs of the zodiac. In consequence of this second motion, the longitude of the stans will be always increasing. Thus, for example, the longitude of Cor Leonis was tound at different periods, to be as folluws: viz,

	Year.	
By Ptolemy, in	13	
By the Persians, in - $1115 .-17$		
By Alphonsus, in	136	20
By Prince of Hesse,	1586	
By Tycho, in	1601	417
By Flam		

Whence the proper raction of the stars, according to the order of the signs, in circles parallel to the ecliptic, is castly inferred.

It was Hipparchus who first suspected this motion, on comparing his own observations with those of Timucharis and Aristyllus. Ptolemy, who lived three centuries after Hipparchus, demoustrated the same by undeniable arguments. The increase of longitute in a century, as stated by different astronomers, is as follows:

which is at the rute of $50 \frac{1}{5}$ seconds per year.
From these data, the increase in the longitude of a star for any given time, is easily found, and thenceits longitude at any time : ex. gr. the longitude of Sirius, in Flamsteed's tables, for the year 1690, beinx $9^{\circ} 49^{\prime} 1^{\prime \prime}$, its longitude for the year 1800, is found by multiplying the interval of time,
viz, 110 years, by $50 \frac{1}{3}$, the product $5537^{\prime \prime}$, or $1^{\circ} 3212^{\prime 2}$, added to the given longitude $9^{\circ} 49^{\prime} 1^{y}$ gives the longutude' $11^{\circ} 21^{\prime} 18^{\prime \prime}$ for the year 1800.

The chief phenomena of the fixed stars, arising from their common and proper motion, besides their longitude, are their altitudes, right asecmaions, declinations, occultathons, culminations, risings, and settings.

Sume have supposed that the latitudes of the stars are iuvariable. But this sopposition is founded on two assumptions, which are both controverted among astronomers. The one of these is, that the orbit of the earth continues unalterably in the same plane, and consequently that the eclipuc is invariable; the contrary of which is now very generully allowed.

The other assumption is, that the stars are so fixed ab to keep their places inmoveably. Ptolemy, Tycho, and others, comparing their observations with those ol the alicicst astronomers, have adopted this opinion. But from the result of the comparison of the best modern observations, with such as were formerly made with any tolerable degree of exactness, there appears to have been a real chauge in the position of some of the fixed stars, with respect to each other; and several stars of the first maynitude have already been observed, and others suspected, to have a proper mation of their own.

Dr. Hallry (Pbilos. Trans. No. 355), has observed, that the three followng stars, the Bull's eye, Sirius, and Areturus, are now found to be above half a degree mpra soutberly than the ancients reckoned them: that this difference canuot arise from the errors of the transcribers, because the declinations of the stars, set down by Ptolemy, as observed by Timocharis, Hipparchus, and himself, show their latitudes given by him are such as those atuthors intended: and 11 is scarce to be believed that those three observers could be deceived in so plain a matter. To this he adds, that the bright star in the shoulder of Orion bus, in Ptolemy, almost a whole degree more southerly latitude than wt present: that an ancient observation, made at Athens in the year 309 , as Bulliald supposes, of an appulse of the morn to the Bull's eye, shows that star to have bad less latitude at that time than it now has : that as to Sirius, it appears by Tycho's observations, that he found him $+\frac{1}{2}$, more northerly than be is at this time. All these observations, compared tugether, seem to favour an opinion, that some of the stars have a proper motion of their own, which changes their places in the sphere of the heavens: this change of place, as Dr. Halley observes, may show itseli in so long n time as $\mathbf{t 8 0 0}$ years, though it he entirely imperceptible in the space of one siagle century; and it is likely to be soonest discovered in such stars as those just now mentioned; because they are all of the first magnitute, and may, therefore, prohably be some of the bearest to our solar system. Aretarus, in particular, affords a strong proof of this: for if its present declination be compared with its place, as determined either by Tycho or Flamsteed, the difference will be found to be much greater than what can be suspected to arise from the uncertainty of their observations. See Anctumus, and Mr. Hornsby's inquiry into the quantity and direction of the proper motion of Arcturns, Phil. Trans. vol. 63, part 1, pa 99, \&c.

For an account of Dr. Bradley's observations, see the sequel of this article, also Abesuation.

Dr. Herschel has also lately observed, that the distance of the two stars forming the double star \% Draconis, is
$54^{\prime \prime} 48^{\prime \prime \prime}$, and their position $44^{\circ} 19^{\prime} \mathrm{N}$. preceding. Whereas, from the right ascension and declination of these stars in Flumsteed's catalogue, their distance, in his tiasc, appears to have been $1^{\prime} 11^{\prime \prime}-418$, and their position $44^{\circ} 23^{\prime}$ s . preceding. Hence he infers, that as the ditierence in the distance of these two stars is so considerable, we can bardly account for it, otberwise than by admitting a proper tootion in one or the other of the staps, or in our solar system: tnost probably he suys, neither of the cheree is at rest. Lie also suspects a proper motion in one of the diouble stars, in Cauda Lyncis Media, and in O Ceti. Phil. Trans, vol.72, patt 1, pain. 117, 143, 160.

It is reasonable to expect, that other instances of the like kiad must also occur annong the great number of visible stars, because their relative postions may be altered by various neans. For if our own solar system be concerved to change its place with respect to absolute space, this might, ill process of time, occasion an apparent change in the angular distances of the fixed stars; and in such a case, the places of the nearest stars being nore affected than of those thut are very rensentr, their relative position inight seen to alter, though the stars thernsc: ves were really immoveable ; and vice versa, we may surmise froun the observed motion of the stars, that our sun, with all its planets and comets, may bave a motion towards some particular part of the heavens, on account of a greater quantity of anatter collected iu a number of stars and their surrounding planets there situated, which may perhaps occesion a gravitation of our whole solar system towards it. If this surmise should have any foundation, as Dr. Ilerschel obeerves, ubi supra, pa. 103, it will show itself in a series of some years; since from that motion there will arise another kind of hitherto unknown parallan (suggested by Mr. Michell, Philos. Trans. vol. 37, pa. 252), the investigation of which may account for some part of the motions already observed in some of the principal stars; and for the purpose of determiniag the direction and quantity of such a motion, accurate observations of the distance of stars, that are near enough to be measured with a micrometer, and a very high power of telescopes, may be of considerable uise, an they will undoubtedly give tis the relative places of those stars to a much greater degree of accuracy than they can be hat by intstruments or sectors, and thereby much sooner enable us to discover any apparent chatuge in their situation, uccasioned by this new kind of secular or systenatical parallax, if we may so express the change arising from the motion of the whole solur system.

And, on the other hand, it our system be at rest, and any of the stars really in motion, this might likewise vary their apparent positions, und the more so, the nearer they are to us, or the swifter clicir notions ate; or the inure proper the direction of the inotion is to be rendered $p \times r-$ ceptible by us. Since then the relative places of the stars may be changed from such a variety of causes, considering the amasing distance at which it is certain sone of thero are placed, it inay require the obsersations of many ages to determine the laws of the apparent changes, even of a single star ; much more difficult, therefore, must it be to settle the laws relating to all the most remurkable of them.

When the causes which affect the places of all the stars in general are known; such as the precession, aberration, and nutation, it may be of singular use to examine nicely the relative situations of particular stars, and especially of

Vol. II. ${ }^{\circ}$
those of the greatest lustre, which, it may be presumed, lie nearest to us, and may therefore be subject to more sensible changes, cither from their own motron, or from that of our system. And if, at the same time the brighter stars are cumpared with each other, we may likewise determine the relative pusitions of some of the smallent that appear near them, whuse places can be ascertained with sufticient exactness, we may perhaps be able to judge to whut cause the chauge is owing, if any be observable. The uncertainty that we are at present under, with respect to the degree of accuracy with which former astronomers could observe, makes us unmble to determine several things relating to this subject; but the improvements, which bave of late yrars been made in the methods of taking the places of the heavenly bodies, are so great, that a tew yrars inay hereafter be sufficicut to settie some points, which cannot nuw be settled; by comparing even the earlicat observations with those of the present age.

Dr. Hooke communicated several observations on the apparent motions of the fixed stars ; and an this was a matter of great importance in astronowy, several of the learned were desirous of verify ing and confirining his observations. An instrument was accordingly contrived by Dir. George Grahain, and executerl with surprosing enactness.

With this instrument the star γ, in the constellation Draco, was frequently observed by Messrs. Mulynurux, Bradley, and Graham, in the ytars 1725, 1726 ; and the observations were afterwards repeated by Dr. Bradley with an instrument contrived by the same ingenious person, Mr. Graham, and so exact, that it might be depended on to half a second. The result of tliese obscrvations was, that the star did not al ways appear in the same place. but that its distance from the senith varied, and that the difference of the apparent places amounted to 21 or 22 seconds. Similar ubscrvations were made on other stars, and a like apparent motion was fouud in them, proportional to the latitude of the star. This tnotion was by no means such as was to have been expected, as the effect of a parallax, and it was sone time before any way could be found of accounting for this new phenomenon. At length Dr. Bradley resolved all its variety, in a satisfactory manner, by the motion of light and the motion of the earth compounded eogether. See Aberration and Light, and Phil. Trans. No. 406, pa. 364.
That excellent astronomer bad no sooner discovered the cause, and suttied the laws of aberration of the fixed stars, than his attention was again excited by another now phenomenon, viz, an annual change of eleclination in some of the fixed stars, which appeared to be sensibly greater than u pracession of the equinoctial points, of $50 \mathrm{y}^{\text {" }}$ in a y yar, would have occasioned. This apparent change of theclunation was observed in the stars nesur the equinoctial colure; and there appearing at the same time an effect of a quite contrary wature, in some stars near the solstitial colure, which seemed to alter their declination liss than a precession of $50^{\prime \prime}$ requird, Dr. Bradley was thereby convinced, that all the phomomena in the different stars could not be accounted for mercly by supposing that he had assurned a wrong quantity for the precession of the equinuctial points. Ile had alsu, aftur nuany trials, stfficient reasun to conclude, that these secund unexpected devintions of the stars were unt owing to any imperfection of lis instruments. At length, from ripeated obscrvations lie began to guess at the real cause of these phenomena.

It appeared from the Doctur's observatiuns, during his resudence at Wansted, from the year 1727 to 1792 , that some of the stars near the solstitial colure had changed their declinntions $9^{\prime \prime}$ or $10^{\prime \prime}$ less than a precession of $50^{\prime \prime}$ would have produced; and, at the same time, that othery near the equinortial colure had ahered theiry about the bame quantity more than like a precesoion would have urcasiuned: the north pole of the equator seeming to have approached the stars, which come to the meridian with the sun about the vernal equinox, and the winter solstice; and to have receded from those whicb cone to the meridan with the sun about the autumnalequinox and the summer solstice.

From the consideration of these circumstances, and the situation of the ascending node of the moon's orbit when he first began to make his observations, he suspected that the moon's action on the equatorial parts of the carith might produce these effects. For if the precession of the equinox be, according to Sir Isaac Newton's principles, caused by the actions of the sun and moon on those parts; the plane of the moon's orbit, being at one time, nbove 10 degrees more inclined to the plane of the equator, than at another, it was reasonable to conclude, thut the part of the whole annual precession which arises from her action, would, in different years, be varied int its quantiny; whereas the plane of the ecliptic, in which the sun apspears, keeping always nearly the same inclination to the equator, that part of the precession which is owing to the sun's action, may be the saine every year; and from hroce it would follow, that though the mean anuual preecssion, proceeding from the joint actons of the sun and moon, were $30^{\prime \prime}$; yes the apparent annual precession might sometimes exceed, and sometiones fall short of that newn puantity, according to the vurious sifuations of the nudes of the moon's orbit.

In the year 1727, the moun's ascending node was near the beginning of Aries, and consequently her orbit was as much inclined to the equator as it can at any time be; and then the apparent annual pricession was found, by the Doctor's first year's oiseriations, to be greater than the mean; which proved, that the stars near the equinoctial colure, whose declinations are most of all afliected by the precession, had changed theirs, ubove a tenth part more than a precession of $50^{\prime \prime}$ would have caused. The succeeding year's observations proved the sume thing; and, in three or four yenrs' time, the difference becuine so considerable as to leave tow room to suspect it was owing to any imperfection either of the instrument orobservation.

But some of the stars, that were tuear the solstitial culure, having appeared to move, during the same sime, in a manner contrary in what they ought to have dune by an increase of the procession; and the deviations in them being as remarkable as in the others, it was evident that something more than a mere change in the quanity of the precession would be requisite to sulve this part of the phenomenon. On comparing the observations of stars near the solstitial colure, shut were alnost opposite to each other in right ascension, they wire found to be equally affiected by this cause. For whilst γ Draconis appeared to have moved northward, the small star, which is the 35th Camelopardali flevelii, in the Britush catalogue, seemed to have gone as much towards the south; which showed, that this apparent motion in buth those stars tnight proceed from a nutation of the carth's axis ; whercas the comparison of the Ductor's ubservations of
the same stars formerly enabled him to draw a difierrnt conclusion, with respect to the cause of the anuual ulterations arising from the motion of light. For the apparent alteration in γ Draconis, from that cause, being as large ngain as in the other small star, proved, that that did not proceed frotn a nutation of the earth's uxis; as, on the contrary, this might.

On making the like comparison between the observations of other stars, that lie ncarly opposite in right ascension, whatever their situations were with respect to the cartmal points of the equator, it appeared, that sheir change of declination was nearly equal, Lut contrary; and such as a nusation or motion of the earth's uxis would effect.

The moon's ascending node being now returned to the beginning of Caplicorn in the year 1732, the stars near the equinoctial colure apprared about that tine to change their declinations to more than a precession of $30^{\prime \prime}$ required; while some of those near the solstitial colure altered thein above $2^{\prime \prime \prime}$ in a year less than they ought. Soon after the anuual change of declination of the former was perceived to be diminished, so as to become less than $30^{\prime \prime}$ of precession would cause; and it continued to diminish till the year 1756, when the muxni's ascending node was about the begimning of Libra, and her orbit bad the least inclination to the equator. But by this time, some of the stars near the solstitial colure had altered their declinations $16^{\prime \prime}$ leas since the year 1727 , than thry ought to bave done from a precession of $30^{\prime \prime}$. For γ I)raconis, which in those 9 years would bave gone about $\mathrm{s}^{\prime \prime}$ more southerly, was observed, in 1736, to appear $10^{\prime \prime}$ more notiherly than in ditt in the yrar 1727.

As thes appearance in y Uraconis indicated a dimninution of the inclination of the earib's axis so the plane of the echiptic, and as several ustrononera bid supposed that inclination to diminish regularly; if this phenomenon depended on such n cause, and amounted to $18^{\prime \prime}$ in 9 years, the obliquity of the ecliptic would, at that rate, witer a whole minule in 30 years; which is much faster than any ubservations before made would alinw. The Doetor hat therefore reasun to think, that some part of this motion at least, if not the wbole; was owing to the nuon's action on the equatorial farts of the carth, which he conceived might cause a libratory motion of the carsh's axis. But as he was unable to judge, from only 9 yeuts' itservation, whether the axis would ensirely recover the same position that it land in the year $\mathbf{1 7 2 7}$, he found it necossary to continue his observations through a whole petiod of the moon's noles; at the end of which he hat the mitishaction to see, that the stars returned into the same positions nonin, as if there had bern no alieration at all whe incluation of the earth's axis: which fully convinced him, that he bad guessed righily as to the catise of the phenomenon. This circumslance proves likewise, that if there be a gradual diminution of she obliquity of the ecliptic, it does not arise obly from an alteration in the postion of the carth's axis, but rather from some change in the plane of the ecliptic itself; because the stars, at the end of the period of the moon's modes, appeared in the sante places, with respect to the equator, as they ought to have done if the carth's axis lad retained the same inclination to an invariable plane.

The Doctor having communicated these observations, and his opiaion of their causc, to the late Mr. Machin, that excellent geometrician soon after sent him a table, comaining the quantity of the anuual precession in the
varinus positions of the moon's nodes, as also the corresponiling nutations of the earih's axis; which was computed on the supposition that the mean annual precession is 30°, and that the whole is governed by the pole of the moon's orbit only; and therefore Mr. Machin imagined, that the numbers in the table would be too large, as, in fact, they were found to be. But it appeared that the cbanges which Dr. Bradley bad observed, both in the annual precession end nutation, kept the same law, as to increasing and decreasing, with the numbers of Mr. Machin's table. Those were calculated on the supposition, that the pole of the equator, during a period of the moon's nordes, moved round in the periphery of a little circle, uhose centre was $23^{\circ} 29^{\prime}$ distant from the pole of the seliptic; baving itself also an angular motion of $50^{\prime \prime}$ in a year about the same pole. The north pole of the equatur was conceived to be in that part of the small circle which is farthest from the north pole of the ecliptic, at the same time when the moon's ascending node is in the beginning of Aries; and in the opposite point of it, when the same node is in libra.

If the diameter of the little circle, in which the pole of the equator moves, be supposed equal to $18^{\prime \prime}$, which is the whole quantity of the nutation, as collected from Dr. Bradley's observations of the star γ Draconis, then all the phenomena of the several stars which he observed will be very nearly solved by this hyputhesis. But for the particulars of his solution, and the application of his theory to the practice of astronomy, we nust refer to the excellent suthor himself; our intention being only to gire the history of the invention.

The corrections arising from the aberration of light, and from the nutation of the eafth's axis, must not be neglected in astronomical observations; since such neglects anight produce crrors of near a minute in the polar distance of some stars. As to the allowance to be made for the aberration of light, Dr. Bradley assures us, that having agais examined those of his own observations, which were most proper to determine the transverse axis of the ellipsis, which each star seems to describe, be found it to be nearest to $40^{\prime \prime}$: and this is the number be makes use of in his computations relating to the nutation. Dr. Bradley says, in general, that experience has taught hiro, that the observations of such stars as lie nearest the zenith, generally agree best with one another, and are therefore fittest to prove the truth of any hypothesis. Phil. Trans. num. 485, vol. 45, pa. 1, \&e. See our article Nutation.
M. Dalembert has published a treatise, entitled, Recherches sur la Precession des Equinoxes, et sur la Nutation de la Terre dans le Systeme Newtonien, 4to. Paris, $17+9$. The calculations of this learned gentleman agree in general with Dr. Bradley's observations. But M. Dalembert 6 nds, that the pole of the equator describes an ellipsis in the heavens, the ratio of whose axes is that of 4 to 3; whereas, according to Dr. Bradley, the curve described is either a circle or an ellipsis, the ratio of whose axis is as 9 to 8 .

The several stars in each constellation, as in Taurus, Bootcs, Hercules, \&c, see under the proper article of each constellation, Taurus, Bootes, Hercules, \&c.To learn to know the several fixed stars by the globe, see Glose.

Circumpolar Stans. See Ctrcuypol R.
Morning Star. Sec Monming.

Place of a Star. See Plack.
Pole Star. See Pole.
Twinkting of the Stars. Set Twinking.
Unformed Stars. Sec Informes.
Catalugues of the stars, with their situations in rightascensiou and declination, may be seen in Mr. Vince's and most other books on Astronomy; also in Zach's and Wollaston's tables, end the Erench Connoissance des Tems, sc.

Star, in Electricity, denotes the appearance of the electric matter on a point into which it enters. Beccaria supposes that the Star is occasioned by the difficulty with which the electric fluid is extricated from the air, which is an electric substance. See Bavsir.

Star, in Fortification, denotes a small fort, having 5 or more points, or saliant and re-entering angles, flanking one another, and their faces 90 or 100 feet long.

Star, in Pyrothechny, a composition of combustible matters ; which being borne, or thrown aloft into the air, exhibits the appearance of a real star.- Stars are chiefly used as appendages to rockets, a number of them being usually inclosed in a conical cap, or cover, at the head ,it the rocket, and carried up with it to its utmost height, where the stars, taking fire, are spread around, and exbibit an agreeable spectacle.

To make Stars.-Mix 3liss of saltpetre, 11 ounces of sulphur, one of antimony, and 3 of gunpowder dust : ur, 12 ounces of sulphur, 6 of saltpetre, $5 \frac{t}{2}$ of gunpowder dust, 4 of olibanum, one of mastic, camphior, sublinate of mercury, and hali an ounce of antinuliny and urpiment. Moisten the mass with gumwater, and make it into little balls, of the size of a chesnut; which dry either in the sun, or in the oven. These being set on fire in the air, will represent stars.

Star-Board denotes the right hand side of a ship, when a person on board stands with the face looking forward towards the head or fore part of the ship. In contradistinction from Larboard, which denotes the left band side of the ship in the same circumstances. - They say, Starboard the helm, or Helm a starboard, when the man at the helm should put the helm to the right hand side of the ship.

Folling Star, or Shooting Star, a luminous meteor darting rapidly through the air, and resembling a Star falling-The explication of this phenomenon has puzzled all philosophers, till the modern discoveries in electricity have led to the most probable account of it. Signior Beccaria makes it pretty evirlent, that it is an electrical appearance, and recites the following fact in proof of it. About an hour after sunset, he and some friends that were with him, observed a falling ster directing its course towards them, and apparently growing larger and larger, but it disappeared not far from them; when it left their faces, hands, and clothes, the earth, and all the neighbouring objects, suddenly illuminated with a diffused and lambent light, not attended with any noise at all. During their surprise at this appearance, a scrvant informed them that he had seen a light shine suddcnly in the garden, and especially upon the streams which he was throwing to water it. Al these appearancrs were evidently electrical ; and Beccaria was confirmed in his conjecture, that electricity was the cause of them, by the quantity of electric matter which he had seen gradually advancing towards bis kite, which had very much the appearance of a falling star. Sonictimes also be saw a kind of glory round the

3 L 2
kite, which followed it when it clianged its place, but left some light, for a small space of time, in the place it had quitted. Presthey's Elect. vol. 1, pa, 434, 8vo. See IGnts Fatulas.
Sitan fort, or Redoube, in Fortification. Sce Star, ReDover, and fowe.
strarlingis, or Stenlings, or Jettees, a kind of case made about a pur buit on stilts, \& c , to secure it. Sce Stil.ts.

STATICS, a branch of mathematics which cousiders weight or gravity, and the tuotion of bedies resulung from if. Those who dethue mechanics, the zevence of notion, make statics a part of 11 ; viz, that part which considers the motion of bodies arising from aravity. Others make them two distinct ductrines; restaaining mechanics to the doctrine of motion and weight, as depending ont, or connected with, the prower of muchines; and staticy to the doctine of motion, considered merely as arisilig from the weight of bodies, without any imnadinte rexpect to machines. In this way, statics should be the doctrine or theory of mutoon; and mechanics, the application of it to pachmes.

For the laws of shatics, see Ganvirt, Desenst, \&c.
STATION, of Stationary, in Astrobohay, the jusition or appearance of a planet in the same point ot the zodiar, for several days. This happens fonm the observer being situated on the earth, which is far out of the centre of their orbis, by which they seen to proceed irregularly; betug sometiness secn to go lorwards, or from west 10 cast, which is their natural direction; sometimes to po backwards, or from east to west, which is their retrogradation ; and between these two states there must be all intermediate one, where the planet appears neather $t 0$ go forwaids nor backwards, but to stand still, aud keep the same place in the heavens, which is called ber Station, and the planet is then said to be Siationary.

Apollonius Pergeus has shown how to find the stationary point of a planet, accotding to the old theory of the plancts, which suppases them to move in epicycles; which was followed by Ptolemy in his Almag. lib. 12, cap. 1, and others, till the lime of Copernicus. Concerning this, see Regiomontanus in Epitome Almagesti, lib. 12, prop. I; Copernicus's Revolutioncs Colest. lib. 5, cap. 35 and 36 ; Kopler in 'Tabulas Rudulpbinis, cap. 24 ; Riccioli's Almag. lib. 7, sect. 5, cap. 2: Iterman in Miscellan. Berolinens. pa. 197. Dr. Halley, Mr. Facio, Mr. Denoivre, Dr. Keil, and others have treated on this subject. Secalso the articles Retrogade aind Stationary in this Dictionary.

Station, in Practical Geometry \&cc, is a place pitched opon to make an obocrvation, or take an angle, or such like, as in surveying, measuring heigbts-and-distances, levelling, \&c. An sccessible height is taken from one station; but an inaecessible height or distance is only to be taken by making two stations, from two places whose distance asunder is known. In constructing maps of counties, provinces, \&c, stations are fixed upon certain eminences \&c of the country, and angles taken from thence tut the several towns, villages, \&ec.-In surveying, the instrument is to be adjusted by the needle, or otherwise, to answer the points of the horizon at every station; the distance from hence to the last station is to be measured, and an angle is to be taken to the next station; which process reprated includes the chief practice of surveying.-In levelling, the instrument is rectified, or placed level at
each station, and observations made forwards and backwards.

There is a method of merasurimg distances nt one station, in the Philus. Trans. numb. 7, by tucans of a telescope. I have heard of another, by Mr. Kamsden; and have seen obler ingenious ways by Mr. Gireen, \&xe, consasting of a permanent scale of divisions, placed at any peoint whose distance is required; then the number of divisions seen through the teliscope, gives the dimance sought.

Sta1ion-Lane, in Survejug, and Line of Siation, in Perspective. Sue Line.

STATIUNARI, is Astronomy, the state of a planet when, to an cbocirver on the earth, it appears for some time to stand sull, or remain tmmoveable in the same place in the housens. For as the planets, to such an observer, have sometimes a progressive motion, and sometmes a retrograde one, there must be some point between the two where they must appour stationary. Now a planet will be seen stationary, when the line that joins the crntres of the earth and plaset is constantly directed to the same point in the heavens, which is when it keeps parallel to itself. For all right lines drawn from any point of the earih's orbit, paraliel to one another, do all point to the same star; the distance of these lines being insensible, in comparison of that of the fixed stars.

The planet Herschel is scen stationary at the distance of 104° from the sun; Buturn at somewhat more than 90°; Jupiter at the distance of 52°; and Mars at a much greater distance; Venus at 47°, and Mercury at 98°.

Henchel is stationary 12 days, Saturn 8, Jupiter 4 ,
 several stations are not always equal ; because the orbits of the planets are not fircles which bave the sun in their centre.

STEAM, the vapour arising from water, or any other liquid or moist body, when considerably heated. Subterranean steams often affect the sorface of the carth in a remarhable manner, and promote or prevent vegetation more than any thing elsc. It has been imagined that steams may be the generative cause of both minerals and metals, and of all the peculiarties of syrings. See Pbilos. Trans, vol. 5, pa. 1154.-Of the use of the air to elevate the steams of bodics, see pa. 2048 and 297° ib.-Conecrning the warm and fertilixing tempersture and steams of the earth, see Philos, Truas, vol. 10, pa. 307 and 337. See also Dr. Hamilton "On the Ascent of Viapours."

The stean raised from hot water is an elastic fluid, which, like air, has its elasticity proportional to its density when the heat is the same, or proportional to the heat when the density is the same. The stcam raised with the ordinary beat of boiling water, is nearly $\mathbf{3 0 0 0}$ times raver than water, or about 3% tomes rarer than air, having its elusticity about equal to that of the common air of the atinosphere. And by great heat it has been found that the steam may be expanded into 14000 times the space of water, or may be made about 3 times stronger than the atinosphere. But from some accidents that have bappened, it appears that stcam, suddenly raised from water, or moist substances, by the imucdiate application of strong heat, is vastly stronger than the atmosphere, or even than gunpowder itself. We have an instance of this in what happened at a foundery of cannon at Moorfields, when upon the hot metal first running into the mould in the earth, some small quantity of water in the bottom of it was suddenly changed into steam, which by its explo-
sion, blew the foundery to atoms. I remember another such accident at a tuundery it Neweastle; the founder having purchased, among some old brass, a hollow brass bull that bad been used for many years as a valve in a pump, withinside of which it seems some water had insinuated itself; and having put it into his fire to melt, when it had become very hut, it suddenly burst with a prodigious noive, and blew the adjacent parts of the furnace in pisces.

The observations on the different degrees of temperature acquired by water in boiling, onder different pressures of the atmosphere, and the formation of the vapour from water under the receiver of an air-pump, when, with the common temperatures, the pressure is diminished to a certain degree, have taught us that the expunsive force of vapour or steam is different in the different temperatures, and that in gromeral it increases in a variable ratio as the temperature is raised.

But there was wanting, on this important subject, a series of exact and direct experiments, by means of which, having given the degree of temperature in boiling water, we minht know the expansive furce of the steam rising from It ; and vice versa. There was wanting also an analytical theorem, expressing the relation between the temperature of bosting water, and the pressure with which the force of its steant is in equilibrium. This has naw bren accomplished by M. Betancourt, an ingeniots Spanish philosopher, the particulars of which are described in a memoir communicated to the French, Academy of Sciences in 1790 , and ordered to be printed in their collection of the Wurks of Strangers.

The apparatus which M. Betancourt makes use of, is a copper vessel or boiler, with its cover firmly soldered on. The cover has three holes, which close up with screws: the first is to put the water in and out; through the second passes the stein of a thermometer, which has the whole of its scale or graduations above the vessel, and its ball within, where it is immersed either in the water or the steam according to the different circumstances; through the third hole passes a tube forming a communication between the cavity of the boiler and one branch of as inverted syphon, which, containing mercury, acts as a barometer for measuring the pressure of the elastic vapour within the boiler. There is a fourth hole, in the side of the vessel, into which is inserted a tube, with a turtr-cock, making a communication with the receiver of an aur-punp, for extracting the air from the boiler, and to prevent its return.

The apparatus being prepared in good order, and distilled water introduced into the boiler by the first hole, and then stopped, as well as the end of the inverted syphon or barometer, M. Betancourt surrounded the boiler with ice, to lower the temperature of the water to the freesing point, and then extracting all the air from the boiler by means of the air-pump, the difference between the columms of mercary in the two branches of the barometer is the measure of the spring of the vapour arising from the water in that temperature. Then, lighting the fire below the boiler, he raised gradually the temperature of the water from 0 to 110 degrees of Reaumur's thermometer; being the same as from 32 to 212 degress of Fahrenheit's; and for each degree of elevation in the temperature, he observed the beight of the column of mercury which measured the elasticity or pressure of the vapour.

The results of M. Betaticourt's experiments are con-
tained in a table of four columns, which are but little differeut, acconding to the different quautitics of water in the vessel. It is here otaservable, that the increase in the expansive force of the veponr, is at first very slow; but gradually increasing faster ant faster, zill at last it becomes very rapid. Thus, the strength of the vapour, at 80 ilegrees, is uply equal to 28 French inches of mercury; but at 110 degrees it is equal to no less than 98 inchea, that is $\$$ times and a half more for the increase of only 30 degrees of heat.

To express analyticully the relation between the degrees of temperature of the vapour, and its expansive force, this author employs a method devised by M. Proay; which consists is conceiving the heights of the columas of inercury, measuritg the expansive force, to represent the ordinates of a curse, and the degrees of heat as the abscisses of the same; making the ordinatos equal to the sum of sereral logarithmic ones, which contain two indeterminates, and determining these quantities so that the curve may agree with a sufficient number of observations taken throughout their whole extent. Thell constructing the curve which results immediately from the experiments, and that given by the formula, these two curves are found to coincide almost perfectly together; the small differences being doubtless owing to the little irregularities in the experiments and in dividing the scale; so that the phenomena may be considered as truly represented by the formula.
M. Betancourt made also experiments with the vapour from spirit of wine, similar to those made with water; constructing the curve, and giving the formula proper to the same. From which is derived this remurk:able result, that, for any one and the same degree of heat, the strength of the vapour of spirit of wine, is to that of water, always in the same constant ratio, viz, that of 7 to 3 very nearly; the strength of the former being atways 2k times the strength of the latter, with the same degree of heat in the liquid.

Of the Formula, or Equation to the Curve.
The equation to the curve of temperature athd pressure, denoting the relation brtween the abucisses and ordinats, or t_{w} twern the temperature of the vapour and its strength, is, for water,

$$
y=b^{4+c x}-b^{a+c^{\prime} x}-b^{e}+c^{\prime \prime} x+b^{d}+c^{\prime \prime \prime} x
$$

Where x denotes the abscisses of the curve, or the degrees of Reaumur's thermometer; and y the corresponding ordinates, or the heights of the column of mercury in Paris inches, representing the strength or elasticity of the vapour answering to the number x of degrees of the thermometer, Then, by comparing this formula with a proper number of the experiments, the values of the constant quantities come out as below :
$b=10$.
$a=0.068831$
$c=0.019438$
$c=0.013490$
$c^{\prime}=-689760$
$c=-0.95622$
$c^{\prime \prime}=-0.937600$
$c^{\prime \prime}=-049220$

Hence it is evident by inspection, that the terms of the equation are very easy to calculate. For, b being the radix or root of the common system of logarithms, and all the terms on the second side of the equation being the

STE
[
powers of b, these terms are consequently the tabular natural number having the variable exponents for their logarithms. Now as x rises only to the first power, and is multiplied by a constant number, and another constant number being added to the product, gives the variable exponent, or logaritun; to which then is immediately found the corresponding natural number in the table of logarithms.

In the above formula, the two last terms nay be entirely omitted, as very small, as fur as to the 90th degree of the thermometer; and even above that temperature those two terms make but a small part of the whole formula.

And for the apirit of wine the formula is

$$
y=b^{n+c x}+b^{a^{\prime}+d^{\prime} x}-b^{e+c^{n} x}+b^{e}+d^{n x}-A
$$

Where x and y, as before, denote the absciss and ordinate of the curve, or the temperature and expansive force of the vapour from the spirit of wine; also the values of the constant quantities are as below :

$$
\begin{aligned}
& b=-10^{*} \\
& a \equiv-0.04853 \\
& c=0.02393 \\
& d^{\prime} \equiv-0.63414
\end{aligned}
$$

446
STE
$c^{\prime}=-0.096532$
$c^{\prime}=-2.509542$
$c^{\prime \prime}=-0.046473$
$c^{\prime}=-1.790192$
$c^{\prime \prime \prime}=-0029+48$
$A=1.12647$

This formula is of the same nature as the former, having also the like ease and convenience of calculation; and perhaps moreso; as thie second term $b^{a^{\prime}+d x}$, having its exponent wholly negative, soou diminisbes to no value, so as to be omitted from the 10th degree of temperature; also the difference between the last two terms $-b^{6+c^{* x}}+b^{d+c^{*} x}$ may be omitted till the 70th degree, for the same reason. So that, to the loth degree of temperature the theorem is only $y=b^{a+c a}+b^{a^{d}+d^{s}}-A$; and from the loth to the 70 th degree it is barely $y=$ $b^{a+c x}-A ;$ after which, for the last 15 or 20 degrees, for great accuracy, the last two terms may be taken in.

A compendium of the table of the experiments here follows, for the vapour of both water and spirit of winc, the temperature by Reaumur's thermumeter, and the barometer in French inches.

Table of the Temperature and Strength of the Vapourr of Water and Spirit of Wine, by Reaumur's Thermometer and French Inches.

$\begin{aligned} & \text { Deg. of } \\ & \text { Rees. Ther. } \end{aligned}$	Height of the Barometer lor		Deg. of Resu. Ther.	Height of the Barsmeter for	
	Vepour of Weter.	Vapour of Spirit of Wise.		Vapour of Waier.	Vepour of Spirit of Wine.
1	00176	0.0043	35	21374	5.0256
2	$0-0346$	00208	36	$2 \cdot 28+6$	$5 \cdot 3741$
3	0.0538	0.0478	37	2.4401	5.6423
4	0.0747	00837	38	2.6045	6.1315
5	0.1038	0.1279	39	2.7780	6.5426
6	0.1211	0.1794	40	2.9711	69770
7	0.1508	$0-2377$	41	3.1544	$7 \cdot 1360$
8	0.1741	0.3024	42	- 3.3585	7.9211
9	0-2073	0.3733	43	\$ 3735	8.4356
10	02304	0.4502	44	3.8005	8.9751
11	0.2681	0.5130	45	4.0339	9.5476
12	0.3039	0.6058	46	4-2922	10.1516
13	0.3419	07040	47	4.5542	107906
14	0.3877	0-8077	48	4.8386	11.4606
15	0.4258	0-9172	49	5.1346	12.1800
16	0.4778	1.0330	50	5.4453	12.9340
17	0.5208	1.1553	51	, $5 \cdot 7706$	13.7300
18	0.5730	1-2846	52	6.1194	14.5720
19	0.6283	1.4212	53	6.4834	15.4610
20	0.6872	1.5655	54	6.8607	16.4000
21	0.7497	17180	55	$7-9798$	17.3930
22	08159	1.8791	50	7.6948	18.4420
23	0.8863	20494	57	8.1412	19.5081
24	0.9610	2-2293	58	86221	20.6286
25	1.0402	24194	59	9.1071	21.6071
26	$1 \cdot 1239$	2.6202	60	9.6280	23.0544
27	1.2127	2.8325	61	10.1767	24.3451
28	$1 \cdot 3063$	3.0568	62	10.7098	$25 \cdot 6107$
29	$1 \cdot 4005$	$3 \cdot 2937$	63	11.3602	$27 \cdot 1444$
30	1.5019	$3 \cdot 54+1$	64	11-9976	28.6483
31	1.6538	\$.8097	65	12-6687	30.2262
32	1.7413	4.0885	66	13.3748	31.8705
35	1.8671	4.3837	67	14.1161	33.6114
34	1.9980	46958	68	14.8958	$35 \cdot 4258$

STE
[447]
STE

Drg. of Reau. Ther.	Height of the Baromeser for		Deg. of Reau. Ther.	Heigh of the Basometer for	
	Vepour of Water.	- Vapour of Spirit of Wine.		Vapour of Water.	Vapour of Spirit of Wlne.
69	15.7153	37-3232	90	45870	98-2764
70	16.377	39.3076	91	48.092	
71	$17 \cdot 482$	$41 \cdot 3807$	92	50.408	
72	18.433	435465	93	52.785	
73	19.433	$45 \cdot 3042$	94	55-253	
74	20.485	48.1589	95	$57 \cdot 801$	
75	21.587	50.6096	96	60.423	
76	22.746	53.1.593	97	63.108	
77	23.965	$55-8095$	98	$65 \cdot 877$	
78	$2.5 \cdot 260$	5*-3968	99	68.692	
79	26:588	$61 \cdot 3057$	100	71.552	
80	28.006	$64 \cdot 3524$	101	74.44	
81	$29 \cdot 45.2$	$67 \cdot 4095$	102	$77 \cdot 359$	
82	30.1980	70.4967	103	80.268	
83	32.575	73.7647	104	83.259	
84	342.51	77.0764	105	85.992	
85	35.985	80.4708	106	88.735	
86	37800	83.1 .351	107	$91 \cdot 367$	
87	$39 \cdot 697$	$87 \cdot 4625$	108	93.815	-
88	41.642	$91 \cdot 1366$	109	96.039	
89	43.730	94-6580	110	98.356	

M. Betancourt deduces several useful and ingenious conaequences and applications from this course of experiments. He shows, for instance, that the effect of steam engines must, in general, be greater in winter than in summer; owing to the different degrees of temperature in the water of injection. And fram the very superior strength of the vapour of spirit of wine, over that of water, he argues that. by trying otber fluids, some may be found, not very expensive, whose vapour inay be so much stronger than that of water, with the same degree of beat, that it may be substituted instend of water in the boilers of steam-engines, to the great saving in the very beavy expence of fuel: nay, he even declares, that spirit of wine itself anight thus be emplayed in a machine of a particular construction, which, with the same quantity of fuel, and without any increase of expence in other things, shall praduce uneffect greatly superior to what is obtained from the st'an of water. Ife makes several other observations ou the working and unprovement of steam-engines.

Another use of these experiments, deduced by M. Betancourt, is, to ineasure the beight of muuntains, ty means of a thermometer, inmersed in boiling water, which he thinks may be done with a precision equal, if not superior, to that of the barometer. As soon as I had obtained exact results of my experiments, says he, and was convinced that the degree of beat received by water depends absolutely on the pressure upon its surfuce, I endeavoured to compare my observations with such as have been made on mountains of different beights, to know what is the degree of heat which water can receive when the barometer stands at a determinate height; but from so few observations having been mate of this kind, and the different ways em ployed in graduating instruinents, it is difficult to draw any certain consequences from them.

The first ubservation which M. Betancourt compared with his expernsents, is one mentioned in the Mernoirs of the Academy of Sciences, anno 1740, page 92 . It is there said, that M. Monnier having made water boil upon the mountain of Canigou, where the barometer stood at 20.18
inches, the thermometer immersed in this water stood at a point unswering to 71 degrees of Reaumur: whrreas in M. Betancourt's table of experiments, at an equal pressure upon the surface of the water, the thermometer stood at 73.7 degrees. This difference be thinks is owing partly to the want of precision in the observation, and partly to the different method of graduating the thermometer, and the neglect of purging the barometer tube of air.
M. Betancourt next compared his experiments with some observations made by M. Deluc on the tops of several mountains ; in which, after reducing the scales of this genlieman to the same measures as his own, he finds a very great degree of coincidence between them. The following table contains a specimen of these comparisons, the instances being taken at randum from Deluc's treatise on the Mudifications of the Atmosphere.

Degrees of Heas in Builing Water upon the Tops of Mountaiss, cbrerved by Delac.				Hent of theWaterin M. Beten-court.Experimetan.
Places of Olmerration.	$\left\|\begin{array}{l} \text { Heat of } \\ \text { the air. } \end{array}\right\|$	Heighe of the Bat.	$\begin{aligned} & \text { Heat of the } \\ & \text { Water by Th. } \end{aligned}$	
Beaucair	144	28.248	80.37	80.29
Geneva	$12 \frac{1}{4}$	27.036	79.33	79.33
Grange Town	164	24.310	$77 \cdot 11$	77.42
Lans 1+ Bourg		24.145	77.18	$77 \cdot 14$
Girange le E.	15	24.089	76.76	77.09
Grenairon - -	$10 \frac{4}{4}$	20.427	73.26	73.89
Glaciere de B.	64	19.677	72.56	73.24

Where it is remarkable, that the differeace between the two is of no consequence in such matters.

Many other advantages might be deduced from the exact knowledge of the effect which the pressure of the atmosphere has upon the heat which water can receives one of which, M. Betancourt observes, is of too great importance in physics not to be mentioned. As soon as the thermometer becaine known to philosophers, almost every one endeavoured to find out two fixed points to direct them in dividing the acale of the instrument ; bav-
ing found that those of the freezing and boiling of water were nearly constant in different places, they gave these the preference ower wll others: but having discovered that water is capable of recersing a greater or less quantity of heat, according to the pressure of the atmosphere upon its surface, they liele the necessity of fixing a certain constant value to that ptessure, which it was almost generally agroed should be equal to a column of 28 French inches of inercury. This agreement however did not remove all the difficulties. For instance, if it were required to construct at Madrid a thermometer that might be comparable with another made ut Paris, the thing would be found innpussible by the means hitherto known, because the baronutur never tives so high as 27 inchers at Madrind; and it was not certuinly hnown how much the scale of the thermometer ought to be increased to have the point of boiling water in a place where the baroneter is at 28 inches. But by tuaking use of the foregoing observations, the thing appenrs very easy, and it is tobe hoped that by the getueral hnowledge of thein, thermometers may be brought to great perlection, the accurate use of which is of the greatest importanci it physics.

B-sides, without being confined to the height of the barometre in the open arr, in a given place, we may regutlate a thermometer according to any one assigned heat of water, by meatis of such an apparatubas M. Betancourt's. Fur, in order to graduate a thermometer, having a barometer ready divided; it is evident that by knowing, from the forgoing table of experiments, the degree of heat niswering to any one exparisive force, we can thence assign the degree of the thermometer corresponding to a certain height of the baruncter. A determination admitting of great precision, especially in the higher temperatures, where the motion of the barometer is so considerable in respect to that of the barometer.

Steasy Engine, un engine originally invented for raising water by means of the expansive force of the steam, or vapour, produced from water or otber liquids in a state of ebullition. This has been often ealled the fire-etgine, because of the fire used in boiling the liquid: but the latter term bes of late been properly confined to machines for extinguinhing fires. The steam-engine is justly estermed one of the must curious, important, and serviceable, mechanical inventions, not only of modern, but of any times; particularly when it is considered with regard to some of its late improvements, which render it applicable to all hinds of mill-work, to plaining, sawing, boring, and rolling machines, and indeed to almost every purpose that requires a powirful fint mover, the eneryy of which tnay be modified at the pleasure of the mechanist.

The steam-engine for raising wator is commonly a forcing pump, having ity rod lixed to one end of a lever, which is worked by the weight or pressure of the atmosphere upon a piston, at the other end, a temporary sacuun being made below it, by suddenly condensing the steam, that huil been let into the cylinder in which this piston worhs, by a jet of cold water thrown into it. A partial v.scuum being thus made, the weight of the atmosphere presses down the piston, and raises the other end of the straight lever with the water from the well \&c. Then inmediately a hole is uncovered in the bottom of the cyltnder, by which a fresh supply of hot steam rushes in from a boiler of water below it, which praves a counterbalance for the atmosphere above the piston, on which the weight of the putup rods at the other end of the
lever carries that end down, and raises the piston of the steam cylinder. Immediately the steam hole is shut, and the cock opened for injecting the cold water into the cylinder of steam, which condenses it to water again, and thus making another vacuum below the piston, the atmosphere above it presses it down, and raises the pump-ruds with another lift of water; und so on continually. This is the common principle: but there are also other modes uf applying the force of the steam, as weshall see in the following short history of this invention and its various improvements.
The carliest account to be met with of the invention of this engine, is in the marquis of Worcester's sinall brok entitlgd a Century of Investions (being a description of 100 notable discoverics), published in the year 1003 , where the proposed the raisiug of great quantities of water by the force of steam, raised froin water by means of fire; and lie mentions an engine of that kind, of his own contrivance, which could raise a continoal stream like a fountain 40 feet high, by means of two cocks whith were alternately and successively turned by a man to admit the steam, and to re-fill the vessel with cold water, the fire heing continually k'pt up.

Sir Samuel Morland also wrote a book on this encine; in which he not only showed the practicability of the plan, but went so far as to calculate the power of diffcrent cylinders. This book is now extant in manuscript, in the Harleian collection, in the British Museum, the description of which is found in the improved Harleian catalogue, vol. iii, num. 5771 ; sud it is also pointed out in the preface to that volume, sect. 22. Moriand dates his invention in 1682 , being 17 years prior to Savery's patent mentioned below, It was presented to the French king in 1683, at which time experiments were actually shown at St, Germain's. As Morland held places under king Charles the 2nd, it is natural to conclude that be wonld not have gone over to France, to off'r the invention to Iouis 14 th, had be not found it slighted at home. It seems to have remained obscure in both countries till 1699, when Savery; who probably kaew more of Morland"s invention than be owned, obtained a patent ; and it the very same year, M. Amontons pruposed something similar to the Frincli Arademy semingly as his own.

This invention then not meeting with encouragement, probably owing to the confused state of public mflaits at that time, it was neglected, and lay dorimant several years, until one Captain Thomas Savery, having read the marquis of Worcester's books, several years afterwards, tried many experiments un the force and power of steam; and at lavt lut upon a method of applying it to raise water. He then bought up and destroyed all the marquis's books that coull tre got, and claimed the honour of the invention to himself, and obtained a patent for it, preterding that he had discoured this secret of nature by accident. He contrivad an engine which, after many esperiments, he brooght to sonue degree of usefulness, so ns to raive water in sumall quantities; but he could not succerd in raising it to any great height, or in large quantities, for the draining of mines; to effect which by his method, the stean was required to be so strong as would have burst all his vessels; so that be was abliged to limit himsolf to raising the water only to a sm-ll height, or in amall quantities. The larcest engines he erected, was for the forkbuildiags Company in London, for supplying tise inhabiiauts in the Strand and that neighbourtrood with wuter.

The principle of this machine was as follows: 1 (fig. 3 , pl. 33) represeuts a copper boiler placed on a furnace ; E is a strong iron vessel, communicating with the boiler by means of a pipe at top, and with the main pipe AB by means of a plipe I at bottom; an is the main pipo inmersed in the water at 8 ; D and c are two fixed valves, both opening upwards, one being placed above, and the other below the pipe of communication I. Lustly, at a is a cock that serves occasionally to wet and cool the vessel e, by water from the main pipe, and 5 is a cock in the pipe of commumication between the vessel \mathbf{z} and the borler.
The engine is set to work, by filling the eopper in part with water, and also the upper part of the inain pipe above the valve c , the tire in the furnace being lighted at the same time. When the water buils strongly, the cock r is opened, the steain rushes into the vessel E , and expels the air from thence through the valve \mathbf{c}. The vessel E thus filled, and violently heated by the steam, is suddenly cooled by the water which falls upon it by turniug the cack C ; the cock F being at the same time shut, to prevent any fresh accession of stean from the boiler. Hence, the steam in x becoming condensed, it leaves tho cavity within nearly a vacuum : and therefore the pressure of the atmosphere at a forees the water through the valve \mathbf{D} till the vessel E is nearly filled. The condensing cock σ is theas shat, and the steam cock v again opened; hence the steam, rushing into e, expels the water througb the valve c, as it before did the air. Thus E becomes again filled with hot steam, which is again cooled and condensed by the water from 6 , the supply of steam being cut off by shitting F, as in the former operation: the water consequently rushes through D , by the pressure of the atinosphere at B , and E is again tilled. This water is forced up the main pipe through c, by opening p and sbutting 6, as before. And thus it is easy to conccive, that by the alternate operation of opening and shutting the cocks, water will be continually raised, as long as the boiler continues to supply the stcam.

For the sake of perspicuity, the drawing is divested of the apparatus that serves to turn the two cocks at once, and of the contrivances for filling the copper to the proper quantity. But it may be lound complete, with a full account of its uses and application, in Mr. Savery's book intituled the Miner's Friend, and in Dr. Grogory's Mechanics, vol. 2. The engines of this construction were usually made to work with two receivers or steam vessels, one to receive the steam, while the other was raising water by the condensation. This engine has been since improved, by admitting the end of the condensing pipe a into the sessel E , by which means the stearn is more suddenly and effictually condensed than by water on the outside of the vessel.

The advantages of this engine are, that it may be erected itr almost any situation, that it requires but little room, and is subject to very little friction in its parts.-Its disndvantages are, that great part of the steam is condensed and losis its force upon coming into contact with the water in the vessel 2 , and that the heat and elanicity of the steam must be increased in proportinn to the height that the water is required to be raised to. On both these accounts a large fire is required, and the copper must be very atrong, when the lieight is considerable, otherwise there is danger of its Lursting.

While captain Savery was employed in perfecting his Vol. II.
engine, Dr. Papin of Marburg was contriving one on the same principles, which he describes in a small book pullished in 1707, intitled Ars Nova ad Aquarn Ignis adminiculo efficacissime elevandam. Captain Savery's engine however was much more complete than that pruposed by Dr. Papin.

About the same time also Mons. Amontons of Paris was engaged in the same pursuit: but his method of applying the force of steam was ditierent from those beforementioned; for be intended it to drive or turu a whecl, which he called a fire-mill, that was to work pumps for raising water; but be never brought it to perfection. Each of these three gentemen claimed the originality of the invention; but it is most probable they all took the lint from the book published by the marquis of Worces* ter, as before-mentioned.

In this imperfect state it continued, without further improvements, till the year 1703, when Mr. Newcomen, an ironmonger, and Mr. JohnCeudley, a glazier, both of Dartmouth, contrived another way to rase water by steatn, bringing the engine to work with a beam and piston, and where the steam, even at the gieatest depths of mines, is not required to be greater than she pressure of the atmosphere: and this structure of the engine is tiat which has since been chiefly used. These gentlemen obtained a patent for the sole use of this invention, for 1t years. The first proposal they made for draining of mines by this engine, was in the year 1711; but they were very coldly received by many persons in the south of Eugland, who did not understand the nature of it. In 1712 they came to an agreement with the owners of a colliery at Griff in Warwickshire, where they erected an engine with a cylinder of 22 inches diameter. At first they were under great difficulties in many things; but by the assistance of some good worknen they got all the parts put together in such a manner, as to answer their intention tolerably well: and this was the first engine of the kind erected in England, There was at first one indn to attend the steamcock, and another to attend the injection-cock: but they afterwards contrived a method of opening and shutting them by sone sinall machinery connected with the working beam. The next engine erected by these patentees, was ut a collicry in the county of Durlam, about the year 1718, where was concerucd, as an agent, Mr. Henry Beighton, r. r.s. and conductor of the Ladies' Diary from the year $171+$ to the 1744: this gentleman, not approving of the intricate manner of opening and shuting the cocks by strings and catches, as in the former engine, substituted the banging-bean for that purpose as at present used, and likewise made improvements iu the pipes, valves, and some other parts of the cagine,

In a few years afterwardh, these engines became better understuod than they had been; and their advantages, especially in draining of mines, became more apparent: and frum the great number of them erected, they recelved additional improvements from different persons, till they arrived at their prisent degree of perfoction: as will appear in the mquel, after we base a litsle considered the general priaciples of this engine, which ate ns fullow.

> Principles of the Sicam Enyinc.

The principles on which this engine acis, are truly philosophical; and when all the parts at the machane are proportioned to each other according to thase pinciples, it never fails to answer the intention ot the eugineer.

1. It has been proved in pneumatics, that the pressure 3 M
of the atmosphere on a square inch at the earth's surface, is about $14 \frac{1}{\mathrm{l}} \mathrm{b}$ avoirdupuis at a medium, or $11 \frac{1}{\mathrm{lb}}$ on a circular inch, that is on a circle of an inch diameter. And,
2. If a vacuum be made by any means in a cylinder, which bas a moveable piston suspended at one end of a lever equally divided, the air will endravour to rush in, and will press down the piston, with a furce proportionate to the arca of the surface, and will ratse an equal wetght at the other end of the lever.
3. Water may be rarefied near 14000 times by being expanded into steam, and viokently heated: the particles of it are su strongly repellent, as to drive away air of the common density, only by a heat sufficient to keep the water in a boiling state, when the steam is almost 3000 times rarer than water, or $3 \frac{1}{2}$ times rarey than air, as appears by an experiment of Mr. Beighton's: by increasing the heat, the stearn may be rendered much stronger; but this res quires great strength in the vessels. This steam may be again condensed into its former state by a jet of cold water dispersed through it; so that 14000 cubic inches of steana admitted into a cylinder, may be reduced into the space of one cubic inch of water only, by which means a partial vacuum is obtained.
4. Though the pressure of the atmosphere be about 143 pounds upon every square inch, or 114 pounds upon a circular inch; yet, on account of the friction of the several parts, the resistance from some air which is unavoidably admitted with the jet of cold water, and from some remainder of steam in the cylinder, the vacuum is very imperfect, and the piston does not descend with a force excecding 8 or 9 pounds upon every square inch of its surface.
5. The gallon of water of 282 cubic inches weighs $10 \frac{1}{5}$ pounds avoirdupois, or a cubic foot 629 pounds, or 1000 ounces. The piston being pressed by the atmosphere with a force proportional to its area in inches, multiplied by about 8 or 9 pounds, depresses that end of the lever, and raises a column of water in the pumps of equal weight at the other end, by means of the pomp-rods suspended to it. When the steam is again admitted, the pump-rods sink by their superior weight, and the piston rises; and when that steam is condensed, the piston descends, and the pump-rods lift; and so on alternately as long as the piston works.

It has been observed above, that the piston does not descend with a force exceeding 8 or 9 puunds on every square inch of its surface ; but by reason of accidental frictions, and alterations in the density of the air, it will be safest, in calculating the power of the cylinder, to allow something less than 8 pounds for the pressure of the atsphere upon every square inch, viz, 71b. $10 \mathrm{oz} .=7.641 \mathrm{~b}$, or just 6 tb . upon every circular inch; and it being allowed that the gallon of water, of 282 cubic inches, weighs $10 ? 1 \mathrm{~b}$, from these premises the dimensions of the cylinder, pumps, \&c, for any steam-engine, may be deduced as follows:Suppose
$\mathrm{c}=$ the eylinder's diameter in inches,
$p=$ the pump's ditto,
$f=$ the depth of the pit in fathoms,
$g=$ gallons drawn by a stroke of 6 feet or a fathom,
$\hat{Z}=$ the hogsheads drawn per hour,
$s=$ the number of strokts per minute.

Then $c^{\mathbf{2}}$ is the area of the cylinder in circular inches, therefore $6 c^{1}$ is the power of the cylinder in pounds.
 in one fathom or 72 inches of any pump; which mulitpleed by f fathoms, gives $\frac{t}{t} f f$ for the gallons contanced in f fathoms of any puinp whose diameter is p. Hence $\frac{1}{3} p^{2} f$ $\times 10 \frac{1}{3} \mathrm{lb}$. gives $2 p^{2} f$ nearly, for the wright in pounds of the column of water which st to be equal to the poser of the cylinder, which was before found equal to $6 \mathrm{c}^{*}$ Hence then we have the gd equation, siz, $6 c^{2}=2 p^{2} f$, or $3 c^{3}=$
 which two equations, any particular circuinstance may be determined.
Or if, instead of 61b, for the pressure of the air on each circular inch of the cylinder, that force be supposed any number as a pounds ; then will the power of the cylinder be $a c^{2}$, and the 2d equation brcomes $a c^{2}=2 p^{9} f=10 f g$, by substituting $5 g$ instead of p^{4}.

And farther, $63 \mathrm{~h}=60 \mathrm{gs}$, or $21 \mathrm{~h}=20 \mathrm{~g}$ s.
From a comparison of these equations, the following theorems are derived, which will determine the size of the cylinder and pumps of any steam-engine capable of drawing a certuin quantity of water from any assigned depth, with the pressure of the atmosphere on each circular inch of the cylinder's area.
These theorems are nore particularly adapted to one pump in a pit. But it often happens in practice, that an engine has to draw several pumps of different diameters fiom different depths; and in this case, the square of the diameter of each pomp must be multiplied by its depth, and double the sum of all the products will be the weight of water drawn at each stroke, which is to be used instead of $2 p^{1} f$ for the power of the cylinder.

The following is a table, calculated from the foregoing theorems, of the powers of cylinders from 30 to 70 inches diameter; and the diameters and lengths of pumps which those cylinders are capable of working, from a 6 inch bore to that of 20 inches, together with the quantity of water drawn per stroke and per hour, allowing the engive to make 12 stroker of 6 feet per minute, and the pressure of the atmosphere at the rate of 7 lb 1002 per square inch, or 6 lb per circular inch.

ATabee of Tuborems for the readier computing the

 Powers of a Steam-Engene.$$
\begin{align*}
& 1 \quad a=\frac{2 f p^{2}}{a^{2}}=\frac{10 / p}{c^{t}}=\frac{21 / h}{2 c^{2} s} \\
& c=\sqrt{ } \frac{2 / p^{2}}{a}=\sqrt{ } \frac{10 f g}{a}=\sqrt{ } \frac{21 f h}{2 a s} \tag{2}\\
& f=\frac{a c^{2}}{2 p^{2}}=\frac{a c^{\prime}}{20 g}=\frac{2 a r^{2} s}{21 \mathrm{~h}} \\
& g=\frac{p^{t}}{5}=\frac{a c^{\prime}}{10 f}=\frac{21 h}{20 \pi} \\
& h=\frac{4 p^{\prime} s}{21}=\frac{20 g 1}{21}=\frac{2 a c^{\prime} s}{31 f} \\
& p=\sqrt{ } 5 g=\sqrt{ } \frac{a c^{2}}{2 \xi}=\sqrt{ } \frac{21 h}{4 z} \\
& A=\frac{21 h}{4 p^{\circ}}=\frac{21 /}{20 g}=\frac{21 / h}{3 a 0^{\circ}} .
\end{align*}
$$

－Table of the Power and Effets of Steam－Engings，allowing 12 Strokes，of 6 Feet long each，per Minute，and the Presure of the Air 718 10s per Square Inch，or $6 / b$ per Circular Inch．

	The Diameters of the Pampo in Inches．															Power of the cylinders and weightof mater In pounds．
	6	7	8	9	101	11	12	13	14	15	16	17	18	19	20	
30	75	35	42	23	27	22	19	16	14	12	10	－	－	－	．	3400
31	80	38	45	35	29	24	20	17	15	13	11	19	－	－		5706
32	83	61	47	37	30	25	21	18	16	13	12	10	－	，		6144
33	90	67	51	10	32	27.	22	19	17	14	13	11	10		－	6534
34	04	70	33	42	34	28	23	20	18	15	14	12	10	－	－	． 6936
35	102	75	57	45	37	30	26	22	19	10	14	13	11	－	－	7350
36	－	79	6	48	39	32	27	23	20	17	15	14	12	10	－	7776
37	－	84	64	51	41	34	29	24	21	18	16	14	12	11	10	8214
旡 38	＊	88	68	53	43	35	30	26	22	19	17	15	13	12	10	8664
$\begin{array}{ll}\text { 彦 } & 39\end{array}$	－	93	71	36	45	37	32	27	23	20	18	16	14	12	11	9126
E 5 to	＊	08	75	39	48	39	34	28	24	21	19	17	15	13	12	9600
退 42	－	103	83	65	53	43	38	31	27	23	21	18	16	14	13	10584
S． 44	－	－	90	71	58	48	41	34	30	26	23	20	18	16	14	11616
美 46	＊	－	99	78	63	52	45	37	33	29	25	21	19	17	16	12696
E 48	－	－		85	69	57	49	41	35	31	27	24	21	19	17	13824
\％ 50	－	－		92	75	62	53	44	38	34	29	26	23	21	19	15000
\％ 52	－	－	－	100	81	67	57	48	41	36	31	28	25	22	20	16224
F｜ 54	－	－	－	\therefore	87	72	61	52	44	38	34	30	27	24	22	17406
56	－	－	－	－	94	78	66	56	48	42	57	32	29	26	23	18816
58	－	－	－	－	101	83	70	59	51	4.	99	34	31	28	25	20184
60	＊	－	－	＊	－	89	75	63	55	48	42	37	33	30	27	21600
62	－	－	－	－		95	so	68	58	51	45	39	35	32	28	23064
64	－	－	－	－	－	－	85	72	62	54	48	42	38	34	30	24546
66	－	－	－	－			90	77	66	57	51	45	40	36	32	26676
65	－	－	＊	－	－	－	96	82	70	61	54	48	42	38	$3+$	27744
170	．	．	－	－	－	．	－	86	75	64	57	50	45	40	36	29400
Quan．drawn ＂at onc stroke in gatlons．	$7 \cdot 2$	10	13	16.2	20	24.2	28.8	33.8	$39 \cdot 2$	45	51－2	57.8	64.8	72.2	80	
Quant drawn in une hour in homsheads．	82	114	148	184	228	276	328	385	447	513	583	659	738	823	912	
Dismeter of pampt．	6	7	8	9	10	11	12	13	$1+$	13	16	17	18	19	20	

Let us now describe the several parts of an eugine，and exemplify the application of the foregoing principles，in the construction of one of the completest of the modern engines．See fig．4．pl． 33.
a represents the fire－place under the boiler，for the boil－ ing of the water，and the ash－hole below it．

B, the boiler，filled with water about 3 feet above the bottom，made of iron plates．
c，the steam pipe，through which the steam passes from the boiler into the receiver．

D．the receiver，a close iron vessel，in which is the re－ gulator or steam－cock，which opens and shuts the hole of communication ut each stroke．
s，the communication pipe between the receiver and the cylinder；it risws 5 or 6 inches up，in the inside of the cylinder bottom，t．，prevent the injected water from de－ scending iato the receiver．
y ，the cylinder，of cast iron，about 10 feet long，bored smooth in the inside；it has a broad flanch in the middle on the outside，by which it is supported when hung in the cylinder－beams．

G，the piston，made to fit the cylinder exactly：it has a flunch rising 4 or 5 inches upon its upper surface，be－ tween which and the side of she cylnder a quantity of junk or oakum is stuffed，and kept down by weights，to prevent the entrance of air or water and the escaping of steam．
H ，the chain and piston shank，by which it is connected to the working beam．

11，the working beam or lever：it is made of two or more large logs of timber，bent together at each end，and kept at the distance of 8 or 9 inches from each other in the middle by the qudgion，as represented in the Plate． The arch beads，II，at the ruds，are for giving a perpendi－ cular direction to the chains of the pistun and pump－ruds． 3 M 2

א, the pump-rod which works in the sucking pump.
L, and draws the water Irom the botton of the pit to the suriace.
s, a cistern, into which the water drawn out of the pit is conducted by a trough, so as to kiep it mlways full: and the superfluous wateris carried off by another rrough.
s , the jack-head pump, which is a sucking-pump wrought by a small lever ur workiug-beani, by means of a clain connected to the great beain or lever near the areh g at the inner end, and the pumperod at the outer entl. This pomp coumonly stands near the corner of the front of the house, and raises the columin of water up to the cistern o, into which it is cunducted by a trough.
o, the jack-head cistern for supplying the injuction, which is always kept full by the pump s : it is tixed so bigh as to give the jet a sufficient relucity into the cylinder when the cock is opened. This cistern has a fipe on the opposite side tor conveging away the superfluous water.

Pr, the injection-pipe, of 3 or 4 inches diameter, which turns up in a curve at the lower end, and enters the cylinder bottom: it has a thin plate of iron upon the end d, with 3 or 4 adjutage holes in it, to prevent the jet of cold water of the jack-head cistern froin Alying up against the piston, and yet to condense the steam each stroke, when the injection-cock is open.
e, a valve upon the upper end of the injection-pipe within the cisrern, which is shut when the engine is not working, to prevent any waste of the water.
f, a small pipe which branches off from the injectionpipe, and has a small cock to supply the piston with a little water to keep it air-tight.

Q, the working plug, suspended by a chain to the arch g of the working beam. It is usually a heavy piece of timber, with a slit vertically down its middle, and holes bored horizontally through it , to receive pins for the purpose of opening and shutting the injection and steam cocks, as it asceods and descends by the motion of the working beam.
h, the handle of the steam-cock or regulator ${ }_{9}$ it is fixed to the regulator by a spindle which comes up through the top of the receiver. The regulator is a circular plate of bruss or cast iron, which is moved horizontally by the bandle h, and opens or shuts the communication at the lower end of the pipe e within the receiver. It is represented in the plate by a circular dotted line.
ii, the spanner, which is a long rod or plate of irouf for communicating motion to the bandle of the regulator: to which it is fixed by means of a slit in the latter, and some pins put through to fasten it.
$k i$, the vibrating lever, called the y , baving the weight \& at one end and two legs at the other end. It is fixed to an horizontal axis, moveable about its centre-pins or pivots m, by means of the two shanks op fixed to the same axis, which are alternately thrown backwards and forwards by means of two pias in the working plug; one pill on the outside depressing the shank o, throws the loaded end k of the r from the cylinder into the position represented in the plate, and causes the leg l to strike against the end of the spanner; which forcing back the handle of the regulator or steam cock, opens the communication, and permits the steam to fly into the cylinder. The piston immediately rising by the admission of the steam, the working beam 11 rises; which also raises the working-plug, and another pin which goes through the slit raises the shank p, which throws the end k of the Y
towards the cy linder, and, striking the end of the spanner, forces it iorward, and shuts the regulator steam-cock.

4 r , the lever tor opening and shutting the injectron-coek, called the r. It las two toes from ins centre, which bake between them the key of the injection-cack. When the workmp-plug has ascended nearly to its greatest beight, ned shut the regulator, n pincentelies the end y of the r and rases it up, which opeus the injection-cuck, admits a jet of cold water to fly into the cyhader, and condensing the stcam, makes a vacuum ; then the pressure of the atmonpheie tringug down the piston in the cylinder, and also the plug. trane, another pin fixed in il catelos the end of the lever in ins drseent, and, by pressing it down, shuts the injection-cock, at the same time the regulator is opened to admit stemb, and so on altemairly; when the regulator is shut the injection is open, and when the former is open the laticr is shut.
n , the hot-sell, a small cistern made of planks, which receives all the waste water from the cylinder.
s, the sink-pit to convey away the water which is injected into the cylinder at each stroke. Its upper end is even with the inside of the cylinder bottom; its luwer end has a lid or cover moveable on a hinge which serves as a valve to let out the injected water, and shus close each stroke of the engine, to prevent the water being forced op again when the vacuum is made.

T, the feeding-pipe, to supply the boiler with water from the bot-well. It has a cock to let in a large or small quantity of water as occasion requires, to make up for what is cvaporated : it goes aearly down to the boiler buttom.
v, two gage-cocks, the one larger than the other, to try when a proper quantity of water is in the boiler: on opening the cock ${ }^{\text {s/ }}$ if one give steam and the other water, it is right; if they both give steam, there is too little water in the boiter; and if they both give water, there is too much.
w , a plate which is screwed on to a bole on the side of the builer, to allow a passage into the boiler for the convenience of cleaning or repairing it.
x, the steam-cluck or puppet valve, a brass valve on the top of a pipe opening iato the boiler, so let off the steam when it is too strong. It is loaded with lead, at the rate of one pound to an inch square; and when the steam is nearly strong enough to kecp it open, it will do for the working of the engine.
f, the snifting valve, by which the air is discharged from the cylinder each struke, which was admitied with the injection, and would otherwise obstruct the due operation of the eagine.
u, the cylinder-beams; which are strong joists going through the house for supporting the cylinder.
v, the cylinder cap of lead, soldered on the top of the cylinder, to prevent the water upon the piston from Hashing over when it rises too high.
w, the waste-pipe, which conducts the superfluous water from the top of the cylinder to the hot-well.
$x x$, iron bars, called the catch-pins, fixed horizontally through each arch-head, to prevent the beam descending too low in case the chain should break.
$y y$, two strong wooden springs, to weaken the blow given by the catch-pins when the stroke is too long.
zt, two friction-wheels, on which the gudgeon or centre of the great beam is bung; they are the third or fourth part of a circle, and move a littie each way as the beam
vibrates. Their use is to diminish the friction of the axis, which, in so heavy a lever, would otherwise be very great.

When this engine is to be set to work, the boiler must be filled about 3 or 4 feet derp with water, and a large fire made under it; and when the steam is found to be of a sufficient strength by the puppet-clack, thin by thrusting back the spanner, which opens the regulator or sterantcock, the ateam is admitted into the cylinder, wlich raises the piston to the top of the cylinder, and forces oot all the arr at the snifting valve; then by turning the key of the injection-cock, a jet of cold water is admitted intu the cylinder, which condenses the stram and produces n vacuum; the atmosphere then pressing upon the piston, forces it down to the lower part of the cylinder, and makes a stroke by raising the column of water at the other end of the beam. After two or three strukes are made in this manner, by a man opening und shutting the cocks to try if they be right, the pins may then be put into the pinholes in the working plug, and the engine left to turn the cocks of itself; which it will do with greater exacthess than can be dune by a man.

There ure in sonie engines, methods of shutting and opening the cocks diflerent from the one above described, but perhaps none better adapted to the purpose; and as the princeples on which they aH act are originally the same, any difference in the mechanical cunstruction of the small machim-ty will have no influence of consequence on the total ettect of the grand machine.

The fornace or fire-place should not have the bers se close as to provent the free admission of fresh air to the fire, nor so open as to permit the coals to fall casily through them; firr which purpose two inches or thereabouts is sufficient for the distance betwixt the bars. The size of the turnace depends on that of the boiler; but in every case tbe asb-hole ought to be capacious to adruit the air, and the greater its height the brtter. If the flame is condacted in a flue or chimney round the outside of the boiler, or in a pipe round the inside of it, it ought to be gradually diminishell from the entrance at the furnace to its egress at the chimney; and the section of the chimney at thut place should not exceed the section of the flue or pipe, and should ulso be somewhat less at the chimpey-top.

The boiler or vessel in which the water is rarefied by the force of fare, may be made of iron plates or cast iron, or such other materiala as can withstand the efficts of the firc, and the elastic force of the steam. It may be considered as cousisting of two parts; the upper part which is exposed to the steam, and the under part which is exposed to the fire. The form of the lattel should be such as to receive the full force of the fire in the most advantageous manner, so that a certain quantity of fael may have the greatest possible effect in beating and evapurating the water; which is beat done by making the sides cylindrical, and the bottom a little concare, and then conducting the flame by an iron flue or pipe round the inside of the boiler teneath the surface of the water, before it reach the chimney. For, by this means, after the fire in the furnace has bented the water by ite effect on the bottom, the flame heats it agaill by the pipe being wholly included in the water, and having every part of its surface in contact with it; which is preferable to carrying it in a flue or chimney round the outside of the boiler, as a third or a
half of the surface of the flame only could be in contact with the boiler, the uther being opent upen the brick-work. This lower cytudric part may be lems in its dhameter than the upper mart, and may contain from 4 to 6 heet perpendicolar depth of water in it.

The upper part of the builer is bast made hemispherical, for resstieg the clasticity of the stean; yet any other forin may do, provided it be of sufficient strength for the purpose. The quick motion of the engine depends much on the capaciousness of the boiler-top; for if it be too small, it requires the steam to be heated to a great degrre, to increase its elastic force so inuch as to work the engine. If the top is so capacious as to contain eight or ten times the quantity of steam used each stroke, it will require no more fire to preserve its elasticity than is sufficient to keep the water in a proper state of boiling; this, therefure, is the best size for n boiler top. If the diameter of the cylinder be c, and works a six-foot stroke, and the diameter of the boiler be supposed b, then $200 c^{2}=b^{2}$, or $b=\sqrt[3]{200 c^{2}}$.
The effect of the injection in condensing the steam in the eylinder, depends on the beight of the rescrvoir and the dianseter of the adjutage. If the congine makes a 6 fret stroke, then the jackhead cistrin should be 12 feet perpendicular above the bottom of the cylinder or the adjutage. The size of the adjutage may be from 1 to 2 inches in diameter; or if the cytinder be very large, it is proper to have three or four holes rather than one large oue, in order that the jet may be dispersed the more effectualiy over the whole area of the cylinder. The injection pipe, or pipe of conduct, should be so large as to supply she injection freely with water; if the diameter of the injection pipe be called p, and the diameter of the adjutage, a, then $4 a^{2}=p^{2}$, and $a^{2}=\frac{1}{4} p^{1}$, or $a=\frac{1}{2} p$.

For a further account of these engiues, see Desaguliers's Exp. Philos. vol. 2, sect. 14, pa. $465, \& c$; or for an abstract, Martin's Phil. Brit. number 461, or Nicholson's Nat. Philos pa. ss \&cc. And for an account of the improvement made in the firc-engine by Mr. Payne, sce Philos. Trans. number 46\%, or Martin's Philos. Brit. pa. 87 Acc. See also Gregory's Mrclanics, vol. 2, for a particular description of different steam-engincs, containing the latest iniprovesecnts thut they have undergone,

Mr. Bhakey communicated to the Royal Suciety, in 1732, remarks on the best proportions for steam-engine cylinders of a given content : and Mr. Sineaton describes an engine of this kind, imented by Mr. De Moura of Portugal, being an improvenent of Savery's constroction, to render it capable of working itself: for both which accuonts, see Plilus. Trabs. vul. 47, art. 29 and 72.

We are intiormed in the new edit. of the Biograph. Brit. under the article Brindley, that in 1756 this gentleman, so well known fier his concern in our inland nastigations, undertouk to erect u stcam-engine near Newcastle-underLine, on a new plan. The boiler of it was made with brick and stune, instead of irom plates, and the water was lieated by iron flues of a peculiar construction; by which contrivances the consumption of fuel, necessary fir working a steam-engine, was reduced one half. Ho introduced also into bis engine wooden cylinders, made in the manner of couper's ware, instend of iron on's; the former being both cheaper and more easily managed in the shafts: and he likewise substituteal wood for iron in. the chains which worked at the end of the beam. He had.
fortaed designs of introducing other improvements into the construction of this useful cogme; but was discouraged by obstncles that were thrown in his way.

Mr. Blakey, some yrars ako, obtained a patent for his improvement of Savery's sleam-engine, by which it is excellently adapted for raising water out of ponds, rivers, wells, \&kc, and for forcing it up to any height wanted for supplying bouses, gardens, and other places; though it has not power suffictent to drain off the water from a deep mine. The priuciples of his construction are explaiued by Mr. Ferguson, in the Supplement to bis Lectures, pa. 19; and a more particular description of it, accompanied with a drawing, is given hy the patontec bimself in the Gentleman's Magazine for 1769, pa 392.

Mr. Blakey, it is said, is the first person who ever thought of making use of air as an intermediate body between steam and water; by which means the steam is always kept from touching the water, and consequently from leing cotodensed by it: and on this new principle he has oftained a patent. The engine inay be built at a trifling expence. in comparison of the common stearnengine now in use ; it will seldom necd repairs, and will not consume half so much fuel. And as it has no pumps with pistons, it is clear of all their friction ; and the cffect is equal to the whole strength or compressive force of the steam ; which the ciffet of the contmon engine never is, on acconnt of the great friction of the pistons in their pumps.

Ever since Mr. Newcomen's invention of the stram fire-engine, the great consumption of fuel with which it is attended, has been complained of as an immense drawback on the profits of our mines. It is a knowifact, that every engine of considerable size consumes to the amount of three thousand pounds worth of coals in a year. Hence many of our engineens have endeavoured, in the construction of these engines, to save fuel. For this purpose, the fire-place has been diminished, the flame bas been carried round from the bottom of the boiler in a spiral direcetion, and conveyed through the body of the water in a tube before its arrival it the chimney; some have used a double boiler, so that fire might act in every possible point of contact; and some have built a moorstone boiler, heated by three tubrs of flame passing through it. But the most inprertant improvenents which have been made in the stearn-engine for mwre than forty years past, we owe to the skill of Mr. Jaises Watt; of which we shall give some account: premising, that the internat atructure of his new engines so much resembles that of the common ones, that those who are acquanted with them will not fail to understand the mechamsm of his from the following description: He bas contrived to observe a uniform beat in the cylinuler of his engines, by suffering wo cold water to touch it, and by protecting it from the nir, or wther cold twadus, by a surrounding case filled with steam, or with hot nir or water, and by conating it over with substances that iransmit heat slowly. He makes his vacuum to approach nearly to that of the barometer, by condenaing the steam in a separate vessel, called the condenser, which may be cooled at pleasure without couling the cylinder, sither by an injection of cold water, or by surrounding the condenser with it, and generally by both. He extracts the injection water, and detached air, from the cyinder or condenser by pumps, which are wrought by the engine itself, or bluws thein out by the stram. As the entrance of air into the cyliader would stop the opera-
tion of the englnes, and as it is hardly to be expected that such enormous pistons as those of steam-engiues can move up and down, and yet be absolutely ingt as in the conmon engines; a strean of water is kept alwaye running upon the piston, which prevents the entry of the air: but this mode of securing the piston, though hot hurtful in the common ones, would be lighly prejudicial to the new engines. Their piston is therctore made more accurately; and the outer cylinder, hasing a lid, covers it, the steam is introduced above the piston; and when a vacuum is produced under 11, acts upon it by its elasticity, as the atmosphere does upot common engines by its gravzty. This way of working effectually excludes the air from the inner cylinder, and gives the advatuage of adding to the power, by increasing the , lasticity of the steain.
In Mr. Watis engines, the cylinder, the great beams, the pumps, \& c, stand in their usual positions. The cylinder is smaller than usual, in proportion to the load, and is very accurately bored. In the most complete engines, it is surrounded at a small distance, with another cylinder, furnished with a bottoin and a lid. The interstice between the cylinders communicates with the builers by a large pipe, open at both enels : so that it is always filled with steam, and thereby maintains the inner cylinder always of the same heat with the steam, and prevents any condenation within it, which would be more detrimental than an equal condensation in the outer one. The inner cylinder has a bottom and piston as usual : and as it does not reach up quite to the lid of the outer cylinder, the steam in the interstice has always free access to the "pper side of the piston. The lid of the outer cylinder has a hole in its middle; and the piston rod, which is truly cylindrical, moves up and down through that bole, which is kept steam-tight by a collar of aakum screwed down upon it. At the bottom of the inner cylinder, there are two regulating valves, one of which admits the steam to pass from the interstice into the inner cylinder below the piston, or shuts it out at pleasure: the other opens or shuts the end of a pipe, whicb leads to the condenser. The cotdenser consists of one or nore pumps furnished with clacks and buckets (nearly the sume as in common pumps) which are wrought by chaius fastened to the great working beam of the engine. The pije, which comes from the cylinder, is joined to the bottom of these pumps, and the whole condenser stands immersed in a cistern of cold wister supplied by the engine. The place of this cistern is either within the house or under the floor, between the cylinder and the lever wall; or without the house between that wall and the engine shaft, as conveniency may require. The condenser being exhausted of air by blowing, and both the cylinders being billed with stean, the regulating valve whicb admits the steam into the inner cylinder is shut, and the other regulator which conmunicates with the condenor is opened, and the steam rushes into the vacuum of the condenser with violence: but there it ccomes into contact with the cold sides of the pumps and pipes, anil meets 11 jet of cold water, which was opened at the same tume with the exhaustion regulator; thise instantly deprive it of is heat, and reduce it to water; and the vacuum remaining perfect, more steam continues to rush in, and is condensed until the inner cylinder is exhausted. Then the steam which is above the piston, crasing to be counteracted by that which was below it, acts upon the piston with tts whole elasticity, and forces is to descead to
the bottom of the cylinder, and so raises the buckets of the pumps which are hung to the other end of the hearo. I be exliaustion regulator is now shut, and the steam one opened again, which, by letting in the steam, allows the piston to be pulled up by the superior weight of the pump rods; and so the engine is ready for anether stroke.

But the nature of Ar. Watt's improvement will be perbaps better understood from the following description of it as referred to a figure. - The cylinder or stean vessel A, of this engine (fig. 5, pl. 33), is shut at bottom and opened at top as usual ; and is included in an onter cylinder or cuse BE, of wood or metal, covered with materials which trankmit heat slowly. Thas case is at a small distance from the cylinder, and clowe at both ends. The cover c has a hole in it, through which the piston rode slides; and near the bottom is another hole \boldsymbol{y}, by which the steann from the boiler has always free entrance into this case or outer cylinder, and by the interstice go between the two cylinders has access to the upper side of the piston inn. "To the bottom of the inner cylinder A is joined a pipe 1, with a cock or valve K, which is opened and shut when necessary, and forms a pasage to another vessel \& called a condenser, made of thim metal. This vessel is immersed in a cistern m full of cold water, and it is contrived so us to expose a very great surface externally to the water, and internally to the steat. It is also made air-tight, and has pumps y wrought by the engine, which herp it always exhausted of air and water.
Both the cylinders a and as being filled witb steam, the passage x is opened from the inner one to the condenser L , into which the steam violently rushes by its elasticity, because that vessel is exhausted; but as soon as it enters it, coming into contact with the cold matter of the condenser, it is rednced to water, and, the vacuum still remaining, the steam continues to rush in till the inver cylinder a below the piston is left empty. The stcam which is above the piston, ceasing to be counteracted by that which is below it, acts upon the pivton min, and forces it to descend to the bottom of the cylinder, and so raises the bucket of the pumpl by means of the lever. The passage x between the inner cylinder and the condenser is then shut, and another passage o is opened, which permits the steam to pass from the outer cylinder, or from the boiler into the inner cylinder under the piston; and then the superior weight of the bucket and pump rods pulls downt the outer end of the lever or great beam, and raises the piston, which is suspended to the inner eud of the same beam.
The advantages that accrue from this construction are, first, that the cylinder being surrounded with the steam from the boiler, it is kept always uniformly as hot as the steam itself, and is therefore incapable of destroying any part of the steam, which should fill it, as the common engines do. Secondly, the condenser being kept always as cold as water can be procured, and colder than the point at which it boils in vacuo, the steam is perfectly condensed, and does not oppose the descent of the piston; which is therefore forced down by the full power of the steam from the boiler, which is somewhat greater than that of the atmosphere.
In the common steam-engines, when they are loaded to 7 pounds upon the iuch, and are of a middle size, the quantity of steam which is condensed in resturing to the cylinder the beat which it had been deprived of by the former injection of cold water, is about one full of the cylinder, besides what it really required to fill that vessel;
sn that twice the foll of the cylinder is employed to make it raise a column of water equal to ubout 7 pounds for each square inch of the piston : of, to take it anore simply, a cubic foot of steam ruises a cubic foot of water about 8 feet high, besides overcoming the friction of the engine, and the resistance of the watel to motion.
In the improved engine, about one full and a fourth of the cylinder is required to fill it, because the steam is onefourth more dense than in the common engine. This colgine rases a load equal to 12 pounds and a half upon the square inch of the piston ; and each cubic lout of steam of the density of the atmospliere, raises one cubic foot of water 22 fect high. The working of these engines is more regular and steady than the common unes, and from what has been said, their other advantages seem to be very considerable.

It is said, that the savinge amount at least to two-thirds of the fuel, which is an important ohject, especially where coals are dcar. The new engines will raise from twenty thousand to twenty-four thousand cubie feet of water, to the height of $2+$ feet by one bundred weight of good pit coal: and Mr. Watt has proposed to produce engines on the same principles, though somewhat differing in construethen, which will require still much less fuel, and be more convenient for the purposes of mining, than any kind of engine yet used. "Mr. Watt has also coutrived a kind of mill wheel, which turns ruund by the power of steam exerted within it.

The improvements above recited were invented by Mr. James Watt, at Glasgow, in Scotland, in 1764; be obtained the king's lesters patent for the sole use of his invention in 1768 ; but meeting with difficulties in the execution of a large machine, and being otherwise employed, be laid aside the underiaking till the year $177+$, when, in conjunction with Mr. Boulton near Birmingham, he completed both a reciprocating and rotative or wheel engine. He then applied to parliament for a prolongation of the term of his patent, which was granted by an act passed in 1775. Since that time, Mr. Watt and Mr. Boulton have erected several engines in various parts of England. The terms they offer to the public are, to take in heu of all profits, one-third part of the annual savings in fuel, which their engine anakes when compured with a common engine of the same dimensions in the neigbbourhoud. The engines are buila at the eapence of those ubo use thero, and Messrs. Buulton and Watt furnish such drawings, ditections, and attendance, as may be necessaiy to enable a resitent engineer to complete the machnue. Sce the appendix to Pryce's Mineralogia, \&c, 1778.

Mr. Homblower and ollers have also made ingenious improvemonts on the steam-engine.

Secanother view of a steam engine at fig. 3, pl. 31.
Stean-Boat, \&c. Besides the stean-engines ernployed for drawing the water out of decp-mines, (and without the discovery of such machines the country now would have been almost deprived of the use of coals,) steam has been gradually applied, as a power, to give motion to various other machines, and for other purposes where great and uconomical powers are required, with the best effects; such as saw-rxills, piledriving, deepening and cleansing of rivers and canals, the draft of numeruus waggoas on rail-ways, with many other uacful and bencficial purposes ; and lastly to the purposes ol navigation, by impelling large vessels on rivers and canals, for the cheap and expeditious conveyauce of passengers and goodr of all
kinds. Many vescels of this kind are now employed in this way, it this country, and in North America, and clsewhere. As early so the year 1801, such a vessel was tried on the Forth and Clyde inland nevigation: but was laid aside, anong other reasons, on account of the injury it threatened the barnks of the canal by the agitation of the water. In America, the first steam-boat was launched at New-York on the 3d of October 1807, and began to ply on the tiver between that city and Albany, a distance of about 160 miks; and now numerous large vessels of that kind are emplayed on the navigation between New York and Canada, as well as on the Mississippi, and several other rivers in that country. The first attempt, on a large scate, to navigate by steam on the river Clyde, was made in the year 1812; and many other vessels, of great burden, ate how daily cmployed there, conveying at each time several hundred tous of goods, or many hundred passengers, in a eommonlious, clieap, and expeditious manner. Vessels of the same kiod are also successively establisbing on many other rivers in the country; as on the Thames, the Tyne, \&e, \&c, and even coasting on the sea.-Accounts of these vessels and navigations have beet given in several publications; particularly in the Munthly Magnaine in many places of the volumes 30° and 37 , as wloo in the Plulos. Magazine, vol. 45, in both cases accompanied with drawings and descriptions of the rathehinery.

SteElyaltd, or Stilyard, in Mechanics, a kind of balance, called also, Statera Romana, or the Homan Balance, by means of which the weights of different bodies are discovered by using one single weight only.

The comman stectyard consists of an iron beam $A B$, in which is assumed a point at pleasure, as c, on which is raised a perpendicular $\mathbf{C D}$. On the shorter nerm ac is hung a scale to recrive the bodics weighed: the muveable weight t is shilted bachward and forward on the beam, tull it be n counterbalance to $1,2,3,4$, se pounds placed in the scale; und the points are noted where the constant weight 1 weighs, as 1, 2, 3, 4, \&c pounds. From this eonstruction of the steelyard, the manner of using it is cvident.

These instruments in the hands of designing men are casily eonverted to the purpore of deception ; as, one eannot so readily know whether they be truly constructed or not, as we can with the common balance; on whieh account, and some other ineonveniencies attending the use of them, they are not very generally employed in mercautile transaction

These impreffections in the common steclyard, led C. Paul, inspectur of weights at Geneva, to employ his thoughts on so far improting steelyards, that enher in the delicate operatione of the aits, or in thuse of the same kind
which are often so necessary in the practice of playsical sciences, those instruments might be snbstituted with advantage for eummon balanees.

It would be contrary to our plan toenter at any length upon the description of the instrument whieh Mr, P'aul has constructed lor this purpose, being merely a mechanical contrivance; it is however very ingenious, a description of which may be sten in Gregory's Mechanics, vol.2, pa. 405, and in the Plotosnphical Magazine, vol. 3, where there is also a representation of the instrument.

Chinese Steelya ad. Ithe Chmese carry this statera about them to weigh their g-mns, and other things of value. The beam or yard is a small rod of wood or ivory; about a foot in length : upon this are three rules of measure, made of a fine solver-studded work; they all begia from the end of the beam, whence the first is extended 8 inches, the second $6 \frac{1}{4}$, the third $8 \frac{1}{2}$. The first is the European measure, the other two seem to be Chinese measures. At the other end of the yard hangs a round scale, and at three several distances from this end are fastenel so many slender strings, as different points of suspension. The first distance makes $1 \frac{1}{3}$ or $\frac{5}{5}$ of an inch, the second $3 \frac{1}{5}$ or duuble the first, and the ${ }^{\prime}$ thind $4 \frac{4}{5}$ or triple of the first. When they weigh any thing, they hold upthe yard by some one of these strings, and hang a scaled weight, of about 1 foz troy weight, upon the respective divisons of the rule, as the thing requires. Grew's Museum, pa. 369.

Spring Steelvard, is a kind of portable balance, serving to weigh any matter, from 1 to about 40 pounds. It is composed of a brass or iron tube, into which goes a rod, and about that is wound a spring of tempered steel in a spiral form. On this rod are the divisions of pounds and parts of pounds, which are made by successively hanging on, to a hook fastened to the other end, 1, 2, 3, 4, dec, pounds.

Now the spring leing fastened by a screw to the bottom of the rod; the greater the weight is that is hung upon the hook, the more will the apring be contracted, and conscquently a greater part of the rod will come out of the tube; the proportions or quantities of which greater weights are indicated by the figures appearing against the extremity of the tube.

Steplyamo-Suting. In the Philus. Trans. (No. 462, sect. 5) is given an account of a steelyard-swing, proposed as a mechanical method for assisting children labouring under defortaties, owing to the contraction of the muscles on one side of the bialy. The crooked person is suspended with cords under his arm, and these are placed at equal distances from the centre of the beam. It is supposed that the gravity of the body will affict the contracted side, so as to pot the muscles upon the atretch; and lience by drgrees the defict may be semedied.
sTEEPLLE, a buiding usually raised on the western end of a chureh to contain the bells.-Sierples are denominated from therr form, either spires, or towers. The first are such as rise continually diminishing like a cone or uther pyramid. The latter are mere parallelopipedons, or some other prism, and are covered at top with a platform. - In cach kind there is usually a sort of windows, or loop-holes, to let out the sound, and so contrived as to throw it downward.

Musius, in his treatise on bells, treats also of sterples. The most remarkable in the world, it in sad, is that at Pisa, which leans so much to one side, that you far cerery moment it will fall ; yet is in to, danger. This odd dis-
position, lie obserses, is not owing to a shock of an earthquake, as is gencrally imagiued; but was contrived so at first by the architect ; as is evitent from the ceilings, windows, doors, xc, , which are all in the bevel.

ST'FERAGF, in a ship, that part next below the quar-ter-dech, before the bulk-head of the great cabin, where the steersmanstands in most ships of war. In large ships of war it is used as a hall, through which it is necessary to pass to or from the great cabin. In merchant ships it is mostly the babitation of the lower officers and ship's crew.

Steerage, in Sen-language', is also used to express the effurt of tise helm: and hence

SteEnace-wvoy is that degree of progressive motion communicated to a ship, by which she becomes susceptible of the effect of the heln to govern her course.

STEERIN(; in Navigation, the art of directing the ship's way by the movements of the belm; or of applyitg its efforts to regulate hier course when she advances. The perfection of stecring consists in a vigilant attention to the motion of the ship's head, so as to check every devintiott from the line of her course in the first instant of its motion; and in applying as littie of the power of the beln as possible. By thas means she will run more uniformaly in a straight path, or ilecline leas to the right and left; whercas, if a greater effort of the helm be employed, it will produce a greater declination from the course, and not only increase the difficulty of steering, but also mahe a crooked and irregolar path ihrough the watcr.

The helmsman, orsteersman, shoulddiligently watch the movenents of the head by the land, clouls, moon, or stars: becausc, though the course is in generat regulated by the compass, yet the vibrations of the needie are not so quickly perccived, as the sallies of the ship's head to the right or left, which, if not immediately restrained, will acquire udditional vilocity in every instant of their motion, and require a more powerful impulse of the helm to roduce them ; the application of which will operate to turn her head as far on the contrary side of her course.

The plerases used in stecring n ship, vary according to the relation of the wind tor her course. 'Ihus, whets the wind is large or fair, the phrases used by the pilot or officer who superinteule the sterrage, are port, starboard, and steady: the first of which is intended to tlirect the ship's course further to the right; the second to the left; and the last is designed to kerp ber exactly in the line on which she advances, according to the intended course. The excess of the first and second movement is cnlled hard-aport, and hard-a-startoard; the former of which gives her the greatest prosible inclination to the right, and the latter an equal tendency to the left.-lf, on the contrary, the wind le scant or foul, the phrases are luff, thus, and no nearer: the first of which is the orbler to keep her close to the wud; the scond, to retain her in her present situation: and the third, to kerp her sails fill.

slf,liLa. seestan.

STENTOROPIIONIC Tuóe, a speaking trumpet, or tube enaployed to speak to a person at a great distatuce. It has been on called from stentor, a person mentioned in the 5th book of the Iliad, who, as Ifomer tells us, could call out londer than 50 men. With the celebrated stentorophonic born of Alexander the Great, it is said, he could give order to his ariny at the distance of 100 stadia, which is about 12 Finglish miles.

Thepresent speaking trumpet, it is said, was invented by Vul. 11.

Sir Samuel Moreland. But Derham, in his Physico.Theo$\log y$, lib. 4, chup. 3, says, that Kircher fonnd out thas instruanent 20 , ears before Moreland, and publisheel in in bis Mesurgia; and it is further sadd that Gavpar schotus had scen one at the Insuits' Collope at Rouse. Alou one Conyers, in the Plilos.'Irans, No. 141, gives a dovcruthon of an instrument of this hind, diffirent tionn those cownmonly made. Gravesande, in his I lalusciply, disilpruves of the usual fgures of these instrunents; he would lave them to be parabrolic convids, with the focus of ank ot its parabolic sections at the mouth.-Concerming this thstru. mont, see Sturny's Collegium Curiosum, Pt.2, Tentmm. 8; also P^{H} ilos. Trans. vnl. 6 , pa. 3056 , vel. 12, pa. $10 \div 7$.

STEREOGRAPHIC frojection of the Sphere, is that in which the eye is supposed to be placed in the surface of the sphere. Or it is the projection of the circles of the splacre on the plane of some one great circle, when the eye, or a luminous point, is placed in the pole of that cir-cle.-For the fundamental principles and chief properties of this hind of projection, se Projection.

STEREOGRAPHY; is the art of drawing the forms of solids upon a plane.

STEVIN, Stevisus (Sinos), a Flemish mathematician of 13 rues's, who died in 1633 . Ile was muster of inathematics to prince Maurice of Nassau, and inspector of the dykes in Hollansl. It is said he was the inventor of the suiling chariots, sometines made use of it Holland. Ile was a good practical mathematician and Hecharist, and uas author of scveral useful works: as, treatises on Arithmetic, Algebra, Ceometry, Statics, Oplics, 7 rigonometry, Gcography, Astronomy, Fortification, and many others, in the 1)utch language, which were translated iuto Latin, by Snellius, and printed in 2 volumes folio, Thero are alsn two editions in the French language, in fulio, unth printed at leyden, the one in 1608, and the other in 1634, with curious notes and additions, by Albert Girard.-For a particular account of Stevin's inventions and improvemeuts in Algebra, which were many and ingenious, sce our article Algcbra, vul. 1, pa. 89.

STEWART (the Rev. Dr. Matriew), late professor of mathematics in the university of Edinhurgh, was the son of the reverend Mr. Dugald Stewart, minister of Rotbsay in the Isle of Bute, and was born at that place in the ycar 1717. After having finished bis course at the grammar school, being intended by his father for the church, be was sent to the university of Glasgow, and was entered there as a student in 1734 . His academical studies were prosecuted with diligence and success; and he was so hapy as to be particularly distinguished by the friendship of Dr. Hutcheson, and Dr. Simson the celebrated geometrician, under whom he made great progress in that science.

Mr. Stewart's riews made it necessary for hitn to attend the lectures in the university of Vimburgh in 1741 ; and that his mathematical studies mikht sufter nus interruption, he was introduced by Dr. Simson ti Mr, Maclaurin, who was then teaching with so much succes, both the geometıy and the plilosephy of Newton, and undur whom Mr. Stewant made that proficiency which was to be expected from the abstities of such a pupit, directed by those of so great a master. Jut the mekraanalysis, even when thus powerfilly recommunded, was not able to withdiaw his at temion from the relish of the ancient geometry, which he had imbibed under Dr. Sinson. De sali kept up in rfitular correspondence with this gentleman, giving hamanac3 N .
connt of his progress, and of his discoveries in geometry, which were now both numerous and important, and receiving in return many curious communications with respect to the Laci Plani, and the Porisnis of Eiuclid. Mr. Stewart pursued this latter suhject in it different and new difectoun. It doing which, he was led to the discuvery of those curious and intersting propusitions, which were published, under the title of General 'Theorems, in $17 \$ 6$. They were given whthout the demosestrations; bit did not fail to place their discoverer at ance ainung the gememetrichans of the first rank. They are, for the most part, porisms, though Ar. Stewart, carefol not to anticıpate the discoveries of his fruend, gave them onty the neme of theorems. They are among the must terautiful, as well as most gelieral propositions. known in the whele compass of giometry, and are perbupis only equalied by the remarkable locus to the circle in the second boosk of Apollumius, or hy the eclibratid theorem of Mr. Cotes.

Such is the history of the invention of these propositions; and the occosion of the publication of them was as follows. Mr. Stewart, while engaged in thent, had entered into the church, and become minster of Roseneath. It was in that retired and romantic situation, that be discovered the greater parl of those theorems. In the summer of 1744 , the mathe-matical chair in the university of Eiinburgh becane vacant, by the death of Mr. Maclaurin. The General 'Theorems had not yet appeared; Mr. Stewart was known only to his friends; and the eyes of the publie were naturally turned ou Mr. Stirling, who then resided at Leadhills, and who was well known in the mathematical world. He houever declined appearing as a candidate for the vacant chair; and several othern were named, among whom was Mr. Stewart. On this occavion he printed the General Theorems, which gave their author a decided superiority above all the other candidates. He was accordingly elected protessor of mathematics in the university of Edinburgh, in September 1747.

The duties of this office gave a turn somewhat different to his mathematical pursuits, and led him to think of the inost simple and elegant means of explaining those diffcult propositions, which were hitherto only accessible to men decply versed in the motern analysis. In toing this, he was pursuing the object which, of all otbers, he most ardently wished to attanin, viz, the application of grometry to such problems as the algebraic calculus alone had been thought able to resolve. His molution of Kepler's problem was ithe first specimen of this kind which be published; and it was perhaps impossible to have produced one mure to the credit of the method he followed, or of the abilitics with which le applied it. Among the excellent solutions bithertogiven of this fanous problem, there were none of them at once direct in its method, and simple in its principles. Mr. Stewart was so happy as to attain both these ebjects. He founds his solution on a general property of curves, which, though very simple, had perhaps never been nbserved; and by a most ingenious application of that property, he shows how the approximation may be continued to any degree of accuracy, in a series of results which converge with great rapidity.

This solution appeared in the second volume of the Essays of the Philowophical Society of Edinburgh, for the year 17 ± 6. In the first volume of the same collection, there are some other propositions of Mr. Stewart's, which are an extension of a curious theorem in the 4 th
book of Pappus. They have a relation to the subjuct of Porisms, and one of them forms the 91st of Dr. Sumon's: Resturation.

It has been already mentioned, that Dr. Stewurt had formed the plan of introducing into the higher parts of mixed mathematics, the strict and simple form of ancient demunstratuon. The prosecuhom of this plan proiuced the Tracts Pbysical and Mathematical, which were pulblished in 1701 . In the first of these, Dr. Stewart litys down the ductrine of centripetal torces, in a series of propositions, dentonstrated (il we admit the quadrature of curves) with the utmost riguur, and requiring no previous knowledge of the mathemarics, except the elements of plane Geometry, and of Conic Sections. The good order of these propositions, added to the clearness and simplicity of the demonstrations, remiers this tract perhaps the best clementary treatise of Physical Astronomity that is any where to be found.

In the three remaining tracts, our author had it in view to determine, by the same rigorous method, the effect of those forces which disturb the motions of a secundary planet. From this he proposed to deduec, nut only a theory of the moon, but a determination of the smi', distance from the earth. The former, it is well known, is the most difficult subject to whicls inathematics have been applictl, and the resolution required and merited all the clearness and simplicity which onr author possessed in so eminent a degree. It inust be regretted therefore, that the dectine of Dr. Stewart's health, which began soon. after the publication of the tracts, did not permit him to pursue this investigation.

The other object of the tracts was, to determine the distance of the sull, from his eflect in disturbing the motinns of the moon; and Ir. S.'s inquiries into the lunar irregularities had furnished binn with the means of accomplishing it.

The theory of the composition and resolution of forecs enables us to determine what part of the solar force is empluyed in disturbing the motions of the moon; and therelore, could we measure the instantaneous cffict of that force, or the number of feet by which it accelerates or retarls the moon's motion in a second, we should be able to determine how mathy fert the while force of the sten would muke a body, at the dislance of the moon, or of the earth, descend in a scoond of time, and consequently how moch the earth is, in every instant, turned out of its rectilineal course. Thus the curvature of the carth's urbit, or, which is the same thing, the radius of that orbit, that is, the distanee of the sun from the earth, would be deternined. But the fact is, that the instantaneous effects of the sun's disturbing force are too minute to be measured; and that it is only the effect of that force, continued for an entire revolution, or some considerable portion of a revolution, which astronomers are able to observe.

There is yet a greater difficulty which embarrasses the solution of this problem. For as it is only by the difference of the forces exerted by the sun on the earth and on the moon, that the motions of the latter are disturbed, the farther off the sun is supposed to be, the less will be the force by which he disturbs the moon's motions; yet that force will not diminish beyond a fixed limit, and a certain disturbance would obtain, even if the distance of the sun were infinite. Now the sun is actually placed at
*o great a disiance, that all the disturbences, which he produces on the lunar motions, are very near to this linnit, and therefore in small mistake in estimating their quantity, or in reasoning about them, may give the distance of the sun infinite, or even impossible. But all this did not deter Dr. Stewart from undertaking the solution of the problem, with no other assistance than that which grometry could afford. Indeed the idea of such a problem hall first oceurred to Mr. Machin, who, in his book on the laws of the moon's motion, has just mentioned it, and given the result of a rude calculation (the method of which he does not cxplaia), which assigas $8^{\prime \prime}$ for the parallan of the sun. He made use of the motion of the nodes; Gut Dr. Stewart considered the motion of the apogee, in of the longre axis of the moou's orbit, as the irregularity best adapted to his purpese. It is well known that the orbit of the moon is not immoreable; but that, in consequence of the disturbing force of the sun, the longer axis of that orbit has an angular motion, by which it goes back about 3 degrees in every lunation, and completes an entire recolution in 9 years nearly. This motion, though very remarhable and easily determined, has the same fault, with rospect to the present problem, that was ascribed to the other irregularitics of the moon: for a very small part of it only depends on the parallax of the sun; and of this Dr. Stewart seems not to have been perfectly aware.

The propusations however which defined the relation between the sun's distance and the mean motion of the apogee, were published among the tracts, in 176t. The transit of Venus bappened also in that year: and the astronomers returned, who liad viewed that curious phenomenon, from the most distant stations; and no very satisfactory result was obtained from a comparison of their observations. Dr. Stewart then resolved to apply the principles he had alrendy laid down; and, in 1763 , he published his essay on the Sun's Distance, where the computation being aclually made, the parallax of the sun was found to be no more than $\sigma^{\prime \prime} 9$, and consequently his distance almost 29875 semidiameters of the earth, or nearly 119 millions of miles.

A determination of the sun's distance, that so far exceeded all firmer estimations of it, was received with surprise, and the reasoning on which it was founded was likely to undergo a severe examination. But, even among astronomers, it was not every nne who could judge in a matter of such difficult discussion. Accordingly, it was not till about 5 years after the publication of the sun's distance, that there appeared a parnphlet, under the title of Four Propositions, intended to point out certain errors in Dr. Stewart's investigation, which had given a result much greater than the truth. From his desire of simplifying, and of employing only the geometrical mothod of reasoning, he was reduced to the necessity of rejecting quantitics, which were considerable enough to have a great effect on the last result. An error was thins introduced, which, had it not been for certaill compensations, would have become immediately obvious, by giving the sun's distance near three times as great as that which has been mentioned.

The author of the pamphlet, referred to above, was the first who remarked the dangerous nature of these simplifications, and who attempted to estimate the error to which they har given rise. This author remarked what pro-
duced the compensation above mentioned, viz, the immense variation of the sun's distance, which corresponds to a very small variation of the motion of the moon's apogee. And it is but justice to acknowledge that, besides being just in the points already mentioned, they are very ingenous, and written with much modesty and good tumper. The author, who at first conceated bis natne, but has now consented to its being made public, was Mr. Dawson, a surgeon at Sedberg in Iorkshire, and one of the most ingenious mathernaticians and philosophers this country now possesses.

A second attack was sonn afier this made on the Sulis Distance, by Mr. Landen; but by no means with the same good temper which has been remarked in the former. He fancied to himself errors in Dr. Stewart's investigation, which have no. existence; be exaggeruted thuse that were real, and secmed to triumplh in the discovery of them with unbecoming exultation. If there are any subjects on which men may be expected to reason diopassionately, they are certainly the properties of number and extension; and whatever pretexts moralists or divines may have for abusing one another, mathematicians can lay claim to no such indulgence. The asperity of Mr Ianden's animadversions ought not therefore to pass uncensured, though it be united with sound reasoning and accurate discussion. But Mr. Lauden, in the zeal of correction, bringe many other charges against Dr. Stewert, the greater part of which seem to bave no good foundation. Such are his objections to the second part of the investigation, where Dr. Stewart finds the relation between the disturbing firce of the sun, and the motion of the apses of the lunar orbit. For this part, iustead of being liable toobjection, is deserving of the greatest praise, since it resolves, by geometry alone, a problem which had eluded the efforts of some of the ablest mathematicians, even when they availed themselves of the utmost resources of the integral calculus. Sir lsanc Newton, though he assuined the disturbing furce very near the truth, computed the motion of the apses from thence only at one half of whut it really amounts to ; so that, had he been required, lihe Dr.Stewart, to invert the problem, he would have comanited an error, not mercly of a few thousandth parts, us the latter is alleged to have dose, but would have brought ont a result double of the truth. (l'rincip, Math. lib. 3, prop. 3.) Machin and Callendrimi, when commenting on this part of the Principia, found a like inconsistency between their theury and observation. Three other celc brated mathematicians, Clairaut, Dalembert, and Euler, severally experieuced the same difficulties, and were led into an error of the same magnitude. It is true, that, on resuming their computations, they found that they had not carried their approximations to a sufficient length, which whes they had at last nccomplished, their results agreed exactly with observation. Mr. Walmsley and Dr. Stewart were, I think, the first mathematicians who, employing in the solution of this difficult problem, the one the ulgebraic calculus, and the other the geometrical method, were led immediately th the truth; a circunstance so much for the honour of boib, that it ought not to be forgotten. It was the buxiness of an impartal critic, while he examined our author's reasonings, to have renaarked and to have weighed these considerations.

The Sun's Dishance was the last work which Dr. Stewart published; and though he lived to see the anmadrecrions

3 Ne 9
made on it, that have been taken notice of above, he declued entering into any coutrusersy. His disposition was far from prolemical; and he kuew the value of that quiet, which a literary man should rarely suffer his antagonists to miterrupt. He used to say, that the decision of the point in question was now before the public; that if his invistigation was right, it would never be ovelturned, and that if it was wrong, tt ought not to be deiended.

A tew munths before he published the Esayy jast mentioned, he gave to the world nnuther work, eutitled l'ropositiones More Veterum Detuonstratz. It consists of a series of geometrical theorems, thestly new; invesigated, fint by an analyxis, and afterwurds syutbetically demonstraled by the inversion of the same avalyans. 'This method made an important part in the analysis of the ancient genmetricians; Lut few examples of it have been preserved in their writings, und thone in the Propositiones Geometrice are therefore the more valuable.

Dr.Stewart's constant use of the geometrical analysis had put him in possrssion of matry valuable propostions, which did not enter into the plan of any of the works that have brest enumerated. Of thene, not a fiw have found a place in the writings of Dr. Sinson, where they will for ever remuin, to mark the friendship of these two mathematicians, and to evince the estecm which Dr. Sunson entertained for the abilitics of his pupit. Many of these are in the work upon the Porisins, and uthers in the Conie Sections, viz, marked with the letter x; also a theorem in the edition of Euclid's data.

Soon ufter the publication of the Sun's Distance, Dr. Stewart's bealth bogan to decline, and tbe duties of his office became burdersome to hitn. In the yeur 1772, be retired to the country, where he afterwards spem the greater part of his life, and never resumed his labours in the university. He was however so fortunate as to have a son to whon, though very young, he could commit the care of them with the greatest confidence. Mr. Dugald Stewart, having begun to give lectures iar his father tion the period above-mentioned, was elected joint professor with him in 1775, and gave an early specimen of thuse abilitics, which bave not been contined to a single science.

After mathematical studies (on account of the bad state of health into which Dr. Stewart was falling) Itad ceased to be his business, they contunued to be his amusement. The analogy betwern the circle nod hyperbola had been an early object of his admiration. The extensive views which that analogy is continually upening; the alternate appearance aud disappearance of rescmblance in the midst of so much dissimilitude, make it nut object that astonishes the experienctil, as well us the young geonictrician. To the consideration of th:s analogy therefore the mind of Dr. Stewnet very naturally returned, when disengnged from other speculations. Ilis usual success still altended his insestigations; abd he has feft among his papers some curious approximations to the arras, both of the circle and hyperboha. For some yoars lownerl the ead of his life, his health scarcely allowed him to prose cute study even as an amusement. He died the 23d of January 1785 , at 68 years of age.

The hubits of study, it a man of criginal genius, are objects of curiosity, and deserve to be remembered. Concerning those of Dr. Stewart, his writinys have made it unnecessary to remarh, that from tis youth he had been
accustomed to the most intense and continued applicatiou. In consequence of this applicatien, added to the naturat vigour ot his omud, be retainel the memory of bis discoveries in a manner that will hardly be belowed. He seldom wrote down any of his investigations, till it became necessary to do so for the purpose of publication. When be discovered any proposition, te would set down the enunciation with great accuracy, and'on the same piece of paper would construct sery neatly the figure to which it reterred. 'To these he trusted for recalling to his mind, at any future periud, the dewomstration, or the analysis, however complicated it might low. Experience had taught hum that be might place this confidence in himself without any danger of dappointment; atad fir this singular power, he was probably more indebted to the activity of bis invention, than to the mere tenaciousness of his memory.

Though Dr. Stewart waw extremely studious, he read but few books, and thus reritied the observation of Walranbert, that, of all the men of letters, mathemwticians read least of the writings of one another. Our auther's own investigations occupied him sufficiently ; and undsed the world would bave had reavon to regret the misapplications of lus talents, had he employed, in the mere acquisition of hoowledge, that time which he could dedicate to worhs of insention.

It was Dr. Stewart's custom to spend the summer at a delightul retrent in Ayrahire, where, after the academicat labours of the wimter were ended, he found the Irisure necessary for the prosccution of his researches. In bis way thither, he offen made a visit to Dr. Simsou of Glargow, with whow he had lined from his youth in tha most cordal and uniberropied friendshp. It was plasing to obserse, in these two excellent mathe maticians, the nust perfect esteem and uffection torench other, and tho most entire absence of jealousy, thutigh no two neu ever toule more nearly in the same path. The smailitule of their pursuits scrival only to endar them to each other, tha it wilt ever do with men supenar to enve. Their sontiments and siews of the scivne they cultivated, were neully the same; they were both profound geometricians; they equally admired the ancient mathematicians, and wele equally versed in their methods of itseatigation; and they were both apprehemove that the boaty of their favourite science would be forgotien, for the lex clegnat methods of algebraic computation. This mnosation they endeavoured to oppose; the oue, by reviviug theise books of the ancient geometry ubich were lust; the other, by extending that grometry to the most difficult inquirics of the moderns. Dr. Stewart, in particular, bad remarked the intricacies, in which mally of the greatest of the tnodern mathemanicians had involved themselves in the application of the calculus, which a litte attention to the ancient gometry would certanly base enabled theon to asuid. He liad observed too the elegnat symblhetical demonstrations thent, on many occasions, may be given of the moss difficult propesitions, investigaterl by the inverso methed of flusions. These circumstances had perlaps made a stronger impression than siey ought, on a mand already filled with admiration of the ancient gronetry, and produced too unfavourable an opinion of the noedrat analysis. But if it be confessed that Dr. Stewat ruted, in alyy respect too high, the merit of the former of these sciences, this may weil be excused in the mun hom it
had eonducted to the discovery of the General Theorems, to thee solution of Kepler's Prublem, and to an accurate determinution of the Sun's disturbing force, His great modesty made him ascribe to the method be used, that sucresy which he owed to his own abslities.

The foregoing account of Dr. Stewart and his writings, is chicfly extracted from the learned history of them, by Alr. Playfarr, in the 1 st volume of the Edinburgh Philosoptical Transactions, pa. 57, \&c.
stifel, stifelius (Michael), a Protestant minister, and very shiltul mathematician, was born at Elingen, a town in Germany; and died at Jena in Thusingis, in the year 1367 , at 58 years of age according to Vossius, but some othery say 80. Stifel was one of the best mathematicians of bis time. He published, in the Gerroun language, a treatise on Algebra, and another on the Calendar or Eeclesiastical computation. But his chief work, is the Arithmetica Integra, a conplete and excellent treatise, in Iatin, on arithmetic atd algebra, printed in 4 to ast Norimberg 1544. In this work there are a number of ingentous inventions, both in common arithnetic and in algetra; of which, those relating to the latter are amply explained under the article Algebra in this dictionary, vol. 1.; to which may be added some partic ulars concerning the arithmetic, trom the first volume of my Tracts, pa. 231, \&c. In this original work are contained many curious things, some of which have mistakingly been ascribed to a much later date. He here treats presty fully and ably, of progressional and figurate numbers, alid in particular of the triangular table, firr comstiucting both them and the coefficients of the terms of all powers of a binomial; which has been so often used since his tine for these and other purposis, and which more than a century after was, by l'ascal, otherwise called the Arithmetical Triangle, and who colly mentionesl some additional properties of the table. Stitel shows, that the honizontal lines of the table furnish the confticients of tie terms of the corresponding powers of a binomial; and teaches how to make use of them in the extraction of ronts of all powers whatever. Cardanseems to ascribe the invention of that table to Stifflius; but I apprelient that is only to be understood of its application to the exiraction of roots.

It is remarkable too, how our author, at pa. 33 kc of the same book, treats of the nature and use of logarithms; not under that name indeed, bet under the idea of a series of arithmeticals, adapted to a serins of geometricals. Ife there explains all their uses; such as, that the addition of them answers to the indtiplication of their goometricals; subtraction to divisuan ; multiplication of exponents to involation ; and dividing of exponsots to evolution. He also exemplities the use of them in Cases of the Rule-otthree, and in finding mean proportionals between given terins, and such like, exactly as is done in logarithmes. So that be seems to have been in the foll possession of the idea of logarithms, and wanted only the necessity of troublesome culculations to induce him to make a mable of such numbers.

Sufelins wrute aloo protty largely on magic squares.
Sufel was a zeuluus, though weak disciple of I.uiher. lle tusk it intor his head to become a prophet, and he perolicted that the end of the world would happen on a certaill day in the year 1553, by which he terrified many people, When the proposed day arrived, be repuired
early, with multitades of his followers, to a particular place in the open air, spending the whole day in the most fervent prayers and prasses, it vain looking lor the coming of the Lord, and the universal conflagration of the clements, Ac.

STILE. See Style.

Stilyalld. Sre Sizelyard.
STOFLER (Jons), a Germuan mathematician, was born at Justingen in Suabia, in 1452, and died in 1531, at 79 years of age. He taught mathematics at Tubinga, where be acquired a great reputation, which however he in a great measure lost aguin, by metermeddling with the prediction of future events. Ile announced a great deluge, which he said would happen in the year 1524.' a prediction with which he terrfied all Germany, where many persons prepared vessels proper to escape with from the thoods. But happily the prediction faihng, it enraged the astrologer, though it sersed to convince him of the vanity of his prognostications,-He was author of sc veral worhs in mathematics and astrology, full of foolish and chimerical ideas ; such as,

1. Elucidatio Fabric. Ususque Astrolabii ; fol, 1513.
2. Procli Spheram Comment, fol. 154.
3. Cosmographicat aliquot Descriptiones; 410, 1537.

STONE (EGMUND), a respectable mathematician, who was author of several ingenions works. I know not the particular place or date of his birth, but it was protably in the shire of Argyle, and towards the conclusion of the 17th century. Nor have we any memoirs of his life, except what are contained in a letter from the Chevalier de Ramsay, author of the Travels of Cyrus, in a letter to fasher Castel, a Jesuit at Paris, and published in the Memotres de Trevoux, pa, 109, as follows: "True genius overcomes all the disadvaniages of birtb, fortune, and cducation; of which Mr. Stone is a rare example. Born a son of a gardener of the duke of Argyle, he atrived at 8 years of age before he learnt to read.- By chunce a servant laving taught young stone the letters of the alphabet, thecre necded nothing more to discover and expand his genius. He applied himself to study, and be arrived at the knowledge of the most sublime geometry and analysis, without a master, without a conductor, without any other guide but pure genius,
"At 18 years of age he had made these considerable advances without being known, and without kntowing bimelf the prodigies of his acquisitions. The duke of Argyle, who joined to his military talents a general knowledge of every science that adorns the inind of a man of his rank, walking one day in his garden, saw lying on the glass a Latul copy of Sir latac Newton's celebrated Principia. He called some one to him to take and carry it back to lis hibrary. Our young gardener told him that the book belonyed to him. To you? repuicd the Duke. Do you understand geometry, Latia, Newton? I know a litile of them, riplied the young man with an air of simplicity arising from a protound ignorance of his own hnowledge and aalests. The Duke was surprised; and having a taste for the sciences, he cotered into conversation with the young muthernatician: he asked him reversil questions, and was nstonished at she force, the accuracy, and the candour of his answers. But how, suld the Duke, cane gou by the hnowledge of ull theee things? Stone replied, A sersant taught me, ten years situce, to read: does one weed to knuw any thing more
then the 94 letters in order to learn every thing else that one wishes? The Duke's curiostty redoubled-he sat down upon a bank, and requested a detail of all his proceedings in becoming so learned.
" I first learned to read, said Stone: the masons were then at work upon yo::- house: I went near them one day, and I saw that the architect used a rule, compasses, and that he made calculations. I inquired what might be the meaning of and use of these thang; and I was informed that there was a science called Arithmetic; I purchased n book of arithmetic, and I learned it.-I was told there was anuther science called Geometry: I bought the books, and I learnt grometry. By rraung I found that there were good books in these two sciences in Latin: 1 bought idictionary, and Ileartesd Latin. I understood also that there were good books of the saine kind in French: I bought a dictionary, and I learned French. And this, my lord, is what I have done: it seems to me that we may learn every thing when we know the 24 letters of the alphabet."
"This account charmed the Duke. He drew this wonderful genius out of his obscurity; and he provided him with an employment which left himplenty of time to apply himself to the sciences. He discovered in him also the same genias for music, for painting, for architecture, for all the sciences which depend on calculations and proportions.
" I have seen Mr. Stone. He is a man of great sirnplicity. He is at present sensible of his own knowledge; but he is not puffed up with it. 1le is possessed with a pure and disinterested love for the mathematics: though he is not solicitous to pass for a mathematician; vanity having no part in the great lab.inr he sustains to excel in that science. He despises fortune also ; and he has solicited me twenty times to request the duke to give him less employment, which may not be worth the half of that be now hus, in order to be more retired, and less taken off from his favourite studics. He discovers sometimes, by metbods of his own, truths which others bave discovered before him; and he is charmed to find on these occasions that he is not a first inventor, and that others have maile a greater progress than he thought. Far from being a plagiary, he attributes ingenious solutions, which he gives to certain problems, to the bints he has found in others, although the connexion is but very distant," \&c.

Mr. Stone was author and translator of several useful works; v12, A New Mathematical Dicionary, in 1 vol. 8vo, first prouted in 1726.
2. Flivtons, in 1 vol. $8 v 0,1730$. The Direet Method is a translation from the French, of Hospital's Analyse des Lufinments Petits; and the liverse Method was supplied by Stone himself.
3. The Elements of Euclid, in 2 vols. $8 v o, 1731$. A neat and useful edtition of this work, with an account of the life and writinge of Fuclid, and a defence of his elements against modern objectors.
4. Dr, Barrow's Germetrical Lectures, translated from the Latin, I vol. 8vo, 1735.

Besides other smaller works.
Stone was a fellow of the Royal Society, and had inserted in the Philos. Trans. (vol. +1, pa 218) an "Account of two specics of lines of the 3d order, not mentioned by Sir Isaac Newton, or Mr. Stirling."

Stones, Meteoric, cortain semi-metallic masses which sometimes fall from the atmosphere. See Aerolite

STRABO, a celebrated Greck geographer, philosopher, and historian, was born at Amasia, and was descended from a family settled at Gnossuy in Crete. He was the disciple of Xenarchus, a Peripatetic philosopher, but at length attached himself to the Stoics. He coutracted a strict friendship with Cornelius Gallus, governor of Egypt; and travelled into several countries, to observe the stuation of places, and the customs of nations.

Strabo flowished under Augustus; and died under Tiberius about the year 25, at a very advanced age.-He composed several works; all of which are lost, except his Geogiaphy, in 17 books; which are justly estermed very precious remains of antiquity. The first two books are employed in showing, that the study of geography is not only worthy of a philusopher, but even necessary to bim; the 3ll detecribes Spain; the 4th, Gaul and the Britannic isles; the 5th and 6th, Italy and the adjacent isles; the 7 th, which is imperfect at the end, Germany, the countrics of the Getae and Illyrii, Taurica, Chersonesus, and Epirus; the 8th, 9th, and 10 h, (ireece with the neighbouring isles ; the lour following. Asia within Mount Taurus ; the 15 th and 16 th, Asia without Taurus, India, Persin, Syria, Arabia; and the 17 th , Egypt, Ethiopia, Carthage, and other parts of Atrica.

Strabo's work was published with a Latill version by Xylander, and notes by lsaac Casaubon, at Paris 1620, in folio; but a better edition is that of Allisterdam in 1707 , in 2 volumes folio, by the learined Theodore Janson of Almeloovech, with the entire notes of Xylander, Casaubon, Meursius, Clover, Holsten, Salmasius, Bochart, Ex. Spanheim, Cellar, and others. To this edition is subjoined the Chrestomathix, or Epitorne of Strabo; which, according to Mr. Dodswell, who has written a very claborate and learned dissertation about it, was made by some unknown person, between the years of Clirist 676 and 996. It has been found of some use, not only in helping to correct the original, but in supplying in some measure the defect in the ith book. Mr. Dodswell's dissertation is prefixed to this edition. An edition has lately been published at Oxford.

STRAIT, or btraigat, or Streigilt, in Hydrography, is a narrow channel or arm of the sea, shut up between lands on either side, and usually affording a pasage out of one great sea into another. As the Straits of Magellan, of Le Maire, of Gibraltar, \&c.

Staalt is also smencines used, in Geography, for an isthmus, or neck of land between two seas, preventing théir communication.

STIEENGTH, vis, forcr, power. Some authors suppose the strongth of animals, of the same kind, to depend on the quantity of blood; but must on the size of the bones, joints, and muscles; though we find by daily experience, that the animal spurits comribute greatly to strength at different times.

Emcrson has most particularly treated of the strength of bodies depending on their dimensions and weight. In the general scholium after his propositions on this subject, he adds; If a certain beam of timber be able to support a given weight; another bean, of the same timber, similar to the former, may be taken sogreat, as to be able but just to bearits own weight: while any larger beatn cannot support itself, but must brcak by its uwn weight; but any less beam will bear something more. For the strength being as the cube of the depth; and the stress; being as the length and quantity of matter, is as the 4 th
power of the depth; it is plain, therefore, that the stress increases it a greater ratio than the strength. Whence it follows, that a beam may be taken so large, that the stress may far exceed the strength: and that, of all similar beams, there is but oue that will just support itselt, aud now thing more. And the like holds true mall wachines, and in all animal bodirs. And hence there is a certain limit, in regard to magnitude, not only in all machiaes and artificial structures, but niso in natural ones, which neither art nor nature can go beyond; supprasing them made of the same inatter, and in the same proportion of parts.

Hence it is imposible that mechanic engines can be increased to any magnitude at pleasure. For when they arrive at a particular size, their several parts will break and full asunder by their own weight. Neither can any buildingy of vast magnitudes be made to stand, but must fall to pioces by their great weight, and go to ruin.

It is likewise impossible for nature to produce animals of any vast size at pleasure: except some sort of matter can be found, to make the bones of, which may be so much harder and stronger than any hitherto known: or else that the proportion of the parts be so much altered, and the bones and tuuscles made thicker in propurtion; which will rake the animal distorted, and of a monstrous figure, and not capable of pertorming any proper actions. And being made similar and of common matter, they will not be able to stand or move; but, buing burthened with their own weight, must fall down. Thus, it is impossible that there can be any animal so large as to carry a castle upon his back; or any man so strong as to remove a mountail, or pult upa large oak by the roots: nature will not admit of these things; and it is impossible that there can be animals of any sort beyond a determinate sive.

Fish may indeed be produced to a larger size than land animals; terause their weight is supported by the water. But yet even these cannot be increased to inmennity, because the internal parts will press upon one unother by sheir weight, and destroy thair fabric.

On the contrary, when the size of animals is diminished, their strength is not diminished in the same proportion as the weight. For which reason a small animal will carry far more than a weight equal to its own, white a great one cannot carry so much as its weight. And hence it is that small animals are more uctive, will run faster, jump farther, or perform any motion quicker, for their weight, than large animuls: for the less the animal, the greater the proportion of the strength to the strens. And nature seems to know no bounds as to the sraallness of animals, at leust in regard to their weight.

Neither can any two unequal and similar machines resist apy violence alike, or in the same proportion; but the greater will be more hurt than the less. And the same is true of animals; for large animals by falling break their bones, while lesser ones, falling higher, receive no damage. Thus a cat may fall two or three yards bigh, and be no worse, and an ant from the top of a tower.

It is likewise impossible in the nature of things, that there can be any, trees of immense size; if there were any such, their limbs, houghs, and branches, must break off and fall down by their own weight. Thus it is impossible there can be an onk a juarter of a mile high; such a tree cannot grow or stand, but its branches will drop off by their own weight. And bence also smaller plants can better sustain themselves than large ones.

As to the due proportion of strength in several bodies, according to ther particular prositions, and the weights they are to bear; he further ubserves that, if a piece of timber in to be pioreed with a mortise-hole, the bean will le stronger whell it is tahen out of tie midule, than when taken out of either side. And in a beam supported at both ends, it is stronger when the hole is made in the upper stde than when made in the under, provided a piece of wood in driven hard in to fill up the hole.

If a piece is to be spliced upon the end of a beam, to be supported at both ends; it will be the stronger when spliced on the under side of a beam: but 1 : the piece is supported ouly at one end, to bear a weight on the other; it is stronger when spliced on the upper side.

When a sinall lever, \&c, is nailed to a body, to move it or suspend it by; the strain is greater upun the nail nearest the hand, or point where the por er is applied.

If a beam be supported at both ends; and the two ends reach over the props, and be fixed down immoveable; it will bear twice as much weight, as when the ends only lie loose or free upon the supporters.

When a slender cylinder is to be supported by two pieces ; the distance of the pins ought to be uearly of the length of the cylinder, and the pins equidistant fiom its ends; and then the cylinder will endure the least bending or strain by its weight.

The strength of a beam or bar, to resist a fracture by a force acting laterally, is as a solid, made by a section of the beam in the place where the foree is applied, into the distance of its centre of gravity, from the point or line where the breach will end.

In square beams, the lateral strengths are as the cubes of the breadths or depths: and in cylindrical beams, the strengths are ns the cubes of the diameters; the same is also true of all beatus whose sections are similar figures, that is, the strengths are as the cubes of the corresponding dimensions.

In rectangular beams the lateral strengths are conjoiatly as the breadths and squares of the depths. Hence the lateral strength of a beam with its narrower face upwards, is to its streagth with its broaller face upwards, as the breadth of the broader face to the narrower one.

The lateral strengths of prismatic beams of the same materials, are as the areas of the sections and the distances of their cenires of gravity, direetly, and as their lengths und weights, inversely. This is true whether the beams be both supported at one ent or at both; and in the latter case, a beam of uny length is equal in strength to auother of the sane breadth and depth and of only bulf the length, when supported at one end.

The lateral strengths of two cylinders (of the same matter) of equal weight and length, one of which is hollow and the other solid, are to each other as the diameters of their ends. The lateral strengths of tubes and solid cylinders of equal length and similar materials, are as the areas of their ends and their diameters conjointly.

The strongest rectangular bean which can be cut out of a given cylinder, is that of which the squares of the breadth and depth, and the square of the cylinder's diameter, are respectively as the numbers 1,2 , and 3.When a triangular beam is supported at boih ends, its strength when the edge of the bearn is uppermost, is to the strength when the other side is uppermost, as 2 to 1.

A beam fixed at one end, and bearing a weight at the other; if it be cut in the furm of a wedge, and placed with its parallel sides parallel to the harizon; it will be equally strong every where; and
 no sooner break in one place than another.

When a beam has all its sides cut in form of a concave parabola, having the vertex at the rnd, and its absciss perpendicular to the axis of the solid, and the base a square, or a circle, or any regular polygon; such a beam fived horizontally, at one end, is equally
 strong throughout for supportugg its own weight.
If a bearn be placed hotizontally with one end fixed to a wall, and a weight be hung at the other, then if its breadth be the same throughout, it will be equally strong in all parts, when the vertical sides are in the form of a parabola.

Morcover, if az be a beam in form of a triangular prism; and if $A D=\frac{d}{b} A B$, and $A t$ $=\frac{\square}{\mathrm{V}} \mathrm{AC}$, and the edge or small similar prism ADIF be cut away parallel to the base; the remaining beam ntber will bear a greater weight P , than the whole ABCFG,
 or the part will be stronger than the
 whole; which is a paradox in Mechanics.

Also when a wall faces the wind, and if the vertical section of it be a right-angled triangle; or if the fore part next the wind \&c be perpendicular to the borizon, and the back part a sloping plane; such a wall will be equally strong in all its parts to resist the wind, if the parts of the wall cohere strongly together; but when it is buile of loose materials, it is better to be convex on the back part in form of a parabola.

When a wall is to support a bank of earth or any fluid body, it ought to be built concave in form of a semicubical parabola, whose vertex is at the top of the wall, provided the parts of the wall adhere firmly together. But if the parts be loose, then a right line or sloping plane ought to be its figure. Such walls will be equally strong throughout.

All spires of churches in tho form of cones or pyramids, are equally strong in all parts to resist the wind. But when the parts do not cohere together, then they ought to be parabolic conoids, to be equally strong throughout.

Likewise if there be a pillar crected in form of the logarithmic curve, the asymptote being the axis; it cannot be crusbed to pieces in one part sooner than in another, by its own weight. And if such a pillar be surned upside down, and suapended by the thick end, it will not be more liable to separate in one part than another, by its own weight

As to the strength of several sorts of wood, drawnfromexperiments, Mr. E.says, On a medium, a piece of cood oak, an inch square, and a yard long, supported at both ends, will bear in the tniddle, for a very short time, about 3301 b avoirdupois, but will break with more than that weight.

But such a piece of wond should not, in practice, be trusted for any length of time, with more than a shird or a fourth part of that weight. And the ploportion of the strength of several soris of wood, lie found to be as follaws:

As to the strength of Lodies in direction of the fibres, he obserses, A cyludric rod of good clean fir, of an inch circumference, drawn in length, will bear at extremity 1001b; and a spear of fir 2 inches dismeter, will berar about 7 ton - A rod of good iron, of an inch carcumfe:ence, will bear near 3 ton weight. And a grod hempell rope of an inch curcumference, will bear 10001b, at extremity.

All this supposes these bedies to be sound and goed throughout; but none of then should be put to bear more than a thard or a foursh prit of that weight, especially for any length of time. Frown what has been said; if a spear of fir, or a repe, or a spear of iroh, of d inches diameter, were to lift $\&$ the eatrene weight; then

The fir would bear $8 \frac{4}{3} d d$ hundred weight.
The rupe would bear 2.2dd hundred weight.
The iron would bear $6 \frac{1}{2} d d$ ton weight.
See on this subject Gregory's Mechanics, vol. I, pa. 104, and following: as also Emerson on the same subject in his 4 to edition. Also my Course of Mathematics, vol. 2.

As to animals; men may apply their streugth streral ways, in working a machine. A man of ordinary strength turning a roller by the handle, can act for a whole day ngainst a resistance equal to 30 lb . weight ; and it be works 10 hours a day, be will raise a weight of 30lb. through $3 \frac{1}{2}$ feet in a second of time; or if the weight be greater, he will raise it so much less in propartion. But a man may act, for a small time, aguinst a resistance of 30 lb . or thers.

If two men work at a windlass, or roller, they enn more easily draw up 701 lb , thanone man can 301 b , provided the ellow of one of the bandles be at right angles to that of the other. And with a fly, or beasy wheel, spplied to it, a man may do $\frac{1}{f}$ part more work; and for a litile while he can act with a force, or overcume a continual resighance, of 801b; and work a whole day when the resistanice is but 401b.-Men used to bear loads, such as porters, will carry, some 130 lb , others 200 or 250 lb , according to their strength. - A man can draw but about 70 or Sotb. hwrizontally; for he can but apply about hals his weight.- If the weight of a man be 140/b, he call uct with no greater a force in thrusting horizontally, at the height of his shoulders, than 2716.

As to horses; a horse is, gencrally speaking, as strong ns 5 men. A horse will carry 240 or 2701 k . A hure draws to greatest advantage, when the line of direction is a little elevated above the forizon, and the power acts against his breast : and he can draw 200lb, for 8 hours a
 but 6 hours, and not go quite so fast. And in both casts, if he carrics some weight, he will draw the better for it. And this is the weight a horse is supposed to be able to draw siver a pulley nut of a welt. But in a cart, a horse may draw 10001 b , or even double that weight, or a ton wight, or more.

As the most force a borse can exert, is when he draws a litule atove the horizontal position; so the worst winy of applying the strength of a horse, is to make him carry or draw npisill: And three men in a steep hill, carrying each 1001 b , will climb up faster than a horse with 300 lb . Also, though a borse may draw in a round walk of 18 fect diameter; jet such a walk should not be less than 2.5 or 30 feet dianseter. Eimerson's Mechan. pa. 111 and 177.

For more on this subject, see Girard's treatise ot the Resistance of Solids; Gregory's Mechanics, vol. 1; my Course of Mathematics, vol, 3, Ae.

STIRESS, in Mechanics, a famifiar term used to denote the load, weight, or ferce, which a bar or beam has to sustain; being as the disuras or oppression which it has to sustain and support; whether arising from is own weight, or frum any adventitious load or force whatever. This is commonly treated of in conjunction with the strengit, as in the preceding article ; or as in the Mechanics of Enctson or of Gregory, or in my Course of Mathematics, de.

STRIKF, or Stayke, a measure, containing 4 busbels, or half a quarter.

STRIKING-whecl, in a clock, the same as that by some called the pin-w heel, because of the pins which are placed on the rotud or rim, the number of which is the quotient of the pinion divided by the pinion of the detent-wheel. In sixceen-day clocks, the first or great wheet is usually the pin-nheel; but in such as go 8 days, the second wheel is the pin-wheel, or strihing-wheel.

SIRING, in Music. Sce Cnosd.-If twa strings or chords of a musical instrument only differ in length; their tones, or the number of vibrations they make in the same time, are in the inverse ratio of their lengths. If they differ only in thickness, their tones are in the inserse ratio of their diameters.

As to the tension of strings, to measure it regularly, they must be conceived stretched or drawn hy weights; and then, cateris paribus, the tones of two strings are in a direct ratio of the square roots of the weights that stretch them; that is, ex. gr. the tone of a string stretehed by a weight i, is an octave abose the tone of a string stretched by the weight 1 .

It is an ubservation of very old standing, that if a viol or lutestring be touched with the bow, or the hand, another string on the same instrument, or even on another, not lar from it, if in unison wish it, or in octave, or the like, will at the same time tremble of itself. But it is now found, that it is not the whole of that other string that thus trembles, but only the parts, severally, according as they are unisuns to the whole, or the parts, of the string st struck. Thus, supposing AB to bean upper octave to $a^{\prime \prime}$,
 while $a b$ is open, a a be struch, the twr halves of this other, that is, uc, nud $\mathrm{ch}_{\text {, will }}$ both tremble; but the middle point will be at rest; as will be casily percelsed, by wrapping a Lit of paper lightly about Vol. 11 .
the string $a b$, and moving it successively from one end of the string to the other. In like manner, if as were an upper 12th to ab, and colisequently an unison to its three paits ad, $d c, c b$; then, ab leing open, if AB be struck, the three parts ot the other, $a d$, $d c$, $c b$ will severally trenible; but the points d and e remain at rest.

This, Dr. Wallis tells us, was first discovered by Mr. Willian Noble of Merton college; and after him by Mr. T. Pignt of Wadham college, without knowing that Mr. Noble had observed it before. To which may be added, that M. Szuveur, long afterwards, proposed it to the Royal Academy at Peris, as his own discovery, which in reality it might be; but upon his being informed, by some of the members then present, that Dr. Wallis had published it before, he imtnediately resigned all the honour of it. l'hilos. Trans.
St't'RM, or Sturmius (John Cibistopier), a ceIebrated mathematician and philosopher, was born at Ilippolstein, 1635, where also he died in 1703. He was first minister of a church in Germany during 5 years; and then becume professur of mathematics and natural philosophy, at Altdorf in Germany. He exerted himself greatly in the cause of literature, and was very useful, by his lectures and otherwise, in esplaining and diffusing the knowledge and discoveries made in that remarkable age, the 17 th century; as manifest by all his writings.-He was author of several useful works, on the mathematics athd philosophy, the most esteemed of which are, 1, his Mathesis Enucleata, in one vol, 8vo ; 2. Ma,besis Juvemilis, in 2 large volumes svo; 3. A large collection of letters to Dr. Heury More, of Cambridge, on the controversy concerning the weight and spring of the air; 4. Sturin published also a German translation of Archimedes. 5. But his most considerable work was, the Cellegium Experimentale siveCuriosum, in quo primaria hujus scculi Inventa et Experimenta Physico-Mathematica, an. 1672 , quibusdam naturx demonstrativa \&c, Norimb, an. 1676 , in 4 to. - In 1684 the author gave a second, and much larger part, of the like collection of discoveries, racke till that cra; with an appendix of further additions and explanations to the particulars in the first part. Editions of these two parts, and of the letters to Dr. More, were also printed in 1701 and 1715 , together with several appendixes, the whole being usually bound in one large volume in 4 to.
This is a very curious work, containing a multitude of ilteresting experiments, neally illustrnted by copper-plate figures printed upon almust every page, by the side of the letter-press. Of these, the 10th experiment is an improvement on father Lana's project for navigating a small vessel suspended in the atmosphere by several glibes exhausted of air. But a more particular and satisfactory' account of this woik may be seen in the Philos. Trans. vol. 10, pa. 505, or in my Abridgment, vul. 2, pa. 265.

STYLE, in Chronology, a particular manner of counting time; as the old style, the new style. Sce Calendar.
ohd Styt.e, is the Julian manner of computing, as instituted by Julius Cussar, in which the mean year consimts of 3 (i5 5 days.

Now STYLE, is the Gegorian manner of computation, instituted by pope Gregory the 13th, in the year 1582, and is used by most catholic countrics, und many other states of Europe. The Gregorian, or new style, agrees with the true solar jear, which contains only 365 days 5

30
bours 49 minute9. In the year of Christ 200, there was no difference of styles. In the year 1582, when the new style was first introtuced, there was a ditlerence of 10 days. At present there is 12 days difference. At the diet of Ratision, in the year 1700, it was decreed by the body of protestants of the empire, that 11 days should be retreached from the old atyie, to accommodete it for the future to the new ; and another day having been retrenched ill the year 1800 , it mukes the difference of 12 days, as abuve stated. The same regulation has since passed into Sweden, Dramark, and imo England, where it was establshed in the year 1752, when it was enacted, that in all dotninions belonging to the crown of Great Britain, the supputation, uccording to which the year of our Lord begins on the 25th day of March, shall uot be used from and after the lat day of December 1751; and thatifom thenceforth, the lat day of January every gear shail be reckoned to be the first day of the year: and that the natural day next immediately following the 2d day of Soptember 1733, shall be accounted the 14th duy of September, omitting the 11 intermediate nominal days of the common caletalar. It is fusther enacted, that all himds of wrotings, Ac, shall bear date according to the new methom of computation, and thut all courts and metinss Ac, frants, tasts, \& c, shall be held and observed accotdingly. And for preserving the cutendar in the same rggular course for the fusure, it is enacted, that the several years of our Lurd $1800,1900,2100,22100,2300$, dec, except only every 400 h year, of which the year 2000 shall be the first, shall be common ycars of 365 days, und that the years 2000 , $2400,2800, \& c$, and every other thoth year trom the year 2000 incluswe, shall be leap years, consisting of 366 days. See Bissextile and Calendar.

The following table shows by what number of days the now style ditiers from the old, from 5900 yeas befure the birth of Christ, to $\mathbf{5} 9(0)$ years after it. The days under the sign - (viz from 0000 years before 10200 years after Christ) are to be subtracted from the old style, to reduce it to the new ; and the days under the sign + (viz from 200 ts 5) 00 years atter Christ) are to be added to the old style, to reduce it to the new. - Alt the years mentioned in the table are leap years in the old style; but those only that are tuarked with an L are leap, years in the new.

Years before Christ Nrw Stvle.	Davo diff.	Yeare after Clurive. New Sigle.	Domdit.
5900	46	L. 0	-2
5800	45	100	-1
3700	4.	$\bigcirc 00$	0
L 5600	46	300	+1
5500	43	L 400	1
5400	42	500	2
5300	41	600	3
L 5200	41	700	4
5100	40	L s 0 o	4
5000	39	900	5
4900	38	1000	6
L. 4800	33	1100	7
4700	37	L. 1800	7
4600	36	1300	s
4500	35	1400	9
L 4400	35	1500	10
4300	34	L. 1600	10
4200	33	1700	11
4100	32	1800	12

Years be fure (hrist. New Style.	Days dif.	$\begin{gathered} \text { Years after Carist. } \\ \text { New Style. } \end{gathered}$	$\begin{gathered} \text { Dayddiff. } \\ \mp \end{gathered}$
L 4000	32	1900	13
39.0	31	1. 2000	13
3800	30	2100	$t 4$
3700	29	2:00	15
L 3600	29	2300	16
3300	28	L 9400	16
3500	27.	2500	17
3500	26	2600	18
L 3200	26	2700	19
3100	25	L Eson	19
30\%O	24	9,00)	20
9900	23	3000	21
1. 2800	23	3100	22
2700	22	L. 3:00	22
2600	21	3300	23
2500	20	3400	24
L. 24x	21)	3500	25
2300	19	1. 3 人60	25
	18	37 CH	96
2100	17	3500	27
1. 2000	17.	3900	23
1900	16	L 400	48
1800	13	4100	29
1700	14	4200	30
L. 1600	14	4300	31
1300	$1: 1$	L 4400	31
1400	12	4500	32
1300	11	4600	33
L 1200	11	4700	34
1100	10	L. 2800	34
1000	9	4900	35
900	8	3000	s6
L. 800	8	5100	37
700	7	L. 5800	37
600	6	3300	38
- 500	5	5400	39
L. 400	5	5500	40
300	4	L. 5600	40
200	3	3700	41
100	$\stackrel{2}{2}$	5800	42
L 0	2	5900	43

The French nation, during the revolution in the year 1792, commenced another new style, or computation of time; according to which, the year commenced usually on our $22 d$ of September. The y ar is divided into 12 months of 30 days each ; and each month into $\hat{3}$ decarles of 10 days each. Firr the names and computations of whicb, see the article Calestank.-They bave lately however returned to the former general way of connting time.
Style, in Dialling, denotes the cock or pnomon, raised abore the plane of the dial, to project a shadow. -The edge of the style, which by its stratow marks the hours on the face of the dial, is to be set according to the latitude, always parallel to the asis of the world.
STYLOBATA, or Sty lobaton, in Architecture, the same with the pedesial of a column. It is sometimes taken for the trunk of the pedestal, between the cornice and the base, and is then called truncus. It is also ohberwise natned abacus.
SUBCONTRARY position, in Geometry, is when two

SC'B

equiangular triangles, as $v a B$ and ve's are so placed as to bave one common angle v at the vertex, and yet their bases not parallel. Comsequintly the angles at the busers are equal, but on the contrary stdes; viz, the $\angle A=\angle C$, and the $\angle n=\angle D$.

If te oulique cone vAB or vab, hasing the circular base AEE, or aeb, be so cut by a plane dec,
 that the angle b be $=$ the $\angle \mathrm{B}$, or the $\angle \mathrm{C}=\angle \mathrm{A}$, then the cone is said to be cut, by this plane, in a subcontrary position to the base aeb, or aeb; and in this case the section bec is always a circle, as well as the base AEB or acb.

SUBDLCTION, in Arith. the same as Subtraction.
SUBDUPLE Ratio, is when any number or quantity is the half of another, or contained twice in it. Thus, 3 is said to be subduble of 6 , as 3 is the half of 6 , or is twice contained in it.

SUBDUPLICATE Ratio, of any two quantities, is the ratio of their square roots, being the opposite to duplicate ratio, which is the ratio of the squares. Thus, of the quantities, a and b, the subjuplicate ratios is that of $\sqrt{ } a$ to \sqrt{b} or $a^{\frac{1}{4}}$ to $b^{\frac{1}{4}}$, as the duplicate ratio is that of a^{2} to b^{2}.

SUBLIME Geometry, the higher geometry, or that of curve lines. Sec Geometry.

SUBLCNAHY, is said of all things below the moon; as all things on the earth, or in its atmosphere, \&ce,

SUBMULLTIPLE, the contrary of a multiple, being a number or quantity which is contained exactly a certain nuinber of times in another of the same kind; or it is the same as an aliquot part of it. Thus, 3 is a submultiple of 21, or an aliquot part of it, because 21 is a multiple of 3 .

Submulitile Ratio, is the ratio of a submultiple or aliquot part, to its multiple; as the ratio of 3 to 21 .

SUBNORMAL, in Geometry, is the subperpendicular AC, or line under the perpendicular to the curve Bc, a terin used in curve lines to denote the distance ac in the axis, betwren the ordinate AB, and the perpendicular BC to the curve or to the tangent. And the said perpendicular ec is the normal. - In all curves, the subnormal Ac is a 3 d proportional to the subtangent ta and the ordinate
 AB; and in the parabola, it is equal to half the parameter of the axis.

SUBSTITUTION, in Algebra, is the putting and using, in an equation, one quantity instead of another which is cqual to it, but expressed after another manner. Sec Reducteon of Equations. .

SUBSTILE, or Substrie, in Dialling, a right line upon which the stile or gnomon of a dial is erected, being the common section of the face of the dial and a plane perpendicular to it passing through the stile. -The angle incinded between this line and the stile, is called the elevation or height of the stite.

In polar, horizontal, ineridional, and northern dials, the substiar line is the meridional line, or line of 12 o^{\prime} cloek; or the intersection of the plane of the dial with that of the meridiani.-In all decliming dials, the substile makes an angle with the hour line of 12, and this angle is called the distance of the substile from the meridian.-

In easterly and westerly dials, the substilar line is the line of 6 o'clock, or the intersection of the dial plane with the prime vertical.

SUBTANGENT of a Curce, is the line ta in the axis below the tangent $\mathbf{T B}$, or linuited between the tangent and ordinate to the point of contact. (See the last figure above.)-The tangent, subtangent, and ordinate, muke * a right-angled triangle.

In all parabolic and hyperbolic figures, the subtangent is equal to the absciss multuplied by the exponent of the power of the ordinate in the equation of the curve. Thus, in the common paratola, whose property or equation is $p^{x}=y^{2}$, the subtangent is equal to $2 x$, double the absciss. And if $a x^{\prime}=y^{2}$, or $p r=y^{\frac{1}{2}}$, then the subtangent is $=\frac{1}{2} r$. Also if $a^{m n} x=y^{m+n}$, or $p x=y^{m+n} \frac{n}{n}$, the subtan. is $\frac{m+n}{n}$. Sce Method of Tahgents.

SUBTENSF, in Geometry, of an arc, is the same as the chord of the are; but of an angle, it is a line drawn across from the one leg of the angle to the other, or between the two extremes of the are that measures the angle.

SUBTRACTION; or Substraction, in Arithmetic, is the taking of one number or quantity from another, to find the remainder, or difference between them; and is usually made the second rule in arithmetic. The greater number or quantity is called the minuend, the less is the subtrahend, and the remainder is the difference. Also the sign of subtraction is - , or minus.

Subtraction of Whole Numbers, is performed by setting the less number below the greater, as in addition, units under units, tens under tens, \&c ; and then, procceding from the right hand towards the left, subtract or take each lower figure from that above it, and set down the several remainders or differences underneath; and these will comporse the whole remainder or diference of the two given numbers. But when any one of the figures of the under number is greater than that of the upper, fiom which it is to be taken, you must add 10 (in your mind) to that upper figure, then take the under one from this sum, and set the difference underneath, carrying or adding 1 to the next under figure to be subtracted. Thus, for example, to subtract 2904821 from 37409732

Minuend	37409732
Subtrahend	2904821
Difference	34504911
Proof	37409732

To prove Suberaction : Add the remainder or difference to the less number, and the sum will be equal to the greater when the work is ripht.

Suatraction of Decimals, is performed in the same manner as in whole numbers, by observing only to set the figures or places of the same kind under each other. Thus:

$$
\begin{array}{rcc}
\text { From } 351.04 & -479 & 27 \\
\text { Take } & 72.71 & .0573 \\
\text { Rem. Diff. } 278.33 & -4217 & 26.064
\end{array}
$$

Ta Suberact Vulgar Fractions. Reduce the two fractions to a common denominator, if they have different ones; then take the less numerator fom the greater, and evt the remainder over the cominon denominator, for the ditierence sought.-It is best tin set the less fraction atiur the greater, with the sign $(-)$ of subtraction teineen them, and the mark of equalioy $(=)$ after them.

$$
\begin{aligned}
& \text { Thus, } \frac{t}{2}-\frac{3}{y}=\frac{1}{5} \\
& \text { And } 1-\frac{4}{3}=\frac{2 \pi}{5}-\frac{10}{3} \frac{1}{3}=\frac{1}{15}
\end{aligned}
$$

Subtraction, in Algebra, is performed by changing the signos of all the terins of the subtrabend, to their comrary signs, siz, + into - , und - into + ; and then uniting the terms will those of the minuend after the manier of addition of Algebra.

$$
\begin{aligned}
& \text { Ex. From }+6 a \\
& \text { Take }+2 a \\
& \text { Rem. } 6 a-2 a=4 a . \\
& \text { From }+6 a \\
& \text { Take }-2 a \\
& \text { Rem. } 6 a+2 a=8 a . \\
& \text { From }-6 a \\
& \text { Take }+2 a \\
& \text { Rem. }-6 a-2 a=-8 a . \\
& \text { From }-6 a \\
& \text { Take }-4 a \\
& \text { Rem. }-6 a+4 a=-2 a . \\
& \text { From } 9 a-3 r+5 z-6 \\
& \text { Take } 6 a+4 x+5 z+4 \\
& \text { Rem. }-4 a-7 x \quad 0-10
\end{aligned}
$$

SUBTRIPLE, is when one quantity is the third part of anotber; as 2 is subtriple of 6 . And Subtbiple Ratio, is the ratio of 1 to 3 .

SUIBTRIPIICATE Ratio, is the ratio of the cube roots. So the subtriplicate ratio of a to b, is the ratio of $\sqrt[3]{a}$ to $\sqrt[3]{b}$, or of $a^{\frac{1}{3}}$ to $b^{\frac{2}{3}}$.

SUCCFESSION of Signs, in Astronomy, is the order in which they are recioned, or follow one another, and according to which the sun eaters them ; called also cossequentia. As Aries, Taurns, Gemini, Cancer, \&ce. When a planet goes according to the order and succession of the signs, or in consequentia, it is suid to be direct; but retrograde when they move the contrary way, or in antece dentia, as from Gemimi to Taurus, then to Aries, 太s.

SLCCLLA, in Mechanics, a bare axis or cylinder with staves in it to move it round; but without any tympanum, or peritroclium.

SUCKER, in Mechanics, a name by which sometincs is called the piston or bucket, in a sucking pump; and sometimes the pump itself is so called.

SUCKING $\boldsymbol{P}_{\boldsymbol{u} n \mathrm{n}}$, the common pump, working by two valves opening upwards. See Pump.

SUISETII (RIcaRH or RAymundi), an carly writer on Arithmetic. A long account of his book, called the Calculutor, is given in Brucher's History of Pliblosophy.

SUM, the quantity produced by addition, or by adding two or more numbers or quantitien together. So the sum of 6 and 4 is 10 , and the sum of a and b is $a+b$.

SUMMER, the name of one of the seasons of the year, being one of the quarters when the year is divided into 4 parts, or one balf when the gear is divided only into two, summer and wintur. In the former cate, summer is the quarter daring which, in northern climatrs, the sun is passing through the three signs Cancer, Leo, Virgo, or from the titne of she greatert declination, ull it comes to the equinoctial ugain, or have no dectination; which is from about the 21 st of June, to the 22d of September. In the later case, summer contains the 6 warmer months, while the sun is on one side of the equinoctial; and winter
the other 6 moaths, when the sun is on the other side of it. sumama Beam, in caspentry, a large piece of timber which, being supported on two pillars or pusts, serves as a lintel to a gate; door, or window, dc.

Sunmen Solstice, the time or pome whon the sunattains his greatest decimation, and is liearest the zemith of the place. See Solstice.

SUN, SuL, ©, in Astronmy, the great luminury that is placed in the contre of our system, and about which all the planets revolve, in different periods, and at different distances. It is the great fomatain of light and lecat to all those bodies, warming and refresling buth their animal and vegetable inhabitants with the refulgence of his beans; without which, all nature would be involved in ienpenetrable darkness. The comets also revolve about the sun, but in excentric orbits, being sometimes very n-ar hum; and at others, at an incalculable distance frum lian.

The ancient astronomers conceived the carth to be the contre of the uniserse, having the sun, amil all the other celestial bodies revoling about it; but this ibisurd doctrine was at last confuted and annibilated by Coperaicus; though not without maoy angry diaputes, und malignant persecutions, particularly by the church of Romec, because it swemed to contradict-sume parts of Scripture. Truth however at length prevailed; and gave to the sun his due place in the centre of our syatem.

It has since been discovered, that the sun has a motion on its own axis, in about $25 \frac{1}{2}$ days, as appears from the macule or spots on his disc. Hor, some of thase spets Lave made their first appearance near the edge or margin of the sun, from thenee they have sermed gradually to pass over the sun's face to the oppusite edge, then disappear; and hence, afier an abornce of about tit days, they have reappeared in their first place, and have tahen the ssme course over again ; hanisbileg their entite circuil in 27 days $12^{2} 20^{3}$; which is lience infered to be the perion of the sun's rotation round his axis: and therefore the periodical time of the sun's revolution to a fixed star is $95^{\mathrm{d}} 15^{\mathrm{h}} 16^{\mathrm{mm}}$; bechuse in $27^{4} 12^{\mathrm{b}}$ 8 $\mathrm{com}^{\mathrm{m}}$ of the munth of May, when the obsernations were made, the earth describes an angle about the sun's centre of $96^{\circ} 92^{\prime}$, ond therefore as the angular motion $360^{\circ}+20^{\circ}: 2^{\prime}: 360$ $\therefore 27^{\mathrm{d}} 12^{\mathrm{m}} 2 \mathrm{C}^{\mathrm{m}}: 25^{\mathrm{d}} 15^{\mathrm{h}} 16^{\mathrm{mi}}$. This motion of the spots is from west to east: whence we conclude the motion of the sun, to which the other is owing, to be frome east to west. The more correct period of the sun's rotation is now stated at 25 days 10 houns,

Besides this motion round lis axis, the sun, on accourt of the various astractions of the surrounding platets, is agitated by a small motion round the centre of gravity of the system. - Whether the sun and stary have any preper motion of their own in the immensity of space, humever small, is not ulsolutely certain; though some very arcurate observers have intianted conjectuns of this hond, and have slown that such a general mietion is not inprobable. Sce Stans.

As for the "pparent annsal motion of the Suv round the earth; it is casily shown, by astronomers, that the ical amnal motion of the earth, about the sun, will cause such an appeatance. A spectator in the sun would see the earth move from west to east, for the same reason as we sce the sun move from cast to west: and all the phenomena resulting from this annual motion in whicheser of the bodies it be, will appear the same from enther. And hence arisrs that apparemt motion of the sun, by which

SU N

he is scen to advance insensibly towards the enstern stars; in so much that, if any star, near the ecliptic, rise at any time wulh the sun; after a few days the sun will be got there to the cast of the star, and the star will rise and set before him.

Nature, Propertie?, Figure, \$c, of the Su s.
Those who have mainained that the substance of the sun is fire, argue in the following manner: The sun shines, and his rays, cullected by concave mirrors, or convex lenses, will burn, consume, and melt the mont solid bodies, or else convert them into ashes, or glass: therefore, as the force of the solar rays is diminished, by their divergency, in a duplicate ratio of the distances reciprocally taken; it is evident that their force atd effect are the same, when collected by a burning lens, or mirror, as if we were at such distance from the sun, where they were equally dense. The sun's rays therefore, in the neighbunhoud of the sun, produce the same efliets, as might be expected from the mout vehement fire : consequently the sun is of a ficry substance.

Hence it follows, that its surface is probably every where lluid; that being the condition of Blane. Indeed, whether the whoke body of the sun be fluid, as some shink; or solid, as others; they do not presume to determine: but as there are no of her marks, by which to distinguish fire from oher bolies, but light, beat, a power of burning, consuming, metting, calcining, and vitrifying; they do not see what objection should be made to the hypir thesis that the sun is a glube of tire, like our fires, invested with flame: and, supposing that the macula are formed out of the solar exhalations, they infer that the sun is not pure fire ; but that there are beterogencous parts mixed with it.
Philosophers have been mueh divided in opinion with respect to the nature of fire, ligha, and heat, and the cuases that produce them: and shey have given wery difo ferent accounts of the agency of the sun, with which, Whether we consider them as substuluces or qualities, they are tatimately connected, and on which they 5 cem primarify to depand. Some, athong whom we may reckon Sir Isauc Newton, consider the rays of light as composed of small particles, which are eminted from shiming bodies, and move with uniform velocities in uniform mediums, but with variable velacities in mediums of variable densities. These particles, say they, act upon the minute constituent parts of bodies, not by impact, but at some in definitely small distance; they attract and are attracted; and in being reflected or refracted, they excite a vibratory motion in the component particles, This motion increases the distance betucen the particles, and thus occasions an augmenation of bulk, or an expansion in every dimension, which is the most certain characteritic of fire. This expansion, which is the begiming of a disunion of the parts, heing increased by the increasing magnitude of the vibrations proceeding from the continued agency of light, it may ea-ily be appretiended, that the particles will at length vibrate beyoud their sphere of inumal attraction, and thas the texture of the budy will be ultered or destroyed; from sthid it sany become fluid, as in melted gold; or from being fluid, it may be dispersed in vapour, ats in boiling water.

Uthers, as Bocthasve, represent fire as a substance suí generis, unalterable in its mature, and incapable of being produced or destroyed; naturally existing in equal quanfities in all places, imperceptible to our setues, and only
discoverable by its efficets, when, by varionts causcs, it is collected for a time into a less space than that which it would otherwise occupy. The matter of this fire is not in any wise supposed to be derived from the sun: the solar rays, whether direct or reflected, are of use only as they impel the particles of fire in parallel direciions: that parallelism being destroyed, by intercepting the solar rays, the fire instuntly assumes its natural state of uniform diffusion. According to this explication, which attributes heat to the matter of fire, when driven in parallel direce tions, a tmuch greater degree must be given it when the quantity, so collected, is amassed into a focus; and yet the focuy of the largest speculum does not heat the uir or medium in which it is found, but only bodies of densities different from that inediutn.
M. Deluc (Lettics Plysiques) is of opinion, that the solar raysare the principal cause of heat; but that they beat such bodies only as do not allow them a free passage. Inthis remark he agrees with Newton: but then he differs totally from him, as well as from Bocrhaave, concerning the nature of the rays of the sun. He does not admit the emnnation of any lununous corpuscles from the sun, or other self-shining subsiances, but supposes all space to be filled with un ether of great elasticity and small density, and that ligh consists in the vibrations of this ether, as suund consists in the vibrations of the air. "Upron Newton's supposition," says an excellent writer, " the cause by which the particles of light and the corpuscles constituting other bodies are mutually attracted and repelled, is uncertain. The reason of the unifurus diffusion of fire, of its vibranion, and repercussion, as stated in Boerhaave's opinion, is equally inexplicable. And in the last mentioned hypothesis, we valy add to the other difficulties attending the supposition of an universal ether, the want of a first mover to make the sun vibrate."

Dr. Herschel has given, it the Philos. Trans. an ingenions paper on the physical construction of the sun. This plausible and ingeniuus theory is suggested by a variety of observations on the selar phenomena. The sun, he supposes, las an atmospbere resembling that of the enrth; and this atmoophere consists of various elastic fluids, some of which exlibit a shining brilliancy, while others are merely transparent. Whenever the lucid fluid is removed, the body of the sun may be seen throngh thase that are transparent. In like manner, an obscrver placed in the moon, will see the solid body of the earth arily in those places where the transparent fluids of our atmosphere will permit him. In others, ihe opaque vapours will reflect the sun's light, without pernitting his view to penctrate to the surlace of our globe.

By changes in the atmospliere of Jupiter too, Dr. H. arcounts for the phenomena of its belts: and on the same principle he illustrates the various appearances of spots observed in the sun. Such pluenomeia, he thinks, may be casily and satisfactorily explained, if is be a lloned that the real sulid body of the sun itsell is sevn on these occusions, though we s.ldom see more than its shining atmospliere. Ife apprehende that there are consideratile inequalities in the surface of the sun; and that there may be elevations not less than 5 or 600 miles high. Tha! a very bigh country, or chain of mountains, may oftener become visible, by lie removal of the obstructing fluid, than the lower regions, on account of its nut being so decply covered by'it. See Solar Srois.

All the phenomena of the spots, of the facula, and of the fivid surface of the sun, concur to establish the existence of a solar atmospbere of very considerable extent, and to evince its composition of various elastic thaids, that are more or less lucid and transparent: but the lucid one is that which funnishes us with light. The generation of this lucid fluid, in the solar atmosphere, is a phenomenon similar to the generation of clouds in our ptmosphere, which are produced by the decomposition of its constitueut elastic tluids: but with this ditierence, that the continual and very extensive decompositions of the elinstic fluids of the sun, are of a phophoric nature, and attended with fucid appearances, by giving out light. To the objection that such decompositions, and the consequent emission of light, would exhaust the stm, Dr. H. replies thut, in the decomposition of phosphoric fluids, every other ingredient besides light may return ti: the body of the sun. This waste, bowever, must be quite insensible, even in a very long period, whell the extreme subtulty of light is considered: and besides, it may possihly be supplied by thove telescopic comets, manly of which are observed, which have no appearance of any solid nucleus, seeming to be mere colleetions of vapours condensed about a centre.

The sun, contemplated with the assistance of the doctor's theory, " appears to be nothing efse than a very large, eminent, lucid planet, exidently the first, or indeed the only primary one of our system; alt others being truly secondary to it. Its similarity to the other globes of the solar system, with regard to its solidity, its atmosphere, and its divenified surface; the rotation on its axis, and the fall of heavy bodics, lead us on to suppose that it is most probably also inhabited, like the rest of the planets, by beings whose ergans are adapted to the pecutiar circumstances of that vast globe."

Shuuid it be objected that the heat of the sun remiers it unfit for a habitable world, Dr. H. answers, that heat is proluced by the sun's rays only when they act on a catorfic medium, and that they are the cause of the production of heat, by uniting with the matter of fire, which is contaned in the substances that are beated. Dr. H. suggests other considerations, intended to invalidate the objection. He then deduces from analogy a variety of arguments, in order to coulirm the notion of the sun's being hatitable; and infors that, if the sun be capuble of accommodating inhabitants, the other stars, which are suns may be appropriated to the same use; and thus, says he, we see at once what an extensive ficted for animation opens it-elf to our view. Philos. Trans. Abridg. vol. 17, pa. 478. Sce also Spots.

Dr. Herschel has made many interesting experiments on the na:urn of the sun's rays, and has thus firmly established a fact which hatl long been disputed between phiJosiphers, namely, the separate identity of light and heat: that they are both suliject to the laws of reflection and retracios ; that they are each of ditierent refrangibility, are fiable in be stupucd in ev rain propurtions when transmitied throwgh diaphanous bodiss; and that they are liable to be callered on rotigh surfaces. These curious facts were discowered by the toctor in his optical experiments on celoured gloss, in whech he nas led to exumine the differnace bolwen the coloused rays of the sun with resuril to their heating puwer. He thereby discovered thut the mosi refracted rays of light, the violet, possess the lowest heating power; and the least refracted, the
red, the greatest power, and the mean rays of the prismatic spectrum showed an intermediate power. Thus, in the red rays the thermometer, by the average of several experimens, rose 0 ? degrees; in the green rays $3 \frac{1}{2}$ degrecs; and the viclet 2 degrees; or in suand numbers, the eflicet of the red rays was to thut of the green as 9 to 4 , and to that of the violet as 7 to 2.

Pursuing those experiments, the same philosopher found the range of dispersion of the rays of heat by the prism, to differ most essentially from that of light; fur on applying thermometers of great semsibility and successively in a line, begimning at the violet rays, procceding along the prismatic spectrum, he found not only the heat increased by advancing towards the red, or least refracted rays, but that the heat was greatest at a small distance beyond the extreme limits of the spectrum, that is, where no rays of light at all fell ; and still continuing to advance the thermometer in the same line, the heat then gradually diminsshed, till it became too spall to be noticed. This most curious and important discovery shows, therefore, both an entire separation of heat from light in the solar ray, and refrangibility of one from the other, which together go near to establish the separate identity of caloric and light, and cause precisely the same arguments uxed to demonstrate the materiality of light to apply to the materiality of heat.
These experiments of Dr. Herschelbave beenfully confirmed by ir H. Englefickd, whose apparatus were somewbat diffrerent, and more accurate. The particulars of which are as follow. The coloured rays of the spectrum were sucecssively and singly thrown on a lens (all the others being excluiled by a screen), the thermometer with a blackened ball beting placed in its focus, and allowed to remnin there some time after it had ceased to rise, that the full effect might be secured. Thus circumstanced,
In the blue ray from
green
yellow
red.

These experinents were repeated several times, and in all with very closely corresponding results, end the most striking and nowel phenomenon was manifest in all, tamely, the rise of the thermometer, when passed beyond the extreme point of the luminous spectrum on the red side, and its fall whell again carried back into the red light.

As to the Figure of the SUx; this, like the planets, is not perfectly globular, but spheroidical, being higher about the equator than at the poles. The reason of which is this: the sun has a motion about his own axis; and therefore the solar matter will bave an endeavour to recede from the axis, and that with the greater force as their distances from it, or the circles they move in, are grater: tut the equator is the greatest circle; and the rent, towards the poles, continualiy decrease; therefore the solar matter, though at first in a sphericul form, will endeavour to recede from the centre of the equator further than from the centres of the parallels. Conse quently, since the gravity, by which it is retained in its place, is supposed to be unifurm throughout the whole sun, it will really ricede from the centre nope at the equator, than at any of the parallets; and hence the sun's diameter will be greater through the equator, than through the poles; that is, the sun's ligure is not perfectly spbericat, but spheroidical.

Sceeral particulars of the Sun, related by Newton, in his Principia, are as follow: 1. That the density of the sun's beat, which is proportional to his light, is 7 tumes as great at Mercury as with us; and sherefore our water there would be all carried off in vapour : for he found by experimens of the shermoneser, that a heat but 7 times greaser than that of the sun beams in summer, will serve to mahe water twil.
2. That the quantity of matter in the sun is to that in Jupiter, nearly as 1100 to 1; and that the distance of that planet from the sun, is in the same ratio to the sun's semidinaterer.
3. That the matter in the sun is to that in Saturn, as 2360 to 1; and the distunce of Suturn from the sun is in a ratio but little less shan that of the sun's semidiameter. And bence, that the common centre of gravity of the sun and Jupiter is nearly in the superficies of the sun; of the sun and Salum, a bitele within it.
4. And by the same mode of calculation it will be found, that the common centre of gravity of all the planels, caunos be mure than the length of the solar diameter distant from she centre of the sun. This cammon centre of gravity be proves is at rest ; and sherefore thouph the sun, by reasoln of the sarious positions of the planets, may be moved every way. yei it cannot recede far from the comraon centse of gravity, and this, he thinks, ougha to be accounted the centre of our world. Book 3, prop. 12.
5. By means of the solur spors it hath bren discovered, that the sun revilves round has own axis, without moving cunsiderably out of his place, in about 25 days, and that the axis of this motion is inclined to the ecliptic in an angle of $87^{2} 30$ nearly. The sun's appars nt diainter boing scasibly longer in Decomber than in June, the sun must be proportionably nearer so the tarth in wimer than in summer; in the former of which sasons therefore will be the peribelion, in the lattur the aphalion: and this is also confirmed by the earth's motion being quicker in December thall in June, ns it is by about ir part. For since the earth always describes equil areas in equal times, whenever it moses swifier, it must meds be nearer to the snn: and for this reason there are about 8 day, more from the sun's vermal cquinox to the autumnal, than from the nutumanal to the vernal.

6 That the sun's diameter is equal to 100 diameters of the earth; and therefore the booly of the sun must be $1,000,000$ times greater than that of the earth.-Mr. Azout assures us, that he observed, by a very exact mothod, the sun's diameter to be no less than $31^{\prime} \not \mathbf{j}^{\prime \prime}$ in his apogee, and not greater than $32^{\prime}+5^{\prime \prime}$ in his perigee.
7. According to Newton, in his theory of the moon, the mean apparent diameter of the sun is $32^{\prime} 122^{\prime \prime}$. -The sun's berizomal parallax in now fixed at $8^{\prime \prime}$, ${ }^{6}$.
s. If you disite $30^{\circ} \mathrm{dagrees}$ (ilie whale ecliptic) by the quantity of the solur year, it will give $39^{\circ} \mathrm{s}^{\circ} \mathrm{Ne}$, which therefore is the medium quantity of the sun's daily motion ; and if this $59^{\prime} 8^{\prime \prime}$ be divided by 24 , you lave the sun's horary motion equal to $2^{\prime} 2 s^{\prime \prime \prime}$; and if this last be divided by 60 , it will give bis motion in a ninute, \&c. And in this way are the tables of the sun's matan motion constructed, as placed in books of astronomical tables and calculations.

SUNDAY, the first day of the werk; thus called by our idelarrous ancestors, because set apait for the worship of the sun.-It is smonctimes called the Lord's Day, because kept as a feast in inemory of our Lord's resurrection on
this day: and also Sabbath-day, becausa substituted under the new law instead of the subbath in the old law.It was Constantine the Great who first made a law for the observation of Sunday ; and who, according to Eusebius, appointed that it should be regularly celebrated throughout the Roman empire.

Sunday Letuer. See Dominichl Letter.

SUPERFICIAL, relating to Superficies.
SUPEREICIES, or SUREACE, in Geometry, the outside or exterior face of any body. This is considered as having the two dimensions of length and breadth only, but no thackness; and therefore it makes no part of the substance or solid content or matter of the body. The terms or bounds or extretuities of a superficiex, are lines; and supu thicies may be considered as generated loy the motions of lincs.-Superficies are either reculinear, corvilincar, plane, concave, or constx.
Rectidnear Suremricies, is bounded by right lines.
Curvilinear buprenicirs, is bounded by curvelines.
Plane Superficies, is that which has no inequalty in it, nor risings, nor sinkings, but lies evenly and straight throughout, so that a right line may wholly coincide with it in all parts and diecetions.

Convex Supprpicies, is that which is curved and rises outwards.

Concave Superficies, is curved and sinks inward.
The measure or quantily of a surface, is called its area. And the finding of this measure or area, is sumetimes called the quadrature of it, menaing the reducing is to an equal square, or to a certain number of smaller squares. For all plane figures, and the surfaces of all bodies, are measured by equares ; as square inches orsquare feet, or square yards, \&x ; that is, squares whose sides are inches, or feet, or yards, ske. Our leasi superficial measure is the square neh, and other squares are taken from it accordang to the propartion in the following table of superficial or square measure.

$$
\begin{aligned}
144 \text { square incles } & =1 \text { square foot } \\
9 \text { square feet } & =1 \text { square yard } \\
\text { sot square yards } & =1 \text { square pole } \\
16 \text { square poles } & =1 \text { square chain } \\
10 \text { square chains } & =1 \text { acre } \\
640 \text { acres } & =1 \text { square mile. }
\end{aligned}
$$

The superficial measure of all bodies and figures depends entirely on that of a rectangle; and this is found by drawing or multiplying the length by the breadth of it; as is proved from plane geometry only, in my Mensuration, pt. 2, sect. 1, prob. 1. From the area of the rectangle we obtain that of any oblique parallelogram, which, by geometry, is "qual so a rectangle of equal base and altisude; thence a triangle, which is the half of such a parallelogram or rectangle; and hence, by composition, we obtain the superficies of all other figures whatever, as these may be considered as made up of triangles only.

Besid's this way of deriving the superficies of all figures, which is the most simple and natural, as proceeding on commen feometry alone, there are certain other methods; such as the meshods of exhaustions, of finxions, \&c. Sce these articles in their places, is also Quapratures.

Line of Surgaficies, a line usually found on the sectur, and Gunter's scale. The description und use of which, sce under Sector, and Gevien's Scale.

SUPPLEMENT, of an arch, or angle, in Gcometry or Trigonumetry, is what it wants of a semicircle, or uf iso degrecs ; as the complement is what it wants of a quadrant,
or of 90 degrecs. Sa , the supplement of 50° is 130°; as the complement of it is 40°.

SURD, in Arithmetic and Algebra, denotes a number or quantity that is incommensurate to unity; or that is inexpressible in rational numbers by any known way of notation, otherwise than by its radical sign or modex.This is otherwise called an irrational or iucommensurable number, as also an impericet power.

The square ruots of all numbers except $1,4,9,16,25$, $36, \& \mathrm{c}$, (which are the squares of the whole numbers $t, 2$, $3,4,5,6, \& c$, are aurds, or incominemyurables; after the same manner, the cube roots of all nuabers except the cubes of $1,2,3,4,5,6, \star c$, are surds. And it is usual to denose such root by setting befure it the proper mark of radicality, which is $\sqrt{ }$, and placing above this radical sign the nuraber that shows what hind of root is intetuded. Thus, $\sqrt[2]{2}$ or $\sqrt{2}$ signifies the square root of 2 , and $\sqrt[3]{10}$ the cube root of 10 ; which roots, because jt is imporsible to express them in numbers exactly, are properly called surd roots.

A nother way of notation, by which roots are expressed, is by fractional indices, without the radical sign: thus, as $x^{4}, x^{3}, x^{4}, \& c$, denote the square, cube, 4 th power, $\& C$, of x; so $x^{\frac{1}{2}}, x^{\frac{1}{\}}}, x^{\frac{1}{2}}, \& c$, dennte the square ront, cube root, th root, Δc, of the same quantity x. - The reason of which is evident; for since \sqrt{x} is a geometrical mean proportional between 1 und x, so $\frac{1}{2}$ is an arithmetical mean between 0 and 1 ; and therefore, as 2 is the index of the square of $x, \frac{1}{3}$ will be the proper index of its square rout, \&sc.

It may be observed that, for convenience, or the sake of brevity, quantities which are not naturally surds, are often expressed in the form of surd roots. Thus $\sqrt{ } 4, \sqrt{ } \frac{9}{8}$, $\sqrt[3]{27}$, are the same as $2, \frac{1}{2}, 3$.

Surds are cither simple or componnd.
Simple SURDs, are such as are expressed by one single terin; as $\sqrt{2}$, or $\sqrt[3]{ } a, \sqrt{2} c$.

Composnd Surnes, are such as consist of two or more simple surds connected together by the signs - or - ; as $\sqrt{3}+\sqrt{2}$, or $\sqrt{3}-\sqrt{2}$, or $\sqrt[3]{ }(5+\sqrt{2}):$ which last is called an universal root, and denutes the culic root of the sum arising by adding 5 and the root of 2 together.

Of certain Operations by Surds.

1. Such surds as $\sqrt{2}, \sqrt{ } 3, \sqrt{5}, \& e$, though they are themselves incommensurable with unity, according to the definition, are commensurable in power with it, because their powers are integers, which are multiples of unity. They may also be sometines commensurable with one another ; us $\sqrt{8}$ and $\sqrt{2}$, which are to each other as 2 to 1 , as is found by dividing them by their greatest common measure, which is $\sqrt{ } / 2$, for then those two become $\sqrt{ } 4=2$, and 11 the ratio.
2. 'To reduce Rational शuannities to the form of any proposed Surd Roots.-Involve the rational quantity according to the iudex of the power of the surd, and thell prefix before that power the proposed radical sign.

Thus $a=\sqrt{ } a^{2}=\sqrt[3]{ } a^{2}=\sqrt[V]{ } a^{4}=\sqrt[V]{ } a^{*}$, \&c.
and $t=\sqrt{ } 16=\sqrt[3]{ } 64=\sqrt[1]{256}=\sqrt{ } 4^{n}$, \&c.
And in this way may a simple surd fraction, whose radical siga refers to only one of its teros, be changed into another, which shall include both numerator and denominator. Thus,
$\frac{\sqrt{ } 2}{3}$ is reduced to $\sqrt{ } \frac{2}{25}$, and $\frac{3}{\sqrt{4}}$ to $\sqrt{\frac{125}{4}}:$ thus also the
quantity a reduced to the form of $x^{\frac{2}{n}}$ or \sqrt{x}, is $\left(a^{n}\right)^{\frac{1}{0}}$ or $\forall a^{n}$. And thus may roots with rational coefficients be reduced soas to be wholly aflected by the radical aign; as $a \overline{v^{2}}=\tilde{V^{2}} a^{*} s$
3. To reduce Simple Surds, haring different redical signs (which are called heleroscreal Surds) to others that may hure ore common ralical sign, or which are homogeneat: Or 10 reduce routs of different names to roots of the same name.Involve the powers reciprocally, each according to the index of the uther, for new powers; and multiply their indices together, for the common index. Ohherwise, as surds may be considered as powers with fractional exprobea's, reduce these fractional exponents to fractiotis having the same value and a comton denominator.-Thus, by the lst ancthod,
$\sqrt{ } a$ and $\# / x$ become m^{n} / a^{m} and $\sqrt{\nabla} a^{n}$;
nud, by the 2 d method,
$a^{\frac{1}{n}}$ and $2^{\frac{1}{m}}$ become $\left(a^{m}\right)^{\frac{1}{m A}}$ and $\left(x^{n}\right)^{\frac{1}{n}}$.
Also $\sqrt{3}$ and $\sqrt[3]{2}$ are reduced to $\sqrt[V]{97}$ and $\sqrt{ }+\frac{1}{}$, which are equal to them, and have a common radical sign.
4. To reduce Surds to their most simple expressions, or to the lowrst terms possible.- Divide the nurd by the greatest power, of the same name with that of the riot, which is contained in it, and which will meusure or divide it without a remainder; then extract the root of that power, and place it before the quotient or surd so divided; this will produce a new surd of the same value with the former, but in more simple terms. Thus, $\sqrt{ } 16 a^{2} x$, by dividing by $16 a^{2}$, and prefixing its rout $4 a$, befure tho quotient $\sqrt{ } x$, becomes $4 a \sqrt{ } x$; in like mabiner, $\sqrt{ } 12=$ $\sqrt{ }(4 \times 3)=2 \sqrt{3} ;$

And $\sqrt[3]{a} b^{3} x$ reduces to $b \sqrt[3]{ } a r$.
Also $\sqrt[3]{81}=\sqrt[3]{27} \times 3=\sqrt[2]{ } 3^{3} \times 3=3 \sqrt[3]{3}$.
And $\sqrt{ } 288=\sqrt{ } 144 \times 2=12 \sqrt{ } 2$.
5. To Add and Subtract Surds,- When they are teduced to their lowest terms, if they have the same irrational part, add or subtract their rational coefficients, and to the sum or difference subjoin the common irrational part.
Thus, $\sqrt{75+\sqrt{ } 48=5 \sqrt{ } 3+4 \sqrt{ } 3=9 \sqrt{3} ;}$
and $\sqrt{150-\sqrt{ } 54=5 \sqrt{6}-3 \sqrt{6}=2 \sqrt{6} ;}$
also $\sqrt{a^{2} x+\sqrt{ } c^{2} x}=a \sqrt{ } x+c \sqrt{ } x=(a+c) \sqrt{ } x$.
Or such surds may be added and subtracted, by first squaring them (by uniting the square of each part with double their product), and then extracting the rout unirersal of the whole. Thus, for the first example aloove,
$\sqrt{75}+\sqrt{ } 48=\sqrt{ }(75+48+2 \sqrt{ } 75 \times 48)=$
$\sqrt{ }(123+2 \sqrt{3600})=\sqrt{ }(123+120)=$
$\sqrt{ } 243=9 \sqrt{ } 3$, the same as before.
If the quantities cannot be reluced to the same irrational part, they can ouly be connected ty the sigus + or -.
6. To Multiply and Divide Surds-If the terms have the same radical, they will be multiplied and divided like powert, viz, by addeng their indices for muluplication, and subtracting them for division. Thus,

$$
\sqrt{ } a \times \sqrt[y]{ } a=a^{\frac{1}{2}} \times a^{\frac{1}{y}}=a^{\frac{1}{8}} \times a^{\frac{7}{6}}=a^{\frac{1}{8}}=\sqrt{ } a^{5} ;
$$

and $\sqrt{ } 2 \times \mathfrak{V}^{\prime 2}=2^{6}=\mathscr{V}^{2}=V^{1} 32$;
also $\sqrt{ } a \div \sqrt[3]{a}=a^{\frac{1}{2}} \div a^{\frac{1}{7}}=a^{\frac{1}{6}}=\sqrt[V]{a}$;
and $\sqrt{2} \div \sqrt{2}=2^{\frac{1}{6}}=\sqrt[6]{2}$.

SUR

If the quantities be different, but under the same radical sign; multiply or divide the quanttties, and place the radical sign to the product or quotient.

$$
\begin{aligned}
& \text { Thus, } \sqrt{ } 2 \times \sqrt{ } 5=\sqrt{ } 10 \\
& \text { and } \sqrt[V]{ } a^{2} \times \sqrt[V]{ } c=\sqrt[V]{ } a^{2} c ; \\
& \text { abo } \sqrt{ } 54 \div \sqrt[y]{2}=\sqrt{2} 27=3 .
\end{aligned}
$$

But if the surds bave not the same radical sign, reduce them to such as shall lave the same radical sign, and pruceed as before.
 and $\sqrt{ } 2 \times \sqrt[3]{4}=\sqrt[6]{ } 2^{3} \times \sqrt\left[(]{4^{2}}=\sqrt[6]{8} \times 16=\sqrt[6]{128} \text {. }\right.$

If the surdy have any rational codficients, their product or quotient must be prefixed.

$$
\begin{aligned}
& \text { Thus, } 5 \sqrt{6} \times 2 \sqrt{3}=10 \sqrt{ } 18=30 \sqrt{ } 2 ; \\
& \text { and } 8 \sqrt{3} \div 2 \sqrt{6}=4 \sqrt{\frac{1}{6}}
\end{aligned}
$$

7. Involution and Frolution of Surds.-Surds arc involved, or raised to any power, by multiplying their inliees by the index of the power; and they are evolved or exaracterl, by dividiag their iudices by the index of the toot.

Thus, the square of $\sqrt[3]{2}$ or of $2^{\frac{1}{3}}$, is $2^{\frac{2}{3}}=\sqrt[3]{ } 4$;
and the cube of $\sqrt{ } 5$ or of $5^{\frac{1}{2}}$, is $5^{\frac{3}{2}}=\sqrt{ } 125$;
also the square root of $\sqrt[3]{ }$ or $4^{\frac{1}{5}}$, is $4^{\frac{\pi}{6}}=2^{\frac{1}{3}}=\sqrt[3]{2}$.
Or thus: Involve or extract the quantiny under the radical sign according to the power or root required, continuing the same radieal sign.

> So the square of $\sqrt[3]{2}$ is $\sqrt[3]{4}$;
> and the square root of $\sqrt[2]{4}$, is $\sqrt[2]{ }$.

Unless the index of the power is the same as the name of the surd, or a multiple of it, for in that case the power of the surd becomes rational. Thus, the square of $\sqrt{ } 3$ is 3 , and the cube of $\sqrt[V]{ } a^{2}$ is a^{2}.

Simple surdsare commensurable in power, and by being multiplied by themselves give, at length, rational quantities: but compound surds, inultiplicd by themselves, comatonly give irrational products. Yet, in this case, whea any compound surd is proposed, there is another compound surd, whicb, mulniplied by it, gives a rational product.
Thus. $\sqrt{ } a+\sqrt{ } b$ multiplied by $\sqrt{ } a-\sqrt{ } b$ gives $a-b$; and $\sqrt[3]{ } a-\sqrt[3]{ } b$ mult, by $\sqrt[2]{ } a^{2}+\sqrt[3]{ } a b+\sqrt[3]{ } b^{2}$ gives $a-b$. The finding of such a surd as multiplying the proposed surd gives a rational product, is made casy by three theorems, delivered by Maclaurin, in his Algebra, pa. 109 \&c.

This operation is of use in reducing surd expressions to more sinple forms. Thus, suppose a binomial surd divided by another, as $\sqrt{20}+\sqrt{ } 12$ by $\sqrt{15}-\sqrt{ } 3$, the quotient might be expressed by
$\frac{\sqrt{20}+\sqrt{12}}{\sqrt{3}-\sqrt{3}}=\frac{2 \sqrt{3}+2 \sqrt{3}}{\sqrt{2}-\sqrt{3}}$; but this will be expressed in a more smple forin, by multiplying both numerator and tenominator by sucb a surd as minkes the prosluct of the demominator become a rational qunntity : thus, multiplying them by $\sqrt{ } 5+\sqrt{ } 3$, the fraction or quotient becomes
$2 \times \frac{\sqrt{3}+\sqrt{ } 0}{\sqrt{3}-\sqrt{3}} \times \frac{\sqrt{3}+\sqrt{3}}{\sqrt{3}+\sqrt{3}}=2 \times \frac{(\sqrt{ } 5+\sqrt{ } 3)^{2}}{3-\sqrt{2}=2}=$ $\sqrt{ }(5+\sqrt{3})^{2}=8+2 \sqrt{ } 15$.

To do this generally, see Maclaurin's Alg. p. 113.
When the square root of a surd is required, it inay be found nearly, by extracting the root of a rational quanVot. II.
$473]$
SUR
tity that approximates to its valuc. Thus, to find the square ront of $3+2 \sqrt{2}$; tirst titud the $\sqrt{2}=141421$: hence $3+2 \sqrt{2}=5 \cdot 525 \$ 2$, the toot of which is nearly $2 \cdot 41+2 l=1+\sqrt{\prime}$.

In like manner we may proceed with any other proposed root. And if the malex of the root be very lingth, a table of logarithms muy be used to adsantange: thuy, to extract the root $V(5+\geqslant 1 \overline{7})$; tuke the logaritom of 17, divide it by 13, find the number answering to the quotient, add this number to 3 , find the log. of the surn, and divide it by 7 , and the number anwerng to this quotient will be nearly equal to ジ $(3+\sqrt[1]{ } 17)$.

But it is sometimes requisite to expless the roots of surds exactly by other surds. Thu*, in the first example, the square rowt of $3+2 \sqrt{2}$ is $1+\sqrt{2}$, because $(1+\sqrt{2})^{2}=1+2 \sqrt{2}+2=3+\sqrt{2}$. For the we thod of performing this, the curious reader may consuit Maclaurin's Algeb. pa. 115, where also rules lor trinomin': \&e may be found. See also the article Binomial Rowts, in this Dictionary.

For exiracting the higher roots of a binomial, whose two members when squared are commensuruble numbers, we have a rule in Newton's Arith. pa.sy, but without demonstration. This is supplied by Maclausits, in his Alg. pa. 120: as also by Gravesande, in his Mutheseos Univers. Elem. pa. 211.
It sonnctimes happens, in the solution of cubic equations, that binomials of this form $a \pm b \sqrt{ }-1$ occur, the cube roots of which must be found; and to these Newton's rule cannot always be applied, Lecause of the impossible or imaginary factor $\sqrt{-1}$; jut if the root be expressible in rational numbers, the rule will often yield to it in a short way, not merely tentative, the trials being confinel to known linits. See Maclaurin's Alg. pa. 127. It may be further observed, that such roots, whether expressible in rational numbers or not, may be fuund by evolving the quantity $a+b \sqrt{ }-1$ by Newtun's binonial theorem, and summing up she alternate terms. Machusris, p. 130.
Tbose who are desirous of a general and elegant sulution of the problem, to extract any root of tui impossible binomial $a+b \sqrt{ }-1$, or of a possible binomial $a+\downarrow / b$, may have recourse to the appendix to Suunderson's Algebra, and to the Philos. Trans. No, 451. On the management of surds, see also the numerous authors upon Algebra.
SURFACE, in Gemmetry. Sue Supinmicies.
A Mathematical Surface is the mete exterior face of a body, but is not any part of it, being of no thickncess, but only the bare figure or termination of the body.

A Physical Surgace is considered as of some very small thickness.

SURSOLID, in Arithmetic, the 5th power of a num. ber, considered as a ront. The number 2, for instance, considered as a sool, produces the powers thus:
$2 \times 2=2$ the root or ls! power,
$2 \times 2=4$ the squate or 2 d power,
$2 \times 4=8$ the cube or 311 power,
$2 \times 8=16$ the biquadiatic or $4 t h$ power,
$2 \times 16=32$ the sulsolid or Sth power.

Sursolet Problem, is that which cannot be resolved but by curves of a higher kind than the conic sectipuk.

SURVEIING, the art of measuring land; which comprises the three following parts; viz, tahing the dimensions of any tract or piece of ground; the delancating or 3 P
laying it down in a map or draught; and finding the superficial content or area of the same; besides the dividing and laying out of lands. The first of these is what is properly called Surseying; the second is called plotting. or protracting, or inapping; and the shord casting up, or compusing the contems.

The first again consists of two parts, the making of observalious for the angles, and the taking of lineal iseasures for the distances. The former of these is performed by some of the following instruments; the theodolite, circumerentor, semicircle, plain-table, or compass, or even by the chain itwilf: the latter is performed by means either of the chain, or the perambulator. Tise description and manure of uing each of these, see under its respective serficis.

It is useful in survising, to take the anglis which the bounding lincs firm with the magnetic needie, in order to chech the angles of ate figure, and to plot them conveniently afterwards. IBt, as the difierence betweethere true and magnetie mendian perpertually varies in fill places, and at all tinses; it is impossithle to compare two surveys of the same plare, baken at distant times, by magnetic instrumeuts, whout making due aflowance for this variation. See observations on, this subject, by Mr. Molineux, Philus. Traus. Nis. 250, pa 625.

The second branch of surveging is perfurneed by means of the protractor, and plotting scale. The description of which, see under their proper names.

If the lands in the survery are hilly, and not in any one plane, the measured liu's cannot be truly laid down on paper, till they are reduced to one plane, which must be the horizontal one, becuuse anghis are taken in that plane. And in this casc, when observing diskiant objects, for their elevation or depression, the following table shows the links or parts to besubtracted from each chain in the bypothenusal lime, when the angle is the corresponding number of degres:.
A Tablis: of the links to be subiracted out of arry chain in hypothenssal lines, of ecveral degrees of atutude or depression, for reducing them to horizontal.

For example, if a station hine measure 1250 links, or $12 \frac{1}{1}$ chains, on an ascent, or a descent, of 11°; bere it is after the rate of almost two links per chain, aud it will be exact inough to take only the 12 clains at that rate, which make 24 linhs in all, 10 be deducted from 1250, which leaves 1220 links, for the length to be lail down. Practical survegors say, it is best to make this deduction at the end of every chaim-length wtile measuring, by drawing the chain forward wery time as much av the deduction is ; viz, in the present instance, drawing the chain on 2 linhs at each chaith-length.

The third branch of sorveying, namely computing the contents, is performell by reducing the several inclosures aud divisions into triangles, trapezzums, and parallelograms, but especially the two former; then finding the
areas or contents of these several figures, and adding them logether.

The Practice of Surreying.

1. Land is measured with a clain, called Gunter's chain, of 4 poles or 92 yards in length, which consists of
 a foot, or 7.92 inches long, that is nearly 8 inches or $\frac{5}{3}$ of a foot.

An acre of land is equal to 10 square chains, that is, 10 chains in lenget and 1 chain in lireadth.

Or it is 40×4 or 160 square poles.
Or it is 220×22 or 4840 syuare yards.
Or it is 1600×160 or 100000 square limks.
These being all the same quatitity. -
Also, an acre is divided intu 4 parts called ronds, and a rood into to parts called peschec, which are nquare poles, or the square of a pole of 51 yatis fong, or the square of $\frac{8}{3}$ of a chain, or of 25 luiks, which is 625 square links. bo that the divisions of Inid measure will be thus:

$$
\begin{aligned}
62 ; \text { sy. linhs } & =1 \text { pole or perch } \\
40 \text { perchess } & =1 \text { rood } \\
4 \text { roods } & =1 \text { acre } .
\end{aligned}
$$

The length of lines, measured with a chain, are set down in linis as inkgers, every chain in lengit being 100 linhs; and not in clains and decimals. Therefore, after the content is found, it will be in square links; then cut off five figures on the right hand for uecimals, and the rest will be ucres. Those decimals are chen multiplied by 4 for roods, and the decimals of these again by to for perches.
2. Among the various instruments for surveying, the plain tuble is the easiest and mest generully use-ul, especially in crooked difficult places, as in a town among houses, \&c. Yet there are casey in which this cannet be conveniently used, as different sutveys require different instruments, and the surveyor must judge which is the fittest instrument and method, and use it accordingly: nay, sometimes ro instrument at all, but barely the chsin itsidf, is the best methol, particularly in regular open fields lying together; and even when using the plain-table, it is ofien of advantage 10 measure such large open parts with the chain only, and from thuse incusures lay them down upon the table.

The perambulator is uscd for measuring roads, and other great distances on level ground, and by the sides of rivers. It has a wheel of $8 \frac{1}{4}$ teet, or hali a pole, in circumfernce, upon which the machine turns; and the distance measured is pointed ous by an index, which is moved ruund by cloch work.

Lavels, with itlescopic or other sights, are used to find the level between place and place, or how much one place is bigher or lower than another.

An offect-stall' is a very useful and necrssary instrument, fur measuring the oflisets and other short distances. It is 10 links in leugth, being divided and marhed at each of the 10 links.

Ten small arrows, or rods of iron or wood, are used to mark the end of every chain length, in measuring lines. And sometimes pickets, or staves with flags, are set up as marks or objects of direction.

Various scales are also used in protracting and measuring on the plan or paper; such as plane scales, line of chords, protractor, compasses, reducing scaics, parallel and perpendicular rulers, \&ec. Of plane scales, there
should te several sizes, ta a chain in 1 inch, a chain in $\frac{1}{2}$ of an inch, a chaiu in $\frac{1}{\infty}$ of an inch, \&c. And of these, the best for use are those that are laid on the very edges of the ivory scale, to prick off distances by, without compasses.

3. The Field Book,

In surveying with the plain-table, a field-book is not used, as esery thing is drawn on the table immediately when it is measnred. But in surveying with the theodolite, or any other instrument, some kind of a field-book must be used, to write down in it a register or account of all that is done and occurs relative to the survey in hand. And this book every one contrives and rules as he thinks fittest for himself.

But a few shilful surveyors now make use of a new method for the field-book, namely, beginning at the bottom of the page and writing upwards; by which they shetch a neat buundary on either haud, as they pass it ; an example of which will be given below, with the plan of the ground to accompany it.

In smaller surveys and measurements, a good way of setting down the work, is, to draw, by the eye, on a piece of paper, a figure resembling that which is to be measured; and so write the dimensions, as they are found, ugainst the corresponding parts of the figure. And this method may be practised to a considerable extent, even in the larger surveys.

For all the parts of surveying, and with all the instruments, see my large book on Mensuration; also my Course of Mathematics.

The New Method of Surocying.
Instead of the foregoing method, an ingenious friend (Mr. Abraham Crocker), after mentioning the new and improved method of keeping the field-book by writing from bottom to top of the pages, observes that, "In the furmer method of measuring a large estate, the accuracy of it depends on the correctness of the instruments used in taking the angles. To avoid the errors incident to such a multitude of angles, other methods have of late years been used by some few skifful surveyors; the most practical, expeditious, and correct, seems to be the following.
"As was advised in former methods, so in this, choose two or more eminences, as grand stations, and measure a principal base line from one station to the other, noting every hedge, brook, or other remarkable object as you pass by it ; measuring also such short perpendicular lines to such bends of hedges as may be near at hand. From the extrenities of this base line, or from any convenient parts of the same, go off with other lines to some remarkable object situated towards the sides of the estate, without regarding the angles they make with the lase line or with one another; still renembering to note every hedge, broak or other object that you pass by. These lines, when laid down by intersections, will with the bave line form a grand triangle upon the estate; several of which, if need be, being thus laid down, you may proceed to form other smatler triangles and trapezuids on the sides of the former: and so on, until jou finish with the enclosures individually.
"To illustrate this excellent method, let us take $A B$ (in the plan of an estate, fig. 1, pl. 34) for the principal base line: From a go of to the tree at c ; noting down, in the field-book, every cross hedgr, ws you measure on; and from c incasure back to the first station at A, noting down every thing as before directed.
"This grand triangle being completed, and laid down on the rough-plan paper, the parts, exterior as well as interior, are to be completed by smaller triamgles and trapezoids.
" When the whole plan is laid down on paper, the contents of each field might be calculated by the methods laid down below is metisuration.
" In cuuntries where the lands are enclosed with ligh hedges, and where many lanes pass through an estate, a theodolite may be used to advantage, in measuring the angles of such lands; by which means, a kind of sheleton of the estate may be obtained, and the lane-lines serve as the bases of such triangles and trapezoids as are necessary to fill up to the intesior palts."

The method of measurang the other cross lines, off-sets and interiur parts and enclusures, appears in the plan, fig. 1, last reterred to.
16. Another ingenious cortspondent (Mr. John Rodham of Richmond, Yorkshire) has also communicated the fullowing example of the new method of surveying, accompanied by the field-book, and its corresponding plan. His account of the method is as follows.

The field-book is ruled into three columns. In the middle one are set down the distances on the chain line at which any mark, offset, or other observation is made ; and in the right and left hand columns are entered, the offisets and observations made on the right and left hand respectively of the chain line.

It is of great advantage, both for brevity and perspicuity, to brgin at the bottom of the leaf and write upwards; denoting the crossing of fences, by lines drawn across the middle column, or only a part of such a line on the right and left opposite the figures, to avoid confusion, and the corners of fields, and other remarkable turns in the fences where offsets are taken to, by lines joining in the manner the fences do, as will be best scea by comparing the book with the plan annexed, fig. 2, pl. 34.

The marks called $a, b, c ; \& c$, are best made in the fields, by making a sinall hole with a spade, and a chip or stall bit of wood, with the particular leater upon it, may be put in, to prevent one mark being taken for another, on any return to it. But in general, the name of a mark is very casily had by refurring in the bonk to the line it was made in. After the sunall alphabet is gone through, the capitals basy be next, the print letters afterwards, and so on, which answer the purpose of so many difierent lette1s; or the marks may be nuiabered.
The letter in the left hand corner at the begiming of every line, is the mark or place measured from; and. that at the right hand corner at the end, is the mark measured to, But when it is not convenient to gos exactly from a mark, the place measured from, is described such a distance from one mark towards another; and where a mark is not measured to, the exact pince is ascertained by saying, turn to the right or left hand, such a distance to such a mark, it being always undertood that those distances are tahen in the cbain line.

The characters used, are r for turn to the right hand, \rightarrow for turn to the left hand, nnd a placed over an ofteet, to show that it is not taken ar angles with the cluin line, but in the line with sume straight fence; bring chiefly used when crossing their dircctions, and is a butter way of obtaining their true places than by offets at right angles.

When a line is measured whose position is determined, either by lutmer work (as in the cave of producing a giveti) luse or measunng from one known place or mark to another) or by itselt (us in the thord side of a triangle) it is called a last line, and a twuble the across the book is drawn at the conclusion of it; but it its peation is not determireal (as in the second side of a triangle) it is called a louse line, and a single line is drawn across the book. When a lone becumes determaned in pusition, and is afterwards contmued, a double line half through the book is drawn.

When a loose line is measured, it becomes absolutely necessury to nerasure some other line that will determine its posit:on. Thus, the first line ah, being the base of a triangle, is always determoed; but the position of the second site 9 , dues not becone determined, thll the third side $j b$ is medsured; then the triangle may be conatructed, and the prestion of both is determined.

At the beginting of a line, to fix a loose line to the mark or place measured from, the sign of turning to the right or left band must be added (as at j in the third line); otherwiee a siranger, when laying down the work may as easily construct the triangle hijb on the wrong side of the line $a h$, as on, the right ane : but this error cannot be fallen into, if the sign above named be carefully observed.

In choosing a bine to tix a loose one, care must be taken that it does not muke a very acure or obtusc angle; as in the triangle $p s r$, by the angle at s being very obtuse, a small deviation from truth, coed the breadth of a peint at p or r, would make the error at a when constructed very Cousiderable; but by constructing the triangle paq, such a deviation is of no consequence.

Where the words leave off are written in the field-book, it is to sidnify that the taking of cflisets is from thence discontinurd; and of course something is wanting between. that and the next offoct.

The field-book above referred 10 , is engraved on plate 35 , in four paits, repicsenting so many pages, each of which is supposed to begin at the bottom, and rad at top. Aud the nuap or plan belonging to it, in fig. 2, pl. 34.

Sarteying of Ilarbours.
The method of surveying harbours, and of forming maps of them, as also of the adjacent coasts, sands, \&c, depends on the same principles, and ts chictly conducted like that of common surveying. The operation is indeed more complicated and laborious; as it is necessary to erect a number of signals, and to mark a variety of objects along the coast, with different bearings from one another, and the sevenal parts of the harbour; and likewise to messare a great number of anghes at different stations, whether on the land or the water. For this purpose, the best instrument is Hadley's quadrant, as all these operati. n-may be perlormed by $t t$, not only with greater ease, but ulso with much more precision, than can be hoped fur by any other means; as it is the ooly instrument in uee, in which nether the exactness of the observations, n I the case with which they may be made, are sensibly atfected by the mution of a vessel: and hence a single observer, in a bral, may generally determine the situation ot any place at pleasure, with a suflicient degree of exactnevs, by tuking the angles subtended by several puirs of ebjects properly chown upon shores at difierent places about hom; but it will be still better to have two observers, or the same oberver at different stations, to take the like angles to the several objects, and also to the stations. By
this means, two angles and one side are given, in every triangle, from wbence the situation of every part of them will he knowis. By such observations, when caretully made with good instruments, the situation of places may be casily determined to 20 or 30 Jeet, or less, upon every 3 of + mikes. Sce Philos. Trans. vol. 55, pa. 70; also Machenze's Maritime surveying.

Survening Goss. See Cross.
Survevima Quadranf. Sue Quadrant.
Sonvertigg Scale, the sane with Reducing Scule.
Subveying Hheel. Sce l'ibambuiatoz.
SURVIVORSIIIP, the doctine of Reversionary payments that depend upan certaill contingencies, or contungent circumstances. Payments which are not to be made ull some future period, are tormed raversions, to distinguish then from pagments that are to be made immediately.

Reversions are either certain or enmtingent. Of the former sort, are all suns or annuities, payabie certainly or absolutely at the expiraion of any terms, of on the extinction of any lises. And of the latter sort, are all such reversions as depend on any coutingency; and particularly the survivorship of may lises begond or atter other lises. An account of the former may be found under the articles Assurance, Annuitics, and lafe-annuities. But the latter form the most intricate and difficult part of the doctrine of reversions and life-annuities; and the books in which this subject is treated most at large, and at the same time with the most precison, are Mr. Simpsun's Select Exercises; Dr. Price's Reversionary l'aynients ; Mr. Morgan's Annuities and Assuratices on Laves and Survivorships; and Mr. Buyly's Annuitic. The whole likewise of the 3 d volume of Dodson's Mathernaticul Repository is ont this sulject; but his insestigations are founded on Demoivre's false hypothesss, viz, of ath equal decrement of life through all its stages, and wioh is explained under Life-amuities: but as this hypothesis does not agree near enough to fact and experience, the rules deduced from it cannot be sufficienily correct. For this reason, Dr. Price, and also Mr. Maseres, cursitor laron of the exchequer (in two volumes lately published, entithed the Principles of the Doctrine of Lafe Amavities), have discarded the valuntions of lives founded upon it; and the former in particular, in order to obviate all oceasion for using them, has substituted in their stead, a great variety of new tables of the probabilities and values of lives, at every age and in every situation; calculated, not upon any bypothesis, but is strict couformity to the best observations. 'These tables, added to wher tiew tables of the same kind, in Mr.Baron Maseres's work just mentioned, form a complete set of tables, by which all questions relating to unnuities on lives and survivorshps, may be answered with as much correctiess as the nature of the sutject admits of.

Rules for calculating correctly, in most cases, the valurs of reversions depending on survivorships, may be found in the several treatises just mentioned. Mr. Morgan, in particular, has gone a good way towardy exhausting this subject, as far as any questions can include in them any survivorships between two or three lives, either for terms, or the whole duration of the lises.

There is, however, one circumstance necessary to be attended to in calculating such values, to which no regard could be paid uill lately. This circumstance is the shorter duration of the lives of males than of females; and the
consequent adrantage in favour of females in all cases of survivorshipl. In the 4th edtion of Dr. Price's 'Ireatise on Reversoliary l'ayments, this tact is not only nscertained, but separate tabies of the duration atid valuce of lives are given for male, and females.

SUSP'ENSIUN, in Mechanics, as in a bulance, are those proints in the axis or beam where the nebghts are applied, of from which they are suspended.

SUTTON', zaadrunt, See Quabraxt.
SWAN, in Astranomy. Sec Cventes.
SWALLOW"s-TA1s., in Fortification, is a singletenaille, which is narrower towards the place than towards the country.-

SWANPAN, or Chinese Abacus, an instrument for performing arithuetical operations, described by Du Halde in his Ifistory of China. See abaces.

SWING. Wheed, in a royal pendulum, is that wheel which drives the pendulun. In a watch, or balance clock, it is culled the cronsn-uhicet.

SY'DEREAL Day, or Year. SueSidrafal.
S) MMA:TilS, the relation of paraty, buth in respect of lengtb, breadsh, and height, of the parts nocessary to compose a beautitul whole. Symmetry ariscs from that proportion which the Greeks call analogy, which is the relatiou of conformity of all the parts of a building, and of the whole, to some certain measure; upon mhich depeuds the nature of sy mmerry.

According to liirusius, symmetry consists in the union and conformity of the several members of a worh to their whole, and of the beauty of each of the separate parts to that of the entite work; regard being had to some certain measure: so the body, for iustance, is framed with symmetry, by the due relation which the arm, ellow, hand, fingers, de c , have to each other, and to their whole.

SYAPPIONY, is a consonance or cencert of aeveral sounds agreeable to the car; whether they be vocal or instrumental, or beth; called also harmony. The symphatiy of tie uncients wellt no firtber than to two or thore voices or instruments set to untson; for they had no such thing as music in patts; as is very well prosed by Picrrault: at least, if ever they knw such a thing, it must have been lost very curly.

It is to Guido Aretine, about the year 1022, that most witers agree in ascriting the iuvention of componition: it was he, they say, who tirst joined in one harmony several distnet melodies; and brought it even to the length of * patts, siz, tass, tenor, counter-tenor, and ir. ble.

The term symphony is now upplied to instoumental music, both that of preces designod only for instruments, as sonatas and concertis, and that in which the instruments are accompanied with the voice, as it operas, Ac. A piece is said to be in grand symphony, when, besids the bass and ireble, it has also two other instrumental parts, viz, tenor and sth of the violin.

SYNCIIRONISM, the being or happening of several things together, at or in the sume time. The hajpening or performing of several things in equal times, as the "1brations of pendulums, dec, is more properly called isochronism; though some authors confound the two.

SYNCOPATION, in Music, is a striking or breaking of the time; by which the distinctness of the several umes or parts of the mesesure is interrupted.
byncopation, of Syncupe, is more particularly uned for the contneting the, last note of one measure or bar
with the first of the following measure; so as to make only one nute of both.

Syncopatios is ulof used when a nole of one part ends on the middule of a note of the other part. 'This is otherwise ralled binding.

SYNODICAL Month, is the period or intersal of time in which the moon passes from one conjunction with the sun to another. This period is also called a Lunstion, situce in this period the moon puts on all her phases, of uppearances, as to increase antl decrease.-Keples tesund the quatity of the mean syuotical month to be $\$ 9$ days, 12 hrs. 44 min .3 rcc. 11 thirds.

SYNIHESIS, denotes a method of composition, as opprosed to analysis. In the syntbesis, or synthetic method, we pursue the truth by reasons drawn from principles belore established, or assumed, and propositions formetly prowed; thus proceeding by ot regular chain till we come to the conclusion; and hence called also the direct method, and cotupesition, in opposition to analysis or resulutioth. Such is the method in Euclid's Elements, and most detmonstiations of the ancient mathematicians, which proceed from definitions and axiuma, to prove theorems $A c$, and from those theorems proved, to demonstrate others. Sie Analysis.

SINTHETICAL. M, thod, the inethod by syntbens, or comperition, or the direct method. See Systuesis.

SlPIION. Se Sirmon.
sliaNGE, in Ilydraulics, a small simple machine, berving first to imbibe or suck in a quatnity of water, or other fluid, and then to enpel the same with violence in n small jet. The syringe is a small single sucking pump, without a valve, the water ascending in it on the same principle. It consists, like the pump, of a small cylinder, with an embolus or sucker, moving up and down in it by tueanv of a bandle, and fitting it very close within. At the lower end is cither a small hole, or a smaller tube fixed to it than the body of the instrument, through which the fluid or the water is drawn up, and squirted out again.

This ascent of the water the ancients, who supposid a plenum, uttributed to nature's abhorrence of a vacuum; but the moderns, more reasonably, as woll as more intelligibly, attribute it to the pressure of the atmosphere on the $\varepsilon \times$ xterior surface of the fluid. For, by drawing up the cmbulus, the cavity of the cylinder would tecome a vacuum, or the air left there extrenely rarefied; so that being no longer a counterbalance to the air incumbent on the sulface of the fluid, this prevails, and foress the water throngh the little tube, or hole, up into the borly of the syring.

SISTEM, in a general sense, denotes an anoemblage or chain of prituciples and conclusions: or the whole of any doctrine, the several parts of which are bound together, und fullow or depend on each other: ns a system of astronomy, a system of planets, a systen of philusophy, a system of motiot, \&.c.

Systes, ia Astonomy, denotes an liypothesis or a suppesition of a costuin order and arrangement of the several part, of the untwre; by which astronomers explain all the phenomena or appearances of the heavenly bodies, their motion, changes, \&c. This is more peculiarly called the System of the world, and sometimes the Solar System.

System and lyputhesis have mnch the some signification; unless perhaps hype thesis be a more particular system, and system a mote general hypothesis. Sonie late authors indeed make another distinction: an hypothesis, say they,
is a mere supposition or fiction, founded rather on imagimation than reason; while a system is buit on the firmest ground, and ransed by the severest rules; it is fuanded on astrononical observations, and physical causes, and confirmed by geometrical demonstrations.

The most celebrated systens of the world, are the I^{\prime} to lemaic, the Copernican or Pythagorcan. and the Tychonic: the economy of each of which is as follows.

Ptolemaic System is so called from the cele brated astronomer Ptolemy. In this systent, the earth is placed at rest, in the centre of the universe, while the heavens are considencd as revolving about it, from rast to west, and carrying along with them all the havenly bodies, the stars and planets, in the space of 24 loours. The principsal assertors of this systent, are Aristotle, Hipparchus, Ptilc. my, and many of the ofd philosophers; and indeed almost all astronomers, for a great number of ages, supported this system. But the late improvements in philosophy and reasoting, have utterly explinded this erroneous system from the place it so long beld in the minds of men.

Coperniran System, is that system of the world which places the sun at rest, in the centre of the world, and the earth and planets revulving about him, in their several orbits. Ste this mure particularly explained under the article Copernican Syitcme.

Solar or Ithnetury Systes, is usually confined to narrower bounds; the stars, by their immense distance, and the little selation they seem to bear to us, being accounted no part of it. It is highly probable that each fised star is itself a sun, and the centre of a particular system, surrounded with a company of planets Ace, which, in dif. ferent periods, and at different distances, perform their courses round their respective sun, which enlughtens, warms, and cherishes them. Heace we have a very mag. nificent idea of the world, and the immensity of it. Hence also arises a kind of system of systems.

The planetary syitem, described under the article Coreksican, is the most ancient in the world. It was first of all, as far as we how, introduced into Greece and Italy by Pythagoras ; from whom it was catled the l'ythagorsan System. It was followed by Philolaus, Plato, Arcinmedes, Ac: but it was lost under the reign of ohe Peripatetic philosophy; till happity retrieved about the ycar 1500 by Cорктиісия.

Tychonic Srstev, was taught by Tycho, a Dane; who was born an duns. 1546 . It supposes that the earth is fixed in the centre of the universe or firmametht of stars, and that all the stars and phanets revolve round the carth in $2+$ hours ; but it differs from the Ytulemaic system, hs it not only ullow a menstrual motion to the moun ruusd the earth, and that of the suteilites about Jupiter and Saturn, in their proper periods, but it makes the sun to be the centre of the orbits of the primary planets Mercury, Venus, Marr, Jupiter, dic, in which they are carried round
the stun in their respective years, as the sun revolves round the arth in a solar jear; and all these plapets, together with the sun, are supposed to revolve round the carth in II hours. This hypothesis was so erboartassed and perplexed, that urry fuw persons embraced it. It was atterwards altered by longomontanus and othen, who allowed the diunsal motion of the carth on its mwn axis, but denied tts annual motion round the sun. This hypothesis, partly true and partly false, is called the stmi-ty chonic system. See the figure and cconomy of thesesystems, in plates 36 and 57 .

Systra, in Music, denotes a compound interval; or an interval comprosed, or conccived to be compescd of ac* veral less intervals. Such is the octave, dec.

SY'STLLE, in Architecture, the manner of placing coluinns, where the space between the two fists cunstists of 2 diancters, or 4 modules.

SYZIGY, a term equally used for the conjunction and opposition of a planet with the sun-On the phenomena and circumstances of the syzygies, a great part of the lunar theory depends. Sce Moos. Fer,

1. It is shown in the physical astronomy, that the fotce which diminishes the gravity of the moon in the syzygics, is double that which increases it in the quadratures; so that, in the syzygics, the gravity of the moon is diminished by a part which is to the whole gravity, as 1 to $89 \cdot 86$; for in the quadraturts, the addition of gravity is to the whole gravity, as 1 to 178.73.
2. In the syaygiet, the disturbing force is directly as the discatice of the moon from the carth, and inversely as the cube of the distance of the earth from the sun. And at the syzygies, the gravity of the moon towards the earth reccding foom its centre, is more diminished than according to the inverse ratio of the square of the distance from that centre.-Hence, in the moon's motion from the syzygies to the quadratures, the gravity of the inoon towards the earth is continually increased, and the moon is continually retarded in her inotion; but in the rason's motion fiom the quadratures to the syzygies, her gravity is continually diminished, and the motion in ber orbit is accelerated.
3. Further, in the syzygies, the noon's urbit, or circuit round the earth, is more convex than in the quadratures; for which reason she is less distant from the carth at the tormer than the latter.-Also, when the moon is in the syzygies, her upses go backwnrd, or are retrograde. - Moreover, when the moon is th the syzygies, the nodes move in antecculentia fastest; then slower and slower, till they become at rest when the moon is in the quadratures. - I aistly, when the nodes are come to the syzygies, the inclination of the plane of the orbit is the least of all.

However, these several irregularities are not equal in cach syzygy, being all somowhat greater in the conjunction than in the opposition.

1 A B

T"ABLF, in Architecture, a smooth, simple member or ornament, of vatious forms, but most comanonly in that of a parallelogram.

TabLE, in Perspectife, is sonctimes used for the per-

L A B

spective plane, or the transparent plane on which the objucts are formed in their respective appearance.

TABLE of Pythagorat, is the same as the MUliIPLICA* Tion tuble; which sec; asalsu Prtinagonas's table.

Tables, in Mathematics, are systems or series of numbers, calculated to be ready at hund for expeliting calcuIations in the various branches of mathematics; ns, tables of powers, or roots, of reciprocals, of products, \&c.
destonomical 'TABles, are computations of the motions, places, and other phenomena of the planets, both ptimary and secondary. The oldest astrononical tables extant are thase of Ptolemy, foupd in his Alinagest. These however are not now of auch use, as they no longer agree with the motions of the heavens.

In 1232, Alphonso XI, king of Castile, unalertouk the correcting of them, chiefly by the assistance of Isaac Itazen, a learined Jow; and spent 400,000 crowns on the busimess. Thus aruse the Alphonsine tables, to which that prince himself prefixed a proface. But the deficiency of these also was soon perceived by Parbach mal Muller, or Regiomontanus; on which the latter, and after him Wialther Warner, applied themselves to eelestial observations, for further improving them; but deash, or various ditiliculties, prevented the eftict of these lautable designs.

Copernicus, in his books of the celestial revolutions, gives other tables, calculated by himself, partly from his own observations, and partly from the Alphonsine tables.

From Copernicus's observations and theorems, E:rasmus Reinhold afterwards compilid the l'cutenic tables, which have been primed several times, and in several places.

Tychu Brahé, ceen in his youlh, became sensible of the deficiency of the Prutenic tables: which determined him to apply himself with st much vigour to celestial ubservations. From these he adjusted the motions of the sun and noon; and Longonomanus, from the same observations, constructed tables of the motions of the planets, which he added to the theories of the same, publisbed in his Astronomia Danica; those being called the Danish tables. And Kippler aloo, from the same observations, published in 1027 his Rudolphine tables, which are much estemed.

These were afterwards, viz, in 1650, changed into another form, by Mara Cunitia, whose astronomical tablec, comprehonding the effect of Kepler's physical hypotheois, are very easy, satisiying all the phetumena without any inention of logarithom, and with little or no trouble of calculation. So that the Rudalpline calculus is here greatly improsed.

Nic. Mereator made a similar attempt in his Astronomical hustitution, putblished in 1676 . As did also J. Bap. Morini, whose abrigement of the lindolpline tables was prefixed to a Latin version of Strect's Astronomia Carofina, published in 1705. Lansberg indeed endeavoured to discredit the Rudolphine tables, and framed perpetual tables, as lie calls them, of the heavenly motions. But his atlempt was never much regarded by the astronomers; and our countryman Horrox warmly attacked him, in his defence of the Keplerian astronomy.

Since the Rudolphitue tables, many others have been frameil, and published: as the Philolaic tables of Bulliuld; the Britannic Tables of Vincent Wing, calcutated on Bulliald's hypothesis; the Britannic tables of John Newton; the lirench ones of the count Pagan; the Caroline tables of Street, all calculated on Ward's hypothesis; and the Novelmajestic tables of Riccioli. Among these, buwever, the Philolaic and Caroline tables are estermed the best; ; insomuch that Mr. Whiston, by the atvice of Mr. Flansteed, thonght fit to subjoin the Caruline tables to his astronomical lectures.

The Ludoviciau tables, published in 1702, by Lahire, were constructed wholly from his own observanions, and wilhout the assistance of any hypethests; whech, before the insention of the micrometer telescope and the pendulum cloch, was held impossible.

Dr. Hatley also long laboured to perfect another set of tubles; which were pinted in 1719, but not pubhshed till 1752.
M. Monnier, in 1846, publishell, in bis Institutions Astronimiques, tables of the metions of the sun and moon, with the satclites; as also of refractions, and the places of the fined stars. lahire also published tables of the plancts, and lacaille tables of the sun: Gacl Morion pulslished tables of the sun and moon, atd Mayer constructed tables of the moon, which were published by the board of longiturle. Tables of the same have also been computed by Charles Mason, from the principles of the Newtoman philosophy, which are found to be very accurate, nnd are ctmployed in computing the Nautical Iiphemeris. Many other sets of astronomical tables have also been published by various persons and academies; and divers sels of them may be found in the modern books of astronomy, nasigation, \&c, of which those are ratcemed among the best thik ure printed in Lalande's Astronomy ; in Vince's Astronomy ; also Delambre's, Burg's, and Burckhardi's tables, \&c. For an account of several, and especially of those published annually under the direction of the cominissioners of longitude, see Almanac, Ephemeris, and Longttede.

For Tables of the Seara, see Catalogut.

Tables of Sines, Tangents, and Sicconts, used in trigonometry, \&c, are usually called Canons. Sce Sine.
Tables of Lozarihhms, Rhumbs, dec, used in triponometry, navigation, \&c, see Logaritim, and Ruvmb.
TAbles, Lorodromic, and of Differmee of Latitude and Departure, are tables used in computing the way and reckonumg of a ship on a voyage, and are published in most books of nnvigation.
'IACQULI' (AndEEW), a Jesuit of Antwerp, who died in 1660 . Ile was n most laborious and voluminous writer in mathemntics. His works were collected, and printed at Antwerp in one large volume in folio, 1669 , Tacquet was one of those learnerl Jesuits who chicfly cultivated the liberal scienees in the 16 th and 17 th centuries. Besides the collection of his works abovermentioned, he had beforo published very neut editions of the tilements of Geometry, and of Arithmetic, both in Sso. In mutters of astronotny, his fear of the church censures seems to have prevented hin from more eficetually defending the Copernican system of the world. A very particular and satisfuctory account of the collection of his works may be seen in the P'bilos. Trans, vol. 3, pa. 868, or in my Abridgment, vol, 1, pa, 514.
TACTION, in Geometry, the same as tangency, or touching. SeeTangent.

TAI.US, or TALUD, in Architecture, the inclination or slope of a work; as of the outside of a wall, when its thickness is dimmished by degrees, as it rises in height, to mahe it the firmer.

Talea, in Fortitication, incans also the slope of a work, whither of earth or masonry.

The Erterior Talus of a work, is its slope on the site ontwards or towards the country; nhich is always made ha small ns passible, to prevent the enemy's escalude, unless the earth be bad, for then it is necessary to allow a

TAN

considerable talus for its parapet, and sometimes to support the earth with a singht wall, called a resetement.

The Interion Talus of a work, is its slope on the inside, towards the place. This is larger than the former, and it has, at the angles of the gorge, and sometime s in the middle of the curtains, ramps, or sloping roady for mouniting upon the terreplain of the rampart.

Superior Tarit's of the Parapet, is a slope on the top of the parapet, that allows of the soldiers detending the covert-way with small-shot, which they could not do if it were level.
TAMBOUR, in Architecture, a term applied to the Coriathian and Composite capitals, as bearing some resemblance to a tambour or dima.
TAMU7, in Chronulong, the 4th month of the Jewish ecclesiastical rear, answering to part of our June nad July. The $1 \tilde{7}^{\text {th }}$ day of this month is obseried by the Jews as a fast, in memory of the destruction of Jerusalem by Nebuchadnezzar, in the 1lth year of Zerlekiah, and the 588th before Christ.

TANGENCIES (Problem of). This general problem in Geonetry furnishes the subject of one of the 12 thatises described by Pappus in the prelace to the 7 th book of his Mathematical Collections. The general problem is this: Ot points, right-lin's, and circic's, uny three being given; to describe a circle that shall pass through the given points, and adso tquch the given lines.

This naturally divides into 10 distinct propositions: which, if the three things be thus denoted, viz, a point by the mark (\cdot), a line by (1), and a circle by (0), may be stated very briefly according to the several data, in the following order: viz, $(\cdot+1)$, (11), (110), (10), (100), ($\cdot 0)$, ($\cdot 00$), (000), ($\cdot \cdots$), (1111).

The original treatise on thits subject, by Apollonius, having been lust, the restoration of it has lately been attempred by several persons; viz, lyy Victa, under the title of Apollonius Gallus; and many of the drficioncies were supplied by Ghetaldus. Atterwards the tactions were restured by various other mathematicians, both geometrically and algobraically, λ treatise on them by G. Camerar was published at (iotha and Anasterd. in 1795; but it contains only an edition of Vreta's treatise, wish notes and additions, and a curious history of the problem. The history is interesting, from the accounts it contains of the Jabours of some foreign mathematicians on this problem, which are little known in this country. He gives the preface and lemmata of the tactions in Greck, with some various readings of several manuscripts of Pappus. Though Vieta's solutions are elegant, yel they are in several respects deficient: there is not a full distinction either of the cases, or of the neccssary determinations: no analysis is given, and no attempt to restore the Apollonian solutions by the use of the lenmata in Pappus, which had been assumed in the work of Apollonitus.

In the remaining papers of Dr. Rob. Simson, it seems, are found solutions of some of the cases of this problem. Also the treatises of Vieta and Ghetaldus have bren translated into English, with the addition of a supplenent, by the Rev. John Lawson, and a forther addinion of Fermat's Treatise on Spherical Tangencies. And Mr. Leslie has given, in bis Geometry; as examples of the genmetricul analysis, solutions to many of the cases of this problem. Also Mr. John Lawson published a neat edition, in Finglish, of the two books on Tangencies, 1771, in 410 .

TANGIENT, in Geometry, is a line that touches a
curve, \&c, that is, which mects it in a point without cutting it, though it be produced both ways; as the tangent ab of the circle mo. The puint B , where the tangent touclies the curve, is called the poiut of contact.

The direction of a curve at the
 point of contact, is the same as that of the tangent. It is denionstrated in Geometry,

1. That a tangent to a circle, as 4 B , is perpendicular to the radius be drawn to the point of contact.
2. The tangent $A B$ is a mean proportional between $A F$ and AE, the whole secant and the extemal part of it; and the same for any other secant drawn lrom the same print A.
3. The two tangents $A B$ and $A D$, drawn from the same point A, are alway, equal to each other. And the retore also, it a number of tangents be drawn to different points of the curve quite around, and an equal lingth na be set off upon each of them from the puints of contact, the locus of all the points a will be a circle having the same cantre c.
4. The angle of contact 1 BE , formed at the point of contact, between the tangent $A B$ and the are he, is less than any rectilineal angle whitever.
5. The tangent of an are is the right line that limits the position of all the secants that can pass through the pout, of contact; though strictly spraking it is not one of the secants, but only the himit of them.
6. As a tight line is the tangent of a circle, when it touclics the circle so clusely, that no right line can be drawn through the point of contact letween it and the arc, or willan the angle of contart that is formed by them; so, in general, when any right line touches an ate of any curve, in such a numner, that no right line can be drawn through the peint of contact, between the right line and the ure, or within the angle of eomact that is formed by them, then is that line the tangent of the curse at the said point; as as in the figures below.

7. In all the conic sections; if c be the centre of the figure, and B an ordinate drawn from the point of contact and perpendicular to the axis; then is CG:CE: CE: CA, or the sminxis CE is a mean proportional between ce and ca.

Tangest, in Trigonometry. A Tangent of an arc, is a right line tuuching one extromity of the are, and limited by a secant or line drawn through the centre and the other ex-
 tromity of the arc.
Su, ag is the tangent of the arc ab, or of the are and: anil att is the tungent of the arc A1, or of the arc atDa.

The sume are abo the tangents of the angles that are subtended or measured by the arcs.

Hence, 1. The tangents in the 1 st and $3 d$ quadrants are

TAN
positive, in the $2 d$ and 4 th negative, or drawn the contrary way. But of 0 or 180° the semicircle, the tangent is 0 or nothing; while those of 90° or a quadrant, and 270° or 3 quadrants, are both infinite ; the former infinitely positive, and the latter infuitely negative. That is,

Between 0 and 9$)^{\circ}$, or between 180° and 270°, the tangents are positive.

Between 90° and 180°, or between 270° and 360°, the tangents ure negative.
2. The tangent of an arc and the tingent of its supplement, are equal, but of contrary affections, the one being positive, and the other negative;
as of a and $180^{\circ}-a$, where a is any arc.
Also $\left.180^{\circ}+a\right\}$ have the same tangent, and are of the
and $\quad a\}$ same affection.
Or $\left.180^{\circ}+4\right\}$ have the same tangent, but of diffeand $\left.180^{\circ}-a\right\}$ rent affections.
3. The tangent of an are is a 4 th proportional to the cosine, the sine, and the radius; that is, $\mathrm{CN}: \mathrm{NB}:: \mathrm{CA}:$ AG. Ilenec, a canon of simes being made or gived, the canon of tangents is casily constructed from them.

Co-Tangent, contracted from complement-tangent, is the tangent of the complement of the are or angle, of of what it wants of a yuadrant or 90°. SOLM is the cotangent of thearc $A B$, being the tangent of its complement al.

The tangent is reciprocally as the cotangent; or the tangent and cotangent are reciprocally proportional with the radius. That is tang. is as $\frac{1}{\text { coten. }}$, or tang. : radius : : radius: cotan. And the rectangle of the tangent and cotangent is equal to the square of the radius ; tbat is, tan. \times cot. $=$ radius 9 .

If a denote any arc, and t its tangent, radius 1 : then is $a=t-\frac{1}{3} t^{3}+\frac{1}{3} t^{5}-\frac{1}{9} t^{7}+\& c$. Whence, since $\tan .45^{\circ}=1$, we have arc $45^{\circ}=1-\frac{1}{3}+\frac{1}{3}$ $-\frac{1}{7}+\frac{1}{9}-8 c c$. And conversely $t=a+\frac{1}{3} a^{3}$ $+\frac{3}{15} a^{5}+\frac{17}{315} a^{7}+\& c$.
Further, $t=\frac{\sin a}{\cos a}=\frac{1}{\cot a}=\sqrt{ }\left(\frac{1}{\cos / d}-1\right)=$

$=\cot a-2 \cot 2 a=\frac{1-\cos 2 a}{\sin 2 a}=\frac{\sin 2 a}{1+\cot \operatorname{ya} a}=$ $\sqrt{\frac{1}{1+\cos 2 a} 2 a}=\frac{\tan (43+1 a)-\tan \left(45-\frac{t a)}{2}\right.}{2}$.

$$
\text { Also, } \begin{aligned}
\tan (a+b) & =\frac{\tan a+\tan b}{1-\tan a \tan b} \\
\tan (a-b) & =\frac{\tan a-\tan b}{1+\tan a \cdot \tan b} \\
\tan a+\tan b & =\frac{\sin (a+b)}{\cos a \cdot \cos b} \\
\cot a+\cot b & =\frac{\sin (a+b)}{\sin a \cdot \sin b} .
\end{aligned}
$$

See the treatises on trigonometry by Emerson, Cagnoli, Mauduit, and several others.
Artificial Tangents, or Logarithmic Tanoents, are the logarithms of the tangents of arcs; so called, in contradistinction from the natural tangents, or the tangents expressed by the natural numbers.
Line of Tancents, is a line usually placed on the secVol. II.
tor, and Gunter's scale; the description and uses of which see under the article Sector.

Sub-Tangent, a line lying bencath the tangent, being the part of the axis intercepted by the tangent and the ordinate to the point of contact: as the line $A G$ in the $2 d$ and $3 d$ Ggures above.

Method of 'Tangents, is a method of determining the quantity of the tangent and subtangent of any algebraic curve; the equation of the curve being given. This method is one of the great results of the doctrine of fluxions. It is of great use in geometry; because thet in deterinilling the tangents of curver, we determine at the same time the quadrature of the curvilinear spaces: on which account it deserves to be here particularly treated on.

To Draw the Tangent, or to find the Subtangent, of a curve.

If $A E$ be any curve, and a any point in it, to which it is required to draw a tangent te. Draw the ordinate DE: then if we can determine the subtangent $T \mathrm{~d}$, by joining the points T and E , the line TE will be the tangent sought.

Let dae be another ordinate in-
 definitely near to DE, meeting the curve, or tangent produced, in e: and let $\mathrm{E} a^{\prime}$ be parallel to the axis Ab. Then is the elementary triangle eac similar to the triangle TDE;

$$
\begin{aligned}
& \text { and therefore - ea: } \mathrm{CE}:: \mathrm{ED}: \mathrm{DT} ; \\
& \text { but } \\
& \text { therefore - - }-\mathrm{fl}: a \mathrm{X}, \mathrm{ED}: \text { flux. } \mathrm{ED}: \text { flux. } A \mathrm{D} \text {; } \\
& \text { that is }-\mathrm{DE}: \mathrm{DT} \text {; }
\end{aligned}
$$

which is therefore the value of the subtangent sought; where x is the absciss AD, and y the ordinate $D E$.

Hence comes this general rule - By the given equation of the curve, find the value either of \dot{x} or \dot{j}, or of $\frac{\dot{x}}{\dot{j}}$, which substitute for it in the expression $\mathrm{DT}=\frac{\mathrm{y} \dot{x}}{\dot{j}}$, and, when reduced to its simplest terms, it will be the value of the subtangent sought. This we may illustrate in the following examples.

Ex. 1. The equation defining a circle is $2 a x-x x=$ y^{2}, where a is the radius; and the fluxion of this is $2 a \dot{x}-2 x \dot{x}=2 y \dot{y}$; hence $\frac{\dot{x}}{y}=\frac{y}{u-x}$; this multiplied by y, gives $\frac{y \dot{x}}{\dot{j}}=\frac{y^{\prime}}{a-z}=\frac{D E^{\prime}}{C D}=$ the subtangent TD , or CD:DE:: DE:TD, which is a property of the circle also known from common geometry.

Kr. 2. The equation defining the common parabola is $a x=y^{2}, a$ being the parameter, and x and y the abscist and ordinate in all cases. The fluxion of this is ax $=$ $2 \dot{y y}$; hence $\frac{\dot{x}}{\dot{j}}=\frac{2 y}{a}$; conseŗuently $\frac{y \dot{x}}{\dot{j}}=\frac{2 y^{\prime}}{y}=\frac{20 z}{a}$ $=2 x=T D$; that is, the subtangent $T D$ is double the absciss AD, or TA is $=A D$, which is a well-known property of the parabola.
$E x$. 3. The equation defining an cllipsis is $c^{2}(2 a x-5)$ $=a^{2} y^{2}$, where a and c are the semiaxes. The Huxion of it is $c^{8}\left(2 a \dot{x}-2 x^{j}\right)=2 a^{2} y \dot{y}$; bence $\frac{y \dot{x}}{y}=\frac{a^{\prime} y^{\prime}}{d^{\prime}(a-x)}=\frac{e^{\prime}\left(2 a r-y^{2}\right)}{f^{\prime}(a-x)}=\frac{2 a-x}{a-x} x=\tau 0$ the subtaugent ; or by addinged which is $=a-x_{\text {, }}$ it beconcs 3 Q
 ca: ст, a well-known property of the ellipse.

Ex. 4. The equation defining the hyperbola is c^{2} $\left(2 a x+x^{2}\right)=a^{2} y^{2}$, which is similar to that for the ellipse, having only $-x^{4}$ for $-x^{2}$; heuce the conclusion is exactly similar also, viz,
$\frac{2 a+x}{a+x} x$ or $\frac{2 a r+y x}{a+x}=T D$, which taken from $C D$ or $a+x$, gives $\mathrm{CT}=\frac{\mathrm{CA}^{\circ}}{C D}$, or $\mathrm{CD}: \mathrm{CA}:: \mathrm{CA}: \mathrm{CT}$.
And so on, for the tangents to other curves.
The Inverse Method of Tangents. This is the reverse of the foregoing, and consists in finding the nuture of the curve that has a given subtangent. The method of solution is to put the given subtangent equal to the general expression $\frac{y x}{y}$, which serves for all hinds of curves ; then the equation reduced, and the fuents taken, will give the fluential equation of the curve sought.
E.r. 1. To find, the curve line whose subtangent is $=$ $\frac{2 y^{2}}{a}$. Here $\frac{2 y^{\prime}}{a}=\frac{y \dot{x}}{\dot{y}}$; bence $2 y \dot{j}=e \dot{x}$, and the fluents of this give $y^{\prime}=a x$, the equation to a parabola, which therefore is the curve sought.

Ex. 2. To find the curve whose subtangent is $=$ $\frac{y y}{2 a-x}$, or a third proportional to $2 a-x$ and y. Here $\frac{y y}{2 a-x}=\frac{y \dot{x}}{\dot{j}}$; bence $y \dot{j}=2 a \dot{x}-z \dot{x}$, the fluents of which give $y^{2}=a x-x^{2}$, the equation to a circle, which therefore is the curve sought.

Or, in a more general sonse, this is the same thing as finding the flaents of such forms as involve scereral variable quantities, See Invense, \&ce. Also the Fluxional Treatises by Maclaurin, Simpsun, Emerson, Dealtry, Bossu, Lacroix, Lagrange, Sc.

TANTALUS's Cup, in Hydraulics, is a cup, as A, with a hole in the bottom, and the longer leg of a syphon aced cemented into the hole; so that the end D of the shorter leg DE may always touch the bottom of the cup within. Then, if water be poured into this cup, it will rise in the shorter leg by its upward pressure, extruding the air before it through the longer leg, and when the cup is filled above the bend of the syphon at E , the pressare of the water in the cup will force it over the bend; from whence it will descend in the lunger leg 5n, and through the bottom at G , till the
 cup be quite empticd. The legs of this jyphon are almost close together, and it is sometimes concealed by a small bollow statue, or figure of a man placed over it; the bend E being within the neck of the Gigure as high as the chin. So that poor thirsty Tantalus stands up to the chin in water, according to the fable, imagining it will rise a little higher, as more water is poured in, and be may drink ; but instead of that, when the water comes up to his chin, it immediately begins to descend, and therefore, as he cannot stonp to follow it, he is left in the same distressful state of thirst as before. Ferguson's Lect. pa.72, 4to.

TARRANTIUS (lucius), surnamed Firmanus, because he was a native of Firmum, a town in Italy, flourished at the same time with Cicero, and was one of his friends. He was a mathematical philosopher, and therefore was
thought to have great skill in judicial astrology, He was particulariy famous by two horoscupes which he drew, the one the boroscope of Romulus, and the other of Rome. Plutarch says, "Varro, who was the moet lenrned of the Romans in bistory, had a purticular treend nawed Tarrantius, who, out of curiosity, spplied bimself to draw horoscopes, ty means of astronvmical tables, and was estemed the most eminent in his time." llistorians contruvert some particular circumstances of his calculations; but all agree in conferring on bim the honorary title Prince of astroiogers.

T"antaglefa, or Tartalea (Nicholas), a noted mathematician, was born at Brescia in Italy, in $1+7 \mathrm{y}$, of a very poor family; and was in that cown when the Frencli plundered it on their return from Naphes. On this occasion he received many wounds, scveral of them on the head, which affected his specch, causing bim to stnttor. It is not know in hou he harnell to read; but, to acquire urito ing, he was obliged to steval from a teacher a set of the letters of the alphabet. Hence, it is casy to imagine what difficultics he must have surmounted in acquiring his hnowledge. Yet we find he was a considerable master or preceptor in mathematics in the year 1521, when the first of his collection of questions and answerswas written, which lie afterwards published in the year 1546 , uniler the tille of Quesiti et Inventioni diverse, at Venice, where he then resided as a public lecturer on mathernatics, having removed to this place about the ycar 1534. This work consists of 9 chapters, containing solutions to a number of questions on all the different branches of mathematics and philosophy then in vogue. The last or 9 th of these contains the questions in algebra, ansong which are those celebrated lettersand communicatwins between Tartalea and Curdan, by which our author put the latter in possession of the rules for cubic equations, which he first discoverd in the year 1530.

But the first work of Tartalea's that was published, was his Nova Scientin inventa, in 410 , at Venice in 1537. This is a treatise on the theory and practice of gunnery, and the first of the hind, he being the first writer on the flight and path of balis and shells. This work was translated into English, by Lucar, and printed at London in 15 ss , in folio, with many notes and additions by the translator. Tartalea published at Venice, in folio, 1543, the whole books of Euclid, accompanied with many curious notes and commentaries. But the last and chief work of Tartalew, was his Trattato di Numeri et Misure, in folio, 1556 and 1560 . This is a universal treatise oll arithmetic, algebra, geometry, mensuration, \&.c. It contains also many other curious particulars of the disputes between our author and Cardan, which ended only with the death of Tartalea, in 1557, before the last part of this work was published in the gear 1358. One of the ingenious insentions of Tartalea was the method of finding the area of a triangle from having the three sides given.

For many other circuinstances concerning Tartalea and bis writings, nee the article Alofaga, vol. i.

TAURUS, the Bult, in Astronomy, one of the 12 signs in the zodiac, and the second in order. The Grecks fabled that this was the bull which curried Europa safely across the seas to Crete; and that Jupiter, in reward for so signal a service, placed the creature, whose form he had assumed on that occasion, among the stars, and that this is the constellation formed of it. But it is probable that the Egyptians, or Babylonians, or whoever invented the
constellations of the zodiac, placed this figure in that part of it which the sun entered about the time of the bringing forth of catves; like as they placed the ram in the first part of spring, as the lambs uppear before them, and the two kids (for that was the arymal tigure of the sign Gemini), afterwards, to denote the time of the goats bringing forth their young.
In the constellation Taurus there are some remarhable stars that have names; as Aldebaran in the south or rught eye of the bull, the cluster called the Pleiades in the neek, and the cluster called Hyades in the face. The stars in the constellation Taurus, in Ptolemy's catalogue are tt, in Tycho's catulogue 43, in Hevelius's catalogue 51, and in the Britannic catalogue 141.
'TAYLOR (1)r, linook), a very able mathematician and secretary of the Rnyal Society, was bornat Edinonton, in Middlesex, 1685. In 1701 heentered St. John's Coilege, Cambrialge; and in 1708 wrote bis tract on the centre of oscillation. In 1712 lec was elected into the Royal Society, of which he was chosen secretary two years after. Dr. 'Taylor had many escellent papers, on philosophy and mathematics, inserted in the Pholos. Trans, from vol., 27 to vol. 32, inclusively ; besides which, he published some other exedllent works, viz, Methohlus Incrementorum, in 4to, 1715, containing many excellent tracts, particularly a curious nad general theoren, in the manaer of expressing a variable quantity by all the orders of its differemiats or fiosions; also the problem of the vilurations of a tense cord, of which he ghe the first solution. The same yeur alsu came out bis P'rinciples of Linear Perspective, first establisting the wue practice of that art, on principles which have been cuer since followed by all other authors. 1)r. Tay lor was n profound and elegant mathematician of the old school of Newton, Jones, Cotes, dec, and one of the chief writers in the disputes with the Bernoullis and other eminent writers on the conturcht. Dr. Brook died at an early age, 46 , in the year 1731 .
T'A Y cor's Theoreno, in the higher mathematics, is a very elegant and fertile formula, given by Dr. Brook Taylor, in cor. 2, pr. 7, pa. 2S, of his Metbod of Increments. The purport of it is as follows:-If x and z be any two variable quantities, having any given relation; then, while x by flowing uniformly, is increased by \dot{x}, r will be increased by $\dot{x}+\frac{1}{1 \cdot 1} \tilde{z}+\frac{1}{1 \cdot 2 \cdot A}+\& \mathrm{c} ;$ in which the values of $\dot{x}, \ddot{x}, \& c$, are to be determined from the given equation.

The denonstration of this theorem has been given by sevetal ennineut writers; as Frisi ; Lacroix, pa. 25, Calcul. Differential. ; Fraucceur, Mathematiques Pures, tom.2, pa. 215. \&cc ; and by Dr. Brinkley, vol. 7, Transuctions of the Irish Acad. with applications of the use of the theorem, in finding fluxions per saltem, and in approxinating to the ronts of equations, $\& c$.

TERET, or THEVET, the wh munth of the civil year of the llebrews, and the 10th of their ecclebiastical year. It answered to part of our Iecember and January, and bad only 29 days.

THETH, of various kinds of machines, as of mall wheel, \&s. Theseare often called cugs by the workmen; and by working in the panons, rounds, or trindiles, the whecls are made to turn one another. Mr. Emarson (iu lins Mechanics, prop. 25), trats of the theory of teeth, and shows that they ought to have the figure of epicyeloids, for properly working in one another. Camus (in his Ciours de Mathematique, Ium. 2, pa. 349, \&c, cdit. 1767) treats
more fully on the same subject; and demonxtrates that the teeth of the two wherels should have the Gigurce of tpicscloids, but that the generating circles of thene eprejelonds should have their diameters only the hali of what Mr. Emerson makes them.

Mr. Eincreon observes, that the teeth ought ant to act upon one another before they arrive at the line whict joins their centres. And though the inner or under sides of the teeth may be of any form ; get it is better to make them both sides alike, which will serve to make the wheels turn backwards. Also a part nay be cut away oth the back of every tooth, to make way for those of the other wheel. And the more toeth that work together, the better; at least one tuoth should always begin before the other has done working. The teeth ought to be disposed in such manner az not to disturb or binder one another, belure they begin to woik; and there should be a convemient length, depth, and thickness given to them, as well for strength, as that they may more casily disengage themselves.

TELEGRAPH, a machine brought into use by the French nution, in the year 1793 , contrived to communicate words or signals from one person to another at a great distance, in a very small space of ume.

The telegraph, though it bas been generally known and used by the mocerns only for afow years, is by no means an entirely modera invention; some kind of signals for distant communication having probably existed in all ages, and in all nations. There is reasom to believe that anoong the Greeks something of this hond was in use; as the burning of Troy was certainly known in Greere wry soon after it happened, and betore any person had returned from thence-- T he Chinese, when they send couriers on the great canal, or whon any great man travels there, make signals by ture from one day's journcy to another, to have every thing prepared. And most of the barbarous nations used formerly, and often do still, to give the alarm of war, or the approach of an cuemy, by tires lighted on the hills or rising grounds.

The object proposed is, to obtain an intelligible figurative language, which may be distinguished at a distance, and by which the obvious delay in the dispatch of onders or information by messenger may be avoided. On first reflection we tind the practical modes of 'such distant communication must be confined to sound and vision. Euch of which is in a great degree subject to the state of the atmosphere; as, indepcudent of the wind's direction, it is known that the air is sumetimes so far deprived of its elasticity, or whatever other quality the conseyance of sound depends ont, that the heaviest ordnance is scarce beard farther than the shot flies; it is also well hnown, that in thick haay weather the largest objects become totally obscured at a short distance. No instrument thentere designed for the purpose can be perfect. We can only endeavour to diminish these defects as much as may lie.

Polybius names the different instruments used by the ancietts, for communicating information, rupata, pyraie, because the signals were always made by means of fire or lights. At first they communicated inlormation of events, in an imperfect manner, nerely by toiches. A new methoal was invented by Cleoxenus, or as others say by Democlitus, which was much improved by Polybius, as he himself informs us : and which he describes as tollows: Take the letucrs of the (Greek) alphabet, and divide then into 5 parts, each of which will consist of 5 letters, except

3 Q 2
the last division, which will have only 4. Let these be Geed on a board in five columus. The man who is to give the signals is then tu torgin by holding up 2 torches, which be is to keep aloft till the other persun has also shown two; which in ouly to uscertan that luth sudes are ready; these two torchors being then withdrawn. Bohh parties are provided with bourds, on which the ketters are disposert as before described. The person then, who gives the stgnal, is to hold up torches on the leff, to print wut to the other party from which column he shall the the It thers, as they are prointed wut to hims. If it is th lie frem the tirst colluma, be thode up one torch; it trom the secoud, 2; and so on for the olisers. He ts then to hold up torelies on the right, to denote the particular letter of the culown that is to be Iaken, accorsing to their place in the column. The man who geses the signals has an instrument consisting of two tuber, so placed as that, by looking thrnugh one of them, the can see ouly the right sith, und thusugh the other only the lett, of him who is (1) answer. The buard in act up near this instrument; and the station on the right and left surrotitaded wish a wall, 10 feet brond, and about the lienght of x man, that the torches raised above it may be clearly seen, and to conceal them when taken dowu. Thus, then, it is casy to conceive how the letters of a short sentence, one after another, are communicated from station to station, as far as required.-And this is the pyisia or telegraph recomsmemied by Polybius.

It seems the Romans lad a method in their walled cities, either by a hollow formed in the masonry, or by tubes affixed to i, so to confine and augment souml, as to convey information to any part they wished; and in lofty houses it is now somstimes the custom to have a pipe, by way of speaking trumpet, to give arders from the upper apartments to the lower: by this mode of contining sound its volume may be carried to a very great distance; but beyond a certain extent the sound, losing urticulation, would unly convey alarm, not give directions.

Every city among the ancients had its watch-towers; and the castra stativa of the Romans, had always some spot, elevated either by nature or art, from whence sigaals were given to the troops cantoned or foraging in the neighbourhood. But I believe they had not arrived to greater refinement than that on secing a certain signal they were inmediately to repair to sheir appointed stations.

A beacon or bonfire made of the first inflammable materials that offered, as the most obvious, is perhaps the most ancient mode of general alarm; and by bem; previously concerted, the number or point where the fires appeared might have its particular intelligence uffiard. The same observations may be referred to the throwing upl of rockets, whuse number or point frum whence thrown may have its affixed signification.

Flags or ensigns with their various devicers are of the earliest invention, especially at sea; where, from the first inlea, which most probably was that of a vane to show the slirection of the wind, they have been long adopted as the distinguishing mark of nations, and are now so neatly combined by the ingenuity of a great naval commander, that by his system every requisite order and questron is reecived and answered by the most distant ships of a fleet.

To the adopting this or a similar mode in land service, the following are objections: That in the latter case, the variety of matter necessary to be conveyed, is so infinitely greater, that the combinations would become too compli-
cated. And if the person for whom the information is intended slowuld be in the direction of the wind, the flag would then ptesent a straight line only, and at a littledistance be scarce swible. 'The Komans were so well aware of this inconvenicace of fligs, that many of their standards wore solid, and the nane manipulus denotes the ruilest of their moblec, which was a truss of hay fixed on a pole.

But it dor's not secm that the moderns had thought of such a thing av a telegraph till the year 1663 , whon the marquis of Wiorester, in his Century of Inventions, affirmed that he had dincovered "amenhor by which; at a window, as far us eye can discover black from white, a man may hold discoune with his corropponieut, without mise made or notice taken; being according to occasion given, or mealis atfirdeel, ex re nuth, and mon need of provisten befforehand; though much better if foreseen, and course taken by mutual consent of parties." This could be done only by mans of "telegraph, which, in the neat sentence, is declared to have been remelered so perfect, that by means of it the correspondence coulal be carried on "by night as well as by day, though as dark as pitch is black."

Dr. Hooke, whose genius as a mechanical inventor wns perhaps never surpassed, delivered a "Discourse to the Royal Soctety, May 21st, 1684, showing a way how to communicate one's mind at great distances." Int this discourse he asserts the possibility of conveying intelligence from one place to another, at the distance of $30,40,100$, $120, \& \mathrm{c}$, miles, " in as short a time as a man can write what he would have sent." He takes to bis aid the then recent invention if the telescope, and explnins the method by which characters exposed at one station, may be rendered visible at the others. He difucts, " first, for the stations ; if they be far distant, it will be necressary thet they should be bigh, and lie exposed to the sky, that there be no higher thill or part of the earth beyond them, that may hinder the distinctness of the chavacters, that are to eppear dark, the sky bryond them appearing white: by which means also the thick and vaporous nir tear the ground will be passed over and avoited." "Next, the beight of the stations is advantagcous, upon the account of the refractions or inflections of the air." "Next, in chorsing of these stations, care must be taken, as near as may be, that there be no hill that interposes between them, that is almost high enough to touch the visual ray; because in such cases, the refraction of the air of that hrl will be very apt to disturl the clear appearance of the object." "The neat thing to be considered is, what telescopes will be necessary for such stations." "One of these telescoper must be fixed at each extreme station, and two of them in each intermediate; so that a man for each glass sitting and looking through them, may plainly discover what is done in the next adjoining station, and with his pen write down on paper the characters there exposed in their due order; so that there ought to be two persuny at each extreme station, and three at cach intermediate; so that, at the same time, intelligence may be conveyed forwards and backwards. Next, there must be certain times agreed on, when the correspondents are to expect; or else there must be set at the top of the pole, in the morning, the hour appointed by cither of the correspondents, for acting that day; if the hour be appointed, pendulum clocks may adjust the moment of expectation and observing." "Next, there must be a convenient apparatus of characters, whereby to commu-
nicate any thing with great ease, distinctness, and secrecy. And there must be etther day characters, or tight characters." The day claracters "may all be made of three sht deals :" the night characters " may be made with links, or other lights, disposed in a certain order." The Doctor invented 24 simple characters, each forined of right lines, for the letters of the alphabet; and several single characters, made up of semicircles, for whole sentences. He recommended that three very long masts or poles should be placed vertically, and juined at top by one strong horizontal beam; that a large screen should be placed at one of the upper corners of this frame, behind which all the deal-board characters should hang, and by the help of proper chords should quichly be drawn forisards to be exposed, and then. drawn back aguin behind the screen. "By th'se muns," mils the Doctor, "all thungs may be made so consenient, that the same character may be seen at Paris within a minute after it bas beell exposed at Lostolon, and the like ill proportion for greater distances; and that the characters may be exposed su quick utter one another, that a composer shall not much exceed the exposer in swiftness." Among the cases of this contrivance, the inventor mentions these: "The first is for cities or towns besieged; and the secund for ships upon the sca; in both which cases it may be practised with great certainty, security, and expedition."

The whole of Dr. Ilouke's paper was published in Derham's collection of his Experiments and Observations; from which it appears that he had brought the telegraph to a stave of far greater maturity and perfection than M. Amonton's, who attempted the same thing nbout the year 1702; and indeed to a state but litile inferior to several which bave been proposed during the last 90 years.

It was not however till the French revolution that the telegraph was applied to useful purposes. Whether M. Chappe, who is said to have invented the telegraph, first used by the French about the end of 1793, kuew any thing of Hooke's or Amonton's insention or not, it is inpossible to say; but his telegruph was constructed on principles nearly similar, the description of which here follows:
The following account of this curious instrument is copied from Barrere's report in the sitting of the French Convention of August 15, 1794.- The new-invented telegraphic language of siguals is an artful coutrivance to transmit thoughts, in a peculiar way, from one distance to nother, by means of machines, which are placed at diffirent distances, of from 12 to 15 miles from one another, ou that the expression reaches a very distant place in the space of a few minutes. Last year an experiment of this imention was tried in the presence of several Commissioners of the Consention. From the favourable report which the latter made of the efficacy of the contrivance, the Committer of Public Welfare tried every effort to establish, by this means, a correspondence between Paris and the trontier places, beginning with Lisle. Almost a whole twelvenonth bas been spent in collecting the necessary instruments for the machines, and to teach the people employed how to use them. At present, the telegraphic language of signals is prepared in such a manner, that a correspondence may be conducted with Lisle upon every subject, and that every thing, nay even proper names, may be expressed ; an answer may be receired, and the correspondence thus be renewed several times a day. The machines are the invention of Citizen Chappe,
and were constructed under his own eye; he also directs their establishment at Paris. They have the advanage of resisting the changes in the atmosphere, and the inclemencies of the seasons. The only thing which can interrupt their effect is, if the weather is so very bad and turbad that the objects and sigrals cannot be distinguished. By this invention, remoteness and distance alacost disappear; and all the communications of correspondence are effected with the rapidity of the twinkling of un eye. The operations of government can be very much facilitated by this contrivance, and the unity of the republic can be the more consolidated by the speedy commumiation with all its parts. The greatest advantage which can be derived from thiv correspondence is, that, if one chooses, its object shall only be hnown to cermin wdividuals, or to one individual alone, ur to the extremities of any distance; so that the Cominitice of Public Wellare may now correspond with the represcutative of the people at Lasle whitout any other persons getting nequainted with the obsject of the correspondence. Hence it follows that, were Lisle even besieged, we should huow every thing at Paris that might happen in that place, and could send thither the decrets of the Consention without the enemy's being able to discover or to prevent it."- The figure of the French machute, as given in some English priats, is represented in fig. 3, pl. 3t.

Such is the account given of the French invention. Various improved contrivances have been since made in England, and a pamphlet has lately been published, giviug an account of some of thern, Ly the Kev. J. Gamble, undes the title of Observations and Telegraphic Experimens.

As to the French machine, it is evident that to every angular change of the greater beam or of the lesser end arms, a ditierent letter or figure may be annexed. But where the whole difference comsists in the variation of the angle of the greater or lesser pieces, much error may be expected, tiom the inaccuracy entber of the operator or the observer: besides other inconvenieuces arising from the great magnitude of the machinery.

Another idea is perfectly numerical; which is to raise and depress a flag or curiain a certain number of times for each letter, nccording to a proviously concetted system : as, suppose one clevation to man A, two to mean B, and 30 on through the ulphabet. But in this case, the least inaccuracy in giving or noting the number changes the letter; and besides, the last letters of the alphabet would be a tedions operation.

Another nucthod that has been proposed, is an ingenious combination of the magnetical experiment of Comus, and the telescopic micrometer. But as this is only an imperfect idea of Mr. Garnet's very ingentous machine, described in the latter part of this article, no farther notice need be taken of it here.

Mr. Gamble proposes one on anew idea of his own. The principle of 1 is simply that of a Venetian blind, or rather what are culled the lever buads of a brewhouse, which, when horizontal, present so small a surface to the distant observer, as to be lost ta his sitw, Lut are capable of being in an instant converted into a screen of a magnitude adapted to the required distance of vision.- Let al and CD (fig. 4, pl. 34), two upright posts fixed in the ground, and joined by the braces an and er, be considered as the frame work for 9 lever boards working upon centres in EB and DF, and opening in three divissons by iron rods connected with each three of tle lever boarde.

Let abed and efgh be two lenser frames fixed to the great one, having also three lever boards in each, and moing by iron rods, in the same manner as the othets. If alt thise rods be brought so near the ground as to be in the management of the operator, be will then have five, of what may be called, keys to play on. Now as cach of the hendies akon commands thice lever boards, by raising any one of them, and tising it in its place by w catch or Low, it will give a different appearance to the machine; and by the proper variation of these five movements, there will be move than 25 of what may be called mutations, in each of which the machine exhibits a different uppearance, and to which any tetter or figune may be anneacd at plasure.

Should it be required to give intelligence in more than one direction, the whole nachine may be casily made to turn to difterent points on a strong centre, after the maniser of a single -post windmilt.- To use this machne ly night, amother frame must be connected with the back part of the telegraph, for raising five lamps, of theterent colours, behind the opewings of the lever boards; these lamps by night answer for the openings by day. M. Gunble gives abso particular directions lor phacing and tring the machine, and for writing down the several figures or movements.

Mr. John Garnet's mmst simple and ingenious contrivance, is as follows. This is merely a bur or plank turming upon a centre, like thesaik of a windmill, and belug moved into anty position, the distant obecrier turns the tube of a telescope into the same postion, by binging a fiact wire within it to conncede with or parntlet to che bar, whela is a thing extremely easy to do. The centie of motion of the bur has a small corcle abuiut it, with ketters and figures around the circumference, and an index moving ruand with the bar, pionting to any ktter or nark that the operntor wishes to set the bar to, or to communicate to the wherver. The eye end of the tehscope without has a like index and circle, whth the corresponding lettess or other marks. The consequence is obvious: the tetescope being turned ntuont till its wire cover or become parallel to the bar, the index of the former necessarily prithts out the same letter or mark in its circle, as thint of the latter; and the communication of sentionent is immediate and perfect. The use of this machite is so easy, that I have seen it put into the hands of two common labouring men, who hat never seen it before, and they have immediately held a quiek and distunt conversation tongether.

The more particular descripion and fisure of this machine, is as follows, ande (ig. 5, pl. 34), is the telegraph, on whose centre of gravity c , about which it revolves, is a fixed pin, which goes through a hole or souchet in the firm uprigtt post 0 , and on the opposite side of which is fixed an index ci. Concentric to e, on the sane post, is fixed a wonden or braws circle, of 6 or 8 inch-s diamiter, divided into 48 equal parts, 24 of which reprosent the letters of the alphabet, and between the letters, are numbers. So that the index, by menns of the arm AB, may he moved to any letter ur number. The length of the arm should be $2 \frac{1}{2}$ of 3 feet lier every mile of dithance. Two revolving lamps of different colours susprndid occastonally at A and B, the ents of the arm, would serve equally at nigbt.

Lit ss (fig. 6, pl. 34) represent the trausverse section of the outward tutse of a telescope to its axis, and $I r$ the like scetion of the sliding or adjusting tube, on which is
fixed an index 4 . "On the part of the out ward tube next to the observer, there is fiaed a circle of letters and numbers, similarly divided and situated to the circle in tigure 5 ; then ste in tex 11, by maans of the sliding or adjusting tube, may be turned to any letter or nuntber.-Now there being a hatr, or line silver ware fis, fixed in the focus of the cye-glass, in the same direction as the index 11 ; so that when the arm an (fig. 5) of the telegraph is siewed at a distatuce through the tclescope, the hair may be turned, by means of the sliding tube, to the same direction of the arin AB; then the index is (fig. 6) will point to the same better or number on its own circle, as the index I (fig. 5) priuts to on the telegraphic circle-IIf, instead of using the letters and numbers to form words at length, they be employed as sygnaly, three notions of the arm will give above a hundred thousand different signals.

T'wo ingenious telegraphs have also been invented by Captain Pasley, of the Royal Enginecrs; descriptions of which are given in the Philosophical Magazine, Nos, 115 and 116 .

It seems there are now in use it England, four grand lines of telegraphs, communicating with London: viz, io Portsmouth, to Plymouth, to Deal, and in Yarmouth, "There are 12 stations between London and Portsmouth, and 31 between London aud Plymouth, of which 8 are part of the Portsmouth line, till they separate in the New Forest. The ether chains extend from London to Yarintuth, farmed by 19 stations, and from London to Deal, formed by 10 stations, inuking in the whole 64 sparate tetegraphs. Their distances uverage about 8 mikes, yet some of them 12 or 14 miks; the distances being often incromed by the wunt of comuarding heights: in the Tarmonth line particularly they make a considerable detour northward.

After about 20 years' exprience, they calculate onabout 200 days in a year, on which signals cun be transmitted throughout the day; about 60 others on which they pass only part of the day, or at particular stations; and about 100 days on which fow of the stations can see the uthers. The powers of the stations in this respect are exceedingly various. Dcat flats are found to be universally untavourable. On the contrary, stations between bill and bill, tooking ucross a valley, or scries of valleys, are mosily clear; and water surfaces are found to produce fewer obscure days than land in any situation. The stillness of the morning and evening are frund to be the most favourable "times for observations. The least favourable period of the day is an honr or two before and after noon, particularly on dead livels, where the play of the sun's rays on the rising exhalations renders distant vision very obscure.

The transmission of a message from London to Portsmouth nsually occupies about 15 minutes; but, by an expuriment tried for the purpose, a single signal bas been tramitinted to Plymouth and back again in 3 mitutes, which by the telegraph route was at kast 500 mikes. In this instafice however notice had been given to make rearly, and esery captain was at his post to reccive and return the signals. The speed was at the rate of 170 miles in a minute, or 3 miles per second, or 3 seconds at each station; a fucilty truly wonderful! The number of signals produced by the English telegraph is 63-by which they represent the tetl digits, and the letters of the alphae bet, with many generic words, and all the numbers expressed by the combination of the digits 63 ways. The
signals are sufficiently various to express any 3 or 4 words in twice ats many changes of the shunters.
'The telescopes ured are Diflond's achromatics; though a simple Gatilean might serve equally well, or belter. The fiedd of this teliscope is quite large ethough; and, having but two lencs. one of which is a thin concave, it gives the object with more brughiness. It may seem strange ton, that, to ease the oprerator, it was never contrived 10 exhibit the fixed spectrum on the principle of a poriable camera, so that, without wearying the eye, the motion of the distunt telcgraph muglit bave been exhibited on a plain surlace, and seen with both eyes like as on the leaf of a bosh." Mo. Mag. vol.39, pa. 202.

TELL:SCUPF:, an optical instrument which serves for discowring and viewing distant objects, either directly by glases, or by reflection, by neeans of specula, or inirrors. Accordangly,

Telescopes are either refracting or reflecting; the former consisting of different 1 nete, through which the objects are seen by ray, refracted through the on to the eye; and the latter of specula, from which the rays are reflected and pasied to the eye. The lens or glass curnell towards the object, is called the object-ghass; and that next the eye, the cye-glass; and when the telescope consits of more than iwo lenses, all bul that next the object are called rye-glasses. The latier consisting of different metallic speculums; finely polshed and figured, so as to magnify the objects by reflection.

The invention of the tel-scope is one of the noblest and most useful these ages have to bosasi of: by means of it, the wonders of the heavens are discovered 10 us , and astromony is brought to a degree of pulfection which former ages could have no iden of. The discovery indeed was owing rather to chance than design; so that it is the good fortune of the discoverer, rather than his skill or ability, we are indebted t1: : on this account it concerns uv the less to know, who it was that first hit upon this adairable invention. Be that as it may, it is certain it inust have been casual, since the theory it depends upon was not then hnuwn.
John Baptista Porta, a Neapolitan, according to Wolfus, first made a Iclescope, which he infers from this passage in the Magia Natoralis of thut author, proted in 1560: "If you do hut know hew to join the iwo (viz, the concave and convex ghasses) rightly together, you will see boik remote and near objects, much larger than they otherwse appear, and wiohat very distinct. In this we have been of good help ta many of our friends, who cither saw remote things dimly, or near onea confusedly; and hase made them see cregy thing perfectly." But It is cerlain, that Porta did not lundetsand his own invention, and therefore neither troubledl himself to bring it to greater perfection, nor ever appled it to ectestial oborrvation. Besides, lhe rocount given by Porta of his concave and comes lenses, is so dark and indietinct, that K.pler, when examined it by desire of the emperor Rudolph, declared to that prince, that it was perfectly unintelligible.

Thirty years afterwards, or in 1590, a telescope 16 inchev long was made, and presented to prince Maurice of Nassau, by a spectacle maker of Middleburg: but authors are divided about his nance. Sirturus, in a treative on the telescope, printed in 1618, will have it to be John Lappersheim: and Peter Borelli, in an velume expressly on the inventor of the telescope, published in 1655,
states that it was Zacharias Jansen, or, as Wolfus writes it, Hansell. Now the invention of Lippersbeim is fixed by some in the year 1609, and by others in 1605: Fontana, in his Nuve Observationes Calestium et Terrestilum Reruas, printed at Naples in 1646, claims the inveation in the year 1608. But Borelli's account of the discovery of telescopes is so circumstantisl, and so well muthenticated, as to render it very probable that Jausen was the original inventor.

In 1620, James Metius of Alcmaer, brother of Adrian Metius who was professor of mathematics at Franeker, eame with Drebel to Middleburg, and there bought telescoper of Jansen's children, who bad made them public; and yet this Atlr. Metius has given his brother the honour of the invenion, in which be is nistakealy followed by Descartes.

But none of thicse artificers made telescopes of above a frot and a half: Sımon Marius in Germany, and Galiteo in Italy, it is said, first made long oner fit tor celcstial observations ; though, ftom the recently discovered nsironom mical papers of the celebrated Harriot, author of the A1gebra, it appears that he inust have employed telecopes in viéwing the solar maculs, which he did quite as early as they were observed by Galileo. Whether Hasriot made his owis teleacopes, or whether he bad them from Holland, does not appear; it seems however that Ginilea's were made by hunself; for Le Howi relates, that Gahlen, being then at Velice, was told of a kind of optic glass made iti Holland, which bronght objects nearer: upon which, setting bimself to think how it should be, he ground two pieces of glass into form as well as he could, and titted them to the two ends of un organ-pipe; afid with these lee showed at once all the wonders of the invention to the Venctimus, on the top of the tower of St. Mark. The same author adds, tbat from this time Galileo deverted homself wholly to the improving and profecting the telescope; and that he hence almost deserved ull the hunour usually done hira, of being reputed the invintor of the instrument, and of its being from him called Galiteo's tube. Galateo homselt, in his Nuncius Sidereus, published in 1610, achnowledges that he lirst heard of the instrumont from a German; and that, being merely informed of its etficis, first by common rupori, and a few days after by letter from a Firench grinteman, James Badovere, at P'uris, he himself discuvered the coustruction by considering the nature of refraction. He adds, in his Sagiatore, that be was at Venics when he heard of the eflects of prince Maurice's instrument, but nothing of its construction; that the first sight after his return to Padua, he solved the problem, und made his instrument the next day, and soon after presented it to the Doge of Vinice, whe, in honour of his grand invention, gave him the ducal letters, which settled him for life in liss lectureship, at Padin, and doobled his salary, which then became treble of what any of his predecrsums had enjoyed before. And thus Galileo may be considered as an inveltor of the telescope, though not the first inventor.

I: Matillon indeed relates, in his travels throush Italy, that in a munastery of his ow n order, he saw a manuscript eopy of the worhs of Commetor, u rilten by one Couradius, who lived in the 15 th century: in the 3 d page of which was seell a poriratt of Ptoleny, virwing the slurs through a lube of a junts or draws: but Malallen dots not say that the tube had g^{1} nsues in it. Indecd it is more than probable, that such tubes were theo used for no other
purpose but to defend and direct the sight, or to render it more distinet, by singling out the particular object looked at, and shutting out all the foreign rays reflected from others, whuse proximity might have rendered the image less precise. And this conjecture is verified by experience; for we have ofien obecred that without a tube, by only lwoking through the hand, or even the fingets, or a pin-hole in a paper, the objects appear more clear and distinct than otherwise. Be shis as it may, it is certain that the optical principles, on which telescopes are founded, are contained in Euchd, and-were well hnown tu the ancient gometricians; and it has been for waut of attention to them, that the world was solong without that admarable invention; as doubtless there are many others lying hid in the saue pranciples, only wanang fir reflection or necident to bring then furth.
'To the foregoing abstract of the histary of the invention of the telescope, it may be proper to add some particulars relating to the clains of our own celebrated countryman, friar Bacon, who died in 1294. Mr. W. Molyneux, in his Doptrica Nova, pa. 256, declares his ophion, that Bacon did perfectly well understand all kinds of optic glasses, and kuew likewise the method of combining them, so as to compose some such instrument as ouytllescope: and his son, Samuel Molyneux, asserts more positively, thet the inventon of telescopes, in its first original, wad certainly put in practice by an Englishman, fraar Bacon; thougb its first application to astrononical purposes may probably be ascribed to Galileo. The passages to which Mr. Molyneux refers, in support of Bacon's claims, occur in his Opus Majus, pa. 348 and 357 of Jebb's edit. 1773. The tirst is as follows: Si vero non sint corpora plana, per quaz visus videt, sed sphweria, tunc est magua diversitas ; nam vel concavitas corporis est versus oculum vel convexitas : whence it is inferred, that he knew what a concave and a convex glass was. The second is comprised in a whole chapter, where he says, De visione fracta majora sunt; nam de facili patet per canones supra dictos, quod maxima possunt apparere minima, et c contra, et Ionge distantia videbuntur propinquissime, et e converso. Nant possumus stc figurare perspicua, et taliter ea ordinare rispectu nostri sisus et rerum, quod frangentur radii, et flectentur quorsumcunque voluerimus, ut sub quocungue angulo volucrimus, videbimus rein prope vel longe, \&c. Sic etiam faceremus solem et lunam et stellas desecndere secundum apparentiam hic inferius, de: that is, Grater things than these may lee performed by refracted vision; for it is easy to understand by the canons above mentioned, that the greatest objects may appear exceeding small, and the contrary; also thint the tnost remote objects may appear just at hand, and the converse ; for we can give such figures to transpatent bodies, and dispose them in such order with respect to the eye and the objects, that the rays shall be refracted and bent towards any place we please; so that we shall see the object near at haid or at a distance, under any angle we please, \&c. So that thus the sun, moon, and stars may be made to descend hither in appearance, \&ec. Mr. Molyneux has also cited another passage out of Bacon's Epistle ad Parisiensern, of the Scerets of Art and Nature, cap. 5, to this purpose, Pussunt etiam sic tigurari perspicua, ut lungissime posita appareant propinqua, et è contrario; ita quod ex incredibili distantia legeremus literas minutissimas, et numeraremus res quantumquo parvas, et stellas faceremus apparere quo vellerius : that is, Glasses, or diaphanous bo-
dies mady be so formed, that the most remote objects may appear just at hand, and the contrary ; so that we may read the smallest letters at an incredible distance, and may number things though never so small, and may make the stars also appear as near as we please.

Morrover, Ductor Jebb, in the dedication of his edition of the Opus Majus, produces a passage from a manuscript, to show that Bacon actually applied telescopes to astronomical purposes: Sod longe magis quam haec, says he, oporteret homines haberi, qui bene, imno optime, scirent perspectivan et instrumenta cjus-quia instrumenta astronoma non vadunt mai per vistonern sceundem leges istius scientiz.

From these passages, it is not unreasonable to conclude, that Bacon had actually combined glasses so as to have producad the effects which be mentiuns, though he did not complete the construction of tiescopes. Dr. Smith, however, to whose judgment particular deference is due, is of opinion that the celebrated friar wrote hyputhetically, without hasitg made any actual tival of the things he mentions: to which purpose he observes, that this author dow not assert one single trial or observation upon the sun or inoun, or any thing clse, though be mentions them both: on the other hand, lie imagines some effects of telescopes that cannot possibly be perforned by them. He adds, that persons unexperienced in loohing through telescopes expect, in viewing any object, as for instance the face of a man, at the distance of one bundred yards, through a telescope that magnifies one bundred times, that it will appear inuch larger than when they are close to it: this he is satisfied was Bacon's notion of the matter: and hence he concludes that be had never looked through a telescope.

It is remarkable that there is a passage in Thomas Digge's Stratioticos, pa. 359, where he affirms that his father, Leonard Digges, among other curious practices, had a ancthod of discovering, by perspective glasses set at due angles, all objects pretty far distant that the sun shone upon, which lay in the country round about; and that this was by the help of a manuscript book of Roger Bacon of Oxford, who he conceived was the only man bestiles his father (siuce Archimedes) who knew it. This is the more remarkable, because the Stratioticos was first printed in 1579 , more than 50 years before Metius or Galileo made their discovery of those glasses; and therefore it has hence been thought that Rogir Bacon was the firstiaventor of telescopes, and Leonard Digges the next reviser of them. But from what Thomas Digges says of this matter, it would seem that the instrument of Bacon, and of his father, was some thing of the nature of a camera obscura, or, if it were a telescopr, that it was of the refecting kind; though the term perspective glass seems to favour a contrary opinion.

There is also another passage to the same effect in the preface to the Puntometria of Leonard Digges, but published by his son Thomas Digger, some time before the Stratioticos, and a second time in the year 1591. The passage runs thus: "My father by his continuall painfull prartiscs, assisted with demonstrations mathematical, was able, and suodric times hath by Proporional Glasses ducly situate in convenient augles, not only discovered things farre off, read letters, numbered peeces of tnoney with the very coyne and superscription thereof, cast by some of his freends of purpose upon downes in open fields, but also seven myles of declared what hath beene doone at that instant in private places: He hath also sundric times by

TEL
TE \mathbf{L},
the sunne beames fixed (should be fired) powder, and dischargde ordinance halfe a mile and more distante," \&c.

But in whomsoever we ascribe the bonour of first inventing the telescope, the rationale of this admirable instrument, depending on the refraction of light in passing through mediums of different forms, was first explained by the celcbrated Kepler, who also pointed out methods of constructing others, of superior powers, aod more commodious application, than that first used: though something of the same kind, it is said, was also done by Maurolycus, whase treatise De Lumine et Umbra whs published in 1575.

The Principal Effects of Trelescores, depend upon this plain maxim, viz, that objects appear larger in proportion to the angles which they subtend at the eye; and the effect is the same, whether the pencils of rays, by which objects are made visible to us, come directly from the objects themselves, or from any place nearer to the eye, where they may have been united, so as to form an image of the object; because they issue again from those points in certain directiots, in the same manner as they did from the corresponding point in the objects themselves. In fact therefore, all that is efiected by a telescope, is first to make such an image of a distant object, by means of a lens or mirror, and then to give the eye some assistance for viewing that image as noar as possible; so that the angle, which it shall subtend at the eye, may be very large, compared with the angle which the object itself would subtend in the same situation. This is done by means of an cye-glass, which so refructs the pencils of rays, as that they may afterwards be brought to their several toci, by the natural humours of the eye. But if the eye bad been so formed as to be able to see the image, with sufficient distinctuess, at the same distance; without an eye-glass, it would appear to him as much magnified, as it does to another person who makes use of a glass for that purpose, though he would not in all cases have so large a field of view.

Though no image be actually formed by the foci of the pencil without the eye, yet if, by the help of an eye-glass, the pencils of rays shall enter the pupil, just as they would have done from any place without the cye, the visual angle will be the same as if an image had been actually formed in that place. Priestley's History of Light $\& c$, pa. 69, \&c.

As to the Grinding of Telescopic Glasses, the first persons who distinguished themselves in that way, were two Italians, Eustachio Divini at Rome, and Campani at Bologna, whose fame was much superior to that of Divini, or that of any other person of his time; though Divini bimself pretended, that in all the trials that were made with their glasses, his of a great focal distance performed better than those of Campuni, and that his rival was not willing to try them fairly, viz, with equal eyo-glasses. It is however generally supposed, that Campeni really excelled Divini, both in the goodness and focal length of bis object-glasses.

It was with Campani's Telescopes that Cassini discovered the urarest satellites of Saturn. They were made at the express desire of Lewis XIV, and were of 86,100 , and 136 , Paris feet focal length.

Campani's laboratory was purchased, after his death, by pope Benedict XIV, who made a present of it to the academy at Bologna called the lostitute; and by the account which rougeroux has given, we learn that (except a machine which Campani constructed, to work the be-

Vol.II.
soos on which he ground his glassox) the goodness of his lenses depended on the clearness of his glass, his Venetian tripoli, the paper with which be polished his glasses, and his grent skill and adiless as a workman. It does not appear that be made many lenses of a very great focal distance. Accordingly Dr. Hooke, who probably speaks with the partiality of an Englishman, says that some glasses, made by Divini and Campani, of 36 and 50 teet focal distance, did not excel Telescopes of 12 or 15 feet made in Eogland. He adds, that sir Yaul Neile made telescopes of 36 feet, pretty good; and one of 30 , but not of proportionable goodness.

Afterwards, Mr. Reive first, and then Mr. Cox, who were the most celebrated in Fingland, as grindurs of optic glasses, made some good telescopes of 50 and 60 feet focal distance; and Mr. Cox inade one of 100 , but how good Dr. Hooke could not assert. Borelli also in Italy made object-glasses of a great focal lenghi, one of which he presented to the Royal Society. But, with respect to the focal length of telescopes, these and all others were far exceeded by those of Auzout, who made one object-glass of 600 feet focus; but he was never able to manage it, so as to make it useful. And Hartsocker, it is said, made some of a still greater focal length. Philos. Trans. Abr. vol. i, pa. 666. Hooke's Exper, by Derham, pa. 261. Priestley, pa. 211. Sec Grinding.

Telescopes are of several kinds, distinguished by the number and form of their lenses, or glasses, and denominated from their particular uses \&c: suchare the Terrestrial or land Telescope, the Celestial or astronomical Telescope; to which may be added, the Galilean or Dutch Telescope, the Refecting Telescope, the Refracting Telescope, the Aërial 'Jelescope, Acbromatic Telescope, \&c.

Galileo's, or the Dutch telescope, is one consisting of a convex object-glass, and a concave eye-glass.

This is the most ancient form of any, being the only kiod made by the inventurs, Galileo, \&cc, or known, before Huygens. The first telescope, constructed by Galileo, magnified only 3 times; but he soon made another, which magnified 18 times: and afterwards, with great trouble and expence, be constructed one that magnified 33 times; with which he discovered the satellites of Jupiter, and the.spots of the sun. The construction, properties, \& c , of it, are as follow :

Construction of Galileo's, or the Dutch Telescopr.-In a tube prepared for the purpose, at one end is fitted a convex object lens, either a plain convex, or convex on both sides, but a segment of a very large spliere: at the other ead is fitted an eye-glass, concave on both sides, and the segment of a less sphere, so disposed as to be at the distance of the virtual focus before the image of the convex lens.

Let An (fig. 10, pl. 28) be a distant object, from every point of which pencils of rays issue, and falling on the convex glass DE, tend to their foci at pso. But a concave lens HI (the focus of which is at po) being interposed, the converging rays of each pencil are made parallel when they reach the pupil; so that by the refractive humours of the eye, they can easily be brought to a focus on the retina at pue. Also the pencils themselves diverging, as if they came from x, mxo is the angle under which the image will appear, which is much larger than the angle under which the object iself would have appeared. Such then is the telescope that was at farst discovered and used by philosophers: the great in3 H
convenience of which is, that the field of view, which dejeinds, nut on the breadih of the eye-glass, is in the astronomical telescopre. but on the breadth of the pupil of the eye, is excerdingly smull : for since the pencils of the rays enter the eye sery much diverging from one another, but few of them can be intercepted by the pupil; and this inconvenience increases with the mazoufying power of the telescope, so that philosophers may now weil wonder at the patience and address with which Galileo and others, with such an insirument, made the discoveries they did. And yet no other telegcope was thought of for many years after the discovery. Descartes, who wrote 30 years after, meutions no other as actually constructed, though Kupler had suggested some. Hence,

1. In an instrument thus framed, all people, except myopes, or shurt-sighted persons, inust see objects distinctly in an erect situation, and incieased in the ratio of the distance of the virtual focus of the eye-glass, to the distance of the focus of the object-glass.
2. But for myopis to see objicts distinctly through such an insirument, the cyeglass must be set nearer the objuct-glass, so that the rays of each pencil may not emerge parallel, but may fall diverging upon the eye; in which case the apparent magnitude will be altered a little, though scarce sensibly.
3. Since the focus of a plano-convex object lens, and the viriual focus of a plano-concave erelons, are at the distance of the diangeter; and the focus of an objectglass convex on both siden, and the virtual forus of an eye-glass concave on both sides, are at the distance of a semi-diameter; if the object-glass be plano consex, and the eye-glass plano-concave, the teleseope will increase the dianneter of the object, in the ratio of the diameter of the concavity to that of the convexity: if the objectglass be convex on both sides, aud the cye-glass concave on both sides, it will magnify in the ratio of the semidiameter of the concavity to that of the consexity: if the object-glass be plano-convex, and the eye-glass concave ou both sides, the semidiameter of the object will be increased in the ratio of the diameter of the convexity to the semidiameter of the concavity: and lastly, if the ob-ject-glass be convex on both sides, and the eye-glass planoconcave, the increase will be in the ratio of the diameter of the concavity to the semidiameter of the convexity.
4. Since the ratio of the semidiameters is the same as that of the diameters, telescopes magnify the object in the same manner, whether the object-glass be planoeconvex, and the cye-glass plano-concave; or whether the one be convex on both sides, and the other concare on both.
5. Since the semidiameter of the concavity has a less ratio to the diameter of the convexity than its diameter has, a telescope magnifies more if the object-glass be plano-convex, than if it be convex on both sides. The case is the same if the eye-glass be concave on both sides, and not plano-concave.
6. The greater the diameter of the object-glass, and the less that of the cyc-glass, the less ratio has the diameter of the object, viewed with the baked eye, to its semidiameter when viewed with a teliscope, and consequently the more is the object mngnified by it.
7. Since a telescope exhibits so much a less part of the object, as it increases its diameter more, for this reason, mathematicians were determined to look out for another telescope, after having clearly found the imperfection of
the first, which was discovered by chance. Nor were their endravours vain, as appears from the astronomical telescope tlescribed below.

If the semidimeter of the eye-glass have too small a ratio to that of the object-glass, an object through the telescope will not appenr sufficiently clear, because the great divergency of the rays will occaston the several prncils representing the several points of the object on the retina, to consist of too few rays.

It is also found that equal object-lenses will not bear the same eye-lenses, if they be difficently transparent, or if there be a difference in their polish; a less aransparent object-glass, or one less accurately ground, reyuiring a inore spherical eye-glass than another more tramsparent, \&c.

Hevelius recommends an object-glass consex on beth sides, whose dauncter is 4 tiet; and an eye-glass concavr un both sides, whose diancter is $4 \frac{1}{2}$ tembs of a fions. An object-glass, cqually convex on both sides, whose ilinmeter is 5 teet, he observes, will require an eye-glass of 5f tembis; and adds, that the same eyc-glass will also serve an object-glass of 8 or 10 feet.
Heuce, as the distance between the ubject-glass and eye-glass is the difference betwecn the distance of the virtual tocus of the eye-glass, and the distance of the focus of the object-glass; the length of the telescupe is had by subtracting that from this. That is, the lengit of the telescope is the difference between the diameters of the object-glass and eye-glass, if the former be plano-convex, and the latter plano-concave; or the difference between the semidiameters of the object-glass and eye-zlass, if the former be convex on both sides, and the latier concave on both; or the difference between the semidameter of the object-glass and the diameter of the eye-glass, if the former be convex on both sides, and the latter plano-concave; or lastly the difference between the diamiter of the objectglass and the semidiameter of the eye-glass, if the former be plano-convex, and the latter concave on both sides. Thus, for instauce, if the diameter of an object-glass, convex on both sides, be 4 feet, and that of an eyraglass, concave on bothsides, be $4 \frac{4}{2}$ tenths of a foot ; then the length of the telescope will be 1 foot and $7 \$$ tenths.

Astronomical Telescore; this is one that consists of an object-glass, and an eye-glass, both convex. It is so called from being wholly used in astronomical observations.

It was Kepler who first suggested the idea of this telescope: having explained the rationale, and pointed out the advantages of it in his Catoptrics, in 161t." But the first person who actually made an instrunent of this construction, was father Scbeiner, who has given a description of it in bis Rosa Urina, published in 1630 . To this purpose he says, if you insert two similar convex lenses in a tube, and place your eye at a convenient distance, yota will see all terrestrial objects, inverted indeed, but magnified and very distinct, with a considerable extent of view. He afterwards subjoined an account of a telescope of a different construction, with two convex eye-glasses, which again reverses the inpages, nnd makes ithem appear in their natural position. Father Reita however soon after proposed a better construction, using three eyenglasses instead of two.

Construction of the Astronomical Telescope. The tube being prepared, an object-glass, cither plano-convex, of convex on both sides, but a megment of a large sphere;
is fitted in at one end; and an eye-glass, convex on both sides, which is the segunent of a small sphere, is fitted to the otherend; at the common distance of the foci.

Thus the rays of ench pencil issuing flom esery point of the otiject ABC, (tig. 3, pl. 36) passing through the objict-glass pEy, become converging, and meet in their fuci at iuc, where an image of the object will beformed. If then another convex lens κx, of a shorter focal lingth, be so placed, as that its focus shall tee in inc, the rays of each pencil, after passing through it, wilt become nenrly parallel, so as to meet upon the retina, and form an enlarged image of the ubject at usr. If the process of the rays be traced, it will presensly be perceived that this image must be inverted. For the pencil that issnes from A, has its focus in G, and aguin it \mathbf{s}, on the sume side with A. But as there is always one inversion in staple vision, this want of inversion proluces just the reverse of the natural appearance. The field of view in this teloscope will be large, because all the pencils that can be received on the surface of the lens $\times \mathrm{M}$, being converging after passing through it, are thrown into the pupil of the eye, placed in the common intersection of the peucils at P .

Theory of the Astronomical Tenisscope,-An eye placed near the focus of the cyenglass, of such a tolescopr, will see objects distinctly, but inverted, and magnified in the ratio of the distance of the focos of the eye-giass to the distance of the focus ot the objert-glass.

If the sphere of concavity in the eye-glass of the Galitean telescope, be equal to the sphere of convexity in the eye-glass of another telescope, their magnifying power will be the same. The concave glass however being placed between the object-glass and its focus, the Galilean telescope will be shorier than the other, by twice the fucal length of the eye-glass. Consequently, if the length of the telescopes be the same, the Galilean will have the greater magnifying power. Vision is also more distinct in these telescopes, owing in part perhaps to there being no intermediate image between the eye and the object. Besides, the eye-glass being very thin in the centre, the rays will be less liable to be distorted by irregularities in the substance of the glass. Whatever be the cause, we can sometimes see Jupiter's satellites very clearly in a Galilean telescope, of 20 inches or 2 feet long, when one of 4 or 5 feet, of the common sort, will hardly make then visible.

As the astronomical telescope exhibits objects inverted, it serves commodiously enough for observing the stars, as it is not material whether they be sern erect or inverted; but for terrestrial objects it is much less proper, as the ioverting often prevents them from being known. But if a plane well-polished metal speculum, of an oval figure, and about an inch long, and thelined to the axis in an angle of 45°, be placed behind the eye-glass; then the eyr, convenienily placed, will see the image, hence refiected, in the same mugnitude as before, bett in an erect situation ; and therefore, by the addition of such a speculum, the astronomical telescope is thus rendered tit to ubserve terrestrial objects.

Since the fucus of the glass, convex on both sides, is distant from the glnss itself a semidiameter, and that of a plano-convex glass, a diameter; if the object glass be convex on both sides, the telescope will magnify the semidiameter of the object, in the ratio of the diameter of the eye-glass to the diameter of the object-glass; but if the
olject-glass be a plano-convex, in the ratio of the semidiameter of the eyc-glass to the diameter of the objectglass. And theretore a trlescope magmifis more if the object-gluss be a plano-convex, than if convex on both sides. And for the *ame reuson, a telescope magnifics more when the eye-glass is cunvex on both sides, than when it is plano-convex.

A teloscupe magnifies the more, as the object-glass is a segment of u greal sphere, and the egerglass of a less one. And yet the eyroglass must mat be 100 sma!l in respect of the object-glass; for if it be, it will not refract rays cnough to the eyefrom each point of the object; nor will it separate suflicienily those that come frou different points; by which means the vision will be rendered obscure and confuxd.- Dechnles observes, that an objectlens of 21 feet will require an eyeglass of 11 tenth of a frot; and an ulject-glass of 8 or 10 fect, an pye-glass of 4 tenthe; in which he is confirmed by Eustacho Divini,

To shorten the Astronomical Telespcope; that is, to construct a telescope so, as that, though shorter than the common one, it shal! magnify as much.

Having provided a drawing tube, fit in it an object-lens eo which is a segment of a noderate sphere; let the first

pye-glass BD be concave on both sldes, and so placed in the tube, as that the focus of the ubject-glass a may be behind it, but nearer to the centre of the concavity c: then will the inage be thrown in Q, so as that $G A$: ct: : AB: $\mathbf{q I}$. Lastly, fit in ancther object-glass, convex on both sides, atid a segment of a smaller spleres, so as that its focus may be in 9 .

This telescope will magnify the diameter of the ohject more than if the object-glass were to represent its image at the ame distance ze; and consequently a shorter telescope, constructed this way, is equivalent to a longer in the common way. See Wolfius Elem. Math. vol. 3, pa. 245.

Sir lsaac Newton furnishes us with another method of constructing the telescope, in his catoptrical or meflecting telescope, the construction of which is given below. See Achromatic Telescope.

Aèrial Telescope, a kind of astronomical telescope, the lenses of which are used without a tube. In strictness bowever, the aërial telescope is rather a particular manner of mounting and managing long telescopes for celestial observation in the night-time, by which the trouble of long unwieldy tubes is saved, than a particular kind of telescope ; and the contrivance was one of Huygens's. This invention was successfully practised by the inventor himself and others, particularly with us by Mr. Pound and Dr. Bradley, with an object-glass of 123 feet focal distance, and an apparatus belonging to it, made and presented by 11 uygens to the Royal Suciety, and described in his Astroscopia Compendiaria Tubi Optici Molimine Liberata, printed at the Hague in 1684.

The principal partis of this telescope may be comprebended from a view of fig. 4, pl. 36, where as is a long pole, or a mast, or a high tree, $\& \mathrm{c}$, in a groove of wlich slides a piece that carries a small tube zr in which is fixed an object-glass; which tube is connected by a fine 3R2
line, with another small tube oq, which contains the eye-glass, \&c.

Lahire contrived a little machine for managing the objuet-glass, which is described Mern, de l'Acad. 1715. See Smith's Optics, book 3, chap. 10.

Hartsocker, who made telescopes of a very considerable focal length, contrived a mether of using them without a tube, by fixing them to the top of a tree, a trigh wall, or the roof of a house. Miscel. Berol, vol. 1, pa. 261.

Huygens's great telescope, with which Salurn's true face, and one of his satelites were first discovered, consists of an object-glass of 12 feet, and an eye-glass of a little more than 3 inches; though be frequently used a telescope of 23 fiet long, with two eye-glasses joined together, each if iach dameter; so that the two were equal to one of 9 inches.

The shme author observes, that an object-glass of 30 feet requires an ege-glass of 33^{3} inches; and has given a table of proportions for constructing asirunomical telescopes, an abridgement of which is as follows:

Disarce of Fuesu of Otject-Glaswes.	Dimmeter of Aperture.	Divance of Fueve of Eye-Glass.	$\left\{\begin{array}{c} \text { Power of Msgri. } \\ \text { rade of } \\ \text { Disuleter. } \end{array}\right.$
Fires.	Inches and Decirs.	Inches and Decim.	
1	0.55	0.61	20
2	$0 \cdot 77$	0.85	28
3	0.95	1.05	34
4	$1 * 09$	120	40
5	1.23	$1 \cdot 35$	44
6	$1 \cdot 34$	1.47	49
7	$1 * 45$	160	53
8	1.55	171	56
9	1.64	1.80	60
10	173	1.90	63
15	$2 \cdot 12$	2.33	77
20	$2 \cdot 45$	2.70	89
25	2.74	3.01	100
30	3.00	$3 \cdot 30$	109
40	3.46	9.81	120
30	3.87	4.26	$1+1$
60	424	466	154
70	4.38	5.04	166
80	4.90	3.39	- 178
90	$3 \cdot 20$	$5 \cdot 72$	159
100	5.49	6.03	200
120	6.00	6.60	918
140	6.48	712	235
160	$6 \cdot 93$	7.62	952
180	$7 \cdot 35$	8.09	267
200	7.75	853	251
220	8.12	8.93	295
$2+0$	8.48	9'33	308
$\because 60$	8.83	971	321
280	$9 \cdot 16$	1008	333
300	949	$10^{\prime} 44$	345
400	10.95	$12^{*} 05$	400
500	$12 \cdot 25$	13.47	445
600	$13 \cdot 42$	1476	488

Dr. Swith (Rem. pa. 78) observes, that the magnifying powers of this table are mont so great as Huygens himadf intended, or as the best object-glakes now made will admit of. For the author, is his Astroscopia Compendiaria,
mentions-an object-glass of $\$ 4$ feet focal distance, which, in astronomical ubservations, bore an eye-glass of $2 \frac{1}{6}$ inches focal distance, and consequently magmisied 163 times. According to this standard, a telescope of 35 feet ought to magnify 166 tumes, and of 1 foot 28 times; whereas the table allows but 118 titues to the former, and but 20 to the latter. Now $\frac{1 i f}{i f}$ or $\frac{20}{20}=1.4$; by which if we multiply the numbers in the given column of magnifying powers, we shall gain a new culumn, showing how much those object-glasses ouglit to magnify if wrought up to the perfection of this standard.

The new apertures and eye-glasses must aiso be taken in the same proportions to each other, as the old onen have in the table; or the eye-glasses may be found by dividing the length of each telcacope by its magnifying power. And thus a netw table may be casily made for this or any other more perfect standard when offered.

The rule for computing this table depends on the following theorem, viz, that in refracting telescopes of different lengths, a gisen object will appear equally brigit and equally distanct, when their kinear apertures and the focal distances of their eye-glasses are severally in a subduplicate ratio of their lengths, or focal distances of their object-glasses ; and then ulso the breadith of their apertures will be in the aubduplicate retio of their kengths.

The rule is this: Multiply the number of feet in the focal distance of any proposed object-glass by 3000 , and the square-root of the product will give the breadth of its aperture in centessas, or 100th parts of an anch; that is, $\sqrt{ } \$ 000 \mathrm{r}$ is the breadth of the aperture in centesms of an anch, where F is the focul distance of the object-glass in fect. Also, the satme bruadth of the aperture ascreased by the 10th part of italf, gives the fucal distance of the eye-glass in centerms of an inch. And the magaifying powers are as the brradiths of the apertures.

If, in different telescopes, the ratio between the ubjectglass and eye-glass be the same, the object will be magufied the same in both. Hence some may conclude the making of large telescopes a needless troutblc. But it must be remembered, that an eye-glass may be in a leas ratio to a greater object-glas: than to a smaller: thus, for exmmple, in Huygens's telescope of 23 fte , the eye-glass is 3 inches: now, keeping this proportion in a telescope of 50 feet, the eye-glass should be 6 inches; but the table shows that 41 are sulficient. Hence, from the same table it appears, that a telescope of 50 feet magnifies in the ratio of 1 to 141; whereas that of 25 feet only magnifies in the ratio of 1 to 100 .

Since the distance of the lens is equal to the ageregate of the distances of the foct of the ubject and eye-plasses; and since the focus of a glast convex on each side is a semidiameter's distance frum the lens, and that of a planoconvex at a diatweter's distance from the same; the length of a telescope is equal to the aggregate of the semidiameters of the leases, if the object-glass be convex on both sides; and to the sum of the semidiameter of the eye-glass and the whole diameter of the object-glass, if the object-glass be a plano-convex.

But es the diameter of the eye-glass is very small in respect of that of the object-glass, the length of the teleacope is usually estimuted from the distance of the objectglass; i, e. from tts semidiameter if it be convex on both sides, or its whole diameter if plano-convex. Thus, a tolescope is sand to be 12 feet, if the semidiameter of the object-glass, convex on woth sides, be 12 feet , \&c.

Since myopes sec near objects hest ; for them, the eyeghass is to be removed neater to the object-gluss, that the rays refracted through it may be the luove diverging.

To take in the larger fiedd al one vicw, sume make use of two eye-glasses, the foremost of which is a segment of a larger sphere than that belind ; to this in must be adied, that if two leuses be joined immediately together, so as the one may tonch the other, the focus is removed to double the distance which that of one of them would be at.

Land Telescope, or Day Telescopg, is one adapted for viewing ubjects in the duy-time, on or abous the earth. This contains more than two lenses, usually it has a convex obj-ct-glass, and three convex cye.glasses ; exhibiting objects erect, yet ditierent from that of Galieo.

In this telescope, afier the rays have passed the first eye-glass wi (fig. 3, pl. 38), as in the former construction, instead of being there received by the eye, they pass on to another equally convex lens, situated at twice its focal distance fiun the other, so shat the rays of each pencil, being pasallel in that whole interval, those pencils cross one another in the common focus, and the rays constituting them are transmitted parallel to the second eyeglass LM ; after which, the rays of each pencil converge to other foci at no, where a second image of the object is formed, but inverted with respect to the former image in E.r. This image then being viewed by a third eye-glass QR, is painted upon the retina at $X \mathbf{Y} z$, exactly as belore, only in a contrary position.

Father Reita was the authocof this construction; which is effected by fitting in at one cad of a tube an objectglass, which is cither convex on both sides, or plano-convex, and a sequent of a large sphere; to this add three eye-glasses, all cunvex on both sides, and segnents of equal spheres; disposing them in such a manner as that the distance between any two may be the aggregate of the distances of their foci. Then will an eye applied to the last lens, at the distance of its focus, see ubjects very distinctly, erect, and maguified it the ratio of the distance of the focus of one eye-glass, to the distance of the focus of the object-plass.

Hence, 1. An astronomical telescope is easily converted into a land telescope, by using three eye-glasses for one; and the land telescope, on the contrary, into an astronomical one, by taking away two eye-glasseb, the faculty of magnfying still remaining the same.
2. Since the distance of the cye-glasses is very small, the leugth of the telescope is much thic same as if you only used one.
3. The length of the telescope is found by adding five times the semidiameter of the eye-glasses, to the diameter of the object-glass when this is a plano-convex, or to its semidiameter when convex on both sides.

Huygens first observed, buth in the astronomical and land telescope, that it comributes considerably to the perfection of the instrument, to have a ring of wood or metal, with an aperture, a littie less than the breadib of the eye-glass, fixed in the place where the image is found to radiate upon the lens uext ibe eye; by means of which, the colours, which are apt to disturb the clearness and distinciness of the object, are prevented, and the whole compass taken its at one view, perfectly defined.

Some make land telescopes of three lenses, which yet represent objects erect, and magnitied as much as the former. But such telescopes are subject to very great in-
conveniences, both as the objects in thern are tinged with false colours, and as they are distorted about the margin.

Others again use five lenses, and even more; but as some parts of the rays are intercepted in passing every lens, objects are thus exhibited very dimly.

Telescupes of this kind, longer than 20 feet, will be of hardly any use in observing terrestrial objecta, on account of the continual motion of the particles of the atmosphere, which these powerful telescopess render visible, and give a tremulous motion to the objects thernselves.

The great length of dioptric telescopes, adapted to any important astronomical purpose, rendered them extremely inconvenient for use; as it was necessary to increase their length in no less a proportion than the duplicate of the increase of their magnifying power: so tha?, in order to magnify twice as much as before, with the same light and distinctiness, the telescope required to be lengthened 4 tumes; and in magnify thrice as much, 9 times the length, and so on. This unwieldiness of refracting telescopes, pussessing any cousiderable magnifying power, was one cause, why the attention of astronomers, \&c, was directed to the discovery and construction of reflection telescopes. And indecd a refracting telescope, even of 1000 feet focus, supposing it possible to make use of such an instrument, could nu be made to magnify wish distinctness more than 1000 times; whereas a reflecting telescope, of 9 or 10 feet, will magnify 12 hundred times. The perfection of refracting telescopes, it is well known, is very much limited by the aberration of the rays of light from the geometrical focus: and this arises from two different causes, viz, from the different degrees of refrangibility of light, and from the sphericity, which is not of a proper curvature for collecting the rays in a single point. Till the time of Newton, no optician had imagined that the object-glasses of telescopes were subject to any other error besides that which arose frons their sphencal figure, and therefore all their efforts were directed to the construction of them, with other kinds of curvature: but that author had no sooner demonstrated the different refrangibility of the rays of light, than he discovered in this circumstance a new and a moch greater cause of error in telescopcs. Thus, since the pencils of each kind of light have their foci in different places, some nearer and some farther from the lens, it is evident that the whole beam cannot be brought into any one point, but that it will be drawn the nearest to a point in the middle place between the focus of the most and least refrangible rays; so that the focus will be a circular space of a considerable diameter. Newton shows that ihis space is about the 55 th part of the aperture of the telescope, and that the focus of the most refrangible rays is nearer to the object-glass tben the focus of the least refrangible oncs, by about the $27 \frac{1}{\frac{1}{2}}$ part of the distance between the object-glass, and the focus of the mean refrangible rays. But he savs, that if the rays flow from a lucid point, as far from the lena on one side as sheir foci are on the other, the focus of the most refrangible rays will be nearer to the lens than that of the least refrangible, by more than the 14 th part of the whole distance. Hence, he concludes, that if all the rays of light were equally refrangible, the error in telescopes, aroing from the spbericity of the glass, would be many hundred times less ihatu it now is; because the error arising from the spherical form of the glass, is to that arising from the different refrangibility of the rass of light, as 1 to 5419 . Sce Abebration.

Upon the whole he observes, that it is a wonder that telescopes represent objects so distinctly as they do. The reason of which is, that the dispersed rays are not scattered uniformly over all the circular spare above-mentioned, but are infinitely more dense in the centre than in any other part of the circle; and that in the way from the centre to the circumference they grow continually rarer and rarer, till at the circumference they become infinitely rare: for which reason, these dispersell rays are not copious enough to be visible, excepry abont the centre of the circle. He also mentions another argument, to prove, that the different refrangibility of the rays of light is the true cause of the imperfection of telescopes. For the dispersions of the rays arising from the spherical figures of ubject-glasses, are as the cubes of their apertures ; and therefore, to cause telescopes of different lengths to magnify with equal distinctness, the apertures of the objectglasses, and the charges or mugnifying powers onglit to be as the cubes of the square roots uf ther lengths, which does not answer to experience. But the errors of the rays, arising from the different refrangibility, are as the apertures of the object-glasses; and thencr, to make telescoper of different lengths to magnify with equal distinctosss, their apertuies and charges ought to be as the square roots of their lengths; and this answers to experience.

Were it not for this different refrangibility of the rays, telescopes might be brought to a sufficient degree of perfection, by composing the object-glass of two gluses with water betwerll them. For by this means, the refractions on the concave sides of the ghases will very mucb correct the errors of the refractions on the convex sides, so fur as they arise from their splerical figure: but on necount of the diffierent refrangibiluty of different kinds of rays, Newton did thot see any other meaus of improving telescopes by refraction only, except by incteasing their length. Newton's Optics, pa 73, 83, 89, 3d edition.

This important alesideratum in the construction of dioptric telescopers, has been since discovered by the ingenious Mr, Dollond; an account of whach is given below.

Achromutic T'seescore, is a natme given to the refracting telescopr, invented by Mr. Jihn Dolliond, and so contrived as to remedy the aborration ariving from culours, or the different refrangibility of the rays of light. See Achronatic.
The principles of Mr. Dollond's, discovery and construction, have been already explained under the articles Aberration, und Achromatic. The improvement made by Mr. Nollond in his telescopes, by making two object-glasess of crown-glass, and one of flint, which was tried with success when concave eye-glasses were used, was completed by his son Peter Dollund; who, conceiving that the satne method might be practised with success with convex eye glasses, found, after a few trials, that it might be done. Accordingly he finished an object-glass of 3 fert focal length, with an aperture of $3 \frac{1}{4}$ inches, composed of two cunvex lenses of crown-gloss, and one concave of white flint glass. But apprehending afterward that the apertures nught be admitted still larger, he completed one of 31 feet toral length, with the same aperture of 9 inches. Philos. Trans, vul. 55, pa, 56 .

But Lesides the obligation we are under to Mr. Dollond, for corrocting the aberration of the rays of light in the focus of object-glasses, arising from the ir different refrangibility, he made another considerable improvement in telescopes, viz, by correcting, in a great measure, both this
kind of aberration, and also that which arises from the spherical form of lenses, by an expedient of a very differentnature, viz, increasing the number of eye-glasses. If any person, says be, would have the visual angle of a telescope to contain 20 degres, the extrente pencils of the field must be bent or nifracted in an angle ot to degrees; which, if it be performed by one pye-glass, will cause an aberration from the figure, in proportion to the cube of that angle: but if two glasses be so proportioned and situated, as that the refraction may be cqually divided between thern, they will ench of them produce a refraction equal to half the required angle; and therefore, the aberration being in this case proportional to double the cube of half the angle, will be but a 4th part of that which is in proportion to the eube of the whole angle; because twice the cube of t is but $\frac{1}{2}$ of the cube of $2:$ so that the aberration from the figure, where two eye-glasses are rightly proportioned, is but a 4 th part of what it must unavoidably be, where the whole is performed by a single eye-glass. By the same way of reasoning, when the refraction is divided atmong three glasses, the aberration will be found to be but the 9 th part of what would be produced from a single glass; because 3 times the cube of t is but the 9 th part of the cube of 3 . Whence it appcars, that by increasing the number of eye-glasses, the indistinctuess, ncar the borders of the field of a telescope, way be very much dimimished, though not entirely taken away.

Ihe metbod of coriceling the errors arising from the differest reirnagibility of light, is of a dific rent consideratiun from the former: for, wlicreas the errons frem the figure can only be dimminhed in a certain propertion to the number of glassec, in this they miay lie entirely corrected, by the nddronn of only one glass ; as we find in the astronomical tikscupe, that two eye-glasses, rightly proportroned, will cause the culges of objects to appear frce from colours quite to the borders of the ficid. Also, in the day telescope, where no more than two eye glasers are absolutely necessary for erecting the object, we find, by tha addition of a third rightly situnted, that the colours, which would otherwise conluse the image, ure entirely removed: but this must be understonl with sume himitation; for though the diffirent colours, which the extreme pencils must necessarily be divided into by the edges of the cye-plasars, may in this ntanner be brought to the eye in a dircetion parallel to each other, so as, by its humours, to be converged to a point in the retina, yet if the glasses execed a certain length, the colours may be spread two wide to be capable of being admitted through the pupil or aperture of the eye; which is the reason that, in long teleserpes, constructed in the common way, with three eyeglasses, the field is always very much contracted.

These considerations first set Mr. Dollond on contriving how to enlarge the field, by-increasing the number of eyeglasses, without lessening the distinctness or brightness of the innage: and though others had laboured at the same work before, yct observing that the five-glass telescopes, sold in the shops, would admit of further improvement, be endeavoured to construct one with the sanse number of glasses in a better manner; which so far answered his expectutions, as to be allowed by the best judges to be a considerable improvement on the tormer. Encouraged by this success, he resolved to try if he could not matie some furiher enlargement of the firld. by the addition of another glass, aud by placing and proportioning the glasses in such a manner, as to corrct the aberratuons as much as possi-

Lle, without any detriment to the distinetness: and at last he obtained as large a fictd as is couvenient or necessary, and that even in the longest teleseopes that can be matte. These telescopes, with (iglasses, having been well received both at home and abroad, the author has settled the dute of the invention in a letter addressed to Mr. Short, and read at the Royal Socicty, March 1, 1753. Philos. Trans, vel. 48, art. 14.

Of the achromatic telescoper, invented by Mr. Dollond, there are seviral different sizes, from one foot to 8 feet in length, made and sold by bis sons P. and J. Dollond. In the 17 -inch improved achromatic telescope, the objectglass is composed of three glasses, viz, two convex of crown-glass, and one concuve of white fint glass: the focal distunce of this combined object-glas is about 17 iuches, and the diameter of the aperiure 2 inches. There wre + eye glasses contained in the tube, to be used for land ohjects; the magnifying power with these is near 50 times ; and they are adjusted to different sights, and to different distances of the object, by turning a finger screw at the end of the outer tube. These is another tube, containing two eye-glassed thit magnify about 70 times, for astronomical purposes. The telescope may be directed to any object by turning two screws in the stand on which it is fixed, the one giving a vertical motion, and the other a horizontal vie. The stand may be inclosed in the inside of the brass tube,

The object-glass of the $2 \frac{1}{4}$ and $3 \frac{1}{2}$ feet telescopes is composed of two glasses, one convex of crown glass, and the other concave of white flint glass; and the diameters of their apertures are 2 incbes and $2 \mathbb{z}$ inches. Fach of them is furnished with two tubes; one fur land objects, containfing four \&ye-glasses, and another with two rye-glasses for assonomical uses. They are atjusted by buttons on the outside of the wooden tube; and the vertical and horizontal motions are given by joints in the stands. The magnifying power of the least of these telescopes, with the eye glass for land objects, is near 30 umes, and with those for astronomical purposes, 80 times; and that of the greatest fur land objects is near 70 times, but for astronoinical obse rvations 80 and 130 times; for this has two tubes, tither of which may be used as occasion requires. This telcscope is also moved by a screw and rackwork, and the screw is turned by means of a Hook's joint.

These opticians also construct an achromatic pocket perspective glass, or Galiteath telescope ; so contrived, that all the different parts are put logether and contained in one piece 44 inches long. This small telescope is furnished with + concave eye-glasser, the magnifying powers of which are $6,12,18$, and 28 times. With the greatest power of this telescope, the satellites of Jupiter and the ring of Saturn may be maily seen. Thry have also cone trivel an achromatic telescupe, the sliding tubes of which are made of very thin brass, which pass through springs or tubes; the vutside tube being either of mahogany or brass. These telescopes, which from their convenience for gentlemen in the army are called military relescopes, have 4 convex eye-glasses, whose surfaces and focal lengths are so proportioned, as to render the field of view very large. They are of 4 different lengths and sizes, usually called one foot, 2,3 , and 4 feet ; the first is 14 inches when in use, and 5 inches when shut up, having the aperture of the object-glass $17^{\frac{1}{5}}$ inch, and magnifying 22 times: the second 28 inches for use, 9 inches shut up, the aperture $1_{\text {ré }}^{6}$ inch, and magnifying 35 times; the third 40
inches, and 10 inches shut, with the aperture 2 inches, and magnifying 45 times; and the fourth 52 inches, and 14 inches shut, with the aperture $2 \frac{1}{2}$ inches, and magnifying 55 times.

Euler, who, in a memoir of the Academy of Berlin for the year 1757, pa.323, had calculated the effects of all possible combinations of lenses in telescopes and microscopes, published another long memoir on the subject of these telescopes, showing with precision of what advantages they are nuturally capable. See Miscel. Taurin. vol.3, part 2, pa. 92.

Mr. Caleb Smith, having paid much attention to the subject of shortening and improviug telescopes, thought he had found it possible to rectify the errors which arise from the different ilegrees of refrangibility, on the principle that the sines of refraction of rays differeatly refrangible, are to one anotber in a given proportion, when their sines of incidence are equal; and the method be proposed for this purpose, was to make the specula of glass, iustead of metal, the two surfaces having different degrees of concavity. But it does not appear that this scheme was ever carried into practice. See Philos. Trans. No. 456, pa. 326.

The ingenous Mr. Ramsden has Lately described a new construction of eye-glasses for such telescopes as may be applied to mathematical instruments. The construction which he proposes, is that of two plano-convex lenses, both of them placed between the eye and the observed image formed by the object-glass of the instrument, and thus correcting not only the aberration arising from the spherical figure of the lenses, but elso that arising from the different refrangibility of light. For a more particular account of this construction, its principle, and its effects, sce Pbilos. Trans. vol. 73, art. 5.

A construction, similar at least in its principle to that above, is ascribed, in the Synopsis Optics Honorati Fabri, to Eustachio Divini, who placed two equal narrow planoconvex lenses, instead of one eye lens, to his telescopes, which touched at their vertices; the focus of the objectglass coinciding with the centre of the plano-convex lens next it. And this, it is said, was done at once both to make the rays that come parallel from the object fall parallel upon the cyr, to exclude the colours of the rainbow from it, to augment the angle of sight, the field of view, the brightness of the ubject, \&cc. This was also known to Huygens, who sometimes made use of the same construction, and gives the theury of it in bis Dioptrics. See Hugenii Opera Varia, vol. 4, ed. 1728.

Telescope, Reflecting, or Catoptric, or Catndioptric, is a telcscope which, instend of lenses, consists chiefly of mirrors, and exhibuts remote objects by reflection instead of refraction.

A brief account of the bistory of the invention of this important and useful telescope, is as follows. The ingenious Mr. James Gregory, of Aberdeen, has been commonly cunsidered as the first inventor of this telescope.But it scens the first thought of a reflector had been suggested by Mersenuc, about 20 years bcfore the date of Gregory's invention: n hint to this purpose occurs in the 7th proposition of his Catoptrics, which was printed in 1651 : and it appears from the 3d and 29th letters of Descartes, in vol. 2 of his Letters, which it is said were written in 1639, though they were not published tili the year 1666, that Mersenne proposed a telescope with specula to Descartes in that correspondence; though indeed in a manner so very unsatisfactory, that Descartes, who had given par-
ticular attention to the improvement of the telescope, was so far from approving the proposal, that he endeavoured to consince Mersenne of its fallacy. This point has been largely discussed by Le Rot in the Encyclopedia, art. Telescope, and by Montucla in his Hist. des Mathem. tom. 2, pa. $1+4$.

Whether Gregory had seen Mcrsenne's treatise on optics and catoperics, and whether he availed himself of the hint there suggested, or not, perhaps cannot now be deternined. He was lea however to the invention by seeking to correct two imperfections in the common telescupe : the first of these was its too great length, which made it troublesome to manage ; and the second was the incorrectness of the image. It liad been already demonstrated, that a pencil of rays could not be collected in a single point by a spberical lens; and also, that the image transmitted by such a lins would be in some drgree incurvated. These inconveniencies he thought might be obviated by substituting for the object-glass a metallie speculum, of a parabolical ifgure, to receive the image, aud to reffect it towards a small speculum of the same inetal; this again was to return the image to an eye-glass placed behind the great speculum, which was, for that purpose, to be perforated in its centre. This construction he published in 1663, in his Optica Promota. But as Gregory, according to his own account, possessed no mechanical skill, and could not find a workman capable of realizing his invention, after some fruitless trials, he was obliged to give up the thoughts of bringing telescopes of this kind into use.

Sir Isaac Newton how'ver interposed, to save this excellent invention from perishing, and to buing it forward to maturity. Having applied bimself to the improvement of the telescope, and imagining that Gregory's specula were neither very necessary, nor likely to be executed, he began with prosecuting the views of Descartes, who aimed at making a more periect image of an object, by grinding lenses, not to the figure of a sphere, but to that formed from one of the conic sections. But, in the year 1666, bnving discovered the different refraugibility of the rays of light, and tinding that the errors of telescopes, a rising from that cause alone, were much more considerable than such us were occasioned by the spherical figure of lenses, he was constrained to turn his thoughts to reflectors. The plague however interrupted his progress in this business ; so that it wus towards the end of 1668 , or in the beginning of 1669 , when, despairing of perfecting telescopes by means of refracted light, and recurring to the construction of reflectors, he set about making his own specula, and early in the year 1672 completed two small reffecting telescopes. In these be ground the large speculum into a spherical concave, being unable to accomplish the parabolic form proposed by Gregory; but though he then despaired of performing that work by geometrical rules, yet (as he writes in a letter thataccompanied one of these instruments, which he presented to the Royal Society) be doubted not but that the thing might in sotne measure be accomplished by mechanical devices. With a perseverance equal to bis ingenuity, bc, in a great measure, overcame another difficulty, which was to find a metallic substance that would be of a proper hardness, have the fewest pores, and receive the smuothest polish : this difficulty he deemed almost insurmountuble, when he considered that every inregularity in a reflecting surface would make the rays of light deviate 5 or 6 times more out of their due course, than the like ircegularities in a refracting surface. After
repeated trials, he at last fuund a composition that answered in some degree, leaving it to those who should comeafter him to find a better. These difficuitues have accordingly been since obviated by otber artisis, particularly by Dr. Mudge, the rev. Mr. Ediwards, and Dr. Herschel, \&c. Newtoll having succeeded so iar, be communicnted to the Royal Society a full and sattsfuctory account of the construction and performance of his telescope. The Society, by their secretary Mr. Oldenburg, trunsmitted an account of the discosery to Mr. Huygens, celebrated as a distinguished jniprover of the refractor; who not only replied to the Society in tem mos expressing his high approbation of the invention, but drew up a favourable account of the new telescupe, which he caused to be published in the Journal des Scavans of the year 1672, and by this inode of communication it was soon known over Europe. Ser Huygenii Opera Varia, toms 4.

Notwithstanding the excellence and utility of this contrivance, and the honourable manner in which it was announced to the world, it seems to have been greatly neglected for nearly balf a century. Indeed when Newton had publushed an account of his telescopes in the Philos. Trans, M. Cassegrain, a Frenchman, in the Journal des Scavans of 1672 , claimed the bonour of a similar invention, and said, that, before he heard of Newton's improvement, be had bit upon a better construction, by using a sinall convex mirror instead of the reflecting prism. This telescope, which was the Gregorian one disguised, the large mirror being perforated, and which it is said was never executed by the author, is much shorter than the Nentonian; and the convex mirror, by dispersing the rays, serves greatly to increase the image made by the large concave mirror.

Newton made many objections to Cassegrain's construction, but several of them equally affect that of Gregory, which has been found to answer remarkably well in the hands of good artists.

Dr. Smith took the pains to make many calculations of the ruagnifying power, both of Newton's and Cassegrain's telescopes, in order to their further improvement, which may be seen in his Optics, Rem. p. 97.

Mr. Short, it is also said, made several telescopes on the plan of Cassegrain.

Dr. Hooke constructed a reffecting telescope (mentioned by Dr. Birch in his Hist. of the Royal Soc, vol. 3, pa. 122) in which the great mirror was perforated, so that the spectator looked directly towards the object, and it was produced before the Royal Society in 1674 . On this occasion it was said that this construction was first proposed by Mersenne, and afterwards repcated by Gregory, but that it had never been actually executed before it was done by Hooke. A description of this instrument may be seen in Hooke's Experiments, by Derham, pa. 269.

The Society also made an unsuccessful attempt, by employing an artificer to imitate the Newtonian construction ; however, about half a century afier the invention of Newton, a reflecting telescope was produced to the world, of the Newtonian construction, which the venerable author, ere yet he had finished his very distinguished course, had the satisfaction to find executed in such a manner, as left no room to fear that the invention would longer continue in obscurity. This effectual service to science was accomplished by Mr. John Hadley, who, in the year 1723, presented to the Royal Society a telescope, which be had constructed on Newton's plan. The two
telescopes which Newton had made, were but 6 inches long, were held in the hand for viewing objects, and in power were compared to a 6 -iset refractor: but the radius of the sphere, to which the principal speculam of lladley's was ground, was 10 feet $3 \frac{1}{i n c h e s, ~ a n d ~ c o n s e q u a m l y ~}$ its focal length was $62 \frac{8}{8}$ incher. In the Philus. Trans. Abr. vol. 6, pa. 6 46 , 664 , may be scen a drawing and description of this telescope, and also of a very ingemiaus but complex upparatus, by which it was managed. One of these telescopes, in which the fucal length of the large mirror was not quite $5 \frac{1}{2}$ feet, was compared with the celebrated Huygenian telescope, which lad the local leugth of its object-glass 123 fect; and it was found that the former would bear such a charge, as to make it magnity the object as many times as the latter with its due charge; and that it represented ubjects as distinctly, though not altogether so clear aud bright. With this refecting telescope might be seen whatever had beeu hitherto discovered by that of Huygens, particularly the transits of Jupiter's satellites, and their shades over the disk of Jupiter, the black list in Saturn's ring, and the edge of the shade of Saturn cast upon his ring. Five satellites of Saturn were also observed with this telescupe, and it afforded other observations on Jupiter and Saturn, which confirmed the good opinion which had been conceived of it by Pound and Bradley.

Mr. Hadley, after finishing two telescopes of the Newtonian construction, applied himself to make them in the Gregorian form, in which the large mirror is perforated. This acheme he conipleted in the year 1726 .

Dr. Smith prefers the Newtonsan constiuction to that of Gregory; but if long experience be admitted as a final judge in such matters, the superioriny must be adjudged to the latter; as it is now, and has heen for many years past, the only instrument in request.

Mr. Hadley spared no pains, after having completed his construction, to instruct Mr. Molyneux and Dr. Bradley; and when these gentlemen had made a good proficiency in the art, being desirous that these telescopes should become nore public, they liberally communicated to some of the chief instrument-makers of London, the knowlelge they had acquired from him: and thus, as it is reasonable to imagine, reflectors were completed by other and better methods than even those in which they had been instructed. Mr. James Short in particular signalized himelf as carly as the year 1734, by performances of this hind. He at first nuade his specula of glass; but finding that the light reflected from the best glass specula was much less than the lighe reflected from metallic ones, and that glass was very liable to change its form by its own weight, he applied himself to improve metallic specula; and, by giving particular attention to their curvature, he was able to give them greater apertures than other workmen could do; and by a more accurate adjustment of the specula, \&c, he greatly improved the whole instrument. By some which he made, in which the larger mirror was 15 inches focal distance, be and some other persons were able to read in the Philos. Trans. at the distance of 500 feet; and they several times saw the five satellites of Saturn together, which greatly surprised Mr. Maclaurin, who gave this account of it, till he found that Cassini had sometimes scen them all with a 17 feet refractor. Short's telescopes were all of the Gregorian construction. It is supposed that he discovered a suethod of giving the parabolic figure to his great specu-

Ium; a degree of perfection which Gregory and Newton despaired of atnaining, and which Hadley it set mas lad never attempted in cither of his telescopes. However, the secret of working that configuration, whaterer it was, it scems died wht that ingentous artist; thouth lately in some deyree discovered by Dr. Mudge and others.

Un the history of reflecting selesconpes, see Dr. David Gregory's Elem. of Catopt. and Dioptr. Appendix by Desaguliers: Smith's Optics, book 3, c. 2, Rem. on art. 489 : and Sir John Pringle's excellent Discourse on the Invention dec of the Reflecting Telescope.

Construction of the Reflecting Tileseope of the Newtonian form.-Let ABCD (fig. 1, pl. 38) be a large tube, open at AD, and closed at ac, and its length at least equal to the distance of the focus from the metallic spherical concave speculum on placed at the end nc. The rays eg, ph, \&c, procceding from a remote object PR, intersict one another somewhere before they enter the tube, so that $x 6$ and og are thuse that come from the lower part of the object, and f hrin frelth its upper part: these rays, after falling on the speculum $\mathrm{c} u$, will be reflected so as to converge and mect in mm, where they will form a perfect image of the object. But as this image cannot be seen by the spectator, they are intercepted by a small plane metallic speculum K K , intersecting the axis at an angle of 45°, by which the rays tending to mm , will be reflected towards a hole ll in the side of the tube, and the image of the object will be thuy formed in qs; which inage will be less distinct, because some of the rays which would otherwise fall on the concave speculum GH, are intercepted by the plane speculum: it will nevertheless appear pretty distinct, because the aperture AD of the lube, and the speculum an, are large. In the lateral bole LL is fixed a convex lens, whose focus is at sg ; and therefore this lens will refract the rays that proceed from any point of the image, so as at their emergence they will appear parallel, and thuse that proceed from the extreme points sq, will converge after refraction, and form an angle at o, where the eye is placed; which will see the image sq, as if it were an object, through the lens LL: consequently the object will appear enlarged, inverted, bright, and distinct. In ll may be placed lenses of different convexities, which, by being moved nearer t, the image and farther from it, will represent the object more or less magnified, if the surface of the speculum ont be of a figure truly spherical. If, instead of one lens $\mathbf{2 L}$, three lenses be disposed in the same manner with the thrie eye-glasses of the refracting telescope, the object will appear erect, but less distinct than when it is observed with one lens. On account of the position of the eye in this telescope, it is extremely difficult to direct the instrument towards any object: Huygens therefore first thought of adding to it a small refracting telescope, having its axis parallel to that of the reflector: this is called a finder or director. The Newtonian telescope is also furnished with a suitable apparatus for the commodious use of $i t$.

To determine the magnifying power of this telescope, it is to be considered that the plane speculum $\mathrm{K} K$ is of no use in this respect: let us then suppose that one ray procecding from the object coincides with the axis oLIA of

the lens and speculum: let $b b$ be another ray proceeding from the lowerextremity of the object, and passing ilirough the focus t of the speculum $k 1$; this will be reflected in the direction bid, parallel to the axis ala, and falling on the kns $d L d$, will be refracied to G, so that $G L$ will be equal to 21 , and $d o=d_{1}$. To the nahed eye the object would appear under the angle $1 b i=b_{1 A}$; but by means of the telescope it appears under the angle $d G L=d i L=$ $1 d i$; and the angle $t d i$ is to the angle $1 b i$ as $b 1$ to $1 d$; consequently the apparent magnitude by the telescope, is to that with the naked eye, as the distance of the focus of the speculum from the speculum, to the distance of the focus of the lens from the lens.

Construction of the (iregorinn Reflecting Telescope.-Let TYYT (fig. 2, pl. 38) be a brass tube, in which tild p is a metallic concate speculum, perforated in the iniddle at \times; and ex a less concave mirror, so fixed by the arm or strong wire ni, which is moveable by menns of a long screw on the outstde of the tube, as to be moved nearer to, or facther from the lagger specufum $\mathrm{L} / \mathrm{d} \mathrm{d}$; its axis beitg kepi in the same line with that of the great one. Let a B represent a very remote object, from each part of which issue pencils of rays, as $c d, c v$, from a the uppor extremity of the object, and 11., $i 1$, from the luwer part B ; the rays il, CD, from the extremities, crossing each other before thry enter the tube. These rays, falling upon the larger mirror LD, are reflected from it into the focus KN , where they form at inverted image of the object AB, as in the Nestonian telescope. From this image the rays, issuing as from an object, fall upon the sroall mirroref, the centre of which is at e, so that after reflection they would meet in their foci at QQ, and there form an erect itnage. But since an eye at that place could see Lut a small part of an object, in order to bring rays from more distant parts of it into the pupil, they are intercepted by the plano-convex lons mx, by which means a smaller erect image is formed at PV, which is view ed through the meniscus ss, by an eye at 0 . This meniscus both makes the rays of each pencil parallel, and magnifies the image $p \mathrm{v}$. At the place of this image all the foreign rays are intercepted by the perforated partition zz. For the same reason the hole near the eye o is very narrow. When nearer objects are viewed by this telescupe, the small speculum EF is removed to a greater distance from the larger LD, so that the second image may be always formed in PV : and this distance is to be adjusted (by means of the screw on the outside of the great tube) according to the form of the eye of the spectator. It is also necessary that the axis of the telescope should pass through the middle of the speculum EF, and its centre, the centre of the speculum 2 L , and the middle of the hole x , the centres of the lenses $M N$, Rs, and the hole near O. As the bole \mathbf{x} in the speculum Li can reflect none of the rays issuing from the object, that part of the image which corresponds to the iniddle of the object, must appear to the observer more dark and confused than the extreme parts of it. Besides, the speculum er will also interecpt many rays proceeding from the object; and therefore, unless the aperture tr be large, the object must appear in some degree obscure.

The magnifying power of this telescope is estimated in the following manner. Let io be the larger mirror (fig. 4. pl .38), baving its focus at o , and aperture in A; and rF the small mirror with the focus of parallel rays in 1 , and the axis of both the specula and lenses $u x$, $s s$, be in
the tight line dioaok. Let $b s$ be a ray of light coming from the lower extremity of a very distant visible object, passing through the focus c, and failing upon the point 6 of the speculum LD ; which, after being reflected trom b to F in a direction parallel to the axis of the mirror pak, is reflected by the specenlum r so as to pass through the focus 1 in the direction rin to N, at the extrenity of the lens MN, by which it would have been refracted to x ; but by the interposition of another lens ss is , brought to 0 , so that the eye in o sees half the object under the angle тos. The angle cobr, or agh, under which the object is viewed by the naked eye, to to soz under which it is viewed by the telescope, in the ratio of gbr to iri $=n \mathrm{n}$, of min to $\mathrm{NK} n_{\text {, and of }} \mathrm{skn}$ to кот.

But c.by: wif: $:$ dt: GA, and ms : $n \mathrm{nN}: ~: ~ n K: n 1$,
and $n \mathrm{KK}$: sot : : TO : TK;
theref. cibp : sot: : D1 $\times n k \times$ то: $\operatorname{GA} \times$ nt \times TK. Musschenbroek's Introd, wh. 9. p. 819.

In reflecting telescopes of different lengths, a given object will appear equally bright and equally distinct, when their linear apertures, and also their linuar breadiba, are as the 4 th roots of the cubes of their lengths; and consequently when the focal distunces of their cye-glasses are alue as the th roots of their lengths. See the demonstretion of this propuaition in smith's Optics, art. 361.

Hence he has deduced a rule, by which he has computed the following table for telescopes of different lengths, taking, for a standard, the middle eyc-glass and aperture of Hadley's Reflecting telescope, described in Philos. Truns. Nor. 376 and 378 : the focal distances and linear apertures being given in 1000th parts of an inch.

Table for Telesropes of different Lengths.

Lencth of the Telewctipe, of Focal Distaneo of the Concave.	Fural D-stance of the Eye-Glase.	Linear amplifying or magrifying Power.	Linear Aperiure of the Concave Metal.
Feet.	Juches. 0.167	36	Inches. 0.864
1	0.199	60	$1 \cdot 440$
2	0.236	102	$2 \cdot 448$
3	0.261	138	S.312
4	0.281	171	4.104
5	0297	202	$4 \cdot 843$
6	$0 \cdot 311$	232	5.568
7	0.323	260	6.240
8	0.334	287	6.858
9	0.344	314	7.536
10	0.353	340	$8 \cdot 160$
11	0*362	365	8.760
12	0×367	390	$9 \cdot 360$
13	0×377	414	9.936
14	0.384	437	$10 \cdot 488$
15	0.391	460	$1 \mathrm{t} \cdot 0 \pm 0$
16	$0 \cdot 397$	483	11.592
17	0 H 413	506	$12 \cdot 143$

Mr. Hadley's telescope, above-mentioned, magnified 928 or 250 times; but we are informed that an ubjectmetal of $3 \ddagger$ feet focal distance was wrought by Mr. Hauksbee to 30 great a perfection, as to magnify 226 umes, and thercfore it was scarcely inferior to Hadley's of $3 \frac{1}{2}$ feet. If Ifauksbec's telescope be taken for a new standard, it follows that a speculum of one foot focal distance ought to magnify 93 times, whereas the above table allows it
but 60. Now $93=1.55$, and the given column of magnifying powers multuplied by this number, gives a new column, showing how much the object-merals ought to magnify if wrought up to the perfection of Hauksbec's. And thus a new table may be easily made for this or any other more perfect standard, taking also the new eyeglasses and apertures in the same ratio to one another as the old ones have in this table. Smith's Optics, Rem. pa. 79.

The magnifying power of any telescope may be easily found by experiment, viz, by looking wish one eye through the telescope upon an object of known dimensions, and at a given distance, and throwing the image upon another object seen with the aaked eye. Dr. Sraith bas given a particular account of the process, Rem. pa. 79.

But the easiest method of all, is to measure the diameter of the aperture of the object-glass, and that of the little image of it, which is formed at the place of the eye. For the proportion between these gives she ratio of the magnifying power, provided no part of the original pencil be intercepted by the bad construction of the telescope. For in all cases the magnitying power of telescopes, or microscopes, is measured by the proportion of the diameter of the original pencil, to that of the pencil which enters the cye. Priestley's Hist. of Light, pa. 7 ± 7.

The most considerable, and indeed uruly astonishing magnifying powers, that have ever been used, are shose of Dr. Herschel's reflecting telescopes. Some account of these, and of she discoveries made by them, has beell already introduced under the article Star; for his meihod of ascestaining them, see Pliths. Trans. vol. 72, pa. 173 \&se. Sce also several of the sher late volumes of the Philos. Trans. Likewise vol. 17, pa. 595, of my Abridg. of the Philos. Trans, fur a description of Herschel's 40 -foot reflecting selescope, wish an engraved representation of all its onachinery ; see also plate xv of this Dictionary.

Dr. Herschel observes, that though opticians have proved, that two eyc-glasses will give a more correct image than one, he has always (from experience) persisted in refusing the assistance of a second glass, which is sure to introduce errors greater than those he would correct. " Let us reaign," says he, "the double eyr-glass to those who view objects merely for enteraainment, and who must have an exorbitant field of view. To a philosopher, this is an unpardonable indulgence. I have tried both the single and double cye-glass of equal powers, and always found that the single eye-glass hat much the superiority in point of lighs and disninciness. With the donble eyeglass I could not see the bedts in Saturn, which 1 very plainly saw with the single one. I would however except all those cases where a large field is absolutely necessary, and where power joined to distisetness is not the sole object of our view." Philos. Trans. vol. 72, pa. 95.

Meridian Telescope, is one that is fixed at right angles to an axis, and turned about it in the plane of the meridian; and is olherwise called a Transit Instrument.The common use of this is to correct the motion of a clock or watch, by daily obwerving the exact time when the sun or a slar comes to the meridian. It serves also for a variesy of other uses. The mansupme axis is placed horizontal by a spirit level. For she fartber description and method of tising this instrument by means of its levels \&c, see Smith's Optics, pa. 321. See also Transit Instrument.

TELESCOPICAL Stars, are such as are not visible to
the naked eye, being only discemible by means of a telo-scope--All sturs less than those of the fith maguitude, are telescopic to an ordinary eye.

TEMPERAMENT, in Music, is defined by Roussean to be an operation which, by means of a slight alteration in the intervals, causes the difference between two contiguous sounds to disappear, makes each of these sounds seem identical with the other, which, without offending the ear, may still preserve their reapective intervals or distances one from the other. By this operation the scale is rendered more simple, and the number of soundx which would otherwise be necessary retrenched. Had not the scale been thus modified, instearl of 12 sounds alone which are contained in the octave, more than 60 would be indispensably required to form what is properly called Modulation in every tone.

It is proved by computation, that on the organ, the harpsichord, and every other instrament with keys, there is not, and there scarcely can be, any chords properly in tunc, save the octave alone. The cause is this, that though 3 thirds major, or + thirds minor, ought to form a just octave, those are found to surpass, and these not to reach it.

TEMPERATURE, the degree or quantity of beat in any substance or place; $u s$, in the atmosphere, in a climate, in the earth, in the vcesn, \&cc. In all these cases, the heat is greater in the lower latitudes, than in the higher: being greatest at the equator, and gradually less all the way to each pole, where it is least.

Tenperature of the Atmonphere, is greatest at the bottom, next the earth's surface, where it is warmed by the contact of the carth, and by the reflection of the sun's heat from it. From hence, gradually in asernding up in the atmosphere, the heat is always she less, till, in the upper regions, there is perpetual cold or frost, and that more or less, at equal elevations, in all latitudes. In 50 much that, at a certain elevation above the sea, peculiar to each latitude, the mountains exhibit perpetuul frost or now, if not higher than where vapours ascend in the atmospbere; which appearance of ice or snow terminates, however cold, at the highest point of the ascent of vapours. This latter point may be termed the upper altitude termination, as the former is the lower. And the heights of these two terms, for the different latitudes, have been observed as they are here exhibited in the following table; the latitude for every 5° being placed in the first column, and the aliturde, in feet, of the lower and upper terms, in the 2 d and 3 d columns.

$\begin{aligned} & \text { Lati- } \\ & \text { Mude. } \end{aligned}$	Alt, lower Terain.	Al. upper Termin,	$\begin{aligned} & \text { Lati- } \\ & \text { tude. } \end{aligned}$	Alt. lower Terain,	Alt, upper Termit.
0°	15573	28000	45 ${ }^{\circ}$	7658	13739
5	15457	27784	30	6260	11253
10	15067	27084	35	4.912	8830
15	14498	26061	60	3684	6546
20	13719	24661	65	2516	4676
25	13020	23423	70	1557	2803
30	11592	20838	75	748	1346
35	10664	19169	80	120	207
40	9016	16207			

By dividing each number in the 2d column, by its corresponding number in the 3 d , the quetients generally come out $\cdot 566$, or nearly of excepting some very few 3 S:
irregular numbers, which must have been errors in the observations. 1 fud also that the numbers in both these columns are very nearly proportional to the squares of the cosines of the latitudes, excepting a few of the numbers belonging to the very bigh latitudes; and indeed that those in the 3 d column ought to be expressed by this formula $28000 \mathrm{c}^{2}$, where c denotes the cosine of the latitude, to radjus 1. Hence $\frac{1}{5}$ of $28000 \mathrm{c}^{2}$, or $140000 \mathrm{c}^{2}$ will give the proper numbers for the 2 d column. And hence the irregular numbers, in both the columns, may be corrected.

Temperature of the Climate, is that of the air which we breathe, at the earth's surface, or the bottom of the atmosphere. This temperature is higher as the place is nearer the equator, and as the time or the season is nearcr the warmest part of the year, near the summer equinox.

At Londna, by a mean of the observations, for each month, made at the Royal Society, from the year 1772 to 1780 , it appesrs that the mean anuual temperature there, is $51^{\circ} 9$, or in whole numbers 52°; and the monthly temperature is as follows:

January	35 ${ }^{\circ} 9$	July - - - 65 ${ }^{\text {² }} 3$
February	- $42 \cdot 3$	August - - 65.8
March	- $46 \cdot 4$	September - - 59.6
April	- 49.9	October - 52.8
May -	- $36 \cdot 6$	November - 44.4
June	$63 \cdot 2$	December - - $41{ }^{\circ} 0$

The greatest usual cold is 20°, and happens in January ; the greatest usual heat is 81°, and happens generally in July.

At Petersburg, lat. $59^{\circ} 56^{\prime}$, the mean annual temperature is $38^{\circ} .8$. The greatest cold observed was that at which mercury freezes, that is, -39°, or 39 below 0 ; but the greatest mean degree of cold fur several years was -25°; and the greatest summer heat, on a mean, is 79°, though once it amounted to 94°.

With respect to different latitudes, from theory it would seem that the heat must vary with sume function of the square of the sine or of the cosine of the latitude. Accordingly, the rule given by Tobias Mayer of Gottingen, for the mean annual temperature, is $84-63 s^{2}$, where s is the sine of the latitude; or which may be otherwise expressed by $31+53 c^{2}$, where c denutes the cosine of the Jatitude, to the radius 1. And by this rule is computed the following table.

Let.	Temp.	Lat.	Temp.	Lat.	Temp.
0°	84.0	35°	66.6	70°	37.2
5	85.6	40	62.0	75	34.5
10	82.3	45	37.5	80	326
15	80.4	50	52.9	85	31.4
20	77.8	55	48.4	90	31.0
25	74.5	60	44.3		
50	70.7	65	40.4		

Temparature of the Earth, is various at different depths below the surface, to a certain depth or limit, where it is stationary, being at about 80 or 90 feet deep. It is found by observation, that the same degree of heat occurs in all subterraneous places at the same depth, varying a little at different depths, but is never less than 36° of Fahrenheit's thermometer. At 80 or 90 feet, and sometimes much less, the teppperature varies very litule,
and generally approaches to the mean annual heat. Thus, the temperature of springs is nearly the same as the mean annual heat, and varies very little in different scasuns. The temperature of the cave at the observatory of Palis, of about 90 feet deep, is about $53 \frac{1}{2}$ degrees: varying only about balf a degree in very cold years. The internal heat of the earth in our climate is always above 40°, and therefore the snow generally begins to melt first at the bottom. Mr. Boyle kept a thermometer for a year, in a cave 80 feet deep, and found the liquid remain stationary all the time. Dr. Withering made a similar experiment on a well 84 feet deep, at Edgbastun, bear Birmingham, the temperature of which was found to be 49° in every month of the year 1798. A remarkable circumstance however is observable in experiments made on pits or wells of a moderave depth. Mr. Gough kept a monthly account of the temperature of a well, for the years 1795 and 1798 , of only 20 feet deep, and be fuund the anmal variation was under 4°. And it is remarkable that the temperature of the earth, at the depth of 20 feet from the surface, is at the highest in October, when a thermometer in the atmosphere makes the monthly mean coincide with that of the year: on the contrary, the subterranean temperature does not arrive at a minimum before the end of March, 2 or 3 montbs later than the culdest weather sbove ground.

Temperature of the Sea, like that of the land, is also different at different depths, but atgreat depths is found to be nearly constant. In winter, when the surface of water is much cooled by contact with the colder air, the deeper and warmer water at the bottom, being specifically lighter, rises and tempers the top; and as the colder water constantly descends during the winter, in the following summer the surface is generally warmer than at any depths; wheress in winter it is colder. As the water in the high latitudes is, by cold, rendered beavier than that in lower warm latitudes; bence occurs a continual current from the poles to the equator, which sometimes carries down large masses of ice, which cool the air to a great extent. The temperatures of land and water differ more in winter then in summer.
The following table exhibits the results of several observations on the temperature of the air, and of the sea at different depths, in several latitudes, and at different seasons of the year.

TENACITY, in Natural Philosophy, is that quality of bodies by which they sustan a considerable pressure or force without breaking; and is the opposite quality to fragility or brittleneness. Mem. Acad. Berlin, 1745, pa. 47.

TENAILLE, in Fortification, a kind of outwork, consisting of two parallel sides, with a front, having a re-entering angle. In fact, that angle, and the faces which compose it, are the tenaille. The tenaille is of two kiuds, simple and doublis.

Simple or Single Texaille, is a large outwork, consisting of two faces or sides, including a re-entering angle.

Doubie, or Flunked Tex ailile, is a large outwork, consisting of two simple tunailles, or three salrant and two reentering angles.

The great defects of tenailles are, that they take up too much room, and on that account are advantageous to the encony; that the roentering angle is not sieffoded; the height of the parapet preventing the seeing down into it, so that the eremy can lodge there under cover; and the sides are tut sutfielently flanked. For these reasous, tenailles are now mostly excluded out of fortification by the best engineert, and never made but where time does not serve in lorm a hornwork.

Tenailee of the Place, is the front of the place, comprehended between the points of two deighbouring bastions; including the curt-ill, the two flanks raised on the curtain, and the two sid's of the bustions which face each other. So that the tonaille, in this sensr, is the same with what is otherwise callod the Fince of a fortress.

Tenailiek of the Ditch, is a low work raised before the curtain, in the middle of the foss or ditch; the parapet of which is only 2 or 3 feet higher than the level ground of the ravelin.

The use of tenailles in general, is to defend the bottom of the ditch by a grazing fire, and likewise the level ground of the ravelin, which cannot be so conveniently defended from any other place. The first sort do not defind the ditch so well as the others, because they are too oblique a defence; but as they are not subject to be cufiladed, Vauban has generally preferred them in the fortifsing of places. Those of the second kind defend the ditch much better than the first, and add a low flank to those of the bastions; but as these fianks are liable to be cufiladed, they bave not been much used This defect however might be remedicd, by making them so as to be covered by the extremities of the parapets of the opposite ravelins, or by some other work. And the same thing may be said of the third sort as of the second.

The $R a m^{\prime} s$.horn is a curved tenaille, raised in the foss before the flanks, and presenting its convexity to the covered way. This work seems preferable to either of the other tenalles, both on account of its simplicity, and the defence for which it is constructed.

TENA[LLONS, in Fortification, are works constructed on each side of the ravelin, much like the lunettes. They differ, as one of the faces of a tenaillon is in the direction of the ravelin, whereas that of the lunette is perpendicular to it.

TENOR, in Music, the first mean or middle part, or that which is the ordinary pitch, or tenor, of the voice, when not either raised to the treble, or lowered to the bass.

TENSION, the state of a thing tight, or stretched. Thus, animals sustain and move themselves by the tension of their museles and nerves. A chord, or string, gives an acuter or deeper sound, as it is in a greater or less degree of tension, that is, more or less stretched or tightened.

The Tension of a cord in Mechanics, is the force which acts at one end thereof when the other is fixed, or it is equivalent to that force. Thus, in the case of an equilibrium of furces upplied to a physical point; if we consider that point as fixed, the tension of each cord is precisely the force applied at cach cord to move the point; but if there be not an equiltbrium, as will happen, for example, when two unequal powery act at its extremities; the tension is in this case the least of the two forces; for the tension will evidently be the same, as if one of the extremities were fixed, and the least of the two forees acted solely at the other end.
TERM, in Geometry, is the extreme of any magnitude, or that which bounds and limits its extent. So the terms of a lige, are puints; of a superficies, lines; of a solid. superficies.

Terms, of an equation, or of any quantity, in Algelbra, are the several names or tnembers of which it is composed, separated from each other by the sigus + or - . So, the quantity ar $+2 b c-3 a x^{2}$, consists of the three terms $a x$ and $2 b c$ and $3 a x^{2}$.

In an equation, the terms are the parts which contain the several puwers of the same unknown letter or quantity: for if the same unknown quantity be found in several members in the same degree or power, they shall pass but for one term, which is called a compound one, in distinction from a simple or single term. Thus, in the equation $x^{3}+\overline{a-3 b} \cdot x^{2}-a c x=b^{3}$, the four terms are x^{3} and $(a-3 b) x^{2}$ and $a c x$ and b^{3}; of which the second term $(a-3 b) x^{3}$ is compound, and the other three are simple terms.

Teame, of a Product, or of a Fraction, or of a Ratio, or of a Proportion, \&c, are the several quantities employed in forming or composing them. Thus, the terms
of the product $a b$, are a and b;
of the fraction is, are 5 and 8;
of the ratio 6 to 7 ; are 6 and 7;
of the proportion $a: b:: 5: 9$, are $a, b, 5,9$.
Tenne are also used for the several times or seasons of the year in which the public colleges or universities, or courts of law, are open, or sit. Such are the Oxford and Cambridge terms: also the terms for the courts of King'sBench, Cominun Pleas, and the Exchequer, which are the high courts of common law. But the high court of Parliament, the Chancery, and inferior courts, do not observe the terms.-The rest of the year, out of term-time, is called racution.

There are four law terms in the year; vis,
Hilary-Term, which, at London, begins the 28 d day of January, and ends the 12 th of February.

Easter-Term, which begins the 3d Wednesday after Easter-day, and ends on the Monday next after Ascensionday.

Trinity-Term, which begins the Friday next after Tri-nity-Sunday, and ends the th Wednesday after TrinitySunday.

Michaelmas-Term, which begins the 6th of November, and ends the 28th of November.

All these terms have also their returns, the days of which are expressed in the following table or synopais.

Tuble of the Law Terms, and cheir Returns.

Tern	Begin.	1a Retum	2.1 Return	ds Return	4ih Retum	sth Return	Ead
Hilary	January 23	January so	January 27	Frbruary 3	February 9	comi	February 12
Easter	3 Wed. af. Fas	2 Whas af. Eiast	S Whar. af. East.	4 Whs.af. Fast.	3 Whs.af. Last.	Ascensian day	Mon, af. Ascens.
Tranily	Fri.af. Trin. S.	Trinity Mond.	I Wk. af. Tion.	2 Whs af 'I'rin.	3 Wks. af. Trin.	- - -	th We.af. Tris.
Slich.	Novembrer	November 3	Navember 12	Nowentrer 18	Nuveniber 25	- - -	Vascmlier 2s

When the beginaing or ending of any of these terms happens un a Sunday, it is held on the Mondiay tollowing.

Orford Terms. These are four; which begin and end as below:

Terns	Brgin.	Emt
Lent Term	January 14	Wat. bef. Patm-Sun.
Easter 'lerm	Wed, af. Low-Sun.	Sat. Lef. Wh tuun.
Trinity Term	Wed. at. Whitsun.	Sat. afier the Act
Michaclmas T	\% 3ctober 10	1)ecombr 17.

The act is lst Munday after the fith of July. - Wen the day of the begraning or ending happells on a Sunday, the terms begin or end the day after.

Cambridge-Tanas. These are three, as below:

Terma	Begin.	End
Lent Term	January 13	Frid bef. I'alm-bun.
Easter Term	Wed.att. Low-Sun	Frid afi. Commence.
Michaelmas	October 10	Derember 16.

The commencement isthe Ist Tuesday In July - There is po difference on account uf the beginning or ending being Sunday.

Scoetish Tenass. In Scotland, Cundemas term begins January 23d, und ends Feliruaty the 12 h . Whit unnodeterm begins May esth, and ends June 15ih. Lammasterm bugins July the 20th, and ends. August the 8th. Martinmas term begms November the 3d, and ends November the $29 t h$.

- Irish Teass. In Ireland the terms are the same as al London, except Michaelmas-term which begins October the 13 th , and udjonins to November the 3 d , and thence to the $6: h$.

TERMINATOR, in Astronomy, a name sometimes gisen to the circle of illumination, from its property of terminating the butumaries of light and darkness.

TERILA, in Geography. See Eartir.
Tenra-fima, in Geograply, is sometinzes used for a continent, in contrulistinction to islands. Thus, A sia, the Indics, uni Sound America, are usually distinguished into kerra-firmos and inlands.

TERR 'QUEOUS' in Geugraphy, an epithet given to our glube or earth, considered as consisting of land and water, whuh together coustitute one mass.

TERRE-fleft, or Terre-plain, in Fortification, the top, platform, or horizontal surface of the rampart, upon which the cannon are placed, and where the d fenders perform their effice. It is so called, because it lies level, hasing only a little slope nutwardly to counteract the reconl it the cannon. Its breadth is from 24 to 30 feet; being terminated by the parapet on the outer side, and inwarely by the inner talns.

Tt.RRFLLA, or little earth, is a magnet turned of a spherical figure, and placed so us that its poles, equalor, ace, do exactly correspond with thuse of the world. It
was so first called by Gilbert, as being a just representation of the great magnetic gtobe we inhatrit. Such a lerrella, it was supposed, il nicely poised, and hung in a nendian like a glabe, would be turned round lihe the carth in 24 hours by the magnetic particles persading 1t; but experience hav hown that this is a mosake.
TERRESTRLAL, something relatiog to the carth. As terrestrial gl tee, terrestrial line, \& C.
TLSRTIAN: donotes an old nowsure, containing 84 gallons, so called because it is the Jd part of a tun.

TERTIATE, in Cumbely. To tertate a great gun, is to examine the thickness of the metal at the muzzle, by which to judge of the strength of the piece, and whether it be sufficiently fortified or not.

TE:I RAClloRt, in Music, called by the modernsafourth, is a concord or anterial of t tones - The tetrachord of the ancients, was n rahk of 4 strings, accounting the tettach rd for one towe, 4 , it is ollent t. ken it music.

TETRADIIPASON, or 2uadruple Hiapasom, is a musical chond, otherwise called a quasdrupte eighth, or a nine-and-twanterth.
"TETILAEDLON', or Tetrahenros, in Gpometry, is one of the tive Platomic or requiar bohnes or solids, comprehended under 4 equilaterat and equal trangles. Or it is a triangular pyranid of t equal and equinateral faces. It is demonstrited 10 geometty, that the sule of a tetracdron is to the diameter of us circumecribing sphere, as $\sqrt{2}$ to $\sqrt{ } 3$; consequenly they are incomanensurable.

If a denote the linear edge or side of a tetracifon, b its whole superticies, c its solidity, r the radins of ins inseribed splece, and a the redius of its circuascribing sphere; then the general relation among alf these is expressed by the following equations, viz,
 $b=2+r^{2} \sqrt{ } 3=R^{2} \sqrt{3}=a^{2} \sqrt{3} \quad=6 \vdots c^{2} \sqrt{3}$.

$\mathrm{n}=3 \mathrm{r}=\frac{1 \pi \sqrt{ } / j=\frac{1}{9} \sqrt{2 t} \sqrt{3}=3 / \sqrt[3]{ } c \sqrt{ } 3 .}{}$

Sce iny Mensuration, pa. 180 \& c , 4th edit. See also the articles Regelar, und Bodies.

TEIRAGON, in Geotuetry, a qualrangle, of a figure baving 4 angles. Such as a square, a parall-logram, a rhombuc, and a traperium. It sonsetites also means peculiarly a square.
"RETRAGONI IS, a meteor, whose head is of a quadrangular figme, and its tail or train in long, thick, and unifarm. It does not ditier much from the meteor called Trabs ur beam.

TETIRACONISM, a term which some authors use to expres the quadrature of ite circh, because the quadrature is the fimding a squarre equil tait.

TITRASPASTON, in Mechatice, a machine in which are 4 pulleys.

TETRASTYIE, in the ancient Arclitecture, a building, and particularly a temple, with 4 columns in front.

THALES, a celebrated (ireck philosopher, and the first of the seven wise men of Greece, was born at Mhletum, about 6 so years before Christ. After acquiring the usual learning of his own country, he trawiled into Egypt and several parts of Asia, to learn astronomy, gometry, mystical divinity, natural knowletge or philosoply, \&c. In Egypt he met for some time great favour from the king, Amasis; but be lost it again, by the freedom of his remarks on the conduct of hinss, which it is said occasinned his return to his own country, where he communicased the knowledge he hat acquired to many disciples, among the principal of whom were Ausyimander, Anaximenes, and Pytliggoras, and was the author of the Ianian sect of phalomophers. He always however lived very retiredi, and refused the proffered favours of many great men. He was often visited by Solon; and it in said he took great pleasure in the conversation of Thrasybulus, whowe exceflent wit made Lim forget that he was tyrant of Miletmon.

Laertius, and several other writers, ogree that Thales Wus the fitther of the Grock philosophy; being the fist that made any researches into natural knowledge and mathematics. His doctrine was, that water was the principle of wbich all the bodies in the universe are composed ; that the world was the work of God; and thut God sres the must secret thoughts in the heart of man. He otserved that, in order to live well, we ought to abstain from what we find fault with in others: that bodily felicity consists in health, and that of the mind in knowledge: that the most ancient of beings is (iod, because he is nucreated: that nothing is more beautiful than the world, because it is the work of Giod; nothing more extensive than space, quicker than spirit, stronger than necessity, wiser than time. He used also to observe, that we ought never to say that to any one which may be turned to our prejudice; and that we should live with our friends as with persons that may become our cnemies.

In geometry, it has been said, he was a considerable inventor, as well as an improver; particularly in that part concerning triangles. And all the writers agree, that he was the first, even in Egypt, who took the height of the pyramids by the shadow.

His knowledge and improvements in astronomy were very considerable. He divided the celestial sphere into fise circles or zones, the arctic and antarctic circles, the two tropical circles, and the equator. He observed the apparent diameter of the sun, which he made equal to half a degree; and formed the constellation of the Little Bear. He also observed the nature and course of eclipses, and calculated them exactly; one in paricular, menoorably recorded by Hecodotus, as it happened on a day of batile between the Medes and Lydians, which, Lacrtius says, he had foretold to the Ionians. And the same author informs us, that he divided the year into 365 days. Plutarch not only contirms his general knowledge of celipses, but that his docttine was, that an eclipse of the sun is occasioned by the intersention of the moon, and that an eclipse of the moon is caused by the intervention of the earth.

His morals were as just, as his mathematics well grounded, and his judgment in civil affairs equal to cither. He was very averse to tyranny, and esteemed monarchy little better in any shape.-Diogenes Laertius relates, that, walking to contemplate the slars, be fell into a ditch; on which a good old womant, that attended him, exclaimed, " How canst thou know what is doing in the heavens, when
thou seest not what is at thy feet t"- He went to visit Cicesus, who was marching a powerful army into Cuppadocia, and enabled him to pass the river Halys without making a bridge. Thales died soon after, at above 90 years of age, it is smin, at the Olympic galles, where, oppressed with heat, thinst, and a load of years, he, in public siew, sunk into the arms of his friends.

Concerning liis wriangs, it remains doubtful whether he left any behind him; at least none have come down to us. Augustime mentions some broohs of Natural Philosophy; Simplicius, some written on Nantic Astrology ; Laertius, two treatises on the 'Tropics and Equinoxes; and Suidas, a treatise on Meteors, written in verse.

THAMMVZ. in Chronology, the 10th month of the year of tle Jews, contaiaing gy days, and answering to our Jume.

THI:MIS, in Astronomy, a name given by some to the 3d satellize of Jupiter.

THEOIOLITE, an instrument much used in surveying, for taking angles, distances, altitudes, \&c. This ith strument is variously made; different persons baving their several ways of contriving it, each attempting to muke it more simple and portable, more accurate and expeditious, than others. It usually consists of a brass circle, about a foot diameter, cut in form of fig. 5, pl. 36 ; having its limb divided into, 560 degrees, and each degree subdivided either diagonally, or otherwise, into minutes. Underneath, at cc, are fixed two little pillars bb (fig. 6), which support an axis, bcaring a telescope, for viewing remote objects.

On the centre of the circle moves the index c, which is a circular plate, baving a compass in the middle, the nieridian line of which answers to the fiducial line $a a$; at $b b$ are fixed two pillars to support an axis, bearing a telescope like the former, whose lime of collimation answers to the filucial line aa. At each end of either telescope is, or may be, fixed a plain sight, for the viewing of nearer objects.

The ends of the index aa are cut circularly, to fit the divisions of the limb \mathbf{s}; and when that limb is diagonally divided, the fiducial line at one end of the index shows the degrees and minutes on the limb. It is also furnished with cross spirit levels, for setting the plane of the circle truly horizontal; and a vertical arch, divided into degrees, for taking angles of elevation and depression. The Whole instrument is mounted with a ball and sochet, upon a threc-legged staff.

Many theodolites however have no telescopes, but only four plaius sights, two of them fastened on the limb, and two on the ends of the index. Two diflerent ones, mounted on their stald, are represented in fig. 4 and 5 , plate 21.
The use of the theodolite is abundantly shown in that of the semicircle, which is only half a theodolite. And the index and compass of the theodolite serve also for a circunferentor, and are used us such. The ingenious Mr. Ramsden made a must excellent theodolite, for the use of the military survey now carrying on in England.

THEODOSIUS, a celebrated mathematician, who flourished in the times of Cicero and Pompey; but the time and place of his death are unknown. This Theodosius, the Tripolite, as mentioned by Suidas, is probably the same with theodosius the philosopher of Bithynis, who Strabo says excelled in the mathematical sciences, ns also his sons ; for the same person might have travelled from the one of those places to the other, and spent part of his
life in each of them; like as Hipparchus was called by Strabus the Bithyman; but by Ptoleny and uthers the Risudian.

Theodosius chiefly cultivated that part of geometry which relates to the ductrine of the spitere, concerning which be published three books. Thie tirst of these contains 22 proposinens; the steond 23 ; mad the thurd 14 ; all demonotrited in the pure geometrical manner of the ancicuts. I'tolemy made great use of three propositions, as well as all succeeduig writers. These beoks were translated by the Arabians, out of the original Greak, into their own linguage. From the Arabic, the work was again trandated into Latin, and printed at Venice. But the Arabic version being very defective, a more complete edition was published in Greek und Latin, at Paris 1558, by John Pena, Regiun Professor of Astrunomy. And Vithlo acquired reputation by translating Theodosius into Latin. 'This author's works were also commented on and illustruted by Clavios, Heleganius, and Gaurinus, and lastly by Dechales, in his Cursus Mathematicus. Theo dosius's Spherics was also translated, and published, by our countryman the learned Dr. Barrow, in the ycar 1675 , illustrated and demonstrated in a new and concise method. By this author's account, 'Theodionus appears not only to be a great master in this more difficult part of geomerry, but the first considerable author of antiquity who has wrilten on that subject. Another edition was published at Oxford 1707 in 8 vo. by Jus. Hunt.

Theodusius wrote also concertuing the Celestial Houses; also of Days and Nights ; copies of which, in Greck, are in the king's library at Pans; of which there was a Latio edition, published by Peter Dasypedy, in the year 1572.

THE:ON, of Alesandria, a celelirated Greck philusopher and mathematician, who flourished in the the century, about the year 380 , in the time of Theodosius the Great; but the time and manner of his death are unknown. His genius and dasposition for the stully of philusophy were wery early improved by a close application to sludy; so that be acquired such a proficiency in the sciences, as to render his name venerable in history; and to procure him the honour of being presilent of the famous Alexaldrian school. One of his pupils wan the admirable Hypatia, bis daughter, who succeoded hinn m the presidency of the school; a trust, which, like himself, she discharged with the grentist honour and usefulness. [Sce her life in its place in the tirst volume of tbis Dictionary.]

The study of nature led Theon to many just conceptions concerning God, and to many uselul retlections in the science of moral philesophy; bence, it is said, he wrote with great accuracy on divine providunce. And he werms to have made it his standing rule, to judge the truth of certain principles, or sentiments, from their natural or necessary tendency. Thus, be says, that a full persuasion, that the Deity sees every thing we do, is the strongest incentive to virtuc; for he insists, that the must profligate bave power to refrain their hanils, and hold their tongues, when they think they are observed, or nverheard, by some person whom they fear or respect. With huw much mure reason then, says he, should the apprebension and belief, that God sees all things, restrain men from sin, and constantly excite them to their duty? He also repressnts this belief, concerning the Deity, as productive of the griatest pleasure imaginable, especiully to the virtuous, who might depend with greater confidence on the favour and preicetion of Providence. For this reason, be recommends no-
thing so much as meditation on the presence of God: and he recommended it to the civil magistrate, as a n atraint on such as were profane and wicked, to bave the following inscription written, in large characters, at the corner of every street ; God sers thez, O Sinnetr.

Theon wrote notes and commentaries on some of the uncient mathematicians. He comprosed ulso a book, entisled Progyninasmata, a thetorical work, written with great judgment and elegance; in which he criticised on the writings of some illustrious orators and bistorians: pointing out, with great propriety and judgment, their beauties und imperfections; and taging down proper rules for propriety of stjle:. He recomanends conciseness of expression, and perppicuity, as the principal ornaments. This book was printed at Baste, in the gear 1541; but the best edition is that of Leyden, in 1626, in 8vo.

THEOI'HRAST'US, a celebrated Greek philosopher, was the son of Melanlius, and was born at Eretus in Berotua. He was at first the disciple of Lucippus, then of Plato, and lastly of Aristotle; whom he succeeded in his school, about thr 322d year before the Christian era, and taught philosophy at Athens with great applause. He said of an orator without judgment, "that he was a horse without a bridle." He used also to say, "There is nothing so valuatle as time, and those who lavish it are the most inexcusable of all prodigals."-He died at about 100 years of age.

Throphrastus wrote many works, the principal of which are the following.-1. An excellent moral treatise entitled, Chatacters, wbicb, be says in the preface, be compused at 99 years of age. Isaac Casaubon has written learned commentaries on this small treatise. It has bern translated from the Greek into French, by Bruyere; and it has also been translated into Enghsh.-2. A curious treatise on Plants.-3. A treatise on fossils or stones ; of which Dr. Hill has given a good edition, with an English translation, and tearmed notes, in 8so.

THE:ORE:M, a proposition which terminates in theory, and which considers the propertics of things already made or done. Or, a theorem is a speculative proposition, deduced from several definitions compared together. Thus, if a triangle be compared with a parallelogram standing on the same base, and of the same altitude, and partly from their immediate definitions, and partly from other of their propertics already determined, it is inferred that the parallelogram is double the triangle; that proposition is a thcorem.

Theorem stands contradistinguished from problem, which denutes something to be done or constructed, as a theorem proposes something to be proved or demunstrated.

There are two things to be chiefly rugarded in every therrem, viz, the proposition, and the demonstration. In the first is exprossed what agrees to some certain thing, under certain condinons, and what does not. In the latter, the reasons are lad down by which the understanding comes to concrive that it does or does not agree to it. Tbeorems are of various kinds: as,

Unversal Theores, is that which extends to any quantity without restriction, universally. As this, that the n ctangle or priduct of the sum and difference of any two quantitics, is equal to the difference of their squares.

Puriculur 'lizorem, is thal which extends only to a particular quantity. As this, in an equilat eral rectilinear triangle, each angle is equal to 60 degrees ${ }^{\circ}$

Negative Ineonem, is that which expresses the impos-
sibility of any ansertion. As, that the sum of two biquadrate numbers cannot make a square number.

Locat Tueoren, is that which relates to a surface. As, that triangles of the same base and altitute are equal.

Plane Tueonen, is that which relate to a surface that is either rectilinedr or bounded by the circumference of a circle. As, that all angles it the same segment of a circle are equal.

Solid Tueorem, is thut which considers a space terminated by a sulid leter ; that is, by any of the three conic sections. As this, that if a right line cut two asympotic parabolas, its two parts terminated by them shall be equal.

Reciprocal THEOHEM, is one whose convense is true. As, that if a triangle have two sides equal, it has also two angles equal: the converse of which is likewise true, via, that if the triangle have two angles cqual, it has also two sides equal.

THEORY, a ductrine which terminates in the sole speculation or consideration of its object, without any view to the practice or application of it. To be learned in an art, \& c, the theory is sufficient; to be a master of it, both the theory and practice are requisite.-Machines often promise very well in thenry, but fuil in the practice.-We say, theory of the moon, theory of the rainbow, of the microscope, of the camera obscura, \&c.

Tu eonirs of the Planets, \&c, are systems or hypotheses, according to which the Retronomers explain the reasons of the plienamena or appearances of them.

THERMOME:TER, an instrument fur neasuring the temperature of the air, \&ic, as to heat and cold.

The invention of the thermometer is attributed to several persons by different authors, viz, to Sanctorio, Galileo, father Paul, and to Drebbel. Thus, the invention is ascribed to Cornelius Drebbel of Alcmar, about the beginning of the 17 thi century, by his countrymen Boerhave (Chem. 1, 1.a. 132, 136), and Musschenbrock (In- . troul. ad Phil. Nat. vol. 2. ןa. 625).-Fulgenzit, in lis Late- of Father Paul, gives him the honour of the first dis-covery.-Vincenzie Viviau (Vit. de l'Gatil. pa. 67; also Oper. di Gulil. pref. pa. 47) speaks of Galilew as the inventor of thermometers.-But sanctorino (Com, in Galen. Art. Med. pa. 73G. 842, Com. in Avicen. Can. Fen. 1, pa. 22, 78. 219) expressly assumes to himself this invention: and Borelli (De Mot. Animal. 2, prop. 175) and Malpighi (Oper. Posth. pa. 30) ascritie it to bim withat reserve. Upon which Dr, Martine remarks, that these Florentiae academicians are not to be suspected of partiality in favour of one of the Patavinian school.

But whoever was the first inventor of this instrument, it was at first very rode and imperfict; and as the various degrees of heat were indicated by the different cantraction or expansion of air, it was afterwards found to be all uncertain and sometiness a deceiving reasure of heat, because the bulk of the air was affected, not only by the difference of heat, but also by the variable weight of the atmosphere.-There are varinus kinds of thermoneters, the construction, defects, theory, \&c, of which, are as follow.

The Ait Thermometer.-This instrument depends on the rarefaction of the air. It consists uf 11 glass tube be (fig. 1, pl. 39) connected at one end with a lurge glass
ball A , and at the vider cud immersed in motupen ussel, or terminating in a ball de, with a narrow obitice al n; whech vessel, or laill, contans any coluored liquor that will not cavly fresze. Aquationts tunged of a time blue colour with solution of vitrol or copper, or spirit of wine tuged with cuchineal, will answer this purpose. But the ball a must be first moderatily warmed, se that a part of the arr contained in it may be expectled through the orifice t ; and then the liguor pressed by the weight of the atmoxphere, will enter the ball ws, "ntid nse, for example, to the midille of the tube nt c , nt a mean temperature of the weather; and in this state the liquor by its weight, and the air included in the ball and tube a Ac, by its elasticuty, "ill counterbalance the weight of the atmospheris. As the surrounding air becomes warmer, the air iil the ball and the upper purt of the tube, expanding by heat, will drive the liquur into the lower ball, and cousequently its surface will descend ; on the contrary, as the animbient air becomes colder, that in the ball is condensed, and the liquor, pressed by the weight of the atmosphere, will ascend: so that the liquor in the tube will ascend or descend more or less, according to the state of the air contiguous to instrument. To the tube is affixed a scale of the same length, divided upwards and downwards, from the middle c, into 100 equal parts, by means of which may be observed the ascent and descent of the liquor in the tube, and consequently the variations also in the temperature of the atrnosplicre.

A similar thermometer may be constructed by putting a small quantity of mercury, not exceeding the bulk of a pea, into the tube BC (fig. 4, pl. 39), bent into wreatis, that taking up the less lieight, it may be the more manageable, and less liable to harm; divide this tube into any number of equal parts to serve for a scale. Here the approaches of the mercury towards the ball A will show the increase of the degree of beat. The reason of which is the same as in the former.

The defect of both these instruments consists in this, that they are Jiable to be acted on by a double cause: for, not unly a decrease of heat, but also an increase of weight of the atmosphere, will make the liquur rise in the one, and the mercury it the other; and, on the contrary, either an increase of heat, or decrease of the weight of the atmophere, will cause them to descend.

For these, and other reasuns, thermometers of this kind have long been disuscd. However, M. Amontons, in 1702, with a view of perfecting the aérial thermometer, contrived his Universal Thermometer. Finding that the changes produced by heat and cold in the bulk of the air write subject to invincible irregularitics, be substituted for these the variations produced by heat in the elastic force of this fluid. This thermometer consisted of a long tube of glass (fig. s, pl. 39) open at one end, and recurved at the other end, which terminated in a ball. A certain quantity of air was compressed into this ball by the weight of a columil of mercury, and also by the weight of the atmosphere. The effect of heat on this included air was to make it sustain a greater or less weight; and this effect was measured by the variation of the colurun of mercury in the tube, corrected by that of the barometer, with respect to the changes of the weight of the external nir. This instrument, though much more perfect than the fortuer, is nevertbeless subject to very considerable defeets and inconviniences. Its length of 4 feet rededers it 3 T

THE
[
506
untir for a variety of experiments, and its construction is difficult and complex : it is extremely inconvenient for carriage, as a very small melination of the sube would suffer the included air to escape: also the friction of the mercury in the tube, and the compressibility of the air, contribute 10 render the indications of this instrument exiremely uncertain. Besides, the dilatation of the air is not so regularly proportional to its heat, nor is its dilataton by a given heat nearly so uniform as he supposed. This slepends much on its inoisture; for dry air does not expand near so much by a given heat, as air stored with watery parsicles. For these, and other reasons, enumerated by Deluc (Recherches sur les Mod. de l'Atmo. tom. 1, pa. 278 \&c), this instrument was imitated by very few, and never came into general use.

Of the Florentine Thenmometrr. - The academists del Cimentu, about the middle of the 17 th century, considering the inconveniencies of the air thermoneters above slescribed, attempted another, that should measure heat and cold by the rarefaction and condensation of spirit of wine; though much less than those of air, and consequently the alterations in the degree of beat likely to be much less sensible.

The spint of wine coloured, was included in a very tine and cylindrical glass tube (fig. 2, pl. 39), exhausted of its air, having a hollow ball at one cnd A, and hermetically sealed at the other end b . The ball and tube are filled with rectified spirit of wine to a convenient height, as to c, when the weather is of a mean temperalure, which may be done by inverting the tube into a vessel of stagnant coloured spint, under a receiver of the air-pump, or in any other way. When the thermoneter is properiy tilled, the end D is heated red hot by a lamp, and then bermetically sealed, leaving the included air of about $\{$ of its natural density, to prevent the air which is in the spirit from dividing it in its expansion. To the tube is applied a scale, divided from the middle, into 100 equal parts, upwards and slownwards.

Now spirit of wine rarefying and condensing very considerably; as the heat of the ambient atmosphere increases, the spirit will dilate, and so nscend in the tube; and as the beat decrear... the spirit will descend; and the degree or quantity of the motion will be shown by the attached scale.

These thermometers could not be subject to any inconvenience by an evaporation of the liquor, or a variable gravity of the incumbent atmosphere. Instruments of this kind were first introduced into England by Mr. Buyle, and they soon came into general use among philosophers in other countries. They are however subject to considerable inconveniences, from the weight of the liquor itself, and front the elasticity of the air above it in the tube, both which prevent the freedom of its ascent; besides, the rarefactions are not exactly proportional to the surrounding heat. Moreover spirit of wine is incapable of bearing very great heat or very great cold: it boils sooner than any other liquor; and therefore the degrees of heat of boiling fuids cannot be determined by this thermometer. Ant thuugh it retains its fluidity in pretty severe cold, yet it seems not to condense very regularly in them: and at Torneao, near the polar circle, the winter cold was so severe, as Maupertuis informs us, that the spirits were frozen in all their thernometers. So that the degrees of heat and cold, which spirit of wine is
capable of indicating, is much ton limited to be of very great or general use.

Anether great defect of these, and other thermometers, is, that their degrees caunot be compared with each other, It is true they mark the varintions of heat and cold; but each marks tor itself, and after its ovn manner; because they do not proceed from any point of temperature that is cummon to all of them.

Frum these and various other imperfections in these thermometers, it happens, that the comparisous of them become so precarious and defective: and yet the most curious and interesting use of them, is what ought to urise from such comparison. It is by this we should know the heat or cold of another seusun, of another year, another clinate, \&c; and what is the greatest degree of heat or colll that men and other animals can subsist in.

Reaumur contrived a new thermometer, (fig. 3, pl. 39) in which the inconveniences of the former are proposed to be remedied. He took a large ball and tube, the content or dimensions of which are known in every part; be graduated the tube, so that the space from one division to anoller might contain a 1000 th part of the liquor, which liquor would contain 1000 parts when it stood at the irrezing point: then putting the ball of his thermometer and part of the tube into boiling water, he observed whether it rose 80 divisions: if it exceeded these, he changed his liquor, and by adding water lowered it, till upon trial it should just rise 80 divisions; or if the liquor, being too low, fell short of 80 divisions, he raised it by adding rectified spirit to it. The hiquor thus prepared suited his purpose, and served for making a thermoineter of any size, whose scale would agree with his standard. Such liquor, or spirits, bring about the strength of common brandy, may easily be had any where, or matle of a proper degree of density by raising or lowering it.

The ablé Nullet made many excellent thermometers upon Reaumur's principle. Dr. Martine however expresses his apprchensions that thermometers of this kind cannot admit of such accuracy as might be wished. The balls or bulbs, being large, as $\mathbf{3}$ or 4 inches in diameter, are neither heated nor cooled son enuugh to show the variations of heat. Small bulbs and small tubes, he says, are much more convenient, and may be constructed with sufficient accuracy. Though it must be allowed that Reaumur, by his excellent scale, and by depriving the spirit of its air, and expelling the air by means of heat from the ball and tube of his thermometer, has brought it to as much perfection as may be; yet it is liable to some of the incenveniences of spirit therinometers, and is much inferior to mercurial ones. These two kinds do not agree together in indicating the same degrees of intense cold; for when the mercury has stood at 22° below 0 , the spirit indicated only 18°, and when the mercury stood at 28° or $\$ 7^{\circ}$ below 0 , the spirit rested at 25° or 29°. See the description of Reaumur's thermometer at large in Mem. de l'Acad. des Scienc. an. 1730, pa. 645, Hist. pa. 15. Ib. an. 173 i, pa. 354, Hist. pa. 7.

Mercurial Thermometra.-It is a most important circumstance in the construction of thermometers, to procure a fluid that measures equal variatuons of beat by correspunding equal variationsin its own bulk: and the fluid which posscosses this essential requisite in the most perfect degree, is mercury: the variations in its bulk approaching nearer to a proportion with the corresponding variations
of its heat, than any other flold, Besides, it is the most easy to purge of its air; and is also the most proper for measuring very considerable variations of beat and cold, as it will bear more cold before freezing, and more heat before boiling, than any other fluid. Mercury is also more seasible than any other fluid, air excepted, or conforms more speedily to the several variations of heat. Moreover, as mercury is an homogeneous fluid, it will it every thermometer exbibit the same dilatation or condensation by the same variations of heat.

Dr. Halley, though apprised only of some of the remarkable properties of mercury above recited, seems to have been the first who suggested the application of this fluid to the construction of thermometers. Philos. Trans. vol. 3, pa. 505.

Bocrhave (Chem. 1, pa. 720) says, these mercurial thermometers were first contrived by Olaus Roemer ; but the claims of Fabrenheit of Ansterdam, who gave an account of his invention to the Royal Society is 1724, (Philos. Trans. No. 381,) have been generally allowed. And though Prius and others, in Eingland, Holland, Fradee, and other countries, have made this instrument as well as Falirenheit, yet most of the mercurial therinometors are graduated according to his scale, and are called Fabrenheit's shermometers.

The cone or cylinder, which these thermometers are often made with, instead of the ball, is made of glass of a moderate thickness, lest, when the exhausted tube is hermetically sealed, its internal capacity should be diminished by the weight of the ambient atmosphere. When the mercury is thoroughly purged of its air and moisture by boiling, the thermometer is filled with a sufficient quantity of it; and before the tube is hermetically sealed, the air is wholly expelled from it by beating the mercury, so that it may be rarefied and ascend to the top of the tube. To the side of the tube is annexed a scale (fig. 7, pl. 39), which Fahrenbeit divided into 600 parts, bepinning with that of the severe cold which he had observed in Iceland in 1709, or that produced by surrounding the bulb of the thermometer with a mixture of snow or beaten ice and sal ammoniac ur sea salt. This he apprehended to be the greatest degree of cold, and accordingly he marked this, as the beginning of his scale, with 0 ; the point at which mereury begins to boil, he conceived to show the greatest degree of heat, and this he made the limit of his scale. The distance between these two points be divided into 600 equal patts or degrees ; and by trials he found at the freezing point, when water just begins to freeze, or snow or ice just begins to thaw, that the mercury stood at 32 of these divisions, therefore called the degree of the freesing point; and when the tube was immersed in boiling water, the mercury rose to 212, which therefore is the boiling point, and is just 180 degrees above the former or freezing point. But the present method of making the scale of these thermometers, which is the kind in most common use, is first to immerge the bulb of the thermometer in ice or show just beginning to thaw, and mark the place where the mercury stands with 32 ; then immerge it in boiling water, and again mark the place where the mercury stands in the tube, which mark with the No. 212, exceeding the former by 180; dividing therefore the intermediate space into 180 equal parts, will give the scale of the thermometer, and which may afterwards be continued upwards and downwards at pleasure.

Other thermometers of a similar construction have been accommodated to common use, having but n porition of the above scale. They have been made of a spall size and portable form, and adapted with appendages to particular purposes; and the tube with its annexed scale has often been enclosed in another thicker glass tube, also hermetically scaled, to preserve the thermometef from injury. And all these are called Fahrenlieit's thermometers.

In 1733, M. Delisle of Petersburg consirucied a mercurial thermometer (see fig. 3, pl. 34), on the principien of Reaumur's spirit thermometer. In his thermometer, the whole bulk of quicksilver, when immerged in boiling water, is conceived to be divided into 100,000 purts : and from this one fixed point the variuus degreses of heat, etthet above or below it, are marked in these paris on the tube or scale, by the various expansion or contraction of the quicksilver in all imaginable varieties of heat.- Dr. Martine apprehends it would have been better if Delisle hat made the integer 100,000 parts, or fixed point, at freezing water, and from thence computed the dhlatations or condensations of the quicksilver in those parts; as all the common observations of the wrather, \&c, would have been expressed by numbers increasing as the heat increased, instead of decreasing, or counting the contrary way. However, in practice it will not be very easy to determine exactly all the divisions from the alteration of the bulh of the contained fluid. And besides, as glass itself is diluted by heat, though in a less proportion than quicksilver, it is only the excess of the dilatation of the contained fluid above that of the glass that is observed; and therefore if different kinds of glass be differently afiected by a given degree of heat, this will make a seeming difierence in thr dilatations of the quicksilver in the thermometers constructed in the Newtonian method, either by Reaumurs rules or Delisle's. Accordingly it has been found, that the quicksilver in Delisle's thermometers bas stood at different degrees of the scale when immerged in thawing spow : having stood in some at 154°, while in others it has been at 156 or even 158°.

Metallic Thermometer.-This is a name given to a machine composed of two metals, which, while it indicates the variations of heat, serves to correct the errors bence resulting in the going of pendulum clocks and watches. Instruments of this kind have been contrived by Grahaza, Le' Roy, Ellicot, Harrison, and other eminest artificers. See the Philos. Trans. vol. 44, pa. 689, and vol. 45, pa. 129 , and vol. 51 , pa. 823, where the particular descriptions \&c may be seen.
M. Deluc has likewise described two thermometers of metal, which he uses for correcting the effects of heat upon a barometer, and an hygrometer of his construction connected with them. See Philos. Trans. vol. 68, pa. 437.

Oil Thermometers.-To this class belongs Newton's thermometer, constructed in 1701, with linseed oil, instead of spirit of wine. This fluid has the advantage of being sufficiently bomogeneous, and capable of 15 times greater rarefaction than that of spirit of winc. It has not been observed to freese even in very grcat colds; and it sustains a great heat, about 4 times that of water, before it boils. With these advantages it was made use of by Sir I. Newton, who discovered by it the comparative degree of heat for boiling water, melting wax, boiling spirit of wine, and melting tin ; beyond which it does not appear that this thermometer was applied. The method he
used for adjustimg the scale of this oil thermometer, was as fullows: supposing the butb, when immerged in thawung sinow, to contain 10,000 parts, he found the on: expanded by the heat of the human body so as to tale up a 39th more space, of 10256 such pasts; and by the leat of water bolling sirongly 10725 ; and by the hrat of meltung an 11516. So that, reckuning the freuging point ins a common limit between heat and cold, he began his scale there, marhing it 0, and the hoat of the human body be made 12°; and conseruently, the degrees of heat boing proportional to the degrees of rarefuction, or 856 : 7.25: : 19:34, this number 36 will expriss the heat of bouling water; and, by the same rule, 72 that of melting tia. Pbilos. Trans. No. 270.

Tbere is an insuperathe inconvenience attending all theronometers made with oil, or any other viscid fluid, wiz, that such hequor adbures tou much to the sides of the tht e, and so inevitably disturbs the segularity and untormity of the thesmometer.

Of the fired points of THERsometress.-Vرrious methods have brell proposed by different authors, for finding a fixed point or dearee of heat, from which ta reckon the other degrees, and adjust the scale; wo that different observations and intruments might be compared together. Mr. Bingle was vory sensible of the inconveniencies arising from the want of a universal scale and mode of graduation; and he proposed either the freezing of the essentiab oil of aniseeds, or of distilled water, as a term to begin the numbers at, and from thence to graduate them according to the propurtional dilatations or contractions of the included spirits.

Dr. Halley (Philos, Trans. vol. S.) serms to have bernfully apprised of the badetlects of the indefinite method of constructing thermometers, and wished to have them adjusted to some determined points. What he seems to pretèr, for this purpose, is the degree of temperature found in subterranean places, where the heat in summer or cold itt winter appears to have no influence. But this degree of temperature, Dr. Martine slows, is a term for the universal constructoon of thermometers, both inconvenient and precarious, as it cannot be easily ascertained, and as the difference of soils and depths may occasion a considerable variation. Another cerm of heat, which he thought might be of use in a gencral graduation of thermometers, is that of boiling spirit of wine that bas been highly rectified.

The first trace that occurs of the method of actually applying fixed points or terms to the thermometer, and of graduating it, so that the unequal divisions of it might correspond to equal degrees of heat, is the project of Renuldini, professor at Padun, in 1694: it is thus described in the Acta Jirud. Laps. "Take a slender tube, about 4 palms long, with a bull fastened to the sarne; pour into it spirit of wine, enongh just to fill the ball, when sur* rounder with ice, and not a drop over: in this state seal the orifice of the tuhe hermeticully, and provide 12 vessels, each capable of containing a pound of water, and somewhat more; and into the first pour 11 ounces of cold water, into the sccond 10 ounces, into the third $9,8 \times$; this dons, immerge the thermometer in the first vessel, and pour into it one ounce of bot water, observing bow bigh the spirit rises in the tube, and noting the point with unity ; theu remove the thermometer into the second vessel, into whichare to be pouned 2 ounces of hot water,
and note the place the spirit rises to with 9 : by thus pros cecding till the wbolu pound ot water is spent, the insirument will be found divided into 12 parts, derwing so many terms or degrecs of beut; so that at 2 the beat is double to that at 1 , al 3 triple, \&c."

But this methul, though plausible, Wolfius shows, is decentiul, and built un false suppositions; for it takes for grunted, that we have one degree of heat, by adding one ounce of bot water to tl of cold; two degrees by adding 2 ounces to 10 , de : it supposes also, that a single degree of heat acts on the spirit of wine, in llee ball, with a stingle force ; a double with a double foree, dxc: lastly it supposes, that the thect be produced in the timernometer by the heat of the anbient tur, which is here produced by the loot water, the air has the sanue degree of heat with the water.

Soon after this project of lienaldini, vi, in 1701 , Newton constructed his wil thermoueter, and placed the base or lowest fixed point of his scale at the temperature of thawing snow, and 12 at that of the human body. \&c, us above expluined.-Deluc observes, that the 2d term of this scale should have beth at a greater distance from the first, and that the heat of boiling water would have answered the puipose better than that of the buman body.

In 1702 , Anontons contrived his universal thermometer, the scule of which was graduated in the following manwer. He chose for the first terin, the weight that counterbalanced the air included in his thermometer, when it was heated by boiling water: and in this state be so adjustad the quantily of mercury contained in it, till the sum of its height in the tube, and of its height itt the baronneter at the moment of obscrvation, was rqual to 73 inches. Fixing this number at the point to which the mercary in the tule rose by plunging it in bo:ling water, it is evident that if the barometer at this time was at 25 inches, the beight of the column of mercury in the thermometer, above the level of that in the ball, was 4.5 thehes; but if the height of the baroneter was less by a certain quantity. the column of the thernometer ought to begreater by the same quantity, and recuprocally. He formed his scale on the supposition, that the weight of the atmosphere was always equal to that of a culumin of mercury of 28 inches, and he divided it into inches from the point 73 duwnward, marking the divisions with 72, 71, 70, Acc, and subdividing the inches into lines. But as the weight of the atmosphere is variable, the barometer must be observed at the same tine with the thornoneter, that the number indicated by this last instrument may be properly corrected, by adding or subtracting the quantity which the mercury is below or above 28 inches its the barometer. In this scalc, then, the freezing point is ut $51 \frac{1}{1}$ iuches, corresponding to 32 degrees of Fahrenheit, and the heat of boiling water at 73 inches, answering to 212 of Fabrenheit's; and thus they may be casily compared together.

The fixed points of F'ahrenheit's thermometer, us has been already observed, are the congelation pruduced by sal ammoniac and the heat of boiling water. The interval between these points is divided inte 212 equal parts; the former of these points being markud 0 , and the other 218.

Reaumur in his thermorncter, the construction of which be publighed in 1750 , begius lis scale at an artiticial congelation of water in warm weather, which, as he uses

THE

mrage hulbs tor bis glasses, gives the freczany pornt much hugher than is should bo, and at boiling water he marks 80 degrees, whict point Dr. Martine thinks is more vague and uncertain than bus freczing porm. In order to determine the correspatrence of his scale with that of Fahrenheit, it is to be considered that bis boiling water heat, is really only the boilung heat of weakened spirit of wine, cainciding nonrly, as Ir. Martine apprehends, with Fahretubit's iso degrees. And as his $10 \frac{1}{2}$ degrees is the consiant licat of the eave of the observatory at Puris, of Falirenthei's $53^{\text {' }}$, he shence finds his freezing point, insteat of anowering just to 32°, to be somewhat above 34°.

In Celsits's thernemeter (exhibited in plate 39, fiy. S), which is mercurial, the two finded urmos are the degiee at which ice begins to thaw, and that which answers to the beat of botling water. The interval between these two limits is divided into a hondred equal parts, and the eero of the scale, which is the inferior limit, corresponds to 32° of Fahtroneit; so that 9 degrecs of Fabrenheits scale are equivalent to 5 regrees of Celsius's. This thermrometer is now generally called the Centigrade thermometer.

Belisle's themmoneter, an account of which he presented to the Petersburg Academy in 1733, has only one tixed point, which is the heat of boihny water, and, contrary tat the common order, the several regrees are marked from this point downward, according to the condensations of the contained quicksilver, and consequently by numbers increasing as the beut decreases. The freczing point of Deliste's scale, Dr. Martine makes near to his 150°, corresponding to fuhrenheit's 32°, by means of which they may be compared; but Ducrest says, that this point ought to be marked at least at 154".

Ducrest, in inis spirit thermometer, constructed in 17.40 , made use of two fixed points; the first, or 0 , indicated the temperature of the earth, and was marked on his scale in the cave of the Paris Observatory; and the other was the heat of boiling wuter, which that spirit in his thermometer was made to endure, by leaving the upper part of the tube full of nir. He divided the interval between these points into 100 equal parts; culling the divisions upward, degrees of heat, and those below O_{3} degrecs of cold.-It is said that he has since regulated his thermometer by the degree of cold indicated by melting ice, which he found to be $10 \frac{2}{5}$.

The Florentine thermometers were of two kinds. In one sort the freezing point, determined by the degree at which the spirit stood in the ordinary culd of ice or snow (probably in a thawing statc) and coinciding with 32° of Fabrenhert, fell at 20°; and in the other hind at 134. And the natural heat of the viscera of cows and deer, \&ce, raised the spirit in the latter, or less sort, to about 40°, coinciding with their summer heat, and nearly witt 102° in Fahrenheit's; and in their other or long thermometer, the spirit, when exposed to the great midsummer heat in their country, rose to the point at which they marked 80°.

In the thermometer of the Paris Observatory, made of spirit of wine by Labire, the fluid always stands at 48° in the cave of the observatory, corresponding to 53 degres in Fahrenheit's; and his 28° corresponded with 51 inches 6 lines in Anontons' thermometer, and consequently with the freezing point, or 32° of Fabrenheit's.

In Poleni's thermometer, made after the manuer of Amentons', but with Iess nereury, 47 inches correspond. ed, according to Dr. Martine, with 51 in that of A muntons, and 53 with 59 ?

In the standard themoneter of the Boyal Society of London, according to which thermoneters were for a long tinne construcled in England, Dr. Martine found that $3+\frac{1}{}$ degrees answered to 64° in Fahrenheit, and 0 (t) 89.

In the thermometers graduated for adjusting the degries of heat proper for exutic plants, dec, in stoves und greenhouses, the middle temperature of the air is marhed at 0 , and the degrees of heat and cold ure numbered both above und below. Many of these are made on no regular and tixed principles. But in that formerly much useri, catted Fowler's regulator, the spirit iell, in neluing show, to about 34° below 0 ; and Dr. Martine found that his 10° above 0, nearly coincided with $6:^{\circ}$, of Falirenbeit.

Dr. Hales (Statical Esosays, vol. i, pa. 58), in his there monacter, made with spirit of wine, and ured in experimons on vegetation, began his scale with the lowest deglee of Ireczing, or 32° of Fahrenheit, and carried it up t.) 100°, which he marked where the spirit stood when the ball was hered in hot water, upon which some wax flowating fir-t began to cougulate, and this puint Dr, Martine found to correspond with $1+2^{\circ}$ of Fahrenleit. But by experience it is found that Hales's 100 falls considerably above 149.

In the Edinburgh thermometer, made with spirit of wine, and used in the meteorological observations pub lished in the Medical Essays, the scale is divided intoinches and tenths. In meltung snow the spirit stood at 8_{7}^{2}, , and the heat of the human skin raised it to $22 \mathbf{I}^{2}$. Dr. Martine found that the heat of the person who gra- . duated it, was 97 of Falirenheit.

The new French thernometer, called the Centigrade Thermometer, conlains 100 degrees between the freezing and boiling points of water; anl those degrees furtber divided drcimally by a vernier, \&c.

From the abstract of the history of the construction of thermometers, it appears that frevzing and boiling water have furnished the distinguishing points that have been marked upon almost all thermometers. The inferior fixed point is that of freezing, which some have determined by the freczing of wuter, and others by the melting of ice, plunging the ball of the thermoracter into the water and ice, while melung, which is the best way. The superiar fixed print of almost all thermometers, is the heat of boiling water. But this point canuot be considered as fixed and certain, unless the heat be produced by the same degree of boiling, and under the same weight of the atumosphere; for it is found that the higher the harometer, of the heavier the atmosphere, the greater is the heat when the water boils. It is now agreed therefore that the operation of plunging the ball of the thermometer in the boiling water, or suspending it in the steam of the same in an enclosed vessel, should be performed when the water boils viokently, and when the barometer stands at 30 Finglish inchirs, in a temperature of 35° of the atinosphere, marhing the height of the therinometer then for the degree of 212 of Fabrentieit; the point of metting ice being 32 of the same; thus having 180 degrees between those two fixed points, so deterinined. This was Mr. Bird's method, who it is apprehended first attended to the state of the barometer, in the making of thermometers. But thise instruments may be tnade equally true under any pressure of the atmosphere, by making a proper allowance for the difference in the height of the barometer from 30 inches. M. Deluc, in his Recherches
sur les Mod. de l'Atmosphere, from a series of experiments, has given an equation for the allowame on account of this difference, in Paris ineasure, which has lweal verified by sir Grorge Shuck burgh, Philos. 'Tians. 1775 and 1778 ; also Dr. Hursley, Dr. Maskely uc, and sir Girorge Shuckburgh bave adapted the equation und ruich, to Englinh measures, and have redured the allowances into tables for the use of the artist. Dr. Honky's rule, deduced from Deluc's, is this: 50.5 er log. $2-92.804=$ h, where h denotes the height of a thermometer plunged is boiling water, above the paint of molting ice, in degrees of Burd's Fabrenheit, and z the height of the barometer in loths of an inch. From this rule be has computed the following table, for fiading the heights, to which a good Bird's Fahrenbeit will rise, when immersed in boiling water, in all states of the barometer, from 27 to 31 English inches; which will serve, anong otber uses, to direct instrument-makers in making a true allowance ior the effect of the variation of the barometer, if they should be obliged to finish a thermometer at a time when the barometer is above or below 30 inches; though it is best to fix the boiling point when the barometer is at that reight.

Equation of the Boiling Point.

Baroancter	Equation.	Diffreacr-
31.0	+1.57	0.78
30.5	+0.79	0.79
30.0	0.00	0.80
29.3	-0.80	0.82
29.0	-1.62	0.83
28.5	-2.45	0.85
28.0	-3.31	0.86
27.5	-4.16	0.88
27.0	-3.04	

The numbers in the first column of this table express beights of the quicksilver in the barometer iil English inches and decimal parts: the $2 d$ column shows the equation to be applied, according to the sign prefixed, to 212° of Bird's lishrenheit, to find the true boiling point for every such state of the barometer. The boiling point for all inturmediate states of the harometer may be had with sufficient accuracy by tahing proportional parts, by means of the 3 d colutnu of differences of the equations. See Philos. 'Trans, vol. 64, art. 30; also Dr. Maskelyne's paper, vol. 64, art. 20.

Sir Gco. Shuckburgh (Philos. Trans. vol. 69, pa. 362) has also given several tables and rules relating to the boiling goint, botli from his own observations and Deluc's, from which is extracied the following table, for the use of artists in constructing the thermometer.

Height of the fistors.	Corr. of the Boiling Point.	Differences.	Correct, acmed. to Drtue.	Differences.
26.0	-7.09	0.91	- 6.83	$0 \cdot 90$
${ }^{1} 26 \cdot 5$	-6.18	0.91	-5.93	0.89
27.0	-5.27	$0 \cdot 90$	- 5.04	0.88
27.5	-4.37	$0 \cdot 89$	-4.16	0.87
28.0	-348	0.89	-3.31	0.86
285	-2.59	0.87	- 2.45	0.83
$29 \cdot 0$	-1.72	0.87	-1.62	0.82
29.5	-0.85	083	-0.80	0.80
30.0	$0 \cdot 00$	085	0.00	0.79
$30 \cdot 3$	$+0.85$	$0 \cdot 84$	+ 077	0.78
31.0	$+1.60$		+ 1.57	

The Royal Society too, fully sensible of the importance of adjusting the fixed points of thermometers, appontuted a committer of seven gentiomen to consider of the best method fur this purpose; and their report may be seen in the Philos. Trans, vol. 67, art. 37.

They observe, that though the boiling point be placed so much higher on some of the thermoneters now made, than on otbers, yet this does not produce any considerable error in the observations of the weather, ut least in this clinate; for an error of $1 \frac{1}{\frac{1}{2}}$ degree in the position of the boiling point, will make an error only of balf a degree in the position of 92°, and of not more than a quarter of a degrece in the point of 62°. It is only in nice experimetts, or in trying the heat of hot liquors, that this error in the boiling poiut can be of much signification.

III adjusting the freezing, as well as the boiling point, the quicksilver in the tube ought to be kept of the same heat as that in the ball. When the frecaing point is placed at a considerale distunce from the ball, the pounded ice

Heal of the Air.	Conrection.
42°	.00087
32	.00174
62	.00261
72	.00848
82	.00435

$82 \quad .00455$ if it be not so piled, then the observed point, to be very accurate, should be corrected, according to the annexed table.

The correction in this table is expressed in 1000 th parts of the distance between the freexing point and the surface of the ice: ex. gr. if the freezing point stand 6 inches above the surface of the ice, and the heat of the room be 62 , then the point of 32 sbould be placed $6 \times$ ${ }^{*} 00261$, or ${ }^{\circ} 01566$ of an inch below the observed point.

The committec further observe, that in examining the heat of liquors, care should be taken that the quicksilver in the tube of the thermometer be beated to the same degree as that in the ball; or if this cannot be done conveniently, the observed heat should be corrected on that account; for the manner of doing which, and a table calculated for that purpose, see Philos. Trans. vol, 67, aft. 37.

It was for some time thought, especially from the experiments at Petersburg, that quicksilver suriered a cold of several hundred degrees below 0 befure it congealed and became fixed and malleable; but later experiments have shown that this persuasion was merely owing to a deception in the experiments, and later ones have made it appear that its point of congelation is no lower than -40°, or rather -39°, of Fahrenheit's scale. But that it will bear bowever to be cooled a few degrees below that point, to which it leaps up again on beginning to congeal; and that its rapid descent in a thermometer, through many hundred degrees, when it bas once passed the above-mentioned limit, proceeds merely from its great contraction in the act of freezing. See Philos. Trans. vol. 73, aft. *20, 20, 21.

Miscellancous Obscroations.

It is absolutely necessary that those who would derive any advantage from these instruments, should agree in using the same liquor, and in determining, according to the same method, the two fundamental points. If they agree in these fixed points, it is of no great importance whether they divide the interval between them into a greater or a less number of equal parts. The scale of Fabrenlieit, in which the fundamental interval between 212°, the point of boiling water, and 32° that of melting
tec, is divited into 180 parts, should be retaned in the northern countries, where Fahrenheit's thermometer is used: and the scale in which the fundanental interval is divided into 80 parts, will serve for those countries where Heaumur's thermometer is adopted. But no incolivenience is to be apprehended from varying the scale fur particular uses, provided care be taken to signify into what number of paris the fundamental interval is divided, and the point where 0 is placed.

With regard to the choice of tubes, it is best to bave them exactly cylindrical through their whole length. The capillary tubes ate preferable to others, because they require smaller bulbs, and they are also more sensible, and less brittle. The most convenient size for common experiments has the internal diameter about the with or 50th of an inch, about 9 inches long, and made of thin glass, that the rise and fall of the mercury may be better seen.

For the whole process of filling, marking, and graduating, see Deluc's Recherches \&c, tom. 1, pa. 393, \&c.

To change the Degrees of one Thermometer to another.
The most usual thermometers employed in Europe, are, Fabrenheit's, Reaumur's, and the new French or Centigrade. Now the range or space on the tube, between the points of frrezing and boiling water, in the tirst is divided into 180 degrees, in the second 80 , and in the last 100, which three numbers are in the proportion of the three $9,4,5$; by means of which surall proportional numbers, thacrefore, any number of degrecs of one of these scales, is easily changed into the corresponding number of either of the others; viz, by saying, as the proportional number of the latter, is to that of the iormer, so is the proposed degrees of the former, to those on the latter: observing, however, that when Fahrenheit's is one of the thermometers compared, which begins with the freczing point at 32, where the other two begill with 0 , then the degrees of Fabrenheit must be diminished or increased by 32, as the case may require.

Also the same may be done by the following simple theorems; in which A denotes the degrees in Keaumur's scale, r those of Fahreaheit's, and c those of the Ceutigrade thermometer.

$$
\begin{aligned}
& 1 \ldots \ldots r=\frac{9}{8}+32=\frac{9}{3} c+32 . \\
& 2 \ldots(\mathrm{r}=32)=\frac{4}{3} \mathrm{c} . \\
& 3 \ldots \mathrm{c}=\frac{4}{4}(\mathrm{r}-32)=\frac{5}{4} .
\end{aligned}
$$

Experiments wih T'иепмохетеRs.
The following is is table of some observations made with Fabrenheit's thermometer, the barometer standing at 29 inches, or little bigher.

At 600° Mercury boils.
546 Oil of vitriol boils.
242 Spirit of nitre boils.
240 Lixivium of tartar boils.
213 Cow's milk boils.
212 Water boils.
206 Human urine boils.
190 Brandy boils.
175 Alcohol boils.
156 Scrum of blood and white of eggs harden.
146 Kills animals in a few minutes.
108 to 99, Hens hatch eggs.
107 \{ Heat of skin in ducks, geese, bens, pigeons, 103 \{ partridges, and swallows.
106 Heat of skin in a common ague and fever.

103 \{ Heat of skin in dogs, cats, sheep, oxen, swine, $100\{$ and most other quadrupeds.
99 to 92 , Heat of the buman skin in health.
97 Heat of a swarm of bees.
96 A perch died in 3 minutes in water so warm.
80 Heat of air in the shade, in very hot weather.
74 Butter begins to melt.
64 Heat of air in the shade, in warm weather.
55 Meen temperature of air in England.
43 Oil of elives begins to stiffien and grow opake.
$32\left\{\begin{array}{l}\text { Water just freezing, or snow aud ice just } \\ \text { melting. }\end{array}\right.$
30 Milk freezes.
28 Urine and common vinegar freeze.
25 Blood out of the body freezes.
20 Burgundy, Claret, and Madeira freeze.
$\left\{\begin{array}{c}\text { Greatest cold in Pennsylvania in 1731-2, } \\ \text { 1 }\end{array}\right.$ lat. 40°.
4 Greatest cold at Utrecht in 1728-9.
A mixture of snow and salt, which can freeze oil of tartar per deliquium, but not brandy. - 39 Mercury freezes.

> Marine's Essays, ph 284, \&c.

On the general subject of thermometers also see Martine's Essays, Medical and Phalosophical. Desaguliers's Exp. Phil. vol. 2, pa. 289. Musschenbroeck's 1nt. ad Fhil. Nat vol. 2, pa. 625, ed. 1762 . Deluc's Recheretes sur les Mudif. \&e, tom. 1, part. 2, cli. 2. Nollet's Leçuns de Physique, tom. 4, pa. 375.

Thermometers for particular uses. - In 1757, lord Cavendish presented to the Ruyal Society an account of a curious construction of thermoneters, of two different forms; one contrived to show the greatest degree of heat, and the other the greatest cold, that may huppen at any time in a person's absence. 'Hhilos. 'Trans. vol. 50, pa. 300.

Since the publication of Mr, Canton's discovery of the compressibility of spirits of wine und other fluids, there are two corrections necessary to be made in the result given by lord Cavendish's thermometer. For in estimating, for instance, the temperature of the sea at any depth, the thermometer will appear to have been colder than it really was: and besides, the expansion of spirits of wine by any given number of degrees of Faheepheit's thermoneter, is greater in the higher degrees than in the lower. For the method of making these two corrections by Mr. Cavendish, see Pbipps's Voyage to the North Pole, pa. 145.

Instruments of this kind, for determining the degree of heat or cold in the absence of the ohserver, have been illvented and described by others. Van Swinden (Diss. sur la Conparaison du Therm. pa. 253 \&c) describes one, which he says was the first of the kind, made on a plan communicated by Bernoulli to Leibnitz. Mr. Kraft, he also informs us, made one nearly like it. Mr. Six has, in $\mathbf{1 7 8 2}$, proposed annther construction of a thermometer of the sanne kind, described in the Philus. Trans. vol. 72, pa. 72 \&c.
M. Deluc has described the best method of constructing a thermometer, fit for determining the temperature of the air, in the measuring of heights ty the barometer. He has also shown how to divide the scale of a thermometer, so as to adapt it for astronomical purposes in the observation of refracious. See Recherches \&cc, tom. 2, pa. 35 and 265.

Mr. Cavallo, in 1781, proposed the construction of a

Thermonetricul Barometer, which, by means of boiling water, might indicate the varions gravity of the atmosphere, or the beight of the barometer. This therinometer, he observes, with its epparatus, might be packed up inin a small purtable box, and serve for determining tlie heights of mountains \& \mathbf{c}, with grester facility, that with the common portable barimeter. The insifument, in its present stake, consists of a cylindrical tim vessel, about 2 urhes in dumeter, and 5 inctue, hagh, in which vessel the water is contained, which may tse made to boil by the tlame of a lurge wax-candle. The thermoneter is fastened to the tin vessel in such a manner, as that jts bulb may be about an inch above the bottom. The scale of this thermoneter, which is of brase, exhibits on one side of the glass tube a few degrees of Fahrenheit's scale, $s i z$, from $\because 10^{\circ}$ to 216°. On the other side of the tube are marked the various barometrical beights, at which the boiling water shows those particular degress of heat which are set duwn in sir Geo. Shuckburgh's table. With this mutrument the barometrical height is shown within one10,h of an inch. The degrees of thin thermometer are rather longer than one 9 th of un inch, and therefore may be dirided into many parts, espectally by a Nonius. But a considerable imperfection arises from the smallness of the tin vessel, which does not aimit a sufficient quantity of water; but when the quantity of water shall be sufficiently Jarge, as for instance 10 or 12 ounces, and is kept bailing in a proper vessel, its degree of heat under the same pressyre of the atmosphere is very setiled; whereas when a thermometer is kept in a small quantuty of boiling water, the mercury in its stem does not stand very stady, sometimes rising or falling so much as hall a degree. Mr. Cavallo properses a further improvement of this instrument, in the ['hilos, Trans, vol. 71, pa. 324.

The ingenous Mr. Wedgwnerd, so well hnown for his various improvements in the different soals of pottry ware, has contrited of mate a thermomyter tor measuring the ligher degrees of heat, by means of a distinguishing property of agillacoous bonties, viz, the dimmution of their bulk by fire. This diminution commences in a low red lieat, und proceeds rigularly, as the beat increases, till the clay brcomes virrified. The tonal contraction of some good clays which he hav examined in the strongest of his own fires, is considerably more than one-fourth part in every dimension. By measurang the contraction of such suhstances then, Mr. Wedgwowl contrived to measure the most interse heats of ovens, furnacts, \&c. For the curious particulars of which, see Philos. Trans, vol. 72, pa. 305 \&c.
In 1790 a paper was presented to the Ruyal Society of Edinburgh, describing two thermomerera, miwly invented, by Dr. Juhn Rutherford, of Middle Balilish; the one for registering the higbest, und the other fior registering the lowest degree of heat, to which the thermometer has risen or fallen during the abseoce of the observer. An account of them may be found in the third volume of the Transactions of the Society.

A bew self-registering thermometer bas more lately been invented by Mr. Krith of Ravelstone, which we consider as the most ingenious, simple, and perfect, of any that has hitherto appeased. Its simplicity is so grent that it requires only a very short deseription to make it intelligible.

A月 (6g. 5, pl, 39) is a thinglass tuhe about 14 inches lung and $\frac{3}{}$ ths of an inch calhber, close or hermetically
scaled at the top. To the lower end, which is open, there is joined the crookrd glass-tube jse, 7 hiches long, and foths of an inch caliber, and ogien at top. The tube as is filled with the strongest spini of wine, and the tube az with mercury. This is properly a spirit of wine thermomoter, and the mercury is used mercly to support a piece of ivory or glass, to which is affixed a wire for raising one index and depressing unothel, nccordang as the mencury rises or falls. r, is a small comical pucce of ivory or glass, of such a weight as to float on the suiface of the metroury. To the float is joined a wire called the float-wire, which reaches upwards to n, where it terminutes in a kive bont at right angles. The fluat-wire, by meatis of an eye at a, moves easily along the small harpsichurd wire Ga. L. 2 are two indexes made of thin black oiled silk, which slide upwards or downwards with a force not more than two grains. The one placed above the knee, points out the greatest rke, and the one placed below it points out the grealest fall of the thermoneter.

When the instrument is to be prepared for an observation, both indexes are to be brought close to the hnee 14 . It is evident that when the nercury rises, the float and float-wire, which can be moved with the smallest force, will be pusised upwards till the mercury becomes sta- . tionary. As the hnee of the float-wire moves upwards, it wils carry aloug with it the upper index L. When the mercury again subsides, it leaves the imlex at the bighest poilt to which it was raised, for it will not descend by its own weight. As the mercury falls, the float-wire does the same ; it therefore brings along with it the lower index 1 , and continues to depress it tillit again become stationary, or ascent in the tube; in which case it leaves the lower index behind it as it had furnacrly left the upper. The scale to which the indexes point is placed parallel to the slender harpsichord wire. It may be sech more distinctly in fig. 6. That the scale and indexes may not be injured by the wind and rain, a cylindrical glass cover, cluse at top, and made so as exactly to fit the part Fe, is placed over it.

Mr. Leslie, the author of the very ingenious 'Treatisc on Heat, has invented a difierential thermometer for the measurement of minute variations of temperature. It corrsists of two tubes, each terminating in a small bulb of the same dimensions, joined by the blow-pipe, and bent in the form of a v, a small pution of dark coloured liquor having previnusly been introuduced into one of the bulba After many trials, the floid best adupted to the purpose was found to be a solution of carmine in conccutrated sulphuric acid. By managing the included air with the heat of the hand, this red liquor is made to stand at the required point of the opposite tube. This is the zero of a scale fastened to that tube, and divided into equal parts above and below that point. The iustrument is then fixed on a stand. It is inanifest, that when the liquor is at rest, or points at zero, the column is pressed in upposite directions by two portions of air equal in elasticity, and containing equal quantities of caloric. Whatever heat then may be applied to the whole instrument, provided both bulbs recenve it in the same degree, the liquor must remain at rest. But if the one balf receive the slightest excess of temperature, the air which it contains will be proportionally expanded, and will push the liquor apainst the air in the other full with a force varying as the difference betteen the temperatures of these two portions of air: thus the cquilibrium will be destroyed, and the fluid
will rise in the opposite tube. The degrees of the scale through which it passes will mark the successive augmentations in the temperature of the ball which is exposed to the grealest beat. So mat this instrument is a balance of exireme delicacy for comparing the temperatures of its two scalcs.

When ihermometers are contrived to measure very great degrees of heat by the expansions they produce in substances, or, ou the contrary, the expansons corresponding to different temperatures, they are denominated Pyrometers. See the descriptions of the printipal of thrse under their proper article.- On the subject of thermoneters, see also my Philosophical Recreations, \&kc. vol. 4, pa. 43, \&c.

THERAIOSCOI'E, the same as Thermometer.
THIR, in Chronology, the name of the 5th month of the Ethiopians, which corrcsponds, accorditg to Ludolf, to the month of January.

THIRD, in Music, a concord resulting from a misture of two sounds contaning an interval of 2 ilegrees: being called a third, because containugg $\$$ terms, or sounds, between the extromes.

There is a greater and a less third. The former takes jts form from the serquiquarta ratio, 4 to 3 . The logarithm or measure of the ochave $\frac{3}{\tau}$ being 100000 , the measure of the greater third $\frac{5}{4}$ will be 0.32193 - The greater third is by pracutiowers often taken for the third part of an octave; which is an error, since thiree greater thirds fall short of the octave by a diesis; for $\frac{3}{4} \times \frac{3}{4} \times \frac{5}{4} \times$ $\frac{1}{12}_{12}^{2}=\frac{2}{1}$.

The lesser third takes its form from the sesquiquinth ratio 5 to 6; the measurr or logarithm of this Iromer thind $\frac{6}{6}$, bein 02.26305 , that of the octave : beng 100001 . Both these shirtls are of great use in melouly; mahing as it were the foundation and life of hurmony.

Tusиd-Point, or Tierce-point, in Arthitecturc, the point of section in the vertex of an equilataral triangle.Arches or vaults of the third point, are those consisting of two arches of a circle, meeting in an atgle at top.

THIEEP.-legged-Sinff, an instrument conssting ot three wooden legs, mate with joints, so as to shut up together, and to take off in the mudde for the better carriage. It has usually a laall and sochet on the tep; and its use is to support and adjust instruments for astronomy, surveging, \& c.

TIUENDER, a noive in the lowre region of the air, vxcited hy a sudden explosion of electrical clouds; which are therefore called thunder-clouds.- The phenomenon of thunder is variously accounted for. Sinecn, Rohault, and some other authors, both ancient and modern, account for thunder, by supposing twa clonds impending over each other, the upper and rarer of which, thecotuing condensed by a fresh accossion of air raised by wamoli from the lower parts of the atmosphere, or driven upon it by the wind, immediately falls forcibly down tupon the lower and denser cloud ; by which full, the air interpesed betwren the two being compiessed, that next the extreminies of the two clateds is forced out, and leaves room for the extremity of the upper cloud to close tight upen the under; thus a great quantity of the nir is enclesed. which at tength escaping though some winding irregular vent or passage, occasions the buise called thander.

But this lame device could only reach ut most to the case of thunder heard without lightuing ; and thersfore recourse has bepon had to other modes of solution. 'Thus, it has been said that thunder is nut occasomed by the fallVol. 11.
ing of clouds, but loy the kindling if sulphurnos exhalations, in the same matner as the noise of the aurunn futminans. "There are sulphutous cxhalations," says New-4 ton, "always ascending tu to the air when the earth is itry; there they ferment with the nitrons acids, and, sometimes taking firc, generate thunder, lightning, \&c."

The effects of thunder are so like those of fired gunpowder, that Dr. Wallis thithis we need not scruple to uscribe them to the same cause; und the principal mgredients in guuponder, we know, are nitre anl sulpbur; charcoal only serving to horp the parts separate, for their better kinding. Hence, if wr conceive in the air a convetient misturt of nitrous and sulphurous particles ; and abose, by any cause, to be sct un fire, such explosiun may well follow, and with such noise and light us attend the firing of gunpowder; and being once kindled, it will run from place to place, dittietent ways, as the exbalations happen to lead it; much as is found in a train of gunpowder.

But a third, and nowt probable opinion is, that thunder is the report or nuise protluced by an electrical explosion in the clouds. Ever since the year 1752, in which the identity of the matter of lightuing and of the electrical fluid has been ascertained, philosophers have generally agreed in considering thunder as a concussion produced in the air by an explosion of electricity. For the illustration and proof of this theory, sce Electricity, and Laghtnixg.

It may here be observed, that Mr. Henry Eeles, in a letter written in 1751, and read before the Noyal Society in 1752, considers the electrical fire as the cause of thunder, and accounts for it on this bypothesis; and he tells us, that he did not know of any other person's having made the sume conjecture. Philus. Trans, vol. 47, p. 594 \&c. -That rathlug in the noise of thunder, which makes it seem an if it passed through arches, or were variously bruken, is probably owing the the sound being excited 'among clouds hanging over one another, and the agitated air passing irregularly between them.-The explosion, if high in the air, and rrmote from us, will do no mischief; but when near, it may destroy trees, animals, \&c.

This proximity, or small distance, may be estimated nearly by the interval of time between secing the flash of. lightming and hearing the report of the thunder, extimating the distance after the rase of 1142 feet per second of time, or $3 \frac{2}{3}$ sconds to the mile. Dr. Wallis observes, that commonly the difierence between the two is about 7 seconds, which, at the rate above mentionent, gives the distance almust 2 miles. But sometimes it comes in a second ir two, which argues the explusion very near us, and even umong us. And in such cases, the dactor assures us, lie has sonetimes tioretold the mischirfs that followed.

The noise of thunder, and the flame of lighning, are easily made by art. If a mixture of oil or spirit of sitriol be made with water, and some filings of steel addel to it, there will immedately anise a thick smoke, or vapour, out of the mouth of the vissel; and if a lighted candle be applied to this, it will take fire, and the flame will immediately descend intothe vessel, which will be burst to pieces witin a noise like thent of a c.mnon. This is so far analogous to shunder and lightning, that a great explosion and fire are occasioned by it; but in this they differ, that this matter when once fired is isstroyed, and can give no more explosions; whereas, in the heavens, one clap of thunder usually folluws nitutber, and there is a continued succession of them for along time. Mr. Homberg explained this

3 U
by the lightness of the air nbove us, in comparison of that near, which therefore would not suffer all the matter so kindled to be dissipated at once, but kceps it for several returis.

THUNDERBOLT. When lightning acts with extraofdinary violence, and breaks or shatters any thing, it is called a thunderbolt, which the vulgar, to fit it for such effects, suppose to be a hard body, and even a stone.But that we need not have recourse to a hurd solid borty to account for the effects commonly attributed to the thunderbolt, will be evident to any one, who considers those of the pulvis fulninalis, and of ganpowder; but more especially the astonishing powers of electricity, when only collected and employed by human art, and much more when directed and exercised in the course of nature.When we consider the known etfects of electrical explosions, und those produced by lightning, we shall be at no loss to account for the extrnordinary operations vulgarly ascribed to thunderbolts. As stohes and bricks struck by lightuing are oftell found in a vitrifiod statc, we may reasonably suppose, with Beccaria, that some stones in the carth, having been struck in this mannep, gave occasion so the vulgar opinion of the thunderbolt.

Thunder-Ctouds, in Pbysiology, are those clonis which are in a state fit for producing loghtuing and thunder. From Beccaria's exact and circumstantnal accouht of the exiernal appearances of thunder-clouds, the following particulars are extracted. The first appearance of a thunder storm, which usually happens when there is little or no wind, is one dense clourt, or more, increasing very fast is size, and rising into the higher regions of the air. The lower surface is black and nearly level; but the upper finely arched, and well defined. Many of these clouds often seem piled upon ohe another, all arched in the same munner; but they are contiually uniting, swelling, and extending their arches.

At the time of the rising of this cloud, the atmosphere is commonly full of a great many separate clouds, that are motiunless, and of whimsical shapes. All these, on the appearance of the thunter-cloud, draw towards it, and become more uniform in their shapes as they approach; till, coming very near the thunder-cloud, their limbs mutually stretch towurds each other, and they immedintely coalesce into one uniforin mass. 'These he calls adscititions clouds, from their coming in, to enlarge the size of the thunder-cloud. Bet sometimes the thunder-cloud will swell, and increase very fast, without the conjunction of any adscititious clouds; the vapours in the ammphere forming themselves into clouds wherever it passes. Some of the adscititious clouds appear like white tringes, nt the skirts of the thunder-cloud, or under the body of it, but they keep continually getting darker and darker, as they approach to unite with it.

When the thunder-cloud is grown to a great size, its lower surface is often tagged, particular parts bring detached towards the earth, but still connected with the rest. Sometimes the lower surface swells into various large protuberances bending unformly downward; and sonetimes one whole side of the cloud will have an inclination to the earth, and the extremity of it urarly touch the ground. When the eye is under the thunder-cloud, after it is grown larger and well forfoed, it is seen to sink lower, and to darken prodigiously; at the same time that a number of small adscititious clouds (the origin of which can never be perceived) are scen in a rapid motion, driving about in
very uncertain directions under it. While these clouds are agitated with the most rapid motions, the rain commonly falls in the greatest plenty, and if the agitation be exceedingly great, it commonly hails.

While the thunder-cloud is swelling, and extending its branches over a large tract of country, the lightning is seen to dart from one part of it to another, and often to illuminate its whole mass. When the cloud has acquired a sufficient extent, the lightning strikes between the cloud and the earth, in two opposite places, the path of the lightning lying through the whule body of the cloud and ins branches. The longer this lightining continues, the tess dense does the cloud become, and the less dark ins appearances; till at length it breaks in different places, aud shows a clear sky.

These thunder-clouds were sometimes in a positive as wrll as a negative state of electricily. The electricity continued longer of the same kind, in proportion as the thunder-clousd was simple, and uniform in. its dirretion ; hut when the lightuing changed its place, there commonly happened a change in the electricity of the apparatns over which the clouds passed. It would change suddenly after a very violent flash of lightning, but the change would be gradual when the lightning was moderate, and the progress of the thunder-cloud slow. Bcccur. Lettere dell' E.lettricismo pa. 107 ; or Priestley's Hist. Elec. vol. 1, pa. 397. See also Lightiving.

Thusder-House, in Electricity, is an instrument invented by Dr. James Lind, fur illustrating the manner in which buildings receive damage from lightning, and to evince the utility of metallic conductors in preserving them from it.

A (fig. 1, pl. 40), is a board about $\frac{3}{4}$ of an inch thick, and shaped like the gable end of a house. This board is fixed perpendicularly on the bottom board n, upon which the perpendicular glass pillar $C D$ is also fixed in a bole about 8 inches distant from the basis of the hoard A. A square hole ilmik, aboot a quarter of an inch decp, and nearly one inch wide, is made in the board A, and is filled with a square piece of wood, nearly of the same dimensions. It is nearly of the same dimensions, because it must go so easily into the hole, that it may drop off, by the least shaking of the instrument. A wire ak is fastened diagonally to this square piece of wood. Another wire in of the same thickness, having a brass ball H , screwed on its pointerl extremity, is tastened upon the board A: so also is the wire 2 s , which is shaped in a ring at o. From the upper extremity of the glass pillar co, a crooked wire proceeds, having a spring socket \mathbf{F}, through which a double hnobberl wire slips perpendicularly, the lower knob 6. of which falls just above the knob n. The glass pillar DC must not be made very fast into the bottom board; but it must be fixed so that it may be pretty easily moved round its own axis, by which means the brass ball o may be brought nearer to or farther from the ball n, without touching the part Erg. Now when the square piece of wood laitK (which may represent the shutter of a window or the like) is fixed into the bole so that the wire Lx stands in the dotted representation $t \mathrm{y}$, then the mevallic conmunication from H to o is complete, and the instrumeut represents a house furnished with a proper metallic conductor; but if the square piece of wood LMIK be fixed so that the wire Lk stands in the direction I.K, as represented in the figure, then the metallic conductor 40 , from the top of the house to its bottom, is

T II U

[51
515]
TID
interrapted at IM, in which case the bouse is not properly secured.

Fix the piece of wood LMIK, so that its wire may be as represented in the figure, in which case the metallic conductor $\mathbf{H o}$ is discontinued. Let the ball \boldsymbol{H} be fixed at about half an inch perpendicular distance from the ball \mathbf{H}; then, by turning the glass pillar DC, remove the former ball from the latter; by a wire or chain connect the wire ef with the wire q of the jar P; and let another wire or chain, fastened to the hook o, touch she outside coating of the jar. Connect the wire Q with the prime conductor, and charge the jar; then, by turning the glass pillar de, let the ball a come gradually near the ball $H_{,}$and when they are arrived sufficiently near together, you will observe, that the jar explodes, and the piece of wood LMIK is pushed out of the hole to a considerable distance from the thun-der-house.

Now the ball c, in this experiment, represents an clectrified cloud, which, when it is arrived sufficiently near the top of the house A, the electricity strikes it ; and as this house is not secured with a proper conductor, the explosion breaks part of it, i, e. knocks off the piece of wood ix.

Repeat the experiment with only this variation, viz, that this piece of wood im be situated so that the wire Le may stand in the situation im; in which case the conductor mo is not discontinucd; and you will observe that the explosion will have no effect on the prece of wood Lm ; this remaining in the hole unmoved; which shows the usefulness of the metallic conductor.

Fiarther, unscrew the brass ball \boldsymbol{H} from the wire $\mathbf{m r}$, so that this may remain pointed, and with this difference only in the apparatus repeat both the above experiments, and you will find that the piece of wood IM is in neither case moved from its place, nor will any explosion be heard; which not only demonstrates the preference of conductors with pointed terminations to those with blunted ones, but also shows that a house, furnished with sharp terminations, though not furnished with a regular conductor, is almost sufficiently guarded aguinst the effects of lightning.

Mr. Henky, having connected a jar containing 509 square inches of coated surface with his prime conductor, observed that if it was so charged as to raise the index of his electrometer to 60°, by bringing the ball on the wire of the thunder-house, to the distance of balf an inch from that connected with the prime conductor, the jar would be discharged, and the piece in the thunder-house thrown out to a considerable distance. Using a pointed wire for a conductor to the thunder-house, instead of the knob, the charge being the same as before, the jar was discharged silently, though suddenly; and the piece was not thrown out of the thunder-house. In another experiment, having made a double circuit to the thunder-house, the first by the knob, the second by a sharp-pointed wire, at an inch and a quarter distance from cach vther, but of exactly the same height (as in fig. 2) the charge being the same; though the knob was brought first under that connected with the prime conductor, which was raised half an inch above it, and followed by the point, yet no explosion could fall upon the knob; the point drew off the whole charge silently, and the piece in the thunder-house remained un-moved.-Philos. Trans, vol. 64, pa. 136. See Porsts in Flectricity.

TIIURSDAY, the 5th day of the Christians' week, but the 6th of the Jews.' The name is from Thor, one of the Saxon gods.

THUS, in Sea-Language, a word used by the pilot in directing the helmsman or steersman to keep the ship in her present situation when sailing with a scant wind, so that she may not approach too near the direction of the wind, which would shiver ber sails, nor fall to leeward, and run farther out of her course.

TIDES, two periodical motions of the waters of the sea; called also the flux and reflux, or the flow and ebb.

The tides are found to follow periodically the course of the sun and moon, both as to time and quantity. And hence it has been suspected, in all ages, that the tides were somehow produced by the influence of these luminaries. Thus, several of the ancients, and among others, Pliny, Ptolemy, and Macrobius, were acquaitued with the influence of the sun and moon on the udes; and Pliny saysex. pressly, that the cause of the ebb and flow is in the sun, which attracts the waters of the oceatl ; and adds, that the waters rise in proportion to the proximity of the moon to the carth. It is indeed now well known, from the discoveries of Newton, that the tides are caused by the gravitation of the earth towards the sun and moon. Indeed the sugacious Kepler, long ago, conjectured this to be the cause of the tides: "If," says he, "the earth ceased to attract its waters towards itself, all the water in the ocean would rise and flow into the moon; the sphere of the moon's attraction extends to our earth, and draws up the water." Thus shought Kepler, in his Introd. ad Theor. Mart. This surmise, for it was then no more, is now abundantly verified in the theory laid down by Newtot, and by Halley, as well as other eminent mathematicians, from his principles.

As to the Phenomena of the Tides: 1. The sea is observed to flow, for about 6 hours, from south towards north : the sea gradually swelling; so that, entering the mouths of rivers, it drives back the river-waters towards their heads, or springs. After a continual flux of 6 hours, the sea appears to rest for about a quarter of an hour ; after which it begins to ebb, or retire back again, from north to south, for 6 bours more; in which time, the waters sinking, the rivers resume their natural course. Then, after another seeming pause of a quarter of an hour, the sea again begins to flow, as before ; and so on alternately.
2. Hence, the sea ebbs and flows twice a day, but falling every day gradually later and later, by about 48 mi nutes, the perind of a flux and reflux being on an average about 12 hours 24 minutes, and the double of each 24 hours and 48 minutes; which is the period of a lunar day, or the time between the moon's passing a meridian and coming to it again. So that the sea flowa as often as the moon passes the meridian, both the arch above the horizon, and that below it; and ebbs as often as she passes the horizon, both on the eastern and western side.

Other phenomena of the tiden are as below; and the reasons of them will be noticed in the theory of the tides that follows.
3. The elevation towards the moon a little exceeds the opposite one. And the quantity of the ascent of the water is diminished from the equator towards the poles.
4. From the sun, every natural day, the sea is twice elevated, aud twice depressed, the saine ns for the moon. But the solar tumes are much less than the lunar ones, on account of the immense distance of the sun ; yet they are both subject to the same laws.
5. The tides which depend on the actions of the san and moon, are not distinguished, but compounded, and sn 3 2

Forming as to sonse nhe united tide, increasing and decroasing, and thus mokioz neap and spring lides: for, by the actuon of the sun, the lunar tide is only changed; which change taries evory day, by reasun of the mequality betweon the natural and lunar day.
6. In the syzygies the elevations from the action of both luminaries concur, and the sea is more elevated. But the sea ascends less in the qualratures; for where the water is elevated by the action of the moon, it is depressed by the action of the sun ; and vice versu. Therefore, while the moon passes from the syzygy to the quadrature, the daily elevations are continualty diminished: ont the contrary, they are increased while the moom moves lrum the quadrature to the syzygy. At a new moon also, ceteris paribus, the elevations are greater; and those that follow one another the same day, are more different than al full moos.
7. The greatest clevations and depressions are not observed till the 2 d or 3 d day after the new or full moon. And if we consider the luminaries receding fiom the plane of the equator, we shall perccite that the agitation is diminished, and becomes less, according as the declination of the luminaries becomes greater.
8. In the syzygies, and near the cquinoses, the tides are observed to be the greatest, both lumanasics being in or near the equator.
9. The actions of the sun and moon are greater, the nearer those bodics are to the earth; and the liss, as they are farther off. Also the greatest tides happen near the equinoses, or rather when the sun is a little to the south of the equator, that is, a little before the vernal, and after the autumnal equinox. But get this does not haplen regularly every year, because sume variation may nrise from the situation of the moon's orbit, and the distance of the syzygy from the cquinox.
10. All these phenomena obtain, as described, in the open sea, where the ocemn is extended enough to be subject to these motions. But the particular situations of places, as to shores, capes, straits, \&.c, disturb these general rules. Yet it is plain, from the most cominon and universal observations, that the tides follow the laws abuve laid down.
11. The mean force of the moon to move the sea, is to that of the sun, nearly as $4 \frac{1}{2}$ to 1 . And therefore, if the action of the sun alone produce a tide of 2 feet, which it has been stated to $\mathrm{d} o$, that of the noon will be 9 feet ; from which it follows, that the spring tides will be 11 feet, and the neap tides 7 fect bigh. But as to such elevations as far exceed these, they happen from the motion of the waters against some obstacles, and from the sea violently entering inte straits or gulphs where the force is not broken till the water rises higher.

Theory of the Tides.

1. If the earth were entirely tluid, and quiescent, it is evident that its particles, by their mutual gravity towards each other, would form the whole mass into the figure of an exact sphere. Then suppose some power to act on all the particles of this sphere with an equal force, and in parallel directions; by such a power the whole mass will be moved together, but its figure will suffer no alteration by it, being still the same perfect sphere, whose centre will have the same motion as each particle.

On this supposition, if the mution of the earth, round the common centre of gravity of the earth and moon, were destroyed, and the earth left to the influence of its gravi-
tation towards the moon, as the acting prower above mentioned; then the earth would fall or nove straight to wards the moon, but still retaining its true spherical figure.

But the fact is, that the efficts of the moon's action, as well as the action iteelf, on different patts of the carth, are not equal: those parts, by the generat luw of gravity, being inost attracted that are nearest the moon, and these being least attracted that are farthest from her, while the parts that are at a modile distance are atbucted by a mean degree of force: besides, all the parts are not acterl on in paralled lines, but in lines directed tovards the centre of the moon: on both which accounts the spherical figure of the fludd earth must sutier some change from the action of the mons. So that, in falling, a above, the nearor parts, being most attracted, would fall quichisl; the farther parts, being least attracted, wuald fall slowest; and the fluid mass would be lengthened out, and take a hiad of splerentical form.

Hencent appears, and what mot be canefully observed, that it is not the actuon of the mown itself, but the inequalities in that action, that cause any variation from the spherical figure; and that, of this action were the same in all the particles ns in the central parts, and operating in the same direction, no such change would ensue.

Let us now adinit the parts of the carili to gravitate towards its centre: tben, as this gravitution far exceeds the action of the moon, and much more exceeds the diflierences of her actions on different parts of the carth, the effect that results from the inequalities of these actions of the inoon, will be unly a small diminution of the gruvity of thase parts of the carth which it endeavoured in the former supposition to scparate fromits centre ; that is, those parts of the carth which are nearest to the moon, and thoee that are farthest from her, will have their gravity toward the earth somewhat abated, to say nothing of the lateral parts. So that supposing the earth fluid, the colunns from the centre to tine nearest, and to the buthest parts, must rise, till by their greater lieight they be able to balance the other columns, whose gratity is less witered by the inequalities of the moon's action. And thus the figure of the earth mast still be an oblong sphervid.

Comsidering now the carth, instead of falling toward the moon by its gravity, as prujected in atiy dircction, 未o as to move round the centre of gravity of the carth and moon: it is evident that in this case, the several parts of the fluid earth will still preserve their relative positions: and the figure of the earth will remain the same as if it fell freely toward the moon; that is, the carth witl still assume a spheroidal form, having its longest diameter directed toward the moon.

From the above reasoning it appears, that the parts of the carth directly under the moon, as at n, and also the opposite parts at b , will bave the flood or high water at the same time; while the parts, at B and ν, at 90° distance, or where the moon appears in the hurizon, will have the ebbe or lowest wa-

ters at that time. Hence, as the earth turns round its axis from the mon to the same body again in 2.4 bours 48 minutes, this uval ot water must shift with it; and thus there will be two tudes of flood and two of ebb in that time.

But it is farther evident that, by the motion of the earth about her axis, the most clevated pait of the water is carried beyond the moon in the direction of the rotation. So that the water continuen to rise after it has passed directly under the moon, though the immediate action of the moon there begins to decrease, and cones not to its greatest elevation tull it has got about halt a quadrant farther. It continaes also to descend ufter it hay passed at 90° distunce tron the point below the moon, to a like distance of about half a quadrant. The greatest elevation therefore is not in the line drawn through the centres of the earth and moon, nor the lowest points where the moyn sppears in the horizon, but all these about lialf a quadrant removed castward froin these points, in the direction of the motion of rotainon. Thus in open seas, where the water tiows fredly, the mown s is generally past the north and south meridian, ns at p, when the high water is at z and at n : the reason of which is plain, because the moon acts with the same force after she has passed the meridian, and thus adds to the libratory or waving motion, which the water acquired when she was in the meridian; and therefore the titne of bigh water is not precisely at the time of her coming to the meridian, but some thene after, \&c.

Besides, the tides answer not always to the same distance of the inom, from the meridian, at the same places; but are variously affected by the action of the sun, wbich brings them oas sooner when the moon is in her first and third quarters, and keeps them back later when she is in ber gd and th; because, in the former case the tide raised by the sun alone would be carlier than the tide raised by the moon, and in the latter casc later.
2. We have hitherto adverted only to the action of the moou in producing tides; but it is manifest that, for the same rcasous, the mequality of the sun's actime on different parts of the earth, wouht produce a like effect, and a like variation from the exact splerical figure of a fluid earth. So that in reality there are two tides every matural day from the action of the sun, as there are in the luar day from that of the moon, subject to the same laws; and the lunar tide, as wa hive observed, is somewhat changed by the action of the sun, and the change variesevery day on account of the inequalty between the natural and the lunar day. Jndeed the eli-ct of the sun in producing tides, because of his imnense distance, inust be considerably less than that of the moon, though the gravity toward the sun be much greater: for it is not the action of the sun or moon itself, but the inequalities in that action, that have any effect: the sun's distauce is so great, that the diameter of the earth is but as a point in comparison with it, and therefore the difference between the sun's actions on the nearest and farthest parts, becomes vastly less than it would be if the sun were as near as the moon. However the immense bulk of the sun makes the effect still sensible, even at so great a distance; and therefore, though the action of the mion has the greatest share in producing the tides, the action of the sun ndds sensibly to it when they conspire together, as in the full and change of the moon, when they are nearly jn the same line with the centre of the
earth, and therefure unite their forces; consequently, in the syzygies, or at new and full moon, the tides are the greatest, being what are called the Spring-Tides. But the action of the sun diminishes the effect of the moon's action in the quarters, because the one raises the water in that case where the other depresses it; therefore the tides are the least in the quadratures, and are called NeapTides.

Newton has calculated the effects of the sun and moon respectively on the tides, from their attractive powers. The former he finds to be to the force of gravity, as 1 to 12868200 , and to the centrifugal force at the equator as 1 to 45527 . The elevation of the waters by this force is considered by Newton as an effect similar to the elevation of the cquatorial parts above the polar paris of the earth. arising from the centrifugal force at the equator; and as it is +4527 tinses liss, he finds it to be $2+\frac{1}{2}$ inches, or 2 feet and $\frac{1}{2}$ an inch.

To find the force of the moon on the water, Newton compares the spring-tides at the mouth of the river Avon, below Bristol, with the neap-tides there, and finds the proportion us 9 to 3 ; whence, after several necessary corrections, he concludes that the force of the rnoon to that of the sun, in raising the waters of the occan, is as $4+4815$ to 1; so that the force of the muon is able of itself to produce an clevation of 9 fect $1 \neq$ inch, and the sun and moon together may produce an delevation of about 11 feet 2 inches, when at their mean distances from the earth, or an elevation of abont $12 ?$ feel, when the moon is nearest the earth. The height to which the water is found to rise, on coasts of the open and deep occan, is agrecatile enough to this computation.

Dr. Horsley estimates the force of the monn to that of the sun, as $5 \cdot 0469$ to 1 , in his edit. of Nenton's Princip. See the Princip. hib, 3. sect. 3. pr. 36 and 57 ; also Maclaurin's Dissert. de Causa Physica Fluxus et Refluxus Maris apud Phil. Nat. Princ. Ma'lo. Comment. le Seur \& Jacquier, tom. 3, pa. 272. And other calculators tnahu the proportion still more different.
3. It must be olserved, that the spring-tides do not happen precisely at new and full tnoon, nor the neap-tides at the quarters, but a dny of two after; because, as in other cases, so in this, the effect is not greatest or least when the immediate influcuce of the cause is greatest or least. As, fur example, the greatest lieat is not on the day of the solstice, when the immediate action of the suh is greatest, but sonte time after; so likewise, if the actions of the sun and moon should suddenly cease, yet the tides would continue to have their course for soine time; and like also as the waves of the sea continue after a storm.
4. The different distances of the moon from the earth produce a sensible variation in the tides. When the moon approaches toward the earth, her action on every part increases, and the differences of that action, on which the tides depend, also increase ; and as the moun appronches, her action on the nearest paris increases more quickly than that on the remote parts, so that the tides increase in a higher proportion as the moon's distances decrease. In fact, it is shown by Newton, that the tides increase in proportion as the cubes of the distances drcrease; so that the moon at half ber distance would produce a tide 8 times greater.

The nuon describes an oval about the earth, and at her neareat distanee produces a tide sensibly greater than at
her greatest distance from the earth: and hence it is that two great spring-tides never suceeed each other immediately; for if the moon be at her least distance from the ẹarih at the change, she must be at her greatest distance at the full, having made half a revolution in the intervening time, and thercfore the spring-tide then will be much less than that at the last change was; and for the same reason, if a great spring-tide happen at the time of full moon, the tide at the ensuing change will be less.
5. The spring-tides are highest, and the neap-tirles lowest, about the time of the equinoxes, or the latter wad of March and September; and, on the contrary, the spring-tides are the lowest, and the neap-tides the highest, at the solstices, or about the latter end of June and December: so that the difference between the spring and weap tides, is much more considerable about the equinoctial than the solstitial scasons of the year. To illustrate and evince the truth of this observation, let us consider the etfect of the luminaries on the tides, when in and out of the plane of the equator. Now it is manifest, that if either the sun or mnon were in the pole, they could not have any effect on the tides; for their action would raise all the watur at the equator, or at any parallel, quite around, to a uniform height; and therefore any place of the earth, in describing its parallel to the equator, would not meet, in its course, with any part of the water more elevated than another; so that there could be no tide in any place, that is, no alteration in the height of the waters.

On the other hand, the effect of the sun or moon is greatest when in the equinoctial; for then the axis of the spheroidal figure, arising from their action, moves in the greatest circle, and the water is put into the greatest agitation; and hence it is that the spring-tides produced when the sun and moon are both in the equinoctial. are the greatest of any, and the neap-tides the least of any about that time. And when the luminary is any where between the equinoctial and the pole, the tides are the smaller.
6. The highest spring-tides are after the autumnal and before the vernal equinox ; the reason of which is, because the sun is nearer the earth in winter than in summer.
7. Since the greatest of the two tides happening in every diurnal revolution of the moon, is that in which the moon is nearest the zenith or nadir; for this reason, while the sun is in the northern signs, the greater of the two diurnal tides in our climates, is that arising from the moon above the horizon; when the sun is in the southern signs, the greatest is that arising from the moon below the borizon. Thus it is found by observation that the evening tides in the summer exceed the morning tides, and in winter the morning tides excred the evening tides. The difference is found at Bristol to amount to 15 inches, and at Plymouth to 12. It would be still greater, but that the fluid always retains an impressed nootion for some time; so that the preceding tides affect always those thas follow them. Upon the whole, while the moon has a north declination, the greatest tides in the nurthern hemisphere are when she is above the horizon, and the reverse while her declination is south.
8. Such would the tides regularly be, if the earth wore all over covered with the sea very deep, so that the water might freely follow the influence of the sun and moon; but, by reason of the shoalness of some places, and the narrowness of the straits in others, through which the
tides are propagated, there arises a great diversity in the effect according to the various circumstances of the places. Thus, a very slow and imperceptible mation of the whole body of water, where at is very deep, as 2 miles for instance, will suffice to raise its surface 10 or 12 feet during the period of a tide: whereas, if the same quantity of water were to le conveyed through a channel of 40 fathoms deep, it would require a very rapid stream to effect it in so large inlets as are the English channel, and the German ocean; whence the tide is found to set strongest in those places where the sea grows narrowest, the same quantity of water being in that case to pass through a smaller passage. This is particularly observable in the straits between Portland and Cape la Hogue in Normandy, where the ude runs like a sluice : and would be yet more so between Dover and Calais, if the tide coming pound the island did not cheek it.

This force, when once impressed, continues to carry the water above the ordinary height in the ocean, especially where the water meets a direct obstacle, as it does in St. Maloes; and where it enters into a long channel which, running far into the land, becomes very strait at its extremity, as it does into the Severn sea at Chepstow and Bristol.

This shoalness of the sea, and the intercurrent continents, are the reasons that in the open ocean the tides rise but to very small heights in proportion to what they do in wide-mouthed rivers, opening in the direction of the stream of the tide; and that high water is not soun after the moon's appulse to the meridian, but some hours afler $i t$, as it is observed on all the western coast of Europe and Africa, from Ireland to the Cape of Good Hope; in all which a south-west moon makes high water; and the same it is said is the case on the western side of America So that tides happen to different places at all distances of the moon from the meridian, and consequently at all buurs of the day.

To allow the tides their full motion, the ocean in which they are produced, ought to be extended from cast to west 90 degrees at least; because that is the distance between the pluces where the water is most raised and depressed by the moon. Hence it appears that it is only in the great oceans that such tides can be produced, and why in the larger Pacific ocean they exceed those in the Athantic ocean. Hence also it is ubvious, why the tides are not so great in the torrid zone, between Africa and America, where the ocean is narrower, as in the temperate zones on either side; and hence we may also understand why the tides are so small in islands that are very far distant from the shores. It is farther manifest that, in the Atlantic ocean, the water cannot rise on one shore but by descending on the other; so that at the intermediate islands it must continue at a mean height between its elevations on those two shores. But when tides pass over shouls, and through straits into bays of the sea, their motion becomes more various, and their height depends on many circumstances.

To be more particular. The tide that is produced on the western coasts of Europe, in the Atlantic, corresponds to the situation of the moon al ready described. Thus it is high water on the western coasts of Ireland, Portugal and Spain, about the 3 d bour after the moon has passed the meridian : from thence it flows into the adjacent channels, as it filds the easiest passage. One current from it, for instance, runs up by the south of England, and ano-
ther comes in by the north of Scotland ; they tahe a considerable time to move through this extent, making always high water sooner in the places to which they first come; and it begins to fall at these places while the corrents are still gong on to others that are fatther distant in their coursc. As they retum, they are not able to raise the tide, because the water runs faster ofl han it returns, till, by a new side propagated front the open ocean, the return of the current is supped, and the water begins to rise again. The tide propagated by the moun in the Gerisan ucean, when she is 3 hours past the meridati, tahes 12 hours to come from thence to Landon bridge: su that when it is high water there, a new tide is alseady come so its height in the ocean; and in some intermediate place it must be low water at the same tine. Consequently when the moon has north declination, and we should expect the tide at London to be the greatest when the moon is above the horizon, we find it is least; and the contrary when she has suuth declination.

At several plares it is high water 3 houls lefore the moon connes to the meridian ; but that tide, which the moon drives as it were beforeher, is only the tide opposite to that which was raied by her when she was 9 hours past the opposice meridan.

It would be endless to recount all the particular solutions, which are easy consequences from this doctrine: as, why the lakes and seas, such as the Caspian sea and the Mediterranean sea, the Black sea and the Baltic, have little or no sensible tides: for lakes are usially so mall, that when the moon is vertical she attracts every part of them alike, so that no part of the water can be rais.d higher than another: and having no communication with the ucean, it can neisher increase nor diminish their waser, to make it rise and fall; and seas that communicate by such narrow inlets, and are of so immense an extent, cannot speedily receive and empty water enough to raise or sink their surface in any sensible degree.

In general; when the time of high water at any place is mentioned, it is to be understood on the days of new and full moons.-A mong piluts, it is custumary to reckon the tume of flood, or high water, by the point of the compass the moon bears on, at that time, allowing $\frac{1}{d}$ of an hour for each point. Thus, on the full and change days, in placers where it is flood at noon, the tide is said to flow north and south, or at 12 o'cluck : ill other places, on the same days, where the moon bears 1, 2, 3, 4, or more points to the east or west of the meridian when it is high water, the tide is said to flow on such point ; thus, if the moon bears 5 E , at flood, it is said to flow ar. and mw , or 3 bours before, the meridian, that is, at 9 oclock; if it bears $s w$, it tlows $s w$ and NE, or at 3 hours after the meridian ; and in like manner for the other points of the moon's bearing.

The times of high water in any place fall about the same buurs after a preriod of about 15 days, or between one spring tide and another; but during that period, the times of high water fall each day later by about 48 minutes.

On the subject of this article, see Newton Princ. Math. lib. 3, prop. 24; and De System. Mundi sect. 38, \&c. Apud Opera edit. Horsley, tom. 3, pa. 52 \&cc, pa. 203 \&c. Maclaurin's Account of Newton's Discoveries, book 4, ch. 7. Ferguson's Astron. ch. 17. Robertson's Navig. book 6, sect. 7, 8, 9. Lalande's Astron. vol. 4. Sce also the article Physical Astronomy is this dictionary.

Tide Dial, an instrument contrived by Mr. Fergusnm, for exbibiting and determining the state of the tides :
for the constraction and use of which, see his Astron. pa. 297.

Tade Tables, we tables commonly exhibiting the times of high water at sundry places, as they fall on the days of the full and change of the moon, and sometimes the height of them aloo. These are common in most books on isavigation, particularly Robertson's, and the tables requisite to be used with the Nautical Almanac. See one at High-water.

Tlerce, or Teirce, a liquid measure, as of wine, oil, \&c, containing 42 gallons, or the Sd pait of a pipe; whence its name.

TINE, a succession of phenomena in the universe; or a mode of duration, marhed by certain periuds and measures; chiefly indeed by the motion and revolution of the luminaries, and particularly of the sun.

The idea of time in general, Locke observes, we acquire by considering any part of iufinite duration, as set out by periodical measures: the idea of any particular time, or length of duration, as a day, an hour, \&c, we acquire first by observing certain appearances at regular and seemingly equidistant periods. Now, by being able to reperat these lengths or mensures of time as often as we will, we can imagine duration, where nothing really endures or exists; and thus we imagine to-miorrow, or next year, ixe.

Some of the laner school-philusophers define trme to be the duration of a thitg whose existence is neither without beginoming nor end: by this, time is distinguished from cternity.

Aristutle and the Peripatetics define it, numerus motus secundum prius et pusterius, or a multatude of transient parts of motion, succeeding each other, in a continual flux, in the rulation of priority and posterioriay. Hence it should follow that time is mation uself, or at least the duration of motion, consialered as having everal parts, some of which are continually succeeding to others. But on this principle, time ar temporal duration would not agree to bodies at rest, which yet nobody will deny to exnt in time, or to endure for a time.

To avoid this inconvenience, the Epicureans and Corpuscularians made ume to be a hind of flux different from motion, consisting of infinite parts, continualiy and immediately succeeding each ollier, and this from eternity to eternity. But others directly explode this notion, as cstablishing an cternal being, independent of Gool. For how should there be a flux hefore any thing existed to flow? and what should that flux be, a substance, or an accident? Accurding to the philosophic puet,
"Time of itself is nothing, but from thought
Receives its rise; by labouring fancy wrought
From things consider'd, while we thank on some As present, sume as past, or yet to cume.
No thought can think on time, that's still confest,
But thinks on thaggs in spotion or at rest."
And so on. Vide Lucretius, bock i.
Time may be distinguished, like place, into absulute and relative.

Absolute Time, is time considered in itself, and without any relation to budics, or their mutions.
Relutive or Apparen TiMe e_{4}, is the sensible measure of auy duration by means of mution.

Some uuthors divide time into astronomical and civil.
Astronomical Time, is that which is taken purely from the motion of the beavenly bodies, without any other regard.

Civil Time., is the former time accommodated to civil uses, and formed or distinguished into years, months, days, \&sc.

Apparent Time, is that deduced from the motion of the heavenly hodies, as of the sun: which is unequal. And

Eiguni, Mean, or True Time, is that which is shown by a geod clock, which it is supposed never varies in its rate of going.

Equation of Time, is the difference between true and apparent time.

Time, in Music, is an affection of sound, by which it is said to be long or short, with regard to its continuance in the same tone or degree of tune.

Musical time is distinguisbed into cormmon or duple time, and triple time.

Double, Duple, or Common Time, is when the notes are in a duple duration of each other, viz, a sembereve cqual to 2 minims, a nuinm to 2 croichets, a crotchet to 2 quavers, \&c.

Common or double time is of two kinds. The first when every bar or mensure is equal to a sembreve, or its value in any combination of notes of a less quantisy. The second is where every bar is equal to a minim, or ins value in less notes. The movements of this kind of measure are various, but thete are three common distincians; the first slow, denoted at the begioning of the line by the mark c; the Qd brisk, marked
thus 電; and the 3d very brisk, thus marked $\overline{\bar{Z}}$.
Tripie Tine is when the durations of the notes are triple of each other, that is, when the semiureve is equall to 3 minims, the minim to 3 crotchets, Nc ; andit is mashed r .
.Tiselkeepers, in a general serse, denote instruments adapted for measuring time. See Cunoxampreit. In a more pecular and definite *ine, tome-herper is a term first applicil by Mr. Juhin Ilarrion to his watches, construeted und used for determining the Iongiturle at sea, and for which he reecived, at difierent times, the parliamentary reward of 20 shousand pouthds. And several other artists have since received also corisilerable sunisfor their improvements of time-keepers; as Arnold, Nodse, \&ec. See Longitude. This apprillation is now become common among arlistc, to distinguish such watches as are made with extrandanary care and accuracy for nautical or astronomical obsersations.

The principles of Mr. Harrison's tine-keeper, as they were communteated by himself, to the commessumers appointed to receive and publisb the same in the year 1705, are ns Lelow: " In this time-kerper there is the geratest care taken to avoit fricrion, as much as can be, by the wheel moving on small pivots, and in ruby-boles, and high numbers in the wheels alal pinions.
"'The part which measures time zoes but the Sth part of a minute without winding up; so that part is very simple, as this winding-up is perlormed at the whel nexi to the balance-whet; by whoch means there is always an equal force acting at that wheel, and all the rest of the work hasso more to do in the measuring of time than the person that winds up once a day.
"There is a sprang in the inside of the fusee, which I will call a sacomblary nouin spring. This spring is nlwaye kept strenched to a cortain tension by the mann spring; and during the time of winding-up the the kieper, at which time the main-spring is not sulfered to act, this secondary spring supples its place.
" In common watches in general, the wheels have about one-third the dominion over the balance, that the balancespring has; that is, if the power which the balance-spring has over the balance be called three, that from the wheel is one: but in this my time-keeper, the wheels have only about one ISth part of the power over the balance that the balance spting has; and it must be allowed, the less the wheels ure connected with the balance, the better. The wheels in a common watch having this great dominion over the balance, they can, when the wate h is wound up, and the balance at rest, set the watch a-going; but when my time-keeper's balance is at rest, and the spring is wound up, the force of the wheels can no more put it in motion, than the whels of a common regtlator can, when the weight is wound-up, set the pendulum a vibraing; nor will the force from the wheels move the balance when at rest, to a greater angle in proportion to the vibration that it is to ietch, than the force of the wherts of a common regulatur cith move the pendulum from the perpendicular when it is at rest.
" My tume-herper's balance is more than three times the weight of a large sized common watch balanee, and three times it; daneeter; and a common watch bulance goes through abons 6 ine hes of space ma second. but mine gres through about 24 inches in that une: so that had my instrument only these arlsantages over a rommon watch, a good perforinance might be expucted trom it. Bot my time-kreper is not afiected by the different digerees of heat and cold, nor aguation of the ship; and the force from the wherlo is applied in the balance an such a mane ner, together with the shape of the linance-spring, and (if I may be allowed the trom) an wruticial cycloid, whech uces at this spruse; so that from these contrivances, let the babance vibrate more or leas, all its vibrations sueperformed in the same time; and therefore if it got at alh, it must go true. So that it is plain from this, that such a time-herper pees entirely from principle, and tot hom chance."-Thuse who may dasse to ser a minute account of the cunstruction of Mr. Ilarrison's time-keeper, may consult the publication by order of the commissioners of lungitude.
We shall bere subjoin a short view of the improvements in Mr. Harrimon's watch, from the nccount presinted to the board of longitucte by Mr. Ludlam, one of the senthemen to whom, by order of the commissiuners, Mr. Fiarrison discovered and explained the principte on which his tinue-keeper is constructed. The defects in common watches which M_{1}. Ilarrison proposes to remedy, urechicfly these: 1. That the main spring acts not constantly winh the same fonce on the wheils, and through them on the balance: 2. That the balance, either urged with on unequal force, or meetung with a difierent resistance from the air, or the oit, or the frection, vibrates through a greater or less arch; 3 That these unequal vibrations are not perfurmed in equal fimes : and, 4. That the furce of the ba-lance-spring is alicred by a change of heat.

To remedy the first defiet, Mr. Hurisun las contrived than his watch shall be moved by a very tenter spirng, which never unrolls itsell more than unceelghih patiof a torn, and acts upun the balance through one wherl only, But such a spring catmot keep the watch th moturn a long time. He lune therefure, joined andether, what offece is to wins up the first spring 8 umes in every minate; and whach is tself wound up baionce a day. Te, remedy se zecont defect, he uses a mach stronger balance spring than in a
common watch. For if the force of this spring upon the balance remains the same, while the force of the other varies, the errors arising from that variation will be the less, as the fixed force is the greater. But a stronger spting will require cither a heavier or a larger balance. A heavier balance would have a greater friction. Mr, Harrison therefore increases the diameter of it. In a common watch it is under an inch, but in Mr. Harrisun's 2 inches 2 tenths. However, the-methots already described only lessening the errors, and not removing them, Mr. Harrison uses two ways to make the times of the vibrations equal, though the arches may be unequal : one is, to place a pin, 8) that the balance-spring pressing against it, has its force increased, but increased liess when the variations are larger: the other, to give the pallets such a shape, that the wheels press them with less advantuge, when the vibrations are inrger. To remedy the last defect, Mr. Harrison uses a bar compounded of two thin plates of brass and steel, about $\&$ taches in length, riveted in several places together, fastened at one end and baving two pins at the other, between which the balance spring passes. If this bar be straight in temperate weather (brass changing its length by heat more than steel) the brass side becomes convex when it is heated, and the steel side when it is cold: and thus the pius lay hold of a different part of the spring in difficrent degress of heat, and lengthen or shorten it as the régulator slues in a common watcb.

The principles on which Mr. Arnold's time-keeper is constructed are these: The balance is unconnected with the whecl work, except at the time it receives the impulse to make it continue its mntion, which is only while it vibrates 10° out of 380° which is the whole sibration; and during this amall interval it has little or no friction, but what is on the pivots, which work in ruby holes on diamonds. It has but one pallet, which is a plane surface formed out of a ruby, and has no oil on it. Watches of this construction, says Mr. Lyons, go while they are wound up; they keep the same rate of going in every position, and are not afficted by the different forces of the spring; and the compensation for heat and cold is absolutely adjustable. Phipps's Voyage to the North Pole, pa. 230. Seu Lonuttude.

TISRI, or Tixai, in Chronology, the first Hebrew month of the civil year, and the 7th of the ecclesiastical or sacred year. It auswered to part of our Steptember and October.

TOD of wool, is mentioned in the statute 12 Carol. 11. c. 32 , as a weight containing 2 stone, or 28 pounds.

TOISE, a French measure, containing 6 of their feet, similar to our futhom. - The length of the French toise, is to the English fathom, as 1065 to 1000 , or as 213 tu 200.

TON, is 20 hundred weight, or 2240 lbs .
TONDIN, or Tandixo, in Architecture. See Tore.
TONE, or TUnE, in Music, a property of sound, by which it comes under the relation of grave and acute; or the degree of elevation any sound has, from the degree of swiftness of the vibrations of the parts of the sonorous body.-For the cause, measure, degree, difference, $\& c$, of tones, see Tung.

The word Tone is taken in four different senses among the ancients. 1, For any sound. 2, For a certain interval; as when it is said the difference between the diapente and diatessaron is a tone. 3, For a certain locus or compass of the voice; in which sense they used the Dorian, Phrygian, Lydian tones. 4. For tepsion; as when they speak Vol. 11 .
of an acute, a greve, or a middle tone. Wallis's Append, Ptolem. Harm. pa. 172.

Tone is more particularly used, in music, for a certain degree or interval of tune, by which a sound may be either raised or lowered from one extreme of a concord to the other, so as still to produce truc melody. In tempered scales of music, the tones are made equal, but in a true and accurate practice of singing they are not so. Pepusch, in Pbilos. Trans. No. 4S1. Besides the concords, or harmonical intervals, musicians admit three less kinds of intervals, which are the measures and component parts of the greater, and are called degrees. Ot these degress, two are called tones, and the third a semitone. Their ratios in number are 8 to 9 , called a greater tone; 9 to 10 calicd a lesser tone; and 15 to 16 , a remitonc.

The tones arise out of the simple concords, and ane equal to their differences. Thus the grrater tone, $8: 9$, is the difference of a 5 th and a 4 th ; the less tone $9: 10$, the difference of a less 3 d and a 4 th, or of a 5 th and a greater 6 th; and the semitone $15: 16$, the difiterence of a greater 3 d and a 4th.

Of these tones and semithies every concord is compounded, and consequently every one is resolsable into a certain number of then. Thus, the less 3d consists of one greater tove and one semitone : the greater 3 d , of one greater tone and one less tone: the 4 th, of one greater tone, one less tone, and one semitone: and the Sth, of two greater tones, one less tone, and one semitone.

TONNAGE, of a ship, is the weight or loading it is supposed to bear. The rule cominonly used for computing it , is to multiply the length of the keel by the breadth of the beam, and that again by half the same breadth of the beam ; the last product divided by 94 , gives the number of tons burthen. Thus, if the length of keel be 100 feet, and the breadth of beam 30 ; then $\frac{t 00 \times 30 \times 13}{94}=478$, is the tonnage.

TONSTALL (Cuthazat), a learned English divine' and mathenatician, was born in the year 1476. He entered a student at the university of Oxford about the year 1491 ; but afterwards, being driven from thence by the plague, he went to Cambridge, and shortly after to the university of Padua in Italy, which was then in a flourishing state of literature, where his genius and learning acquired him great respect from every one, particularly for his knowiedge in mathematics, philosopliy, and jurisprudence.

On his return home, be met with great favours from the government, obtaining several church preferments, and the office of sccretary to the cabinet of the king, Hinry the 8 th. This prince, having also employed hinn on several foreign embassies, was so well satisfied with his conduct, that he first gave him the bishopric of London in 1522, and afterwards that of Durham in 1530.
Tonstall approved at first of the dissolution of the marriage of his benefactor with Catharine of Spain , and even wrote a book in favour of that dissolution; but he afterwards condemned that work, and experienced a great reverse of fortune. He was cjected from the see of Durlam for his religion in the time of Edward the 6th, to which however he was restored again by queen Mary in the beginning of her reign, but was again expelled in 1559 when queen Elizabeth was settled in her throte; and he dred in a prison a few months after, in the 8 tith year of bis age.
Tobstall was doubtless one of the most learned men of 3 X
bis time, "He was," says Woorl, " a very gooul Grecian and Ebritian, an eloquent rhetorician, a skilful mahliematician, a noted civihan and canomist, and a profonbul divine. But that which maketh for bis greatest conmandation, is, that l:rasmus was lis friend, and be a fust friend to Erasinus, in an epistle to whom from Sir Thoulias More, I find this character of Tonstall, that, "As thete was no man more adorned with knowledge and gond litwature, no man more severe and of greater int-grity for his lite and manners; so there was no man a more sweet and pleasant companion, with whom a man would ratber choose to converse."

His writings that were published, were chiefly, 1. In Laudem Matimonii, Lond. 1518, tur-But that for which he is chiefly entitled to a place in this work, was his book on arithmetic, viz,-2. De Arte Supputandi, Lond, 1528, 4to, dedicated to Sir Thomas Blore. This was afterwards several times pribted abroad.-3. A Surmon on Patm Sunday before king Henry the sth, \& c. Lond. 1539 and 1633, 4to,-4. De Veritate Corporis \& Sanguinis Domini in Eucbaristia. Lutet, 1554, 4to, 5. Compendium in decem Libros Ethicorum Aristotclis. Par. 1554, in 8vo.-6. Contra inpios Blasplematores Dei pradestinationis opera, Antw. 1535, 410-7. Gadly and devout Prayers in English and Latio. 1558, in 8vo.

TOPOGRAPHY, is a description or draught of some particular place, or small tract of land; as that of a city, or town, manor or tenement, field, garden, house, castle, or the like; sucb as surveyors set out in their plots, or make draughes of, for the information and sutisfaction of the proprietors. Topography differs from chorugraphy, as a particular from a more general.

TORELLI (JOSEPA), a reapectable Italian matherma* tician, was, born at Verona in November 1721, and died in Sept. 1781. His father was a merchant, in good circumstances, who died soon after bis sun's birth; so that the care of Turelli's education devolved on bis mother; by whom his infant mind was most attentivily cultivated, and to whose care might be ascriberl many of thuse anaiable qualities, which distinguished his more advanced age. Having laid a good foundation by private instruction at Verona, he prosecuted his studirs at the tuiversity of Pudua, with great assiduity, in the various branches of literature and science.

Having spent four years at Padua, where he conciliated the general esteem of the learned, and where he obtained a doctor's degree, he returned ta his own country. Being in easy circumstances, he declined engaging in any profession, but devoted his whole time and attention to peneral study, both of languages and mathematics. He became accordingly an excellent proficient in several of the ancient and modern tougues. The Groek and Hebrew he well understood; be wrote Latin with ease and correctness; and his acquaintance with the French, Spanish, and English, enabled him to peruse the best writers with pleaaure and improvement. To his knowledge of the languages he added a very extensive acquaintance with the. arts and sciences; so that he was no less distinguished as a mathematician and philosopher, than as a critical scholar.

Torelli was author of a great number and variety of compositions, which sufficiently evince his distinguished abilities and application. But that from which he las obtained his chief celebrity, is an edition of the collicted works of Archimedes, pritted at Oxford, 1792; folio, in

Greck and Latin. The preparing of this work had been indred the labour of most part of his life. Having berris completely prepaled fior publication, and cren the atiagramis cut which were to accompany the demontianimis, the manuscript was disposed of atter bis death to: the curators of the Clarenton press, by whose order it was printed under the immediate care of Dr. Roberison.

It appears that the re have been lew permons, in any country, or io any perioti of time, who were better qualified for prepating a correct edition of Archinuedes. As a Greck scholar, be was cnpable of correcting the mistakis, supplying the defects, and illustrating the obscurc passances, that occurred in treatises originally written in the (irrek tungue: his knowledge of Latin, and a lacility, acquired by habit, of writing in this language, rendered hum x fit peran to translate the Greek into pure and correct Latin; and his comprebemave acquaintance will mathemnatics and philusophy qualifid him for conducting the whole work with judgnent and accuracy.

TORNADO, a violent gust of wind arising suddenly from the shore, and afterwards veering round all points of the compass like a burricane. It is very frequent on the cosst of Guirica.
'TUltREN'T, in Hydrography, a temporary stream of water, falling suddenly from mountainy, \& c, where there have been great rains, or an extraordinary thaw of snow ; sometimes making great ravages in the plains.

TORRICELLII (Evangeliste), an illustrious mathematician and philosopher of Ituly, was born at feenza in 1608, and traised up in Grrek and Latin linerature by an uncle, who was a monk. Natural inclination led him to culusute muthenatical knowledge, which to pursued some tine without a master; but at about 20 y cars uf age, be went to Rome, where be continued the puisuit of in under father Benedict Castelli. Castelli had ber n a scholar of the great Galilioo, and had been appuinied Ly the pupe professor of mathematics at Rowne. Torricelli made such progress under this naster, that having read Galileco's Dialogues, he composed a Truatise concerning motion on his principlex. Castelli, surprised at the performance, carrikd It and read it to (valiteo, whe heard it with great pleasure, and conceived a bigh esteem and friendship for the author. On this, Castelli propnsed to Galileo, that 'Worncelh should come and live with han; recomonending bim as llee most proper person lue could have, since he was the most capable of comprebending those sublime speculations, which his own grealage, infimities, and want of sight, presented him from giving to the world. Galileo accepted the proposal, and Turricelli the employment, as things of all others the most advantageous to both. Galileo was at Florence, at which piace Torricelli arrivell in 1641, and begat to meke down what Galilen dictated, to regulate his papers, and to act ill every respect according to his directions. But be did not long enjoy the advantages of this situation, as Giatico died at the end of only three months.

Torricelli was then about returning to Rome; but the Grand Duke engaged him to continte at Florence, making him bis own mathematician for the present, and promising bim the professor's chair as soon as it should be vacant. Here be applied himself intensely to the study of mathematics, plyysics, and ustronomy, making muny improvemente and some discoveries. Among nthers, he greatly improved the art of making micruscopers and telescopes; and it is generally acknowledged that be first found out
the method of ascertaining the weight of the atmoophere by a proportionute column of quicksilver, tine barometer being calied from him the Turricellian tube, and 'Wuricellian expertiment. In short, great things were expectell from him, and graat things would probably lave been further perforned by him, if he had lived: but the died, after a frw days illness, in 1047, when he had just completed the sotii yrar of his age.
Tarricelli publisted at Florence in 16+4, a volume of ingenious prices, entitled, Opera Geonvertica, in 410. There was also published at the same place, in 1715 , L-zzieni Accademiche, consisting of 96 pages in 410 . These are discourses that had been promeunced by him on different occasions. The first of them was to the academy of La Crusca, by way of thanks for admitting hum into their body. The rist are upon subjects of mathematics and physics. Prefixed to the whole is a long life ot Torricella by Thomas Buona enturi, a Florentine gestleman.

TORIRICELLIAAN, a term very frequent among physical writers, used in the phrases, Turficellima tube, or Torricellian experiment, on account of the inventor Torricelli, a disciple of the great Galileo.
Tonricelitax Tube, is the barometer tube, being a glass tube, open at one end, and hermetically scaled at the other, about 3 feet long, and $\frac{5}{3}$ of an inch in diameter.
Torbicellan Erperiment, or the filling the barometer tube, is performed by filling the Torticelliau tube with mercury, then stopping the opell oritice with the fiug'r, inverting the tube, and plunging that ortice into a vessel of stagnant mercury. This done, the linger is removed, and the tube sustained perpendicular to the surtace of the mercury in the vessel.

The consequence is, that part of the mercury falls out of the tube into the vessel, and there remains only enough in the tube to fill abuut 30 inches of its capacity, above the surface of the stagnant mercury in the vessel; these being sustained in the tube by the pressure of the atmosphere on the surface of the stagnant mercury; and according as the atmosphere is more or less heavy, or as the winds, blowing upward or downward, heave up or depress the air, and so increase or dimininth its welght and spinig, more or less mercury is sustained, from 28 to 31 inches.-The Torricellian experiment constitutes what is now called the burometer.

Tonatceleian Vacnum, is the vacuum produced by filling a tube with mercury, and when inverted allowing it to descend to such a height as is counterbalnuiced by the pressure of the atmosphere, as in the Torricellian experiment and barmmeter, the vacuum being that part of the tube above the surface of the mercury.

TORRID $z_{\text {one, }}$ is that round the middle of the earth, extending to $23 \ddagger$ degrees on buth sides of the equatur.

TORUS, or Tons, in Arehitecture, is a large round moulding in the bases of the columns.
TUUCAN, or American Goose, is one of the modern constellations of the southern bemisphere, cutsisting of 9 small stars.

TRaCriON, or Drawing, is the aet of a moving power, by whicb the moveable is brought nearer to the mover, called also attraction.
Tanction, Angle of, in Mechanics, is the angle which the direction of the power makes with any given plane.

Tractrix, or Tactix, in Geometry, a curve line called als, Catematia; which see.
ThasticTuth, a term often employed to denote the path of any bonly mosing cutber in a void, or in a medium thint resists its inntion; or even for any curve passing through a given number of puints. Thus Newton, Pincip. lib. 1, prob. 22, propuses to describe a trajectory - that shall pass through tive given points.

Trajectory of a Comet, is its path or orbit, or the line 18 describess in its motion. This path, He celiuts, in hi, Conetograptia, will have to be very nearly a right line; but Dr. Haliey concludes it to be, as it really is, a very excentric ellopsis; though its place may uften be well computed on the suppusition of its bring a parabola. -Newton, il prup. 41 ut his Sd bowk, shows how to determine the trajuctory of a comet from three observations; and in his last piop. how to correct a trajectory graphically described.
TRAMMELS, in Mechanics, an instrument used by artificers for dhawing owals upan boards, \&c. Onc part of it consists of a cross with two grooves at right angles ; the other is a beam carrying two pins which slide in those grooves, and also the describing pencil. All the engines for turning ovals are constructed on the same principles with the trammels: the only difference is, that in the tramumels the board is at rest, and the pencil moves upon it: in the turning engine, the tool, which supplics the place of the pencil, is at rest, and the board moves against it. See n ilemolistration of the chief properties of these instrunents by Mr. Ludlam, in the Ptilos. Trans. vol. 70, pa. 378 sc.
TRANSACTIONS, Philosophical, are a cullection of the principal papers and matters rad before certain philosoplicul societies, as the Royal society of London, and the Royal Society of Edinburgh. These transactions contain the several discuveries and histories of nature and art, either made by the members of those societies, or communicated by them from their correspondents, with the various experiments, observations, $\& c$, made by them, or transmitted to them, sce.
The Philos. Trans. of the Ruyal Society of London were begun in 1665 , by Mr. Oldenburg, the then secretary of that Society, and were continued by him thll the year 1677. They wre then discontinued on bis death, ull January 1678, when D_{r}. Grew resumed the publication of them, and cuntimued it for (he monsthy of Drecreter 1678, and Jannary und February 1679, ati- r which they were interminted till January 1083. During thic hast interval therr want was in sone neasure supulied ly Dr. Hoche's Plitosphical Collictuns. They werc alont internyned for 3 yeans, irum Decenber 1687 to January 16931, the sides other smaller interruptinas, amounthoz to, near a year and a half uoree, beture October 1695, sninee whach time the cransuctions bave bren carried on regularly to the prement day, with various degrees of credit and merit.
Till the year 1752 these trausactions ware poblshed in numbers quarticrly, and the proning of them wiss alwus, the sungle act of the reppectise ecretuics till that time; but then the Suciety thomebt fir that a commentece should be appointed to consuder ilie papers rrall bit io them, und to select out ot them such as shey shoultilutgo minat proper for publication in the future trensictions. For thum purpose, the memben of the coestet, the the time being, constitute a standing columitter: they ymet on the fint Thursday of every menth, sid nu kis than

7 of the members of the committee (of which namber the president, or in his absence a vice-president, is always to be one) are allowed to be a quorum, capable of acting in rulution tu such papers; and the question with regard to the publication of any paper, is always decided by the majority of votes taken by ballot.

They are published annually in two parts, at the expence of the Suciety; and each fellow, or member, is entutell to receive one copy gratis of every part published after bis admission into the Socinty. Fur many years past, the cullection, in two parts, has made one volume in cach year; and in the year 1793 the number of the voInmes was 63, benge 10 less than the number of the year in the century. They were formerly inuch renpected for the great number of excellent papers and discoveries contained in them; but ot late yeurs there has been a great falling off, and the volumes have been sometinies considered as of wery inferior inerit, as well as quantity.

There was alas an useful abridement of those volumes of the transactions that were publislied before the year 1752, when the Society begun to publish the transactions on their own account. Those to the end of the year 1700 were abridged, in 3 volumes, by Mr. John Lowthorp: those from the year 1700 to 1720 were abridged, in 2 solumes, by Mr. Ilenry Jones: and those from 1719 to 1733 were abridged, in 2 volumes, by Mr. John Eames and Mr. John Martyn; Mr. Martyn nloo continued the abridgment of those from 1732 to 17 t 4 in 2 volumes, and of those from $17+4$ to 1730 in 2 velames; making in all 11 volumes. But lately a complete Abridgment, in 18 large 4 to volumes, of the whole, from the beginning, to the end of the yenr 1800, has bren publistied by Dr. Charles Hutton, Dr. George Shaw, and Dr. Kıchurd Pearson. In this abridgment all the papers are given in their original oriler, and a copious index is added, by which is shown the place of any article, either in the original or in the abridgment.

The Royal Society of Edinburgh instituted in 1783, have also published several voluness of their Philosophical Transaccions; which are deservedly held in the bighest reapect for the importance of their contents.

The Society of Arts, \&c, have also published a number of volumes of transactions, abounding with mechanical inventions and iliscoveries. There are also' transactions of the Araerican Socivty, of the Manchester Philosophical Society, of the Connecticnt Sriciety, \&c. The Irish icudemy, and most of the foreign philosuphical societies, give to their transactions the title of Memoirs.

TRA NSCENDENTAL Quantitics, among Geometricians, are indeterminate ones; or such as cannot be expressed or fixed to any constant equation: such is a transcendental curve, or the like. M. Leibnitz has a dissertation in the Acta Erud. Lips. in which he endeavours to show the origin of such quantities; vis, why some problems are neither plain, whid, nor sursolid, nor of any certain degree, but transcend all algebraic equations. He also shows how it may be demonstrated without calculus, that an algebraic quadratrix for the circle or byperbola is impossible: for if such a quadratrix could be found, it would follow, that lyy meaus of it any angle, ratio, or logarithm, might be divided in a given proportion of ope right line to another, and this by one universal constraction: and consequently the probiem of the section of an angle, or the invention of any number of mean proportionals, would be of a cartain finite degree. Whereas the different

Algrees of algebraic equations, and therefore the problems understood in general of any number of parts of an angle, or mean proportionals, is of an indefonite degree, and transcends all algebraical equations.

Others define transcendental equations, to be such fluxional equations ais do not admut of fluents in cummon finite alat-bracal equations, but as espressed by meanis of some curve, or by logatithms, or by infinite series; thus the expression $\dot{y}=\frac{\dot{x}}{\sqrt{(a s-2 \alpha)}}$ is a transcendental equation, because the fluents cannot buth be expressed in finive terms. And the equation which expresses the relation between an are of a ciscle and its sime, is a transcendental equation; for Nowton has demonstrated that thas relation cannot be expressed by any finte algebraic equation, and therefure it can only be by an infinite or a transcendental equatren.

It is ulso usual to rank exponential equations among transectodetalal cines; because such equation, though expressed in finite tomas, have variable exponents, which cannut be expuriged but by putting the equation into fluxions, or loganthus, \&c. Thus, the exponential cypuation
$y=a^{x}$, gives $x \times \log . a=\log \cdot y$, or $\dot{x} \times \log a=\frac{\dot{y}}{y}$,
Tuanbernntintal Curve, in the Higher Geometry, is such n one as cannot be defined by an algebraic equatholl; ir of whith, when it is expressed by an equation, one of the terms is a variable quantify, or a curve line. And when such curve line is a geometrical one, or one of the firsi degree or kind, then the trauscendental curve is said to be of the second degree or kind, \&c.

These curves are the same with what Descartes, and others atter him, call mechanical curves, and which they would have excluded out of geometry ; contrary however to the opimion of Newton and Leibnitz ; for as mucb as, in the construction of geometrical problems, one curve is nut to be preferred to another as it is defined by a more simple equation, but as it is more easily described than that other: besides, some of these transcendental, or mechanical curves, are found of greater use than almost all the algebraical ones.
M. Lsibnits, in the Acta Erudit. Lips. has given a kind of transcondental equations, by which these transcendental curves are actually defined, and which are of an indefinite degree, or are not always the same in every point of the curve. Now whereas algebraists use to assuine soine gem ral letters or numbers for the quantities sought, in these transcendental prohlems leibnitz assumes general or indefinite equations for the lines snught; thus, for example, putting x and y for the absciss and ordinate, the equation be uses for a line required, is $a+b x+c y+c r y+f x x+g y y s c=0$; by the bilp of which indefimte equysion, he seeks for the tangent; and comparing that whicberesults with the given property of tangents, he finds the value of the assumed letters a, b, c, \&e, and thus defines the equation of the line sought.

If the comparison abovementioned do not succeed, be pronounces the line sought not to be an algebraical, but a transcendental one. Tite supposed, he proceeds to find the species of transcenden'y: for some transcendentals depend on the general division or section of a ratio, or upon logarithons, otbers on circular arcs, \&cc. Here then, besides the symbols x and y, he assumes a third, as v, to denote the cranscendental quantuty; and of these three

- TRA
he forms a general equation of the line sought, from which he finds the tangent according to the differential methot, which succeeds even in transcendental quantities. This found, he compares it with the given properties of the taugents, and so discovers not only the values of a, b, c, \&c, but also the particular nature of the transcendental quantity.

Transcendental problems are very well managed by the method of fluxions. Thus, for the relation of a circular arc and right line, let a denote the are, and x the versed sine, to the radius 1 , then is $a=$ fluent of $\frac{\dot{x}}{\sqrt{(2 z-x x)}}$; and if the ordinate of a cycloid be y, then is $y=$ $\sqrt{ }(2 x-x x)+$ fluent of $\frac{x}{\sqrt{(2 \boldsymbol{z}-r x)}}$,

Thus is the analytical calculus extended to those lines. which have bitherto been excluded, for no other cause but that they were thought incupuble of it.

TRANSFURMATION, in Geometry, is the changing or reducing of a figure, or of a body, into another of the same area, or the same solidity, but of a different form. As, to transform or reduce a triangle to a square, or a pyramid to a parallelopiperton.

Teansformation of Equations, in Algebra, is the changing equations into others of a different form, but of equal value. This uperation is often necessary, to prepare equations for a more ensy solution, some of the principal cases of which are as follow,-1. The signs of the roots of an equation are changed, viz, the pusitive roots into negative, and the negative ronts into positive oncs, by only changing the signs of the $2 \mathrm{~d}, 4 \mathrm{th}$, and all the other even terms of theequation. Thas, the roots of the equation $s^{4}-x^{3}-19 x^{3}+49 x-30=0$, are $+1,+2,+3,-5$; whereas the roots of the same equation having only the signs of the 2 d and 4 th terms changed, viz, of $x^{4}+x^{3}-19 x^{4}-49 x-30=0$, are $-1,-2,-3,+5$.
2. To transforin an equation into another that shall have its roots greater or less than the roots of the proposed equation by some given difference, proceed as folJows: Let the proposed equation be the cubic $x^{3}-a x^{2}$ $+b r-c=0$; and let it be required to transform it into another, whose roots shall be less than the roots of this equation by some given diffurence d; if the root y of the new equation must be the less, take it $y=x-d$, and hence $x=y+d$; then instead of x and its powers substitute $y+d$ and its powers, and there will arise this new equation

$$
\text { (a) } \left.\begin{array}{rl}
y^{3} & +3 d y^{2}
\end{array} \begin{array}{rl}
& -3 d^{2} y
\end{array}+d^{3}\right\}
$$

whose roots are less than the roots of the former equation by the difference d. If the roots of the new equation had been required to be greater than those of the original one, we must then have substituted $y=x+d$, or $x=$ $y-d, \& c$.
3. To take away the 2 d or any other particular term out of an equation; or to transform an equation, so as the new equation may want its 2 d , or 3d, or 4 th , \&c term of the given equation $x^{3}-a x^{2}+b x-c=0$, which is transformed into the equation (A) in the last article. Now to make any term of this equation (A) vanish, is only to make the coefficient of that term $=0$, which will form an equation that will give the value of the assumed quantity d, so as to produce the desired effect, viz, to make that term vanish. So, to take away the 2 d term, make $3 d-a=0$, which makes the as-
sumed quantity $d=3 a$. To take away the Sd term, we must put the sum of the coefficients of that term $=0$, that is $3 d^{2}-2 a d+b=0$, or $3 d^{2}-2 a d=-6$; then by resolving this quadratic equation, there is found the assumed quantity $d=1 a \pm 1 \sqrt{ }\left(a^{2}-3 b\right)$, by the substitution of which for d, the $3 d$ term will be taken away out of the equation.

In like manner, to take away the 4 th term, we must make the sum of its coefficients $d^{3}-a d^{2}+b d-c=0$; and so on forany other term whatever. And in the same manner we must also proceed when the proposed equation is not a cubic, but of any height whatever, as

$$
x^{0}-a x^{0-1}+b x^{0-1}-c x^{-2} \& c=0
$$

this is first, by substituting $y+d$ for x, to be transformed to this new equation

$$
\begin{aligned}
& y^{n}+n d y^{2-1}+\frac{1}{3} n(n-1) d^{n} y^{n}-8 \& c \text { ? }
\end{aligned}
$$

then, to take awny the 2 d term, we must make $n d-a$ $=0$, or $d^{\prime}=\frac{a}{n}$; to take away the $3 d$ term, we must make $\frac{1}{} n(n-1) d^{2}-a(n-1) d+b=0$, or $d^{2}-\frac{2 a}{n} d$ $=-\frac{2 b}{m(n-1)}$; and so on.

Whence it appears that, to take away the 2 d term of an equation, we must resolve a simple equation; for the Sd terin, a quadratic cquation; for the 4th term, a cubic equation, and so on.
4. To multiply or divide the roots of an equation by any quantity; or to transform a given equation to another, that shall have its roots equal to any multiple or submultiple of those of the proposed equation. This is done by substituting, for x and its powers,
$\frac{y}{m}$ or $p y$, and their powers, viz, $\frac{y}{m}$ for x, to multiply the roots by m; and $p y$ for x, to divide the roots by p. Thus, to multiply the roots by m, substituting $\frac{y}{m}$ for x in the proposed equation

$$
\begin{aligned}
& x^{n}-a x^{0}+b x^{n-1} \& c=0, \text { and it becomes } \\
& \frac{y^{n}}{m^{n}}-\frac{a y^{*-1}}{m^{*-1}}+\frac{b y^{n}-1}{m^{b-1}} \Delta c=0 ;
\end{aligned}
$$

or multiply all by m^{*}, then is*
$y^{n}-a m y^{n-1}+b m^{2} y^{n-2}-c m^{3} y^{n-3} \& c=0$,
an equation that has its roots equal to m times the roots of the proposed equation.

In like manner, substituting $p y$ for x, in the proposed equation, \&c, it becomes
$y^{n}-\frac{y^{n}-1}{p}+\frac{y^{2}-9}{p^{2}}-\frac{\mathrm{cy}^{n}-3}{p^{2}} \& c=0$,
an equation that has its roots equal to those of the proposed equation divided by p.

Whence it appears, that to multiply the roots of att equation by any quantity m, we must multiply its terms, beginning at the 2 d term, respectively by the terms of the geometrical scries, $m, m^{2}, m^{3}, m^{4}, \& c$. And to divide the roots of an equation by any quantity p, that we must divide its terms, beginning at the 2d, by the corresponding terms of this series $p, p^{4}, p^{3}, p^{4}, \& c$.
5. And sometimes, by these tranaformations, equations are cleared of fractions, or even of surds. Thus the equation
$x^{3}-a x^{3} \sqrt{ } p+b x-c \sqrt{ } p=0$, by putting $y=x \sqrt{ } p$, or multiplying the terms, from the 2 d , by the geometricals $\sqrt{ } P, p_{0} p \sqrt{ } p$, is transformed to

$$
\begin{aligned}
& y^{3}-a p y^{3}+b p y-c p^{2}=0 \text {. } \\
& \text { 6. An equation, as } x^{3}-a x^{2}+b x-c=0 \text {, may be }
\end{aligned}
$$

transformed into another, whose roots shall be the reciprorals of the roots of the given equation, by substitating $\frac{1}{y}$ for x; by which it becones
$\frac{1}{y^{2}}-\frac{a}{y^{2}}+\frac{b}{y}-c=0$, or, multiplying all by y^{2}, the same becomes $c y^{2}-b y^{2}+a y-1=0$.

On this subject, ree Newtub's Alg, on the Transmutation of I quations; Maclaurin's Algeb. pt. 2, chap. 3 and 4. saunderson's Alye bra, vol. 2, pa 687, dxc.

THANSII, in Astrotiony, donotes the passage of any planet, just befure or wer another planet or star; or the pasing of a star or planet over tbe uneridian, or before an abtrunamical invoru-unit Vonus and Mercury, in their tramen- were the sun, appear like tark *perky.

The transts of Venus and Niercury twer the sun's disc are very interesthig phenomens, thit merily on account of their rave and anzular appearance, but also because of their use in datermining the sun's parsllax, and thence the real duneristons ot the earth's urbit. Hence the times when these transits ane t, be seen have been very carefully computed. Dr. thallisy computed the times of a number of these visible transits, for the 17th and 18th centuries, which were published in the Philus. Trans. No. 193, or my Abridg. vol. 3, pa. 448 ; and several others have becin since computed. The following are the times when there were or will be transits of Mercury, from the year 1753 to $189+$ inclusive.

It apprars from this table, that the transits of Mercury always occur either in May or in Noveniber; but most frequently in the latter month; depening on the position of the elliptic projection of Morcury's orbit on the plane of the echiptic. This ellopse is now so placed, that it presents to us its perihelion, during the winter, and its aphetion during the sumbiner; and as it is very excentric, Mercury is much nearer the sun in the month of November than in May. Now if it be considered that the- lummous cone formed by the visual rays, drawn from the earih to the sun, is contracted in the vicinity of the earth, while it is enlarged near the sun, the dise of which serves for its base; Mercury uught theretore to cut it mure reatily when it is near the sun, than when it is remote from it; and consequently the transits of Mercury ought to occur most frequently in the winter part of the your.

From the observations of the tran-it of Nov. 8, 1802, it was interred that the node of the planet's orbit was in $1^{\prime} 15^{\circ} 57^{\circ} 56^{\prime \prime}$.

The transits of Venus across the sun's disc happen much less frequently than those of Mercury. because Vinnus is more distant from the sun. The following are all that uccur between 1631 and 2110 .

Now the chief use of these conjunctions is, accurately to determine the sun's distance from the earth, or his parallax, which astronumers have in vain attempted to find by varivus other methods; for the minuteness of the requisite angles easily eludes the micest instruments. But in observing the ingress of Venus into the sun, and her egress from the same, the interval betwern the moments of the internal contacts, observed to a second of titne, that is, to I'r $^{\prime}$ of a swcond, or $4^{\prime \prime \prime}$ of an arch, may be obtaited by the assistance of a moderate telescope, and a penduluin clock that goes uniformly for 6 or 8 hours. Now irom two such ubservations, rightly made in proper places, the distance of the sun, within a 500 th pars, nay be certainly concluded, \&c.-The only observations that have been made, were those of 1639,1761 , ahd 1769 ; whence the sun's parallax has been inferfid to be $8^{\prime \prime} 8$. See Parallax and Vexum.

Transtt Instrament, ill Astronomy, is a telescope fixed at right angles to a horizuntal axis; this axis being so supported that the line of collanation may move in the plane of the meridian.

The axit, to the middle of which the trlescope is fixed, should gradually taper towards its ends, and terminate in cylinders well turned and smoothed; und a proper weight or bulance is put on the tube, so that it may stand at any elevation when the axis rests on the supportery. Two upright posts of wood or stone, firmly fixed at a propor distance, are to sustain the supporters the this motrunent; these supporters are two thick brass plates, having well smoothed angular notehes in their upper ends to rece:ve the cylndrical arms of the axis; each of the notched plates is contrived to be moveable by a screw, which stides them upon the surfaces of two other plates immoveably fixed to the two upright posts; one plate noving in a vertical direction, and the other horisontally, they adjust the telescope to the planes of the horizon and meridhan; to the plane of the horizon, by a spirit level hung in a position parallel to the axis, and to the plane of the meridian in the following manner. Observe the times by the clock when a circumpolar star, seen through this instrument, transits both above and below the pyte ; then if the tumes of describing the eastern and western parts of its circuit be equal, the telescope is then in the plane of the meridian; otherwise the notched plates must be gently moved till the time of the star's revolution is bisected by beth the upper and lower transits, taking care at the same time that the axis keepa its horizontal position.

When the telescope is thus adjusted, a mark must be set up, or made, at a considerable distance (the greater the better) in the horisonal direction of the intersection of the cross wires, and in woplace where it can be illuminated in the night-tume by a lanthorn near it, which mark, bciug on a fised object, will serve at all times atterwards to examine the poastion of the telescupe, by first adjusting the tratwerse axis by the livel.

T'o adjust a clock by the sun's transit over the meridiun, nete the times by the cluck, whell the preceding and fultowing edges of the sun's limb touch the cross wires: the dotlinctice between the middle time and 12 hours, show, how nuch tha mean, or clock time, is faster and slower than the appars ite or solar time, for that day ; to which the equation of tince being applied, it will show the time of meati noou for that day, by which the clock may be alljusied.
'TRANSMISSION, in Optics, \&c, denotes the property
of a transparent or translucent body, by which it admits the rays of lighe to pass through its substance; in whech sellse, the word saands ulpused to reflection-For the cause of transmiswon, or the reasin why some bodies transmit the rays, wid where it tlect ibem, sue Tkanspabeyct and Upacity.-The rayy of light, Newton ubserves, are subj it to fits of casy transmassion and reflection. Sue Ligitr, and Reflectios.
 moiry, denotes the retuction or change of one figure or bonty into anuther of the same arra ar culidity; as a triangle into a nquare, a pyramed into a cube, \&c.

Inansmutation, in tbe Hugher Geoinetry, has been used for the convertin; of a aigure into another of the same kiad ant urder, whoec respective parts rise to the same dinumbens in an cqualion, and adanit the saine tangents, \&e.-If a rectilumal fig're be to be tran-muted inta anothe r, it is sutficient thet ble intersections of the lines which compuse it br tran-ferred, and hines drawn through the saine in the new figurn. But it the figure to be transmuted be curviliawar the ponnts, tangents, and other right lines, by menus of which the cuive line is to be defined, must be transfirivel.

TRANSO W, anong Builders, the piece that is framed across a duuble lyght winduw.

Tiansom, among Mathematicians, denotes the vane of a cross-statl; hemg a wooden member fixed ucross it, with a square upinn which it slides, \&c.
'IRANSPARI.N't', or Trakslucency, in Physics, a qualliy in certain bodics, by which they give pasaage to the rays of light. The transparency of natural bodies, as glass, water, air, dec, is uscribed by some, to the great number and size of the pores or interstices between the particles of those bodacs. But this account is very defective ; for the most solid and opaque boily in nature, that wr kntiw of, contains a great deal nore of pores than it does matter; surcly a great deal more than is necessary for the passage of so very fine and sultite a body as light.

Aristotle, Descartes, \&c, make transjarency to consist in straightness or rectilincal direction of the pores; by means of which, say they, the rays can pass freely through, without strihing aguinst the suld parts, and so betthg reflected back again. But this account, Newtom shows, is imperfect; the quantity of pures in all bonliey being sufficient to transmit a!l the rays that fall upan them, bowever those pores be sttuated with respert to each other.

The reason then why all bodtes are not transparent, is nut to be ascribed to their want of rectilineal pirrs; but either to the unequal density, of the parts, or to the pores being filled with some fureign matters, or to their being quite empty, by means of which the rays, in pasang through, undergoing a great vuriety of refluctions and refractoons, are perpetually diverted different ways, till at length falling on some of the solid parts of the body, they are extinguirhed and absorbed.

Thus cork, paper, wood, \&c, are opake; while glass, diamonds, \& ce, are transparent ; and the reason is, that in the neighbourhood of parts equal in density with respect to each other, as these latter bodies, the attraction being equal on every side, no reflection or rufraction ensues: but the rays whicb entered the first surface of the body proceed quite through it without interruption, those few only exceped that chance to meet with the solid parts: but in the nrighbourhood of parts that ditfer much in density, such as the parts of wood and paper are, bath in respect of themselves and of the air, or the empty space in their
pores; as the attraction is very unequal, the reflections and refractions must be very great; aud theretore the rays will not be able to make their way though such bodies, but will be vanonsly deffected, and at lengib quite stopped. See Opacity.

TRANSPUSITIUN, in Algetsa, is the bringing any term of an equation uver to the uther side of it. Thus if $a+x=c$, and we muke $x=c-a$, thon a is said to be tramsposed. This operation is to be pesformed in order to bring all the known terms to one side of the equation, und all thuse that are unknown to the other side of it; and cvery term thus transposed must always have its sign changed, from $+20-$, or froin $-t 0+$; which in fact is no inore than subtractine or adding such teim on both sides of the equation. Ser Redection of Equations,

TRANSVERSE:-Axis, or Diancter, in the Conic Sections, is the first or principal diameter, or asis. See Axjs, Diamerer, and Latus Transversum. In an ellipse; the tranverse is the longest of all the diameters; but the shortest of all in the hyperbula; and in the parabola the diameters are all equal, or at least in a ratio of equality.

TILAPL:ZIUM, in Geometry, a plane figuie of four straight sides, of wbich the opposites are not parallel.When this figure has two of its sides parallel to each other, it is sonntumes called a trapezoid.-The chicf properties of the trupuczium are as follow: 1. Any three sides of a trapezium tuken together, are greater than the 4th side. -2, The two diagonals of any trapezium divide it into four proportional triangles, a, b, c, d; that is, the triangle $a: b:: c: d-3$. The sum of all the fur inward angles, A, B, C, D, taken together, is equal to 4 right angles, or 360°.

4. In a trapesium A ACD, if all the sides be bisected, in the points E, $\mathbf{F}, \mathbf{G}, \mathbf{H}$, the figure EFGH formed by jonning the points of bisection will be a parallelogram, having its opposite sides parallel to the corresponding diagonals of the trapezium, and the urea of the sand inscribed parallelogram is just equal to half the arra of the trapreium.5. The sum of the squares of the diagonals of the trapezium, is equal to double the sum of the squares of the diagonals of the parallelogram, or of the two lines drawn to bisect the opposite sides of the trapezium. That is,
$A C^{2}+\Delta D^{2}=2 E G^{2}+2 Y H^{2}$.
6. In any trapezium, the sum of the squares of all the four sides, is equal to the sum of the squares of the two diagonals together with 4 times the square of the line kI joining their middle points. That is,

$A B^{2}+B C^{4}+C D^{2}+D A^{2}=A C^{2}+B D^{2}+41 K^{2}$.

7. In any traperium, the sum of the two diagovals, is less than the sum of any four lines that can be drawn, to the four angles, from any point within the figure, bridides the intersection of the diagonals.-8. The area of any trapezium, is equal to half the rectangle or product under

TRA

either diagonal and the sum of the two perpendiculars drawn upon it from the swo opposite angles.-9. The arca of any trapezium may also be found thus: Multiply the two diagonals together, then that protuct, multiplied by the sine of their angle of intersaction, to the radius 1 , will be the area. That is, $A C \times B D \times$ sin. $\angle 1$. $=$ area. -10. The sume area will be otherwise found thus: Square eacb side of a trapezium, add the squares of each pair of opposite sides together, subtract the less sum from the greater, multiply the remainder by the tangent of the angle of intersection of the diagonals (to radius 1), and $\frac{5}{}$ of the product will be the area: that is,
$\left[\left(A B^{2}+D C^{2}\right)-\left(A D^{2}+B C^{2}\right)\right] \times \frac{5}{2}$ tang. $\angle L=$ arca.
11. The area of a trapezoid, or one that has two sides parallel, is equal to the rectangic or product under the sum of the two parallel sides and the perpendicular distance between them.-12. If a traperium be inscribed in a circle; the sum of any two opposite angles is cqual to two right angles ; and if the sum of two opposite angles be equal to two right angles, the sum of the other two will also be equal to two right angles, and a circle may be described about it ; and farther, if one side, as dc, be produced, the external angle will be equal to the interior opposite angle. That is, (last fig. above)

$$
\angle A+\angle C=\angle B+\angle D=2 \text { rigbt angles }
$$

and $\angle A=\angle B C P$.
13. If a trapexium be inscribed in a circle; the rectangle of the two diagonals, is equal to the sum of the two rectangles contained under the opposite sides. That is, $A C \times B D=A B \times D C+A D \times B C$.
14. If a trapezium be inscribed in a circle; its area may be found thus: Multiply any two adjacent sides together, and the other two sules together; then add these two products together, and multiply the sum by the sine of the angle included by either of the pairs of sides that are multiplied together, and half this last product will be the area. That is, the area is equal eitber
to $(A B \times A D+C B \times C D) \times \frac{1}{2} \sin$. $\angle A$ or $\angle C$,
or $(A B \times B C+A D \times D C) \times \sin . \angle B$ or $\angle D$.
15. Or, when the trapezium can be inscribed in a circle, the area may be otherwise found thus: Add all the four sides together, and take half the sum; then from this half sum subtract each side severally; muhiply the four remainders continually together, and the square root of the last product will be the area.
16. Lastly, the area of the trapezium inscribed in a circle may be otherwise found thus:

$$
\begin{aligned}
\text { Put } & =A B \times B C+A D \times D C \\
n & =\mathrm{A} \times \mathrm{AD}+\mathrm{DC} \times \mathrm{CD}, \\
\mathrm{P} & =\mathrm{AB} \times \mathrm{DC}+\mathrm{AD} \times \mathrm{BC}, \\
r & =\text { radius of the circumscribing circle, }
\end{aligned}
$$

TRAPEZOID, sometimes denotes a trapezium that has two of its sides parallel to each other; and sometimes an irregular solid figure, having four sides not parallel to each other. See Trafezium.

TR.AVERSE, in Gunnery, is the turning a piece of ordnanice about, as upon a centre, to make it point in any particular direction.

Travease, in Fortification, is a trench with a littleparapet, sometimes two, one on each side, to serve as a cover from the enemy that might come ill flank.

Tanveras, in a wet foss, is a kind of gallery, made by throwing sauc ssons, juibts, fascines, stones, earth, \&c, into the fous, opposite the place where the miner is to be put, in order to fill up the ditch, and make a passageoverit.

Traverse also denotes a wall of earth, or stone, raised across a work, to stop the shot from rolling along it.

Traverse is also used for any retrenchment, or line fortified with fascines, barrels or bags of earth, or gabions.

Traverse, in Navigation, is the variation of a ship'a course, occasioned by the shifting of the winds, or currents, \&c ; or a traverse is a compound course, consisting of several different courses and distances.

Traverse Sailing, is the method of working, or calculating traverses, or comporind courses, so as to bring them into one, \&c. Treverse sailing is used when a ship, having sailed from one port towerds another, whose course and distance from the former is known, is by reason of contrary winds, or other accidents, forced to shift and suil upon several courses, which are to be reduced into one course, in order to determine, after so many turnings and windings, the true course and distance made good, or the true point the ship is arrived at ; and so to know what is the true distance, and the new course to be steered, to arrive at the intended port.

To Construct a Trarerse. Assume a convenient point or centre, to begin at, to represent the place sailed from. From that point as a centre, with the chord of 60°, describe a circle, which quarter with two perpendicular lines intersecting in the centre, one to represent the meridian, or north-and-south line, and the other the east-and-west line. From the intersections of these linss with the circle, set off upon the circumference, the arcs or degrees, taken from the chords, for the several courses that have been sailed upon, marking the points they reach to, in the circumference, with the figures for the order or number of the courses, $1,2,3,4, \& \mathrm{kc}$; and from the centre draw lines to these several points in the circumference, or conceive them to be drawn. On the first of these lines lay off the first distance sailed; from the extremity of this distance draw a line parallel to the second radius, or line drawn in the circle, upon which lay off the 2 d distance; througb the end of this 2 d distance draw a line parallel to the 3d radius, for the direction of the Sd course, and on it lay off the 3d distance; and so on, through all the courses and distances. This done, draw a line from the centre to the end of the last distance, which will be the whole distance made good, and it will cut the circle in a point showing the course made good. Lastly, draw a line from the end of the last distance to the point representing the port bound to, and it will show the distance and course yet to be sailed, to gain that port.
To work a Traverse, or to compute it by the Traverse Table, of Difference of Latitude and Departare.
Make a litte tablet with 6 columns; the 1st for the courses, the 2 d for the distances, the 3 d for the northing, the 4th for the southing, the 5th for the easting, and the Gth for the westing; first entering the several courses and distances, in so many lines, in the 1st and 2d columns. Then, from the traverse table, take out the quanity of the northings or southings, and eastings or westings, answering to the several given courses and distances, entefing them on their corresponding lines, and in the proper columbs of easting, westing, northing and southing. This donc; add up into one sum the numbers in each of these last four columns, which will give four sums showing the whole quantity of easting, westing, northing, and southing made good; then take the difference between the whole easting and westing, and also between the northing and southing, so shall these show the spaces made good in these two directions, viz, east or west, and north or south; which being
compared with the given difference of latitude and departzure, will show thase get to be obtained in salling to the desired port, and thence the course and distance to it.

Example. A ship from the latitude $28^{\circ} 32$ north, bound to a port distant 100 miles, and bearing Ne by w , has run the following courses and distances, vix, $15 t, \mathrm{xw}$ by N dist. 20 miles ; ${ }^{-2 d}$, sw 40 miles; 3d, ve by E. 60 miles; 4 th, se. 55 miles; 5 th, w by $\$ 41$ miles; 6 th, en $\mathbf{E} 66$ miles. Required her present latitude, with the direct course and distauce made good, and those for the port bound to.

The uumbers being taken out of the traverse table, and entered opposite the several cuurses and distances, the tablet will be as here follows:

Course ${ }^{\text {c }}$	Dist.	N.	S.	E.	w.
Nw by N	90	16.6	.	-	11.1
sw	40	-	28.3	-	28.3
nebe	60	33.3	.	49.9	.
se.	55	.	38.9	$38 \cdot 9$.
- is	41.	-	8.0	.	$40 \cdot 2$
ENE	--	$25 \cdot 3$.	$6 \mathrm{t}^{\circ} \mathrm{O}$	
		$75 \cdot 2$ $75 \cdot 2$	75\%	1498 79.6	79.6
		0		$\frac{70 \cdot 2}{}$	Dep.

where the sums of the northings and southings, being both alike, 75%, shows that the ship is come to the same parallel of latitude she set out from. And the difference between the sums of the eastingy and westings, shows that the ship is $70^{\prime} 2$ miles more to the eastward, that being the greater. Consequently the course made good is due east, and the distance is 70^{-2} miles.

But, by the traverse table, the northing and easting to the proposed course $\$$ E by N , and distance 100 , are thus,
viz, northing 83.1 and easting 55.6
diff, from made good 0 and easting $70-2$
give - northing $\overline{83} \mathrm{t}$ and westing $\overline{14.0}$
yet to be made good to arrive at the intended port; and therefore, by finding these in the traverse table, answering to them are the intended course and distance, viz, distance 85 , and course $\mathrm{N} 10^{\circ} \mathrm{w}$.

The geometrical constraction, according to the method before described, gises the figure annexed: where A is the port sailed from, in is the port bound to, c is the place come to, by sailing the several courses and distances $A a, a b$, $b c, e d$, $d e$, nnd $e c$; then $C A$ is the distance to be sailed to arrive at the port B , and its course, or dircction with the meridian, is nearly 10°, or the angle ACB, inade
 with the east-and-west line, nearly 80°.-Note, the radii from the centre to the several points in the circunference, are omitted, to prevent a confusion in the figure.

THA VERSE-Board, in a ship, a small round board, hanging up in the stcerage, and pierced full of holes in lines showing the points of the compass: upon which, by move ing a small peg from hole to hole, the stecrsman keeps an
account how many glasses, that is half hours, the ship steers upon any point.
Traverss-Table, in Navigation, is the same with a table of difference of latitude and departure; being the diffen nee of latitude and departure ready calculated to every point, half point, quarter point, degree, \&sc, of the quadrant; and for cevery distance, up to 50 or 100 or 120 , \&c. Though it may serve for any greater distance what ever, by adding two or more together; nr by taking their halves, thinds, fourtbs, \&c, and then doubling, tripling, quadrupling, \& c, the difference of latitude and departure found to thuse parts of the distance.

This table is one of the most necessary and useful things a navigatur has occasion for; for by it he can readily reduce all his courses and distances, run in the space of 24 hours, into one comse and distance; whence he finds the latitude he is in, and the departure from the meridian.

One of the best tables of tbis kind is in Robertson's Na vigation, at the end of book 7, vol. 1. The distances are there carried to 120 , for the sake of more casy subdivisions ; and it is divided into two parts; the first containing the courses for every quarter point of the compass, and the 2d adapted to every 13^{\prime}, or quarter of a degree, in the quadrant. See Taavease Sailing.
a specimen of such a traverse table is the following, otherwise called a table of difference of latitude and departure. The distances are placed at top and bottom of the columns, from 1 to 10 ; but may be extended to any quantity by multiplying the parts, and taking out at several times. The courses, or angles of a right-angled triangle, are in a column, on both sides, each in two parts, the one containing the even points and quarter points, and the other whole degrees, as 4 as to 45°, or baif the quadrant, on the left-hand side, and the other half quadrant, from 45° to 90°, returned upwards from hottom to top on the right-hand side. The corresponding difference of latitude and departure are in two columns below or above the distances, viz, below them when the course or angle is within 45°, or found on the left-hand side; but above them when between 45 and 90°, or found on the right-hand side.

The same table serves also to work all cascs of rightangled triangles, for any other purposes. For example, Suppose a given course be 15°, and distance 35 miles, to find the corresponding difference of latitude and the departure: Or, in a right-angled triangle, given the hypothcnuse 35 , and one angle 15°, to find the two legs.-Here, the distance 3 in the table must be accounted 30 , moving the decimal point proportionally or one place in the other numbers; and those numbers taken out at twice, viz, once from the columns under $\mathbf{3}$ for the SO, and the other from the columns under the distance 5 . Thus, on the line of 15°, and under the

$$
\begin{array}{lll}
\text { Dist. Lat. Dep. } \\
30 \text { are } & 28 \cdot 978 \text { and } 7.765 \\
5 & \text { are } & 4.830 \\
\hline 5 \text { are } & 33.808 & \text { and } \\
\hline 6.059
\end{array}
$$

So that the other two legs of the triangle are 33.808 and 9.059 . If the course had been 75°, or the complement of the former, which is only the other angle of the same triangle, and which is found on the same line of the table, but on the right-hand side of jt ; then the numbers in the columns will be the same as before, and will give the same sums for the twa legs of the triangle, only with the contrary names, as to latitude and departure, which change

Vol. II.

places.

$3 \mathbf{Y}$

TRA
[530]
TRA
ATABLE of the Difference of Latitude and Departure, for Degrees and Suarter Points.

Courne.		Dief. 1.		Dist. 1.		Dist 3		Dist. 4.		Dint. 3.		Coune	
Prab	D.	Lat.	Dep.	Lat.	Dep.	14.	Dep.	Lat.	Dep.	Lat.	Dep.	D.	Pra
01	t	0.9908	00175	1.4997	0-0549	2-9995	00:24	S9994	00698	4.9992	000873	89	
	2	$0 \cdot 9994$	0.0349	1.9988	$0 \cdot 0608$	2.9962	$0 \cdot 1047$	3-9976	$0 \cdot 1596$	4.9970	01745	88	
		09988	$00+91$	1.9976	$0 \cdot 0981$	2.9964	0.1472	3.9352	01963	49940	02453		$7 \frac{7}{8}$
	3	0.9, ${ }^{6} 6$	0.0523	1-9973	$0 \cdot 1047$	29059	0.1370	3.9945	0.2093	4.9981	026617	87	
$0 \frac{1}{2}$	4	0.9976	0.0698	$1 \cdot 9951$	0.1395	2.9027	02043	39903	02790	4.9878	03488	85	
	5	09962	000872	19924	$0 \cdot 1743$	$2.98 \leqslant 6$	02615	$3098+8$	0:3486	4.9810	O. 4358	85	
		0.9952	0-0980	1.9904	0-1960	2.9850	$0 \cdot 2040$	3.9807	0.3921	4.0759	0.4901		$7!$
	6	0.9945	01043	1.9890	0.2091	209836	0.3136	$3 \cdot 9751$	0.4181	49726	0.5226	84	
	7	0.9925	$0 \cdot 1219$	1.9851	0.2437	29776	03656	3.9702	04875	4.9627	0.6093	83	
	4	0.9:03	$0 \cdot 1392$	1.9805	$0 \cdot 2783$	29708	0- +175	39611	0-5367	$\underline{+9513}$	0.6059	82	
0\%		09842	$01+67$	$\overline{19784}$	$\overline{0.2935}$	2.9075	04402	3.9567	05869	4.9459	0.7337		71
	9	09877	01564	1.9754	03129	$2 \cdot 9631$	0-4693	39508	06257	4.9384	07822	81	
	10	0.98 $4 *$	0.1736	1.9696	0.3473	29514	$0 \cdot 5209$	$3-9392$	0.6046	+-9240	0.8682	80	
	11	(r98 16	01908	1.9633	0.3816	$29+10$	0.5324	$3 \cdot 9265$	07632	4.2081	00340	79	
1		0.980s	$0 \cdot 1951$	1.9616	0.3402	2.9424	0.5853	3.9231	0.7804	$4 \cdot 3039$	0-0754		7
	12	0.9781	$0 \cdot 2079$	1.9363	$0 \cdot+158$	2-9344	0.6237	39126	08.816	48007	1.0396	78	
	13	$0.97+4$	02250	$1 \cdot 9487$	$0 \cdot+4.99$	2.9231	0.6749	3.8975	- 8938	18718	$1 \cdot 1248$	77	
	14	0.7703	0.2419	1.9406	0.4538	2.9105	0.7238	3.8812	08677	48515	$1-20.96$	76	
$1 \frac{1}{4}$		0.9700)	0.213:	1.9101	0.4560	29.9101	0.7299	3.8801	09719	48502	1-21 ¢?		61
	15	02639	02588	1.0319	0.5176	23078	07765	\$8637	1.0953	4.8296	12941	7.5	
$1 \frac{1}{1}$	16	09513	$\overline{0-2750}$	1.0225	0.3513	288838	08209	3.6450	$1 \cdot 1025$	48063	137 2	74	
		09503 0.4568	0-2903	19139	0.5816	28.808	0.87093	3.8278	1.1611	4.784	1.4514		$1{ }^{1} \frac{1}{2}$
	17	0.8563	02024	1-91126	0. 5887	2. 8689	08771	\$8252	11675	47815	1.4619	73	
	18	09311	0.3020	1.9021	$0 \cdot 6180$	28532	00271	38012	1.2361	4.7533	r.54, 1	72	
	19	09455	$0 \cdot 3256$	1.8910	0.6311	25916	0.9767	37821	$1 \cdot 3023$	47727	1.6.278	71	
11		$0 \cdot 9+15$	03363	1.8×31	06738	28246	10107	37662	1.3475	4.7077	$1 \cdot 6844$		61
	20	0.9397	0.34.0	1.8704	0.6844	2-8191	10261	3.7588	1.3681	4.6985	1.7101	70	
	21	09316	O 3384	1.8672	0.7167	$2 \cdot 8007$	10751	3.7343	1.4335	1.60679	1.7915	69	
	2	09272 0.9230	0.3746 0.3827	1.8544	0.7192	27816	111238	3.7087	1.4084	4.6359	1.8730	68	
2		0×9230	$0 \cdot 3827$	1.8178	0765	27716	11480	$3 \cdot 6035$	$1 \cdot 5307$	46194	$1 \cdot 9184$		6
21	23	092.15	03907	15810	0.7815	2.7615	117:2	36820	1.5629	$4 \cdot 6025$	1-9537	67	
	24	09135	04067	18270	0.813 .3	2.7106	1.2202	36542	1.6269	4.5677	$2 \cdot 0747$	66	
	25	0.1083	$0+226$	18126	$0-4452$	$2 \cdot 7189$	1-2679	3.6252	1.690 .5	4.5315	2.1131	65	
		0 yot,	04276	1-8080	0-8551	27120	1.2827	36160 3.5050	17102	$4 \cdot 3199$	2.7378		5 \%
	27 27	$17 \cdot 9: 885$ 08910	0.4381 0.4540	1.7970 1.7820	0.8767 0.9080	$2 \cdot 6964$ 26730	1.3151 1.3620	3.5952 3.5640	1753.5 1.8160 1.8179	4.4940 4.4550	2.1919 2.2699	6.	
	27	08910	04540	1.7820	$0 \cdot 9040$	26730	1.3620	3.5660	1.8160	4.4550	2.2699	63	
$2 \frac{1}{1}$	25	08×19	- 1714	17653 1.7538	0.9428	26488 26458	1.4184 1.4142	3.5318 3.5277	1.8779 1.8850	4.4147 4.4096	23474 2.3570		
	29	08746	04548	1.7492	0×1596	26239	1.4544	3.4085	1.9392	+37.31	$2 \cdot 1240$	61	
	30	08660	9 500\%	1.73 .0	1.0001	$2 \cdot 5081$	1.5000	3 $16+1$	20000	+3301	$2 \cdot 5000$	60	
$\overline{2 \frac{3}{4}}$		08.857	$\overline{0.5171}$	1.71.55	$\mathrm{i}^{\circ} \mathrm{OLH2}$	$2 \cdot 5732$	1,5423	3+309	$2 \cdot 0504$	42886	$\overline{23705}$		$3!$
	31	08572	0.5150	17143	1.0301	2.5715	13451	3.4287	2.0602	4.2858	2.5752	59	
	32	08180	0.5299	1.6961	1.0598	25.41	1.5896	3.3922	21197	+240	2.6496	58	
	33	08887	O.544	$1 \cdot 6773$	$1 \cdot 0493$	2.5160	$1 \cdot 6339$	33547	$2 \cdot 1786$	+1934	27432	37	
3		08315	O. 5536	$1 \cdot 6629$	$1 \cdot 1111$	24341	1.6667	332.59	2-2223	+1573	2.7778		5
	31	O 8290	0.5592	$1 \cdot 6551$	$1 \cdot 1184$	2.4871	1-6776	3.3102	$2 \cdot 2368$	$4 \cdot 1452$	27960	56	
	45	0.8192	0.3734	1.6383	$1 \cdot 1472$	$2 \cdot 6575$	1.7207	32766	22943	4.0938	28679	55	
	36	08090	0.3878	1.6180	$1 \cdot 1756$	$2 \cdot 4271$	1.7634	3.2361	2.3511	40451	29889	34	
31		08032	050157	1.6064	$1 \cdot 191$ t	24096	1.7871	3-2128	25828	40160	2.9785		$4 \frac{1}{4}$
	37	$\underline{0} 7 \times 86$	06018	$1 \cdot 5973$	$1 \cdot 2036$	23059	1-80.54	3-1945	$\underline{24073}$	39732	30091	53	
$3 \frac{1}{2}$	is	97880	$0 \cdot 6157$	15760	1-2313	23640	18470	3.15\%	24026	3.9401	$3 \cdot 0783$	52	
	39	07771	06295	$1 \cdot 5543$	$1 \cdot 2586$	2.3314	1.8880	$3 \cdot 1086$	2.5173	38857	3.1466	51	
		2-7730	0.6344	15460	$1 \cdot 2684$	$2 \cdot 3190$	1.16092	30020	2.5378	38650	\$1720		$4 \frac{1}{3}$
	40	07660	06428	1.3321	$1 \cdot 2856$	2-2781	1-9244	$3-0642$	25712	$8 \cdot 8302$	3-2130	50	
33	41	07547	06561	1.5094	1.3121	22641	19082	30188	2.6242	37736	3-2803	49	
	12	07431	06801	1.4803	$1 \cdot 3388$	22204	20074	2.9726	2.6765	S 7157	$3 \cdot 3+57$ $3 \cdot 358$	18	
		0.7110 07314	0.6716 0.6820	14813	$1 \cdot 3431$ $1 \cdot 3640$	$2 \cdot 2 \cdot 29$ $2 \cdot 1941$	2.0147 $2 \cdot 0.460$ 20.	2.963 292.5 2.5	2.696 2.725	$3.704{ }^{\text {c }}$	3.3 .578 $3 .+100$		4
4	4	07193	- 0684	1.4357	$\begin{array}{r}1 \cdot 361 \\ 1-3884 \\ \hline\end{array}$	$2 \cdot 1981$ 21580	208 20	2.8774	27786	3.5967	3.7100 S.4733	47 46	
	45	127071	0-7071	17142	1.4112	$2 \cdot 1213$	21213	28284	28254	3.5355	\$5353	ts	4
E	\%	Dep. Diss, Lat.		Dep.	1.7.	Drp.	Lat.	$1{ }^{1} \mathrm{p}$ P.	Let.	Dias. ${ }^{2}$		\%	2
	2			Dist.\%.		1pat 3.		Dint. 4.				3	2

TRA
[531].
A Table of the Difference of Latitude and Departure, for Degrees and Duarter Points.

Cumbre.		Dat. b.		1 Sut. 7.		Drat, n.		Dur. 0.		Dist. 10		Cource.	
Pto	D.	Lat	12 p.	Lat.	Drp.	at.	Dep	1at.	Dep.	Lat.	1 lep .	D	Pro.
$0 \frac{1}{4}$	1	3.99011	0.1047	6.998	0.122	7.9988	0.1396	8:9956	[1971	$\overline{90.9085}$	$0 \cdot 17+5$!	
	2	$5 \cdot 9963$	02094	6.9057	0.2443	7.0951	0.2792	8.9915	0.5141	9.9033	$0 \cdot 3490$	88	
		5-9928	$029+4$	6.9016	03435	7.9904	$0 \cdot 3023$	8.0892	0.4416	9.9880	0.4907		7 ?
	3	5.9918	0.3140	6.990 b	03664	$79 R \mathrm{gO}$	0.4157	89877	0.4710	9.9863	0.3234	87	
01	4	3.0*5	0-4185	6.9829	0.4883	7.9805	0.5580	4.9781	0.6278	9.976	$0 \cdot 6976$	80	
	5	5.9772	05293	69734	06101	79604	0.6972	\$9658	0.7844	$9+5619$	0.8716	85	
		3.9711	05881	6.9663	06861	7.9615	07841	89567	$0 \cdot 8822$	9.3518	0.9802		$7 \frac{1}{8}$
	6	59071	0.6272	$6 \cdot 9617$	07317	7.9563	0.8362	$\times 9507$	O9405	9.9152	1.0459	34	
	7	5.9553	0.7312	69.478	0.8531	79404	0.9750	89329	$1 \cdot 0968$	0.9125	$1-2187$	53	
	8	5-0416	0.83 .50	ti9319	0-177+2	7.9221	1.1134	8×3124	1-252t	99027	1.3917	82	
01		5.9331	0.8804	6*9242	1.0271	7.9134	1.1735	8.4026	1.3246	9.8218	$1 \cdot+674$		$7 \frac{1}{4}$
	9	5.9261	0.9386	6.9138	16950	$7 \cdot 9015$	12313	8.8392	1.4079	98769	1-5643	81	
	10	5 5tioss	1.0419	6.8937	12135	7×8783	1-38.9	-8833	1.3628	98481	1.7365	80	
	11	58808	1.1549	ti 8714	$1 \cdot 3357$	78530	1-52645	88316	17173	98165	$1 \cdot 9081$	79	
1		5.8917	$1 \cdot 1705$	6.8655	13656	$78+63$	1.5607	8.3271	17538	0.8074	$1 \cdot 9.50$		7
	12	$5 \cdot 6689$	12175	08170	1.4534	78.52	$1 \cdot 6635$	8.8033	1-8712	9.7815	20791	78	
	13	5.8402	$1 \cdot 3497$	t'820t	$1 \cdot 5746$	7.7950	1.790t	8.7603	20246	9.7437	22493	77	
	14	58218	1.4515	67021	1.6935	77624	1-9334	873.7	2.1773	97030	$2+192$	76	
14		5.8202	1.4579	6.7902	1709	$7 \cdot 7612$	1.913:	87303	2.1864	9.70015	24298		63
	15	$5 \cdot 7956$	$1 \cdot 5529$	${ }^{6} 7615$	1.8117	${ }^{7} 7274$	20706	8-6.33	$2 \cdot 324$	96593	2.5882	75	
11	10	57.7070	1.053*	6-7288	1929.5	76001	2.21351	86.13	24807	96120	27502	4	
		57116	1.7417	6.6986	2.0320	$7 \cdot 0555$	$2 \cdot 3223$	86125	26126	9.5691 9.5630	2.9028		$6 \frac{1}{8}$
	17	5.7378	1-7512	66911	2.0466	76501	$2 \cdot 3390$	86067	2.6313	9.5630	$2 \cdot 9.237$	3	
	18	$5 \cdot 7063$	1.8541	66574	2.1631	76081	2.4721	$85: 95$	2.7812	$9 \cdot 5106$	3.0902	72	
	19	5.0731	19.934	66186	2.2790	$7 \cdot 5642$	$2 \cdot 6045$	$8 \cdot 5097$	2.9301	9.4552	$3 \cdot 2557$	71	
12		56193 5093 18	20313	65903	2.3582	7.5324	2.6051	8.7739	30320	9.4154 0.9064	3-3689		$6 \frac{1}{4}$
	20	56382	20521	6.5779	2'39+1	$7 \cdot 5175$	2.7362	8.4572	3.0752	9.3969 9.9354	\$.4202	0	
	21	5.6015	2.1502	65331	$2.50 \leq 6$	7-46s6	$2 \cdot 8669$	8.4222	3.2253	9.3358	3.3837	69	
	22	$5 \cdot 3631$	22470	64003	26222	74175	2*9969	5347	\$3715	92718	\$.7161	68	
2		5.543.	2-2961	6.4672	2-6788	7.3910	3.0615	8.3140	3-4441	92388	3.8268		6
$2!$	29	$5 \cdot 5230$	$\overline{2.34+4}$	0.+435	27351	7.3ib.40	3.1258	$5 \cdot 28+5$	$3 \cdot 5166$	92050	3.9075	67	
	2.4	$5.48: 3$	2.4604	63914	28472	$7 \cdot 3034$	3.2539	82219	36606	91353	4.0674	66	
	25	5.4378	2.5357	63142	29583	72505	3.5809	8.1569	38036	90631	4.2262	65	
		$5 \cdot 4239$ $5 \cdot 3328$	2.5653 2.6302	63279 62916	2.9929	$7 \cdot 2319$ $7 \cdot 1904$ $7 \cdot 125$	3.4.204 $3 \cdot 5070$	8.1359 8.0891 80191	3.8486	$9-0899$ 8.9879	+2876 4.5837		$5 \frac{9}{4}$
	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$5 \cdot 3328$ 53400 51	2.6302 2.723	62916 6.2370	30686 $3 \cdot 1779$	$7 \cdot 1904$ $7 \cdot 1250$	3.5070 3.6319	80891 80191 701	$3.9+53$ 40×59	8.9879 89101	4.5837 4.5399	64	
21	28	53160 $5-2.77$	2.7237 28165	6.2370 6.1806	3.1779 3.2463	$7 \cdot 1250$ $7 \cdot 0656$	3.631 3.75 .5	80191 7.9165	40859 4.2252	8.9101 8.8795	4.5399 4.6947	65	
		5-2315	28284	61734	3.2998	70354	3.7712	$7 \cdot 0373$	42126	8.8192	4.7140		$5 \frac{1}{2}$
	29	52477	2.9089	6.1223	33937	6-9970	3.8785	78716	+ 31538	8.7462	4.8481	61	
	3)	51961	36000	60622	$3 \cdot 5000$	6.9282	$4 \cdot 0000$	7.7942	4.5000	86603	$5 \cdot 0000$	60	
21		5.1 104	3.0846	$600+1$	35987	6.8615	+1128	77115	+6203)	8.3773	5.1410		$5 \frac{1}{4}$
	31	5.1430	30602	6.0002	3.6052	68573	+1203	77115	4.6853	8.5717	5-1504	59	
	32	5 50833	377.5	5.0363	3.7094	$6.78+3$	+2334	$7 \cdot 6324$	4.7093	8.4805 3.3867	52992	58	
	33	50320	32678	5.3707	3.8125	6.7094	+.3571	$7.5+80$	4.9018	8.3867	5.4464	57	
3		49588	33354	58203	3.8890	66.518	\$. 4446	7.4832	5-0.101	8.3147	5.55.7		5
	34	+9742	33552	5.8033	39146	6.6323	4.7535	74613	30327	8.290 .4	5:5919	56	
	35	4.9149	3.4415	3.7341	4.01 .50	65532	+.3880	73724	3.1622	81915	5.7358	55	
	36	$485+1$	3.5267	$5 \cdot 6631$	+1145	6.4721	4.7023	$7 \cdot 2812$	5.2901	$8 \cdot 0902$	5.8779	54	
34		+5102	3.5742	56224	+1699	6i4257	+7656	72289 7.1877	5.3613 $5 .+169$	80321	3.9570 8018		$4 \frac{1}{4}$
	37	47918	36103	$5 \cdot 5904$	4-2127	63891	+-8145	$7 \cdot 1877$	$5+163$	79864	60182	53	
31	38	47281	$\stackrel{3.6940}{ }$	3.5161	43096	$630+1$	4.92. 53	70921	5 $5+19$	$7 \cdot 8891$	0.1560	52	
	30	46649 +6381	377.59	54100	4.1032	6.2172	$5 \cdot 0316$	6. 99.43	566339	77715	6.2982	51	
		+6381	3.806t	3.4111	4 4.408	6.1841	$5 \cdot 07.51$	69371	5.7095	7.7301	6.5489		$4 \frac{1}{4}$
	40	4.5963	3.85:7	53623	+.41925	6.1284	$5 \cdot 1423$	6.8944	3.7851	$7 \cdot 6604$	6.9279	50	
91	$+1$	$4 \cdot 5283$	3.0363	5.2430	45914	60.0377	$5 \cdot 2+85$	6.7924	5 9045	7.5671	6.560 6	v	
	42	+4589	4.0148	5*2020	48832°	3.9452	53530	66853	60222	$7 \cdot 4311$	$6 \cdot 6913$	18	
		+4.457 +3891	4.0294	$5 \cdot 1867$	47009	5.9276	$5 \cdot 3725$	fr btiso	60440	7*493)	6.7156		$1{ }^{\frac{1}{4}}$
	13	± 3851	40920	51195	47740	58.08	5-6.56)	6.58 .22	6135	7.3135	6	17	
4	44	43160	$4 \cdot 1679$	50354	4.8626	57547	5.5573	6.4741	6-2519	7*193+	6* 4163	46	
	+5	+2926	42426	4.017	4.9207	56509	56563	6.3 (i)40	ti 3640	70711	7*\%11	S	4
\pm		Dep.	14 .	Drp.	Lar,	1) P P	Lat.	Irp	1 Lit.			\pm	4
	$\underline{0}$	Dist. 6.		Dist. 7.		Dint. 8 .		1man					

TREBLE, in Music, the bighest or acutent of the four parts in symphony, or that which is beard the clcarest and shrillest in a concert. In the like sense we say, a treble violin, treble hautboy, \&ec. In vocal music, the treble is usually committed to boys and girls; their proper part being the treble. The treble is divided into first or highest treble, and second or bass treble. The balf treble is the same with the counter-tenor.

TRENCHES, in Fortification, are ditcles which the besiegers cut ρ approach mone securely to the place attacked; whence they are called lines of approach. Their breadth is 8 or 10 feet, and depth 6 or 7 . -They say, mount the trenches, that is, go upon duty in thein. To relieve the trenches, is to relieve such as have been upon duty there. The enemy is said to have cleared the trenches, when he has driven away or killed the soldiers who guarded them.

Tail of the Teench, is the place where it was begun. And the Head is the place where it ends.

Opening of the Trescues, is when the besiegers first begin to work upon them, or to make them; which is usually done in the night.

TREPIDATION, in the ancient astronomy, denotes what was called a libration of the 8 th sphere; or a motion which the Ptolemaic system attributed to the firmament, to account for certain almost insensible changex and motions observed in the axis of the world; by means of which the latitudes of the fixed stary conne to be gradually changed, and the ecliptic appears to approach reciprocally, first towards, one pole and then towards the other.-This motion is also called the motion of the first libration.

TRET, is Comanerce, is an allowance made for the waste, or the dust, that may be inixed with niny commodity; which is always 4 pounds on every 104 pounds weight. Sec Tıue.

TRIANGLE, in Geometry, a figure bounded or contained by three lines or sides, and which consequently has three angles, whence the figure takes its nume.

Triangles arc either plane or spherical or curvilinear. Plane when the three sides of the triangle are right lines; but spherical when some or all of them are arcs of great circles on the sphare.

Plane trianglis take several denominations, both froun the relation of their angles, and of their sides, as below. And Ist with regard to the sides.

An Equilateral Triangle, is that which has all its three sides equal to one another; as A.

An fsosceles or Equicrural Triangle, is that which bas two sides equal; as B.

A Scalene Triangle bas all ite sides unequal; as \mathbf{c}.
Again, with respect to the anglos.

A Rectangular or Right-angled Triangle, is that which has one right angle; as b .

An Oblique Triangle is that which has no right angle, but all oblique ones; as \mathbf{x} or \boldsymbol{y}.

An Acuangular or Oxygone Triangle, is that which has three acute angles; as \mathbf{E}.

An (tbotuanguinr or Ambiygone Triangle, is that which hes an obtuse augle; as \mathbf{F}.

A Curvilinear or Cuivilineal Triangle, is one that has all its three sities curve lines.

A Mirtilinear Triungte, is one that has its sides some of them curves, and some right lines.

A Spherical Priangle is one that has its sides, or at least some of them, arcs of great circles of the sphere.

Similar Triankles are sucli as have the angles in the one equal to the angles in the other, each to each.

The Buse of a triangle, is any side on which a perpendicular is drawn from the opposite angle, called the vertex: and the two sides about the perpendicular, or the vertex, ure called the legs.
The chief properties of plane triangles, are as follow, viz, In any plane triangle,

1. The greatest side is opposite to the greatest angle . and the least side to the least angle, \&c. Also, if iwo sides be cytul, their opposite angles are equal ; and if the triangle be equilateral, or have all its sides equal, it will also be equiangular, or have all its angles equal to one another.-2. Any nide of a triangle is less than the sum, but greater than the ditferences, of the other iwo sides3. The sum of ull the three angles, when together, is equal to two right ungles. - 4. If one side of a triangle be produced, the external angle, mathe by it and the adjacent side, incyual to the sum of the tivo upposite internatungles. -5. A line drawn parallel to one shle of a triangle, cuts the other two sides proportwally, the correoponding segments boing proporinonal, each to ach, and to the whele sides; and the thangle cut ofl is simalar to the whole tif a angle.

If a perpendicular be let fall from any angle of a triangle, as a vertical angle, upon the opposite side as a base; then, 6. The rectangle of the sum and difference of the sides, is equal to twice the rectangle of the base and the distance of the perpendicular from the middle of the base. -Or, which is the sanse thing in rither words, 7 . The difference of the squares of the sides, is equal to the differeace of the squates of the seginents of the base- Or, as the base is to the sum of the sides, so is the difference of the sides, to the difference of the segments of the base.8. The rectangle of the lens or sides, is equal to the rectangle of the perpendicular and the diaracter of the circumscribing circle.

If a line be drawn bisecting any angle, to the base or opposite side; then, 9 . The segments of the base, made by the line bisecting the opposite angle, are proportional to the sides adjacent to them.- 10 , The square of the line bisecting the angle, is equal to the difference between the rectangle of the sides and the rectangle of the segments of the base.

If a line be drawn from any angle to the middle of the opposite side, or bisecting the base; then, 11. The sum of the squares of the sides, is equal to twice the sum of the squares of half the base and the line bisecting the base.12. The angle made by the perpendicular from any angle and the line drawn from the same angle to the middle of thie base, is equal to half the difference of the angles at the base.-13. If through any point d , within a triangle ABC, three liues EF, OH, ix, be drawn parallel to the three sides of the triangle; the continual products or solids made by the alternate segmenis of these lines will be equal; via,

TRI
$\mathrm{DE} \times \mathrm{DK} \times \mathrm{DH}=\mathrm{DG} \times \mathrm{DF} \times \mathrm{Dt}$.

14. If three lines abs, Bm, CN, be drawn from the three angles through any point b within a triangle, to the oppusite sides; the silid products of the alternate segments of the sides are equal ; via,
$A N \times B L \times C M=A M \times C L \times E N$.
15. Three lines drawn from the three angles of a triangle to bisect the opposite sides, or to the middle of the opponite sides, do all intersect one another in the same point D, and that point is the centre of gravity of the triangle, and the distance AD of that point from any angle as p , is equal to double the distance d L from the opposite side; or one segment of any of these lines is double the other segment: moreover the sum of the squares of the three bisecting lines, is $\frac{1}{4}$ of the sum of the squares of the three sides of the triangie. -16 . Three perpendiculars bisecting the three sides of a triangle, all intermet in one point, and that point is the centre of the circurascribing circle,-17. Three homes bigecting the three angles of a triangle, all intersect in one point, and that point is the centre of the inseribed carcle-18. Three perpendiculars drawn from the three angles of a triangle, ppon the oppoe site sides, all rotersect in one point.-19. If the three angles of a triangle be bisected by the lines $A D, E D, C D$ (3d fig alowe), and any one as no be continued to the oppointe side ist 0 , and in be drawn perp. to that side; them is $\angle A D O=\angle C D P$, or $\angle A D P=\angle C D O$.
20. Any triangle nary have a circle circumscribed about it, or touching all its angles, and a circle iuscribed within it, or touching all its sides.-21. The squars of the side of an equilateral triangle, is equal to 3 thmes the square of the radus of it circumscribing circle.-22. If the three angles of one triangle be equal to the three angl sof another triangle, cach to each; then thuse two triangles are similar, and their likesides are propertional to one unother, and the äreas of the two trhugles are to each other as the squares of their like sides. - 23. If two triangles have any three parts of the one (except the three angles), equal to three correspinding parts of the other, each to each; those two triangles are not only similat, but also identical, or having all their six corresponding parts equat, and their areas also equal.-24. Tuangles standing on the same base, and betwen the same parallely, are equal : and triangles on equal bases, and having equal altutudes, are equal.25. Triangles on equal bases, are to one another as their altitudes: and triangles of equal altitudes, are to one another as theis bases; abo equal triangles have their bases and altitudes reciprocally proportional,-26. Any triangle is equal to hulf its circumscribing parallologram, or half the parallelograin on the same or an equal base, and of the same or equal altitude.-27. Therefore the area of any triaugle is found, by multiplying the base by the altitude, and taking half the product.-28. The srea is also found thus: Multiply any two sides together, and muitiply the product by the sine of their included angle, to radius 1. and divide by 2.-29. The area is also otherwise found thus, when the three sides are given: Arld the three sides together, and take half their sum ; then from this half sum subtract each side severally, and multiply the three
remainders and the half sum continually together; then the square root of the last product will be the area of the triangle.-50. In a right-angled triangle, if a perpendicular be let fall from the right angle upon the hyputhenuse, it will divide it into two other triangles sinular to each other, and to the whole triangle.-31. In n right-angled triangle, the square of the hypotbonuse is equal to the sum of the squares of the two sides; and, in generel, any figure describel on the hypothenise, is equal to the sum of two similar figares described on the two sides. -32 . In an isosceles tiankile, if a line be drawn from the vertex to any point in the buse; the square of that line togethe r with the rectangle of the wegments of the bate, is equal to the square of ons of the equal sid $*,-33$. If one angle of a trinugle be equal to 120°; the square of the thase will be equal to the squares of both the seles, fugether with the rectangle of these sides; and if those sides be equal to each other, then the square of the base will be equal to three times the square of one side, or equal to 12 times the square of the perpendicilar from the angle upon the basg.- $S t$. In the same triangle, viz, having the atigle equal to 150°; the difference of the cubes of the sides, about that angho, is equal to a solid contamed' by the difficence of the sides and the square of the base; and the sum of the cubes of the sudes, is equal to a suld contained ty the sum of the sides nud the difference between the square of the base and twice the rictungle of the sides.

There are many other properties of triangles to be found in the geometrical writings; indeed Gregory St. Vincent has written a folio volume upen triangles; there are also several in his quadfature of the circle. See also other properiies under the article Thiounoseter, and under Rtout-Angled Triantle.
Solution of Triangefy. Sec Taigonometry.
Thtangle, ill Astrunomy, one of the 48 ancient constellations, situated in the northern hemispliere. There is also the southern trianple in the southern hemisphere, which is a modern constellation. The stars in the northern triangle are, in Ptodemy's eatalngue 4. in Tychn's 4, in Hevelius's 12, and in the British catalogue 16. The stars in the southern triangle are, in Sharp's catalogue, 5.

Arithmetical Tasakolf, a kind of numeral triangle, or triangle of numbers, being a table of certain numbers dispoused in frorm of a tianglo. It was so called by Pascal : but he was not the inventor of this table, as some writers have imagined, its preperties having been treated of ty other authors, some centuries before him, as is shown in my Mathematical Tracte, vol. I, tract 12.
The form of the triangle is as follows:

1	1				
1	2	1			
1	3	3	1		
1	4	6	4	1	
1	5	10	10	5	1
1	6	15	20	$\& c$	
1	7	21	$\& c$		
1	8	$\& c$			
1	9				
1					

And it is constructed by adding always the last two numbers of the next two preceding columns together, to give the next succeeding column of numbers.

The first vertical column consists of units; the 2 d a series of the natural numbers $1,2,3,4,5, \& c$; the 3 d a series of triangular number $1,3,6,10, \& c$; the 4th a
series of pyramidal numbers, \&c. The oblique diagonal rows, descending from left to right, are also the same as the vertical columus. And the numbers taken on the horizontal lines are the coecfficients of the different powers of a binomial. Many other propertion and uses of these numbers bavo been delivered by variouy authors, as may be seen in the Introduction to my Mathematical Tables, pa. 7, 8, 75, 76, 77, 89, 2d edition.

After these, Pascal wrote a treatise on the Arithmetical Tirungle, which is contansed in the 5 th velume of his works, published at Paris and the Hague in 1779, in 5 volumes, 8vo. In this publication is also a description, taken from the lat volume of the French Encyclopedie, art. Arithraetique Machine, of that admirable machine invented by Pascal at the age of 19 , furnishing an eany and expeditious method of making all kinds of arithmetical calculations without any other assistance than the eye and the hand.

TRIANGULAR, relating to a triangle; as
'Thiangular Cunon, tables relating to tigonometry; as of sines, tangents, secaats, \&c.
Tintangelar Compasses, are such us bave three legs or feet, by which any triangle, or three puints, may be taken off at once. These are very useful in the construction of maps, globes, \&c.
'Triavgular. Aumbers, are a kind of polygonal numbers; being the sums of aritbmetical progresstons, which have 1 for the common difference of their terms.
Thus, from these arithmeticals $-1 \begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6,\end{array}$ are formed the triang. numb. $\quad \begin{array}{llllll}1 & 3 & \text { if } 10 & 15 & 21,\end{array}$ or the 3 d column of the aritionstical triangle above mentioned.

Because the sum of n terms of such arithmetical progression is expressed by $\frac{n^{2}+n}{2}$; we shall evidently have the same formula to express generally the triangular numbers; or the triaugle, which answers to any side represeuted by n.

Thus, if $n=6$, the sixth thangular number taken in order will be $\frac{3 n+6}{2}=21$. And if $n=15$, the triangle is $\frac{225+15}{2}=120$.

The sunt of any number n of the terms of the triangular nutnbers, $1,3,6,10, \& c$, is $=$

$$
\frac{n^{2}}{6}+\frac{n^{2}}{2}+\frac{n}{3}, \text { or } \frac{n}{1} \times \frac{n+1}{2} \times \frac{n+2}{3}
$$

which is ulso equal to she number of shot in a triangular pile of baits, the number of rows, or the number in each side of the base, being n.

The sum of the reciprocals of the triangular series, infiailely continued, is equal to 2 ; viz,

$$
1+1+\frac{1}{6}+\frac{1}{1}+\frac{1}{1} d x=2
$$

For the rationale and managemest of these numbers, see Malcolm's Arith, book 5, ch. 2; and Simpson's Algeb. sec. 15.

Triangulak Quadrunt, is a sector furnished wihh a loose piece, by which it forms an equilatural triangle. Upon it in gratuated and marhed the calendar, with the sutis place, and other uscful lines; and by the belp of a string and a plummet, with the divisions graduated on the looke pirce, it may be made to serve for a quatrant.

TRIBOVETERT, in Mechanics, a term applied by Musschenbruck to an instrument invented by him for measuring the friction of metals. It consists of an axis formed
of hard stcel, passing through a cylindrical piece of wood: the ends of the axis, which are highly polished, are made to rest on the polished semicircular cheeks of various metals, and the dagree of friction is estimated by means of a weight suspended by a tine silken striag or ribband over the wooden cyliuder. For a farther dencription and the figure of this instrument, with the results of various experunents performed with it, see Musschenb. Introd, ad Phal. Nat. val. I, p. 151.

TRIDENT, is a particular hind of parabola, used by Descartes in constructing rquations of 6 damensions. See the article Cartesian Pababula.

TRIGLYP'I, ill Architecture, is a member of the Doric frize. placed directly over each column, and at equal dislances in the intercolumnation, having two entire glyphs or chanmelv engraven in it, neeting in an angle, and separuted by three legs from the two dem-chanuels of the sides.

TIRIGON, a figure of three angles, or a triangle.
Trition, in Astiomomy, denotos an apect of two plauets when they are 120 degrees distant tron each oblher: calied also a triac, being the 3 d part of 360 degrees.
Thagos, in Dialling, an instument of a triangular form,
Trations, in Music, denoted a musicul instrument, used among the uncients. It was a kind of tiangular lyre, or harp, invented by llyycus; and was unal at feasts, being plaged on by women, who struck it either with a quill, or beat it with small rods of different lengths and weaghts, to occasion a diversity in the sounds.
TRIGONAL Nunbers. See Thangelar Numbers.
TRIGONOMETER, Armillary. See Armiliary Trisonometer.
TRIGONOMETRY, the art of measuring the sides and angles of triangles, cither plane or spherical; whence it is accordingly called either plane trigononetry, or sphe* rical trigonometry.

Every triangle has 6 parts, viz, 3 sides, and 3 angles; and it is necessary that three of thrse parts be given, to find she other three. In spherical trigonometry, the three parts that are given, roay be of any hind, cither all sides, or all angles, or part the one and part the other. "But in plane trigonounetry, it is necessary that one of the three parts at least be a side, since frum three angles can only be found the proportions of the sides, but not the real quantities of them.

Trigonometry is an art of the greatent use in the mathematical scirnces, especially in astronomy, navigation, surveying, dialling, geography, \&c, \&ec. By tbe aid of it, we can iletremine the magniude of the earth, the planets and stars, their distances, motions, echpses, and almost all other useful arts and sciences. Accordngly we fiod this mat has been cultivated from the carliest ages of mathematical knowledge.

Trigonometry, or the resolution of triangles, is founded on the mutual proportiots which subsist between the sides and angles of triangles; which proportions are known by finding the relations between the radius of a curcle and cortain other lines drawn it and about the same, called chords, sines, tangents, and secants. The ancients Mcnelaus, llipuachus, Ptolemy, \&ic, performed their trigonometly, by medns of the chords. As to the sines, and the common theorems relating to them, they were introduced into trigonometry by the Moors or Arabians, from whom this art passed into Europe, with several other
branches of science. The Europeans have introduced, since the 15 th century, the tangents and secants, with the theorems relating to shem. See the history and improvements at large, in the Introduction to my Mathematical Tables.

The proportion of the sines, tangents, \&c, to their radius, is sometimes expressed in common or natural numbers, which constitute what are called the tables of natural sines, tangents, and secants. Sometimes it is expressed in Ingaritbms, being the lognritbms of the said natural sines, tangents, \&c ; and these constitute the table of artificial sines, \&c. Lastly, sometimes the proportion is not expressed in numbers; but the several since, tangents, dec, are actually laid down upon limes of scales; whence the line of sines, of tangents, \&e. See Scale.,
In trigonometry, as angles are measured by arce of a circle described about the angular proint, so the whole circumference of the circle is divided into a great number of parts, as 360 degrees, and each degrec into 60 minutes, and each minute into 60 seconds, de; then any ange is said to consist of so many degrere, minutes, and seconds, as are contained in the are that measures the angle, or that is invercepted between the legs or sid's of the angle.

Nuw the sme, tangent, and mcant, \&c, of every degree and minute, Ace, of a quadrant, are calculated to the radius 1, and ranged in tables for isse; as also the lagarithms of the same; forming the triangular canon. And these numbers, so arranged in tables. form every spucies of right-angled triangles, so that now such triangle can be proposed, but one similar to it may be there fomid, by comparison with which. the proposed one may be computed by analogy or propurtoon.

As to the scales of chords. sines, tangents, \&ec, usually placed on instruments, the methos at consubting them is exhibited in the scheme annexid to the article SCale; which, having the names anded tu each, needs no farther explanation.

There are usually three methods of resolving triangles, or the cases of trigonometry; viz, peomerical construction, arithmetical computation, und instrumental operation. In the lst method, the triangle is constracted by drawing and laying down the several parts of their magnitudes given, viz, the sides from a scale of equal parts, und the angles from a scale of chords, or other instrument; then the unknown parts are measured by the same scales, and so they become known.

In the 2d method, having stated the terms of the proportion according to ruke, which terms consist partly of the numbers of the given sides, and passly of the sines, \&c, of angles laken from the tables, the proportion is then resolved like all other proportions, in which a 4 th term is to be found from three given turms, Ey multiplying the 2d and 3 d together, and dividing the product by the first. Or, in working with the jogarithms, adding the log. of the 2d and 31 terms togulier, and from the sum subtracting the log. of the lst term, then the number answering to the remainder is the tith term sought.

To work a case instrumentally, as suppose by the log. lines on one side of the two-foot scales: Extend the compasses from the 1st torin to the 2d, or 3d, which happens to be of the same kind with it ; then that extent will reach from the other term to the 4 th. In this operation, for the sides of triangles, is used the line of numbers (marked Num.); and for the angles, the line of sines or tangents
(marked sin. and tan.) according as the proportion respects sines or tangents.

In every case of triangles, as has been binted before, there must be given three parts, one at least of which must be a side. And then the different circumstances, as to the three parts that may be given, admit of three cases or varieties only; viz,

1st. When two of the three parts given, are a side and its opposite angle.-2d, When there are given two sides and their contained angle,-3d, And thardly, when the three sides are given.

To each of these casss there is a particular rule, or proportion, ndapted, for resolving it by.

1st. The Rule for the lat Case, or that in which, of the three parts that are giveu, an angle and its opposite side are two of them, is this, viz, That the sides are proportional to the sines of their opposite angles,
That is,

As one side given
 :

To the sine of its opposite angle : :
So is another side given
'To the sine of its opposite angle.
Or, As the sine of aut angle given To its opposite side:

So is the sine of another angle given :
To its opposite side.
So that, to find an angle, we must begin the proportion with a given side that is opposite to a given angle; and to find a side, we must begin with an angle opposite to a given side.

Note. An angle found by this rule is ambigunus, or uncertain whether it be acute or obtuse, untess it be a right angle, or unless its magnitude be such as to prevent the annbiguity; because the sine answers to two angles, which are supplements to each other; and accordingly the geometrical construction forms two triangles with the same parts that are given, as in the example below; and when there is no restriction or limitation included in the question, either of them may be taken. 'The degrees in the table, answering to the sine is the acute angle; but if an angle be obtuse, subtract thuse degrees from 180°, and the remainder will be the obtuse angle. When a given angle is obtuse or a right one, there can be no ambiguity; for then neither of the other augles can be obtuse, and the geometrical construction will forn but one triangle.

Ex. Suppose in the plane triangle $\triangle B C$, there be given

$$
\begin{aligned}
& \mathrm{AB}=345 \text { yards } \\
& \mathrm{BC}=232 \text { yards } \\
& \angle \mathrm{A}=37^{\circ} 20^{\circ} .
\end{aligned}
$$

to find the other side nod the angles.

1. Geometrically, by Construction.

Draw an indefinite line, upon which set off $4 \mathrm{~B}=\mathbf{3 4 5}$, from some conveniment scale of equal parts. - Make the angle $A=37^{\circ} 200^{\prime}$ - Witha radius of 232, taken from the same scale of equal parts, and centre B, crowe $A C$ in the two points C, C. Lastly, join BC, BC, and the figure iv constructed, which gives two triangles, and showing that the case is ambaguous.
Then the sides ac measured by the acale of equal parts, and the angles 8 und c measured by the line of cheits, of other instrument, will be found to be nearly as fullow; viz,

AC 174	$\angle B 97^{\circ}$	$\angle C$
or $374 \frac{1}{2}$	or $75 \frac{1}{2}^{\circ}$	or $64 \frac{1}{2}$

g. Arithmetieally, by Tables of Logs.

First, to find the angles at c .

3. Instrumen/ally, by Giunter's Lines.

In the first proportion.-Extend the compasses from 232 to 345 upon the line of numbers; then that extent will reach, in the sines, from $37 \frac{1}{\circ}^{\circ}$ to $64 \frac{1}{2}^{\circ}$, the angle c.

In the second proportion.-Extend the compasses from $57 \frac{3}{3}^{\circ}$ to 27° or $78 \frac{1}{3}^{\circ}$, on the sines; then that extent will reach, on the fine of numbers, from 232 to 174 or $374 \frac{1}{2}$; the two values of the side ac.
ed Casc, when there are given two sides and their contained angle, to find the rest, the rule is this:

As the sum of the two given sides:
Is to the difference of those sides: :
So is the tang. of half the sum of the two opposite angles, or cotangent of half the given angle:
To tang, of hulf the diti. of those angles.
Then the half diff. added to the half sum, gives the greater of the two unk nown angles; and suberacted, leaves the less of the same two anglis.

Hence, the angles being now all known, the remaining 3d side will be found by the former case.

Note. When the triangle is isusceles, the angles at the base are cach equal to half the supplement of the given augle, or that at the vertex; whence the third side may be found directly by the former case.

Er. Suppose, in the triangle ABC, there be given
$\mathrm{AC}=154.33$
$\mathrm{Bc}=500 \cdot-86$
$\angle \mathrm{c}=98^{\circ} 3^{\prime}$
to find the other side and the angles.

1. Cicometrically.-Dıew two indefinite lines mahing the angle $c=98^{\circ} 3^{\prime}$: upon these lines set off $\mathrm{CA}=1.54$?, and $C B=310$: Join the points A and B, and she figure is constructed. Then, by measurenunt, as before, we find the $\angle A=57 \frac{1}{4} ; \angle B 24 \frac{1}{4}$; and side $A B=365$.

> 2. By Logarithms.

So $\sin \angle \mathrm{c}=98^{\circ} 3^{\prime}$, or $81^{\circ} 57^{\prime}$ - 9.9956999
To side AB $=36{ }^{\circ}$ - - . 9.5629885
3. Instrumentally.-Extend the corrpasses from 464 to $155 \frac{1}{2}$ upon the line of numbers; then that extent wall seach, upon the lise of tangente, from 41° to 161°. Then, in the 2 d propertion, extend the compasses from 248° to 82° on the sines; and that extent will reach, upon the numbers, from $154 \frac{1}{\frac{1}{2}}$ to 365 , which is the third side.

3d Case, is when the three sides are given, to find the three angles; and the method of risolving this case is, to let a perpendicular fall from the greatest angle, upon the opposite side or base, dividing it into two segments, and the whole triangle into two right-angled triangles: then it will be,

As the bast, or sum of the two segments:
Is to the sum of the other two sides :
So is the ditierence of those sides :
To the difference of the segments of the base.
Then lalf this difference of the two segments added to the half sum, or half the base, gives the greater segment, and subtracted, gives the less. Hence, in each of the two right-angled triangles, there are given the hypothenuse, and the base, besides the right angle, to find the other angles by the lst case.

Er, In the triangle a Bc, suppose there are given the three sides, to find the three angles, via,

$$
\begin{aligned}
& \mathrm{AB}=365 \\
& \mathrm{AC}=154.33 \\
& \mathrm{BC}=309.86
\end{aligned}
$$

to find the angles.

1. Geometrically.-Draw the base
$\mathrm{An}=365$; with the radius 154 ; and centre a describe an arc; and with the radius 310 and centre a describe another arc, cutting the former in C ; then join A c, and BC, and the triangle is constructed. And by moasuring the angles, they are found, viz,
$\angle A=57^{\circ}{ }^{\circ} ; \angle \mathrm{B}=246^{\circ} ; \angle \mathrm{C}=98^{\circ}$ nearly.
2. Arihnsetrcally,-Haring let fall the perpendicular $\mathbf{C p}$, dividing the base into the two segments $A P, P B$, and the given triangle ABC into the two right-angled triangles ACR scr. Then

$$
\begin{aligned}
\text { As } A B & =365 \\
\text { To } \mathrm{cs}+\mathrm{CA} & =46+19 \\
\text { So } \mathrm{cB}-\mathrm{cA} & =155 \cdot 53 \\
\text { To } \mathrm{AP}-\mathrm{PA} & =197 \cdot 80 \\
\text { its half } & =98 \cdot 90 \\
\frac{3}{2} A B & =182 \cdot 50 \\
\text { sum } \mathrm{BP} & =281 \cdot 40 \\
\text { difl. } A P & =83.60 .
\end{aligned}
$$

Then, in the triangle APC, right-angled at P,

And in the triaugle BCP, right-angled at P,

As f	$=30986$	-	log, 2.4911655
To sin.	$\angle \mathrm{P}=90^{\circ}$	-	10.0000000
Son	$=281.4$	-	2.4493241
Tosin.	$C P=65^{a} 15^{\prime}$		9.9581586

itscomp. $\angle \mathrm{n}=2445$
Alsoto $\angle A C P=\$ 248$
add $\angle \mathrm{BCO}=65 \quad 15$
makes $\angle \mathrm{ACB}=983$
3. Instrumentally.-In the 1st proportion, Extend the compasses from 365 to 464 on the line of numbers, and that extent will raach, on the same line, from $135 \frac{1}{2}$ to 197.8 nearly.-In the 2d proportion, Extend the culnpasses from $154 \frac{2}{\frac{1}{5}}$ to 83.6 on the line of numbers, and that extent will reach, on the sines, from 90° to 324° nearly. -In the 3 d proportion, Extend the compasses from 310 to $281 \frac{1}{3}$ on the line of nambers; then that extent will reach, on the sines, from 90° to $65 \frac{1}{2}^{\circ}$.

Another method of resolving this case, and that at one operation, is as follows:

1. Add together the logarithm of half the sum of the three: given sides and the logarithon of the difference between this half som and the side opposite the angle sought, and find the complement of their sum. 2. Then, to this complement, increased by, 10 in the indra, ad, the lognrithms of the differences between the said half sum and each of the other two sides, and the result, divided by 2, will give the tangent of hali the required angle.

Thus, resuming the same example, to find the angle a, the work will be as under:

The foregoing three cases include all the varieties of plane triangles that can huppen, both of night and obliqueangled triangles. But benite these, there are some other theorems that are useful upon many occasions, or suited to sume particular forms of triangles, which are often more expeditious in use than the forcgoing general ones; one of which, for right-angled triangles, as the case for which it serves se often occurs, may be here inserted, and is as follows:

Case 4. When, in a right-angled triangle, there are given the angles and one leg, to tind the other leg, or the hy pothenuse. Then it will be,
 at B ,
Given the leg $A n=162$) $\left.\begin{array}{l}\text { and the } \angle A=53^{\prime \prime}-148^{\prime \prime} \\ \text { conceq. } \angle C=36 \quad 52 \quad 12\end{array}\right\}$ to find $B C$ and $A C$.

1. Gicometrically.-1)raw the leg A $\mathrm{B}=162$: Frect the indelinite perpendicular bc: Make the angle a $=531^{\circ}$, and the side AC will cut BC in C, and form the triamgle Vít. II.

ABC. Then, by measuring, there will be found AC $=$ 270 , and $\mathrm{Bc}=216$.
2. Arithnctically.

As radius	$=10$	log. $10 \cdot 0000000$
To An	$=1 \mathrm{tiz}^{2}$	2.2095150
So tan. <4	$=53^{\circ} 7^{\prime} 48^{\prime \prime}$	10.1249372
To me	$=216$	$2 \cdot 334522$
So sec. $2, ~$	$=53^{\circ} 7^{\prime} 48^{\prime \prime}$	10.2218477
To ac	$=270$	9.43136127

3. Instrumentally.-Extend the compasses from 45° at the end of the tangents (the radius) to the tangent of 308°; then that extent will reach, on the line of numbers, from 162 to 216 , for BC. Again, extend the compasses from $36^{\circ} 52^{\prime}$ to 90 on the sines ; then that extent will reach, on the line of numbers, from 162 to 270 for ac.

Nore, Another method, by making every side radius, is often added by the authors on trigonometry, which is thus: The given right-angled triangle being anc, mal.e lirst the hypothenuse ac radius, that is, with the extent of ac as a radius, and each of the centres A and C, descritee ares $C D$ and $A E$; then it is evident that each log will
 represent the sine of its opposite angle, viz, the leg BC the sine of the arc CD or of the angle A, mul the $\log A B$ the sine of the arc az or of the angle c. Again, making cither leg radius, the other leg will represent the tangent of its opposite angle, and the hyporhenuse the secant of the same angle; thus, with radius AB and centre a describing the arc Br, tec represents the tangent of that arc, or of the angle A, and the hypothenuse AC the secant of the same; or with the radius BC and ceutre c describing the are no, the other $\operatorname{leg} A B$ is the tangent of that are EG, or of the angle c , aud the hypothenuse ca the secant of tbe same.

And then the general rule for all these cases is this, viz, that the sides bear to ench other the same proportions as the parts or things which they "represent. And this is called making every side radius.

For Plane Trigonometry considered analytically, sce my Course of Mathernatics, vol. 3, chap. 3.

Spherical Taigonometry, is the resolution and calculation of the sides and angles of spherical tringles. which are made by three intersecting ares of great circles on a sphere. Hire, any three of the six parts being given, even the three anglis, the rest can be found; and the sides are measured or estimated by degrees, minuth, and seconds, as well as the augles.

Spherical I'rigonometry is divided into right-angled and oblique-angled, or the resolution of right and obliqueangled spherical triangles. When the spherical triangle has a right angle, it is called a right-angled triaugle, as well as in plane triangles; and when a triangle has one of its sides equal to a quadrant of a circle, it is called a quuadiantal triangle.

For the resolution of spheriral triangles, there are various theoren., and propestions, which are similar to tha-e in plane trigonometry, by substituting the sines of sides inatead of the sutes thers selves, when the proportion reapecte stites; or tangents of the stecs for the ides, when the proportion respects tangents, \&c some of the principat of which therems are as fullow:

Theor. 1. In any sipherical triangle, the sines of the sides are proportional to the sines of their opposite amgles.

37

Theor. 2. In any right-argled triangle, As radius
To aine :- As sill. hall sum of two angles
So tang. of the adjacent angle
:
To tang. of the opposite side.
Theor. 3. If a perpendicular be let fall from any angle, upon the base or opposate side of a spberical triangle ; it will be,
As the sine of the sum of the two sides
To the sine of their difference
So cotan. If sum angles at the vertex

```
:
:
::

To tang. of hali their diffictence.
Theor. 4.
As tang. half sum of the sides
To tang, half their ditierence
So tang. \(\frac{1}{4}\) sum \(\angle s\) at the base
To tang. half their difference.
Theor. 5.
As cotan. sum of \(\angle s\) at the base
To lang. half their difference
So tang. \(\frac{1}{2}\) suin of \(\angle s\) at the vertex
To tang half their difference.
Theor. 6.
As tang. \(\frac{1}{2}\) sum segments of base
To tang. half sum of the sides
So tang. half difference of the sides
To tang. \(\frac{1}{\frac{1}{2}}\) diff. segments of base.
Theer. 7.
As sin. sum of \(\angle \mathrm{s}\) at the base
To sine of their difference
So tang. \(\frac{4}{4}\) sum segments of base
To tang, of half their difference.
Theor. 8.
As sin. sum of segments of base
To sine of their difference
So sin. sum of angles at the vertex
To sine of their difference.
Theor. 9.
As sine of the base
:
To sine of the vertical angle
So siu. of diff. segments of the base
To sin. diff. \(\angle \mathrm{s}\) at vertex, when the perp. falls within
Or so sin. sum seginents of base
To sin. sum vertical \(\angle \mathrm{s}\), where the perp. falls without.
Theor, 10.
As cosin, half sum of the two sides
To cosine of half their difference
So cotang, of half the ipcluded angle
To tang. half sum of opposite angles.
Theor. 11.
As \(\sin\). of half sum of two sides
To sine of half their difference
So cotang. half the included angle
To tang. \(\frac{1}{2}\) diff, of the oppos. angles.
Theor. 12.
As cosin, half sum of two angles
To cosine of half their difference So tang, of half the included sides To tang. \(\frac{1}{2}\) sum of the opposite sides.

Theor. 15. -
As sin. hali sum of two angles :
To sine of half their difference :
So tang. half the included side :
To tang, \(\frac{1}{2}\) diff. of the oppusite sides.
Theor. 14. In a right-angled spherical triangle, As sin. sum of hypot and one side
To sin. of their ditference
\[
:
\]

So radius squared
To square of tang. \(\frac{8}{5}\) contained angle.
Theor. 15. In any spherical triangle, The product of the sines of two sides and of the cosine of the included angle, added to the product of the cosines of those sides, is equal to the cosine of the third side; the radius being 1 .

Theor. 16. In any spherical triangle,
The product of the suces of two angles and of the cosine of the included side, minus the preduct ef the cosines of those angles, is equal to the cosive of the third angle; the rudius being 1 .

By some or other of these theorems may all the cases of spherical triangles be resolved, both right-angled and oblique: viz, the cases of right-angled triangles by the 1st and 2 d theorems, and the oblique triangles by some of the ather theorems.

In treatises on trigonometry are to be found many other theorems, as wall as synupses or tables of all the cases, with the theorem that is peculiar or proper to each. See the Introduction to my Mathematical Tables, pa. \(156 \& c\); or Robertson's Navigation, vol. 1, pa. 162. See also Napier's Catholic or Universal Rule in this Dictionary.

To the foregoing theorems may be added the following synopsis of rules for resolving all the cases of plane and spherical triangles, under the title of

\section*{Trigonometrical Rules.}
1. In a right-lined triangle, whose sides are A, B, \(C\), and their opposite angles \(a, b, c\); having given any three of these, of which one is a side : to find the rest.


Put s for the sine, s' the cosine, the sangent, and \(t\) the cotangent of an arch or angle, to the radius \(r\); also \(s\) for a logarithm, and \(\mathbf{L}^{\prime}\) its arithmetical complement. Then

Case 1. When three sides A, b, c, are given.
Put \(\mathrm{P}=\frac{1}{2}(\mathrm{~A}+\mathrm{B}+\mathrm{C})\) or semiperimeter.
Then s. \(\frac{1}{2} c=r \sqrt{ } \frac{(\boldsymbol{r}-\mathrm{A}) \times(\mathrm{r}-\mathrm{B})}{\mathrm{A} \times \mathrm{B}}\).
And s'. \(s_{3} c=r \sqrt{ } \frac{P(p-c)}{\Delta \times B}\).
L. S. \(2 c=\frac{1}{2}\left(\mathrm{~L} .(\mathrm{P}-\mathrm{A})+\mathrm{L},(\mathrm{P}-\mathrm{B})+\mathrm{I}^{\prime} \mathrm{A}+\mathrm{I}^{\prime} \mathrm{B}\right)\),

Ln's. \(\frac{1}{2} c=\frac{1}{\mathrm{I}}\left(\mathrm{L} P+\mathrm{L} \cdot(\mathrm{P}-\mathrm{C})+\mathrm{L}^{\prime} \mathrm{A}+\mathrm{L}^{\prime} \mathrm{B}\right)\).
Note, When \(A=B\), then
\[
\text { s. } \frac{1}{2} c=\frac{c}{A} \times \frac{r}{2} . \quad \text { And } s^{\prime} \frac{1}{4} c=r \sqrt{ } \frac{A^{\prime}-b c^{3}}{A^{4}}
\]

Case 2. Given two sides A, B, and their included angle \(C\). Put \(s=90^{\circ}-f c\), and \(t . d=\frac{1-\mathrm{B}}{A+\mathrm{B}} \times \mathrm{t} . \mathrm{s}\); then
\(a=s+d\); and \(b=s-d\). And \(c=\sqrt{ } \frac{4^{4 B}+v^{*} \psi}{\pi}\) \(\left.+(A-B)^{z}\right)\).
Or in logarithms, putting 2. \(Q=2\) 2. \((A-1)\), and

\section*{TRI}
1., \(\mathrm{R}=\mathrm{L} .2 \mathrm{~A}+\mathrm{L} .2 \mathrm{~B}+2 \mathrm{~L} . \mathrm{s}\). \(1 \mathrm{c}-20\), we shall bave t. \(c=\frac{1}{2} L .(Q+R)\).

If the angle \(c\) be right, or \(=90^{\circ}\); then
\[
\text { t. } a=\frac{a}{\mathrm{E}} \mathrm{r} ; \mathrm{t} \cdot b=\frac{\mathrm{n}}{\mathrm{a}} r \text {; }
\]
\[
c=\frac{r}{x . d} A, \text { or }=\frac{r}{s . b} B, \text { or }=\sqrt{ }\left(A^{2}+B^{2}\right)
\]

If \(\hat{A}=\mathrm{s}\); we shall have
\(=\hat{b}=90^{\circ}-\frac{1}{2} c\), and
\(\mathrm{c}=\frac{\mathrm{a} \cdot \mathrm{f}}{\mathrm{r}} \times 2 \mathrm{~A}\).
Case 3. When a side and its opposite angle are smong the terms given; then
\[
\frac{A}{3 . a}=\frac{\mathrm{a}}{a \cdot 6}=\frac{\mathrm{c}}{a \cdot c} ; \text { from which equations any term }
\] wasted may be found.

When an angle, as \(a\), is \(90^{\circ}\), and \(A\) and \(c\) are given; then
\[
\mathrm{B}=\sqrt{ }\left(\mathrm{A}^{*}-c^{2}\right)=\sqrt{ }(\mathrm{a}+c) \times(\mathrm{a}-c) .
\]

And L.. \(\mathrm{B}=\frac{1}{2}\left(\mathrm{~L} .(\mathrm{A}+\mathrm{c})+\mathrm{L}_{\mathrm{H}}(\mathrm{A}-\mathrm{c})\right)\).
Note, When two sides A, B, and an angle a opposite to one of them, are given; if a be less than s , than \(b, c, c\) have each two values; otherwise, only one value.
II. In a spherical triangle, whose three sides are A, B, c, and their opposite angles \(a, b, c\); any three of these six terms being given, to find the rest.


Case 1. Given the three sides A, B, C.
Calling 2p the perim. or \(\mathrm{r}=\mathrm{L}(\mathrm{A}+\mathrm{n}+\mathrm{c})\).
Then s. \(\frac{1}{5} e=r \quad \boldsymbol{h}^{\mathrm{s} \cdot(\mathrm{p}-4) \times \mathrm{s.}(\mathrm{p}-\mathrm{s})}\)



And the same for the other angles.
Case 2. Given the three angles.
Put \(2 p=a+b+c\). Then
ง. \(\mathrm{C} \mathrm{c}=r \sqrt{\frac{s^{\prime} p \times s^{\prime}(p-r)}{s \times s .6}}\). And

L.s. \(\mathrm{fc}=\frac{1}{2}\left(\mathrm{~L} . \mathrm{s}^{\prime} p+\mathrm{L} . \mathrm{s}^{\prime}(p-c)+\mathrm{L}^{\prime} \mathrm{s} . a+\mathrm{L}^{\prime} \mathrm{s} . \mathrm{B}\right)\).
L. \(\mathrm{s}^{\prime} \frac{1}{\mathrm{~L}} \mathrm{C}=\frac{1}{\mathrm{z}}\left(\mathrm{L} . \mathrm{s}^{\prime}(p-a)+\mathrm{Lss}^{\prime}(p-b)+\mathrm{L}^{\prime} \mathrm{s} . a^{\prime}+\mathrm{Ls} \mathrm{s}^{\prime} b\right)\)

And the same for the other sides.
Note. The sign \(>\) signifies greater than, and \(<\) less; also on the difference.

Case 3. Given A, E , and included angle \(c\).
To find an angle \(a\) opposite the side \(A\),
let \(r: s^{\prime} c:: t\). A:t. \(m\), like or unlike \(A\),
as \(c\) is \(>\) or \(\left\langle 90^{\circ}\right.\); also \(\mathrm{N}=\mathrm{BCO} \mathrm{M}\) :
then \(\mathrm{s} . \mathrm{x}: \mathrm{s} . \mathrm{m}:: \mathrm{t} . c: \mathrm{t}, a\), like or unlike \(c\) as \(m\) is \(>\) or \(<\mathrm{B}\).
Orlet sit \((A+B): s^{\prime} \frac{1}{2}(A \sim B):: t^{\prime} f c: t . m\),
which is - or \(<90^{\circ}\) as \(A+B\) is \(>\) or \(\left\langle 180^{\circ}\right.\);
- and s. \(\frac{1}{2}(\mathrm{~A}+\mathrm{B}): \mathrm{s} \cdot\left(\mathrm{A}^{\prime} \cos \mathrm{B}\right):: \mathrm{t}^{\prime} \frac{1}{\mathrm{f}} \mathrm{c}: \mathrm{t} . \mathrm{s},>90^{\circ}\).
then \(a=\mathrm{m}+\mathrm{N}\); and \(b=\mathrm{m}-\mathrm{N}\).
Again let \(r: s, c:: t . A: t, m\), like or unlike \(A\) as \(c\) is \(>\) or \(<90^{\circ}\); and \(\mathrm{N}=\mathrm{B}\) en m .

Then \(s^{\prime} m: s^{\prime} x:: s^{t} A, s^{\prime} c\), like or unlike \(N\) as \(c\) is \(>\) or \(<90^{\circ}\). Or,


In logaritbms, put L. \(Q=2\) 2.s.it \((a \sim n)\); and L. \(\mathrm{R}=\mathrm{L} . \mathrm{s} . \mathrm{A}+\mathrm{L} . \mathrm{s} . \mathrm{B}+2 \mathrm{~L} . \mathrm{B} . \frac{1}{\mathrm{~s}} \mathrm{c}-20\); then L. \(\mathrm{s} \cdot \frac{1}{\frac{1}{2}} \mathrm{C}=\frac{1}{\mathrm{i}} \mathrm{L} .(0+\mathrm{R})\).

Case 4. Given \(a, b\), and included side \(c\).
First, let \(r: s^{\prime} c:: t a ; t^{\prime} m\), like or unlike \(a\) as \(c\) is \(>\) or < \(90^{\circ}\); also \(n=b\) or m.
Then \(s^{\prime} n: s^{\prime} m:: t, c: t\). \(A\), like or unlike \(n\) as \(a\) is \(二 \sim\) or \(<90^{\circ}\).
Or, let \(s^{\prime}\left(\frac{1}{3} a+b\right): s_{3}^{t}(a<\infty b):: t . \frac{1 c}{}: t, \mathrm{x},>\) or \(<90^{\circ}\)
as \(a+b\) is \(>\) or \(-180^{\circ} ;\)
and \(\mathrm{s}^{\prime} \frac{1}{2}(a+b): \mathrm{s}_{\mathrm{i}}^{\prime}(a \sim b): \mathrm{t} \cdot \frac{1}{\mathrm{I}} \mathrm{c}: \mathrm{t} \mathrm{N},>90^{\circ}\);
then \(\mathrm{A}=\mathrm{n} \pm \mathrm{N}\); and \(\mathrm{B}=\mathrm{m} \mp \mathrm{N}\).
Again, let \(r: s^{\prime} \mathrm{C}:: \mathrm{t}\). \(a: \mathrm{t}^{\prime}\) m, like or unlike \(a\) as \(c\) is \(>\) or < \(90^{\circ}\);
and \(n=b\) in \(m\) :
then s.m.: s.n.:: s'a: s'c, like or unlike \(a\) as \(m\) is \(>\) or \(<b\).
Case 5. Given A, B, and an opposite angle \(a\).
1st. s. A: s. \(a .:\) : s. B: s. \(b,>\) or \(<90^{\circ}\).
2nd. Let \(r: \mathrm{s}^{\prime} \mathrm{B}:: \mathrm{t}\). \(a: \mathrm{t}^{\prime} m\), like or unlike m as \(a\) is \(>\) or \(<90^{\circ}\);
and \(t, A: t, B:: s^{\prime} m: s^{\prime} n\), like or unlike \(A\) as \(a\) is \(>\) or \(<90^{\circ}\) :
then \(c=m \pm n\), two values also.
Sdly. Let \(r: \operatorname{s}^{\prime} a:: 1 . \operatorname{B:C}, \mathrm{m}\), like or unlike \(b\) as \(a\) is \(>\) or \(<90^{\circ}\);
and \(s^{\prime} B: s^{\prime} A:: s^{\prime} x: s^{\prime} x\), like or unlike \(A\) as \(a\) is \(>\) or \(<90^{\circ}\) :
then \(\mathrm{c}=\mathrm{m} \pm \mathrm{s}\), two values also.
But if a be equal to B , or to its supplement, or between B and its supplement; then is \(b\) like to \(B\) : also \(c\) is \(=m \mp n\), and \(c=m \pm \mathrm{s}\), as a is like or unlike \(a\).

Case 6. Given \(a, b\), and an opposite side A.
1st. s. a. -s. A:: s. b: s. \(B,>\) or \(<90^{\circ}\).
2ud. Let \(r: s^{\prime} b:: t\). \(A:\) to \(t\). \(m\), like or unlike \(b\) as \(A\) is \(>\) or \(<90^{\circ}\);
and t . \(a: \mathrm{t} . \mathrm{b} .:::\) s. \(\mathrm{n}: \mathrm{s}, \mathrm{N},>\) or \(<90^{\circ}\) :
then \(c=m \pm n\), as \(a\) is like or unlike \(b\).
Sdly. Let \(r: s^{\prime} A:: t . b: t^{\prime} m\), like or unlike \(b\) as a \(>\) or \(<90^{\circ}\);
and stb: s'a:: s. m. : s. \(n,>\) or \(\left\langle 90^{\circ}\right.\) :
then \(c=m \pm n\), as \(a\) is like or unlike \(b\).
But if a be equal to \(s\), or to its supplement, of between \(B\) and its supplement; then \(s\) is unlike \(b\), and only the less values of \(\mathrm{N}, n\), are possible.

Note, When two sides \(A, B\), and their opposite angles \(a, b\), are known ; the third side \(c\), and its opposite angle \(c\), are readily found thus:
s. \(\frac{1}{\left.\frac{1}{2}(a \sim b): \operatorname{s.} \frac{1}{\frac{1}{2}}(a+b):: L \frac{1}{\frac{1}{2}(A \sim \infty}\right): 1 . \frac{1}{3} c .}\)
s. \(\frac{1}{2}(A \sim B): \sin (A+B):: \operatorname{t} \frac{1}{\frac{1}{2}}(a \sim b): t \cdot \frac{1}{\pi} c\).

, III. In a right-angled spherical triangle, where \(m\) is the hypothenuse, or side opposite the right angle, \(\mathrm{B}, \mathrm{P}\) the other two sides, and \(b, p\) their opposite angles ; any two of these five terms being given, to find the rest; the cases, with their solutions, are as in the following table.

The same table will also serve for the guadrantal triangle, or that which has one side \(=90^{\circ}, \downarrow\) being the
angle opposite that side, \(\mathrm{B}, \mathrm{P}\) the other two angles, and \(b,{ }^{\text {P }}\) their opprosite side's: oberving, instead of it, to take
\begin{tabular}{|c|c|c|c|}
\hline C. & Giren & Herat. & sotitiows. \\
\hline I & 11 & \[
\begin{aligned}
& b \\
& p \\
& p
\end{aligned}
\] & s. H. : \(r:: s . B: s . h\), alld is the B \\
\hline 2 & \[
\begin{aligned}
& 11 \\
& b
\end{aligned}
\] & \[
\begin{aligned}
& B \\
& \mathbf{P} \\
& p
\end{aligned}
\] &  \\
\hline 3 & \(\stackrel{B}{B}\) & \[
\begin{aligned}
& \mathbf{I I} \\
& \mathbf{F} \\
& \mathbf{P}
\end{aligned}
\] &  \\
\hline 4 & \[
\begin{aligned}
& \mathrm{b} \\
& \mathrm{p}
\end{aligned}
\] & \[
\begin{aligned}
& 11 \\
& b \\
& r
\end{aligned}
\] & \begin{tabular}{l}
\(r: 1^{\prime} n:: s p: t^{\prime} n, \geqslant\) or \(-90^{\circ}\) as B ts like or unike \(p\) \\
\(\boldsymbol{r}: \rightarrow \vec{R}::=. p:, ~ t h\), like \(\quad\) \\
\(r: s . n:: 1 p: 1 r\), like \(p\)
\end{tabular} \\
\hline 3 & E & \[
\begin{aligned}
& 11 \\
& b \\
& p
\end{aligned}
\] & \begin{tabular}{l}
\(r: s^{\prime} B: s^{\prime} p: s^{\prime} u\), \(\boldsymbol{\sim}\) or \(<90^{\circ}\) as a is like or unline \(P\) \\
\(r: s p:: t^{\prime} 11: t^{\prime}\), , lhe B \\
\(r: s .1:: t^{\prime} p: t^{\prime} p\). like \(p\)
\end{tabular} \\
\hline 6 & b & \[
\begin{aligned}
& f \\
& \mathrm{n} \\
& \mathrm{E} \\
& \mathrm{i}
\end{aligned}
\] & \begin{tabular}{l}
 \\
s.p:r,: sth: st lake \(b\) \\
s. \(b\) : \(r\) : : s'p : s'r like \(p\)
\end{tabular} \\
\hline
\end{tabular}

The fotlowing propositions aud reatarks, concerning sphencal tiangles, (selected and communicated by the reverend Nevil Marhelyne, D. D. astrommer royal, F. at. s.) will alsu render the calculations of them perspicuous, and free from sinbiguity.
* 1. A spherical iriangle is equilateral, isoscelar, or scalene, according ats it lias its three angles all equal, or two of them equal, or all three uncqual ; and rice persa.
2. The greatesl side is always opposite the greatest angle, and the smallest side opposite the smallest angle.
S. Any two sides taken together, are greater than the third.
4. If the three angles are all acute, or all right, or all obtuse; the three sites will be, accordingly, all less than \(90^{\circ}\), or equal to \(90^{\circ}\), or greater than \(90^{\circ}\); and vice cersa,

5 . If from the three anglis \(A, B, C\), of a triangle \(A B C\), as poles, there be described, upon the sturface of the sphere, three arches of a great circle \(\mathrm{DE}, \mathrm{DF}\), PE, forming by their internections a w'w spherical tratagle DEF ; each side of the new triangle will be the supplement of the angle at its pole; and each
 angle of the same triangle, will be the supplement of the side opposite to it in the triangle \(A B C\).
6. In any triangle \(A \mathrm{Ac}\), or \(\mathrm{A} b \mathrm{c}\), right-angled in \(\mathrm{A}, 1 \mathrm{st}\), The angles at the hypothenuse are always of the same kind as their oppesite sides; 2dly, The bypothenuse is less or greater than a quadrant, accurding as the sides including the right-angle are of the same or different kumls; that is to say, accord-
 ing as these same siden are either both acute or both obtuse, or as one is acute and the other obtuse. And, rice versa, 1 st , The sides including the right angle, are always of the same kind as their opposite angles: 2 d ly, 7 he sides including the right angle will be of the same or diticrent
kinds, according as the hypothenuse is less or more then \(90^{\circ}\); but ote at least of them will be of \(90^{\circ}\), if the bypor thenuse is so."

Analytical Trigonometar. Sec my Course of Mathemntics, last vol:

TRILITLRAL, three-sided, a term applied to all figures of three sides, or triangles.

TKIILION. in Arithmetic, the number of a million of billions, or a million of million of millions.

1RIMMERS, in Arehitecture, pieces of timber framed at right angles to the juists, ugainst the ways for chimneys to support the bearths, and the well-holes for stains.

TKINE Dimension, or threefold dimension, includes length, breadih, and thickness. The trine dimension is peculiar to bodues or solids.

TRINITY' Sunduy, is the next after Whitsunday; so called, becausc on that day was ancoently held a festival (as it still conlinues to be it the llomish church) in honor of the Holy Trinity. - The observance of this festival was first enjoined by the 6 th canon of the council of Arles, in 1960 ; and John the 22 d , who distinguished himself so much by his opinion concerning the beatific vision, it is said, fxed the office for this festival in 1934.

TRINOUA, or TRisodia Terre, in same ancient writers, denotes the quantity of 3 perches of land.

TRINOMIAL, in Algebra, is a quantity, or a root, consisting of three parts or terms, connected together by the signs + or - as \(a+b-c\), or \(x+y+z\).

TRIO, in Music, a part of a coucert in which three persons sing ; or rather a musical composition consisting of \(S\) parts. - Trios are the finest hind of musical composition, and please most in concerts.

TRIONES, in Astronomy, a kind of constellation, or assemblage of 7 stars in the Ursa Major, popularly called Clarles's Wrin. - From the Septem Triones the north pole takes the denomination Septentrio.

TRIPARTITION, is a division by 3, or the taking of the 3 d part of any number of quantity.

TRIPLE, threcfold. Sce Ratio and Subtaifle.
ThiPLE, in Mustic is one of the species of measure os time, and is taken from hence, that the whole, or half

\section*{TRU}
measure, is divisible into 3 equal parts, and is beaten accordingly.

TRIPLICATE Ratio, is the ratio which cubes, or any similar solids, bear to each other; and is the cube of the simple ratio, or this twice multiplied by itself. Thus 1 to \(s\) is the triplicate ratio of 1 to 2 , and 1 to 27 triplicate of 1 to 3 .

TRIS-Diapason, or Triple Diapason Chord, in Music, is what is otherwise called a triple eighth.
'IRISECTION, the dividing athing into three equal parts. The term is chiefly used in geometry, for the division of an angle into three equal parts. The trisection of an angle geometrically, is one of those great problems whose solution has been so much sought for by mathematicians, for 2000 years past; being, in this respect, on a footing with the famons one concerning the quadrature of the circle, and the duplicature of the cube.

The ancients trisected an angle by menns of the conic sections, and the book of inclinations; and Pappus enumerates several ways of doing it, in the 4th brok of bis Mathematical Collections, prop. 31, 32, 33, 3t, 33, \&c. He furtber observes, that the problem of trisecting an angle, is a solid problem, or a problent of the Sd degree, being expressed by the resolution of a cubic equation, in which way it has becll resolved by Vieta, and others of the moderns. See bis angular sections, with thuse of other authors, and the tisction in particular by cubic equations, as in Guisne's Application of Algebra to Gcometry, in l'llospital's Conic Sections, and in Emerson's Trigonometry, book 1, sec. 4. The cubic equation by which the problem of trisectuon is resolved, is as follows: Let ac denute the chord of a given arc, or angle, and \(x\) the chord of the 3 d part of the same, to the radius 1 ; then is \(x^{3}-3 x=-2 c\), by the resolution of which cubic equation is found the value of \(x\), or the chord of the 3d part of the given are or angle, whose chord is \(c\); and the resolution of this equatuon, by Cardan's rule, gives the chord
\[
\left.x=\sqrt[3]{ } i-c+\sqrt{ }\left(c^{2}-1\right)\right)+\frac{1}{\sqrt{(-c+\sqrt{(c}-1)]}}
\] or \(x=\sqrt[3]{ }\left(-c+\sqrt{ }\left(c^{2}-1\right)\right)+\sqrt[3]{ }\left(-c-\sqrt{ }\left(c^{2}-1\right)\right)\).

TRISPAST, or Trispaston, in Mechanics, a machine with \(S\) pulleys, or an assembluge of 3 pulleys, for raising great weights; being a lower species of the polyspaston,

TRITE, in Music, the 3d musical chord in the system of the ancients.

TRITONE, in Music, a false concord, consisting of three tones, or a greater third, and a greater tone. Its ratio or propertion in numbers, is that of 43 to 32.

TROCHILE, in Architecture, is that hollow ring, or cavity, which runs round a column next to the tore.

TROCHLEA, in Mecbanics, one of the mechanic powers, more usually called the pulley.

TROCHOID, in the Higher Geometry, a curve described by a point in any part of the radius of a wheel, during its rotatory and progressive motions. This is the same curve as what is more usually called the cycluid, where the construction and properties of it are shown.

TRONE Weight, the most ancient of the different weights used in Scotland.

Trone Pownd, in Scotland, contains 20 Scotch ounces. Or because it is usual to allow one to the score, the trone pound is commonly 21 ounces.

Trone Sione, in Scotland, according to Sir John Skene, contains \(19 \frac{1}{2}\) pounds.

TROPHY, in Architecture, an ornament which repre-
sents the trunk of a tree, charged or encompassed all uround with arins or military weapons, both offensive and defensive.

TROPICAL, something relating to the tropics. As, Tropical-Winds. See Wind, and Trade-Wands,

Trofical. Year, the space of time during which the sun passes round from a tropic, till his return to it again. Sce ifar.

TROPICS, in Astronomy, two fised circles of the sphere, drawn parallel to the equator, through the solstitial points, or at such distance from the equator, as is equal to the sun's greatest recess or declination, or to the obliquity of the ecliptic.

That on the norit side of the equator, passes through the finst point of Cancer, and is therefure called the Trupic of Cancer. And the other on the south side, passing through the first point of Capricorn, is called the Tropic of Capricorn.

To determine the distance between the two tropics, and thence the sun's greatest declination, or the obliquity of the ecliptic; observe the sun's meridian altitude, both in the summer and winter solstice, and subtract the latter from the former, so shall the remainder be the distance between the two tropics; and the half of this the quantity of the greatest de clination, or the obliquity of the ecliptic; the medium of which is now \(23^{\circ} 27^{\prime} 46^{\prime \prime}\) nearly.

Tropics, in Geography, are two lesser circles of the globe, drann parallel to the equator through the beginnings of Cancer and Capricorn, being in the planes of the celestial tropics, and consequently at \(23^{\circ} \stackrel{2}{2} 5^{\prime}\) distance nearly, either way from the equator.

THOY-Weisht, anciently called trone-weight, is supposed to be tahen from a werght of the same name in France, and that from the name of the town of Troyes there, The origial of all welghts used in England, was a corn or grain of wheat gathered out uf the middle of the ear; and, when well dried, 52 of them were to make one pennyweight, 20 pennyweights 1 ounce, and 12 ounces 1 pound troy. Vide statutes of 31 Hen. \(111 ; 31\) Ed. I. and 12 Hln . VII. Butafierward \(n t\) was thought sufficient to divide the said pennyweight into 2t equal parts, called grains, being the least wecight now in cummon use ; so that the divisions of troy weight now are these:
\[
\begin{array}{ll}
24 \text { grains } & =1 \text { pennyweight dut. } \\
\text { so pennyueights } & =1 \text { ounce } \\
12 \text { ounces } & =1 \text { pound }
\end{array}
\]

By troy-weight are weighed jewels, gold, silver, and all. liquors.

TRUCKS, among Gunuers, are the small wooden wheels fixed on the axletrees of gun carriages, especially those for ship service, to move them about by.

TRUE Conjunction. See True Conjuxction.
True Place of a Planet or Star, is a point in the heavens shown by a right line drawn from the centre of the earth, through the centre of the star or planet.
TRUMPE'F, Listening or Hearing, is an insorument invented by Joseph Landini, to assist the hearing of persons dull of that faculty, or to assist us to hear persons who speak at a great distance. Instruments of this kind are formed of tubes, with a wide mouth, and terminating in a small canal, which is applied to the ear. 'The form of these instruments evidently shows how they conduce to assist the hearing; for the greater quantity of the wrak and lenguid pulses of the air being received and collected by the large end of the tube, are reflected to the sumall
end, where they are collected and condensed; thence entering the ear in this condensed state, they strike the zympanum with a greater foree than they could naturally have dune from the car alune. Hence it appears, that a speaking trumper may be applied to the purpose of a hearing irompet, by turning the wide end towards the sound, and the narrow end to the ear.

Speaking Trumiet, is a tube of a considerable length, from 6 to 15 feet, used for apeaking with to make the voice be heard to a greater distance. This tube, which is made of tin, is straight throughout its length, but opening to a large aperture outwards, and the other end verminating in a proper shape and size to receive both the lips in the act of speaking, the speaker pushing his voice or the sound outwards, by which means it mas be henrd at the distance of a mile or more.
The invention of this trumpet is held to be modern, and has been ascribed to Sir Samuel Moreland, who called it the suba stentorophonica; and in a work of the same name, published at London in 1671, that author gnve an aecount of it, and of several experiments snade with it. With one of these instruments, of \(3 \frac{1}{4}\) feet loug, 21 inches diameter at the greater end, and 2 inches at the smaller, tried at Deal Castle, the speaker was beard to the distance of 3 miles, the wind blowing from the shore.

Bot it seems that Kircher has a better title to the invention; for it is certain that he had suels an instrument before ever Moreland thought of his. That author, in his Phonurgia Nova, published in 1673 . says, that the tromba, published last year in Eingland, he invented 24 years before, and published in his Mesurgia. He addy, thai Jac. Albanus Ghibbisius and Fr. Eschinardus ascribe it to him ; and that G. Scholtus testifies of him, that he had such an instrument in his chamber in the Roman college, with which he could call to, and reccive answers from the porter.

But, considering how famous the tube or hom of Alexander the Great was, it is rather strange that the moo derns should pretend to the invention. With his stentorophonic horn or tube he used to spenk to his army, and make himself be distinctly heard, it is said, 100 ssadia or furlongs. A figure of this tube is preserved in the Vatican ; and it is nearly the sume as that now in use. See Stenturofhonic.

The prineiple of this instrument is obvious; for as sound is stronger in proportion to the density of the air, it follows that the voice, in passing through a tube or trumpet, must be greally augmented by the constant reflection and agitation of the air through the length of the tube, by which it is condensed, and its action on the external air greatly incrrased at its exit from the tube. It has bern found, that a man speaking through a tube of 4 feet long, may be understood at the distance of 500 geometrical paces; with a tube \(16 \%\) feet, at the distance of 1800 paces; and with a tube 24 feet long, at aore than 2300 paces.

Though some advantage in heightening the sound, both in speaking and hearing, be derived from the shape of the tube, and the width of the outer end, yet the effect depends chiefly on its length. As to the form of it, some have asserted that the best figure is that which is formed by the revolution of a parabola about its axis; the mouth-piece being placed in the focus of the parabola, and consequently the sonorous rays reflected parallel to the axis of the tobe. But Mr. Martin observes, that this parallel reflection is by wo means essential to increasing the
sound: on the coatrary, it prevents the infinite number of teflectous and reciprocations of sound, in which, according to Newton, its auginentation chiefly consists; the augmentation of the impetus of the pulses of air being proportional to the number of repercussions frum the sides of the tube, and therefore to its length, and to such a figure as is most productive of them. Hence he infers, that the parabohc trumpet is the most unfit of any for this purpose; and he endeavours to show, that the logarithmic or logistic curve gives the best form, viz, by a revolution about its axis. Martin's Philos. Brit. vol. 2, pa. 248, 3d edit.

But Cussegrain is of opinion that an byperbola, having the axis of the tube for an asymptote, is the best figure for this instrument. Musschenb. Intr. ad Phil. Nat. tom. 2, pa. 926,4 to. For other constructions of speaking-trumpets, by Mr. Conyens, see Philos. Trans. No. 141, for 1678.

TRUNCATED Pyramid or Cone, is the frustum of one, being the part remaining at the bottom, after the top is cut off by a plane parallel to the base. See Frestun.

TRUNNIONS, of a piece of orduance, are those knobs or short cylinders of metal on the sides, by which it rests on the cheeks of the carriage.

Tbunston-Ring, is the ring about a cannon, next before the trunnions.

TSCHIRNHAUSEN (Ernproy Walter), an ingenious mathematician, lord of Killingswald and of Stolzeaberg in Lusatia, where he was born in 1651. After having served as a volunteer in the army of Holland in 1672, he travelled into most parts of Europe, as England, Germany, Italy, France, \&c. He went 10 Paris for the third time in 1682 ; where be communicated to the Academy of Sciences, the discovery of the curves, called from him, Tschirnhausen's Caustics; and the Academy in consequence elected the inventor one of its foreign members. On returning to Italy, he was desirous of periecting the science of optics; for which purpose he established two glass-works, whence resulted many new improvements in dioptrics and plyysics, particularly the noted burniugglass which be presented to the regent. It was to him too that Saxony owed its porcelane manufactory. Content with the enfoyment of literary fame, Tschirnhausen refused all other honours that were offered him. Learning was his sole delight. He searched out men of talents, and gave them encouragement. He was often at the expence of printing the useful works of other men, for the benefit of the public; and died, beloved and regretted, the 11th of September 1708.

Tschirubausen wrole, De Medicina Mentis et Corporis, printed at Amsterdam in 1687 . And the following me* moirs were printed in the volumes of the Academy of Sciences :-1. Observations on Burning Glasses of 3 or 4 feet diameter; vol. 1699.-2. Observations on the Glass of a Telescope, convex on both sides, of 32 feet focal distance; 1700.-3. On the Radii of Curvature, with the finding of Tangents, Quadratures, and Rectifications oi many curves ; 1701.-4. On the Tangents of Mechanical Curves; 1702.-5. On a Method of Quadratures; 1702.

TUBE, a pipe, conduil, ur canal; being a hollow cylinder, either of metal, wood, glass, or other matter, for the conveyance of air, or water, \&c. The term is chiefly applied to those used in physics, astronomy, anatomy, \&c. On otber ordinary occasions, we more usually say pipe.

In the memoirs of the French Academy of Sciences, Varignou has given a treatise on the proportions for the diameters of tubes, to give any particular quantities of water. The result of his paper gives these two analogies, viz, that the diminutions of the velocity of water, occasioned by its friction ingainst the sides of tubes, are as the diameters; the tubes being supposed equally lung: and the quantities of water issuing out at the tubes, are as the square roots of their diametres, deducting out of them the quantity that each is diminished.

TvBE, in Astronomy, is sometimes used for telescope; but more properly for that part of it into which the lenses are fitted, and by which they are disected and used.

TUESDAY; the Sd day of the week, so called from Tursen, one of the Sason Gods, similar to Mars; for which reason the astronomical mark for this day of the week, is \(\delta\).
'TUMBREL, is a kind of carriage with two wheels, used cither in husbandry for dung, or in artillery to carry the tools of the proneers, \& \(c\), and sometinas likewise the money of an army.
TUN, is a measure for liquids, as wine, oil, \&c. The English ton contains 2 pipes, or 4 hogsheads, or 252 gallons.
TLNE, or Tone, in Music, is that property of sounds by which they come under the relation of acute and grave. If two or more sounds be compured together in this relation, they are either equal or unequal in the degree of tune: such as are equal, are called unisons. The uequal constitute what are called intervals, which are the diticrences of tone between sounds.

Sonorous bollies are found to differ in tone: 1st, According to the ditferent kinds of matter; thus the sound of a piece of gold, is much graver than that of a piece of silver of the same shape and dimensions. 2d, According to the different quantities of the same matter in bodies of the same figure; as a solid sphere of brass of \(t\) foot diameter, sounds acuter than a sphere of brass of 2 feet diameter.

But the measures of tone are only to be sought in the relations of the motions that are the cause of sound, which are most discernible in the vibration of chords. Now, ingeneral, we find that in two chords, all things being equal, excepting the tension, the thickness, or the length, the tones are different; which difference can only be in the velociny of their vibratory motions, by which they perform a different number of vibrations in the same time; as it is known that all the small vibrations of the same chord are performed in equal times. Now the frequenter or quicker those vibrations are, the more acute is the tone; and the slower and fewer they are in the same time, by so much the more grave is the tone. So that any given note of a tune is made by one certain measure of velucity of vibrations, that is, such a certain number of vibrations of a chord or string, in such a certain part of time, constituters a determinate tone.

This theory is strongly supported by the best and lateat writers 04 misic, Holder, Malenlm, Smith, \&c , both from reason and experience. Dr. Wallis, who owns it very reasmable, adds, that it is evident the degrees of acuteness are reciprocally as the lengths of the chords; though, he says, he will not positively affirm that the degrees of acut-ness answer the nomber of vibrations, as their only true cause: but his diffidence arises from hence, that he
doubts whether the thing has been sufficiently confirmed by experiment.
TUNNAGE. Sce Tonsage.
TURN, is used for a circular motion; in which sense it agrees with revelution.

Tunx, in Clock or Watch-work, particularly denotes the revolution of a wheel or pinion. In calculation, the number of tarns which the pinion has, is denoted in common arithmetic thus, 5) 60 (12, where the pinion 5, playing in a wheel of 60 , moves round 12 times in one turn of the wheel. Now by knowing the number of turns which any pinion makes in one turn of the wheel it works in, is easily found how many turns a wheel or pinion has at a grenter distance; as the contrat-wheel, crown-wheel, dc, 5 ) 35 ( 11 by multuplying tugether the quo* vents, and the number produced is the number of turns, as in the exam-
5) \(45(9\)
5) 40 ( 8 ple here annexed: the first of these
three numbers has 11 turns, the nest 9 , and the last 8 : by multuplying it by 9 , it produces 99 ; that is, in one turn of the wheel 35 , there are 99 turns of the second pinion 5, or the wheel 45, which runs concentrical or tin the same arbor with the second piniun 5: and again multiplying 99 by the last quotient 8 , it produces 792 , which is the number of turns the third pinion 5 has. See Cluckwork, hind Pinion.

TURNING to vind:aard, in Sea-Language, denotes thent operation in sailing when a ship endeavours to make a progress against the ditection of the wind, by a conrpound course, inchoed to the place of ber destmation.This method of navigation is otherwise called plying to windward.

TUSCAN Order, in Architecture, is the first, the simplest, and the strongest or most massive of any. Its column has 7 diameters in beight; and its capital, base, and entablement, have no ornaments, and but few mouldings.

TWE.LFTH-Day, the festival of the Epiphany, or the manifestation of Christ to the Gentiles, so called, as being the twelfth day, exclusive, from the nativity or Christ-mas-day; of course it falls always on the 6th day of January.

TWILIGHT, in Astronomy, is that faint light which is perceived before sun-rising, and after sun-setuing. The twilight is occasioned by the carth's atmosphere refracting the rays of the sun, and reflecting them among its particles.

The depression of the sun brlow the horizon, at the beginning of the morning, and end of the evening twilight, has been variously stated, at different seasona, and by different observers: by Alhazen it was observed to be \(19^{\prime \prime}\); by Tycho \(17^{\circ}\); by Rothman \(24^{\circ}\); by Stevinus \(18^{\circ}\); by Cassini \(15^{\circ}\); by Riccioli, at the time of the equinox in the morning \(16^{\circ}\), in the evening \(20{ }^{\circ}\); in the summer solstice in the morning \(21^{\circ} 25^{\prime}\), and in the winter \(17^{\circ} 15^{\prime}\). Whence it appears that the cause of the twilight is varisble; but, on a medium, about \(18^{\circ}\) of the sun's depression will serve tolerably well for our latitude, for the beginning and end of twilight, and according to which Ds. Long, (in his Astronomy, vol. 1, pa. 258) gives the fullowing table, of the duration of twilight, in different latitudes, and for several different declinations of the sun.

T W. I


Where \(c d\) signify that it is then continual day, \(c \boldsymbol{n}\) continual night, and wn that the twilight lasts the whole night.

Frob-To find the Beginning or End of Twilight.
In this problem, there are given the sides of an oblique spherical triangle, to find an angle; via, given the sude. \(\angle \mathrm{P}\) the co-latitude of the place; \(\mathbf{P}\) © the codeclination, or pular distance; and \(2 \odot\) the zenth diotance, which is alway, equal to \(105^{\circ}\), via, \(90^{\circ}\) from the zenith to the horizon, and \(18^{\circ}\) more for the sun's distance below the hurizon. For example, suppose the place London in latitude \(51^{\circ} 32^{\prime}\), and the time the 1 st of May, when the sun's declination is \(15^{\circ} 12^{\prime}\) north.
 Here then \(z \mathrm{P}=38^{\circ} \mathbf{2 8 ^ { \prime }}\) the complement of \(51^{\circ} 32^{\prime}\) and \(\mathrm{PO}=74^{\circ} 48^{\prime}\), the complement of \(15^{\circ} 12^{\prime}\). Then the calculation is as follows.
\[
\begin{aligned}
& \mathrm{r} \odot=7 t^{\circ}+8^{\prime} \\
& \mathrm{PK}=3 \mathrm{~K} 28 \\
& \mathrm{PO}-\mathrm{PZ}=36 \mathrm{SO}=\mathrm{D} \\
& z 0=10800
\end{aligned}
\]
\[
\begin{aligned}
& 80-\mathrm{v}=7140 \left\lvert\, 3550=\frac{1}{1}(\mathrm{z} 0-\mathrm{D})\right. \\
& \text { Then, }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Which doubled gives } 14857 \text { for the angle } 2 \text { ro. }
\end{aligned}
\]

This \(148^{\circ} 57^{\prime}\) reduced to time, at the rate of \(15^{\circ}\) per hour, gives \(9^{m} 55^{m} 48^{\circ}\), either before or after noon; that is, the twilight begins at \(2^{h} 4^{m} 12^{8}\) it the morning, and ends at \(9^{\circ} 55^{m} 45^{\circ}\) in the evening on the given daty at 1.ondon.

To find the time of shortest twilight at any given place, say, as radius to the sine of the latutude, 50 is the tangent of \(T\) to the sine of the sun's declination al the time re-quired.- The declination of the sun and the latitude of the place muse be of contrary kinds.-Hince, at about 51 or 52 digrees north latitude, the twilight will be sheriest at about the 2d or 3d of March, and the 11th or 121h of Oeteher.

TWINKLINC; of the Senrs, demotes that tramulous motion which is obaerved in the light proceeding from the fixed stars.-This twakling in the stars bas been variously accounted for. Alhazen, a Moorish philosopher of the 12 th century, considers refraction as the cawse of this phenomen in. Vitello, in his Optics, (composed before the year 1270) pa, 449, ascribes the twindling of the stars to
the motion of the air, in which the light is refracted; and be observes, in confirmation of this hypothesis, that they twinkle still mure when they ate viewed in water put into motion.
Dr. Houke (Microgr. pa. 231, \&c) ascriles this phenomenon to the inconstunt and unequal refraction of the rays of light, occasioned by the tremadosus motion of the air and interspersesl rapours, in consequence of variable degrees of heat and cold in the air, producing corresponding variations in its density, and aloo of the action of the wind, which must cause the successuve rass to fall upon the eye in different directions, and consequently oft different parts of the retina at dofferent times, and also to bit and miss the pupil aliernately; and this ako is the reason, he says, why the limbs of the suu, moon, and planets appear to wave or dance.
These tremors of the air are manifest to the cye by the undulating motion of shadows cast from high towers; and by looking at objects through the smoke of a chimney, or through steams of hot water, or at objecis sinumed beyond hot sands, especially if the air be moved transversely over them. But when stars are seen through telescopes that have large apertures, they twinkle but litte, and sometimes not at all. For, as Newton has observed, (Opt. pa. 98) the rays of light which pass through different parts of the aperture, tremble ench of them apart, and by tweans of their various and contrary tremors, fall at one and the same time upon different points in the bottom of the eye, and their quivering motions are too quick and confused to be separately perceived. And all these illuminated points constitute one broad lucid point, composed of those many trembling points confusedly and insensibly mixed with one another by very short and swift tremors, usd so cause the star to appear broader than it is, and without any motion of the whole.

Dh. Jurin, in his Lissay on Distinct and Indistinct Vision, has recourse to Newton's byputhesis of Eits of easy refraction and reflection for explaimng the twinkling of the stars: thus, he says, if the middle part of the image of a stur be changed from light to dark, and the adjacent ring at the same time be changed from dark to light, as must happen from the least motion of the eye towards of from the star, this will occasion such an appearance as twinkling.

Mr. Michell (Philos. Trans. vol. 57, pa. 268) supposcs that the arrival of fewer or more rays at one tume, especially from the smaller or more remote fixed stars, may make such an unequal impression on the eye, as may at least have sutne share it producmg this effect: since it may be supposed that even a single particle of light is sufficient to make a sensible impression on the organs of
sight; so that very few particles arriving at the eye in a second of time, pethaps not more than three or four may be sufficient to make un object constantly visible. See Light.

Hence, he says, it is not improbable that the number of the particles of light which cutur the eje in a second of time, even from Sirius himself,'may not exceed 3 or 4 thousand, and from stars of the 2 d magnitude they may probably not excced 100. Now the apparent increase and diminution of the light, which we observe in the twinkling of the stars, seem to be repeated at intervals not very unequal, perhaps about 4 or 5 times in a second. He therefore thought it reasunable to suppose, that the inequalities which will maturally arise from the chance of the rays coming sometimes a litte denser, and sometimes a lintle rarer, in so small a numier of them, as must fall upon the eye in the 4 th or 5 th part of a second, may be sufficient to account for this appearance.

Since these observations were published however, Mr. Michell (as we are informed by Dr. Priestley in his \$list. of Light, pa.495) has entertanned some suspicion, that the unequal density of light does nut contribute to this effect in so great a degrie as he liad imagined; especially as be has observed shat even Venus does somennes twinkle. This be once observed her to do remarkably when shewas about 6 degrees high, though Jupiter, which was then about 16 degrees high, and was sensibly less luminous, did not twinkle atull. If, notwulistanding the great number of rays which doubtless come to the eye from such a surface as this planet presents, its appearance be liable to be affected in thas manner, it must be owing to such undulations in the atmosphere, as will probably render the offect of every other cause altogether insensible.

Musschenbrock suspects (Introd. ad. Phil. Nat. val. 2, sect. 1741 , pa. 707) that the twinkling of the stars arises from some affection of the eyp, as well as the state of the atmosphure. For, says he, in Holland, when the weather is frosty, and the sky very clear, the stars twinkle most manifestly to the naked cye, though not in telescopes; and since he does not suppose there is any great exhalation, or dancing of the vapour, at that time, be questions whetber the vivacity of the light, affecting the eye, may net be concerned in the phenumenon.

Butt this philosopher mizht have satisfied himsclf with respect to this hypothesis, by looking at the sters near the zenith, when the light traverses but a small part of the atmosphere, and therefore might be expected to affect the eye most sinsibly. For be would have found that they do not twinkle near so much as they do near the borizon, when much more of their light is intercepted by the atino-- spliere.

Some astronomers have lately endenvoured to explain the twinkling of the fixed slars, by the extreme manutoness of their apparent diameter; so that they suppose the sight of them is intercepted by every mote that fluats in the air. To this purpose Dr. Long obwerves (Astron. vol. 1, pa. 170), that our air near the earth is so full of various kinds of particles, which are in continual motion, that some one or other of them is perpetually prassing between us and any star we look at, which makes us every moment alternatuly see it and lose sight of it: and this twinkling of the stars, he says, is greatest in thone that are nearest the horizon, because they are viewed through a great quantity of thick air, where the intercepting particles are most

Vol.. It.
numerous; whereas stars that are near the zenith do not twinkle so much, because we do not look at them through so much thick air, and therefore the intercepting parthcles, being fewer, come less frequently before them. With respect to the planets, it is observed that, because they are much nearer to us than the stars, they have a sensible apparent magnitude, so that they are not covered by the small particles floating in the atmuspbere, and therefore do not twinkie, but shine with a steady light.

The fallacy of this hypothesis appears from the observation of Mr. Michell, that no olject can hide a star from us that is not large enough to exceed the apparent diameter of the star, \(b_{j}\) the diameter of the pupil of the eye; so that if a star were even a mathematical point, or of no diameter, the interposing object must still be equal in size to the pupil of the eye; and indeed it must be large enough to hide the star from both eyes at the same time.

The principal cause therefore of the twinkling of the stars, is now acknowledged to be the unrqual refraction of light, in consequence ol inequalities and undulations in the atmosphere.

Brsides a variation in the quantity of light, it may here be added, that a momentary change of colour has likewise been observed in sume of the tixed stars. Mr. Melville (Ealinb. Essays, vol. 2, pa.81) asserts, that when one looks stedfastly at Sirius, or any bright star, not much elevated above the hotizon, its colour appears not to be constantly white, but us tinctured, at every twinkling, with red and blue. Mr. Melville could not entirely satisfy bimself as to the cause of this pheromenon; observing that the separation of the colours by the refractive power of the atmosphere, is probably tou small to be perceived. Mr. Michell's hypothesis above-mentioned, though not adequate to the explication of the twinkling of the stars, may pretty wrll account for this circumstance. For the red and blue rays being much fewer than those of the intermediate colours, and therefore much more liable to inequalities from the common effect of chance, a small excess or defect in either of them will make a very sensible difference in the colour of the stars.
TYCHONIC System, or Hypothesis, is an order or arrangement of the heavenly bodies, of an intermediate nature between the Cupernican and Ptolemaic ; and is so called from its inventor Tycho Brabé. Sce Srstem.

TYMPAN, or Tympanum, in Architecture, is the area of a pediment, being that part which is on a level with the naked of the frize. Or it is the space included between the three cornices of a triangular pediment, or the two cornices of a circular one.
Tympan is also used for that part of a pedestal called the trunk or dye.

TYMPAS, among joiners, is also applied to the pannels of doors.

Tympan of an Arch, is a triangular space or table in the corners of sides of an arch, usually hollowed and enriched, sometimes with branches of laurel, olive-tree, or oak; or with trophies, \&e; sometimes with flying figures, as fame, \&c; or sitting figures, as those repteseming the cardinal virtues.

Tympan, in Mechanics, is a kind of wheel placed round an axis, or cyliudrical beam, on the top of which are two levers, or fixed staves, for more casily turning the axis about, in order to raise a weight. The tynupanum is 4 A
\(\boldsymbol{T} \boldsymbol{Y}\)
TYR, in the Ethiopian Calendar, the name of the 5th month of the Ethiopian yrar. It commences on the 25th of December ot the Julana year.

TYSHAS, among the Eibiopians, the name of the 4 th month of their year, commencing the 27 th of November in the Julian year.

\section*{U \\ and \(V\)}

\section*{VAC}

VIs a numeral letter, in the Roman numeration, denoting 5 or five. And with a dash over the top thus \(\overline{\mathbf{V}}\), it denated 5000.

VACUUM, in Physics, a space empty or devoid of all matter.- Whetber there be any such thing in mature as an absolute vacuum ; or whether the universe be completely full, and there be an absolute plenum; is a question that has been agitated by the philosophers, of all ages.

The ancients, in their controvirsies, disunguished two kinds; a Vacuum coacervatum, and a Vacuum interspersum, or disseminiatum.

Vacuum Concerputum, is conceived as a considerably large space destitute of matter; such, for instance, as there would be, should God aunihilate all the air, and other bodies, within the walls of a chamber.-The existence of such a vacuum is maintained by the Pythagoreans, Epicureans, and the Atomists or Corpuscularians ; most of whom assert, that such a vacuum actually exists without the limits of the sensible world. But the modern Corpuscularians, who hold a vacuom coacervatum, deny that appellation; as conceiving that such a vacuum must be illfinite, eteroal, and uincreated.

According then to the later philosophers, there is no vacuum coacervatum without the bounds of the sensible world; nor would there be any other vacuum, provided God sbould annihilate divers contiguous boulies, than what amounts to a mere privation, or nothing; the dimensions of such a space, which the ancients held to be real, being by these held to be mere negations; that is, in such a place there is so much length, breadth, and depth wanting, as a body must have to fill it. To suppose then, that when all the matter in a chamber is anniholated, there should yet be real dimensions, is to suppose, say they, corporeal dimensions without body; which is absurd.

The Cartesians however deny any vacuum coacervatum at all, and assert that if God should immediately annihilate all the matter, for example in a chamber, and prevent the ingress of any other matter, the cousequence would be, that the walls would become contiguous, and include no space ut all. Thay add, that if there be no matter in a chamber, the walls cannot be conceived otherwise than as contiguous; those things being said to be contiguous, between which there is not any thing intermediate: but if there be no body between, there is, say they, no exteasion betwren; extension and body being the same thing: and if there be no extension between, then the walls are contigunus, and where is the vacuum \({ }^{\text {P }}\) - But this reasoning, or rather quibbling, is founded on the mistake, that body and extension are the same thing.

Vacu un Disseminatum, or Interspersum, is that sup-

VAC
posel to be naturally interspersed in und among bodies, th the interstices between different bodirs, and in the pores of the same body. -1 is this kinel of vncuutn which is chiefly contested among the modern philosophers ; the Corpuscularians strenuously asserting it; and the Peripatetics and Cartestans as tenaciuusly denying it. See Cartesian and Leibsitzias.

The great argument urged by the Prripatetics apainst a vacuum intenpenum, is, that there are divers bodies fice quently sen to move conirary to their own nature and inclination; and that for no uther apparent reason, but to avoid a vacuum: whence thry conclude, that nature abhors a vacuum ; and give us a new class of motions ascribed to the fugn vacui or nature's flying a vacuum. Such, they say, is the rise of water in a syringe, on the drawing up of the piston; and such is the ascent of water in pumps, and the swelling of the flesh in a cupping glass, \&c.-But since the weight, elastucity, \&cc, of the air bave been ascertuined by sure experiments, those mations and etfects ante universally, and justly, ascribed to the gravity and pressure of the atmonphere.

The Cartesians deny, not only the actual existence, but even the possibility of a vacuum ; and that out this principle, that extension being the essence of matter, or bady, wherever extension is, there is matter ; but nere space, or vacuity, is supposed to be extended; therefore it is material. Whoeser asserts un cmpty space, say they, conceives dimensions in that space; 1, e. he conceives all extended substance in it; and therefore he denies a pacuuin, at the same time that he adonits it.-But Descartes, if we may believe some accounts, rejected a vacuum from a complaisance to the taste which prevailed in his tume, againet his own first sentiments; und anong bis familiar friends be used to call his system his philosophical romance.
On the other hand, the corpuscular authors prove, not only the possibility, but the actual existence, of a vacuum, from divers considerations ; particularly from that of motion in general; nud that of the plancte, comets, \& c , in particular; as also from the fall of bodies; frum the vibration of pendulums; from rarefaction and condensation; from the different specific gravities of bodies; and also from the divisibility of matter into parts:
1. First, there could be no linear or progressive motion without a vacuum ; for if all space were full of matter, no body could be moved out of its place, for want of another place unoccupied, to move into. And this argument was stated evell by Lucretius.
2. The motions of the planets and comets also confirm a vacuum. Thus, Newton argues, "that there is no such

Auid medium as aether," (to fill up the porous parts of all sensible bodies, and so make a plenum, " secoms probable; because the planets and contets proceed with su regular and lasting a inotion, through the erlestial spaces; for bence it appears that those celestial spaces are void of all sensible resistance, and con-equently of all se mibible matter. Consequently if the celestial regions were as dense as whter, oras quicksilver, they would rosit almost as much aswater or quicksiluer; but if they were pertectly dense, without any interapersed vacuity, though the matter wete ever so fluid and subsle, they would resist more than quichatrer does: n perfecily solid globn, in such a medium, would lose above balt its motion, in moving 3 lengths of its diameter; and a globe not perfecily solad, such as the bedies of the planets and comets are, would be stopped still soviner. Therefore, that the motion of the plancts and comets may be tegular, and lasting, it is necomaly that the celestial spaces be voil of all matter; except perhaps some few and nuch saretied cfiluvia of the planets and. comets, and the passing rays of light."
3. The same great author also deduces a vacuum from the consideration of the weights of bodies; thus: "All bodies about the carth gravilate towards it; and the weights of all boxdies, equally distant from the earth's centre, we as the quantities of inatter in those bodies. If the eether therefore, or any other subtile matter, were alugether destitute of gravity, or did gravitate less than in proportion to the quantity of its matter; because (as Aristote, Descartes, and others, argue) it differs from other budies only in the form of matter; the same body might, by the change of its form, gradually be converied into a body of the same coustitution with those which gravitate most in proportion to the quantity of matter: alld, on the other haod, the heavicst bodies might gradually lose their gravity, by gradually changing their form; and so the weights would depend upon the forms of bodies, and might be changed with them ; which is contrary to all experiment."
4. The descent of bodies also proves, that all space is not equally full; for the same author proceeds, " It all spaces were equally full, the specific gravity of that fluid with which the rugion of the air would, in that case, be filled, would not be less than the specific gravity of quicksilver or gold, or any other the most dense body; and therefore neither gold, nor any uther body, could descend in it. For bodies do not descend in a fluid, unless that fluid be specifically lighter than the body. But by the air-pump we can exlmust a sessel, till even a bit of down shall fall with a velocity equal to that of gold in the open air; and therefore the medium through which this feather falls, must be much rarer than that through which the gold falls in the uther case. The quantity of matter therefore in a given space may be diminished by rarefaction : and why may it not be dimisished ad infinitum? Add, that we conceive the solid particles of all bodies to be of the same density; and that they are only rarefiable by means of their pores; and bence a vacuum evidently' follows."
5. "That there is a vacuum, is evident too from the vibrations of pendulums: for since those bodies, in places out of which the air is exhausted, meet with no resistance to retard their motion, or sborten their vibrations; it is obvious that there is no senaible matter in those spaces, or in the occult pores of thase bodics."
6. That there are interspersed vacuities, appears from matter's being actually divided into parts, and from the
figures of those parts; for, on supposition of an absolute plenum, we do not conceive how any part of matter could be actually divided from that next adjoining, any more than it is possible to divide actually she parts of absolute space from one another: for by the actual division of the parts of a continuun from each other, we conceive nothing else understood, but the placing of thase parts at a distance from one another, which in the continuum were at no distance asunder: but such divisions betwcen the parts of matler must imply vacuities between them.
7. As for the ggures of the parts of bodies, on the supposition of a plemum, they must cirber be all rectilinear, or all concavo-convex; ohherwise they would not adequately fill space; which we do not find to be true in fact.
8. The denying a vacuum supposes what it is impossible for any one to prove to lie true, viz, that the material world hus nu limits.

However, we are told by some, that it is impossible to conccive a vacuum. But this surely must proceed from their baving inbibed Descaltes's doctiline, that the essence of borly is constituted by 'istension; as it would be contradictory to suppose space without extemsion. To suppose that there ore fluids penetrating all beries and replewshing space, which weither resist nor uct on Loodies, merely in order to a vord adenitting a vacuum, is feigning two kinds of matter without any necessity or foundation; or is tacitly giving up the question.

Since then the essence of matter does not consist in extension, but in solidity, or impenetrability, the universe may be said to consist of solid bodics moving in a vacuum: nor need we at all fear, list the phenomena of nature, most of which are plausibly accounted for from a plenum, should become inexplicable when the plenitude is set aside. The principal ones, such as the tides; the suspension of the mercury in the barometer; the motion of the heavenly bodies, and of light, \(\& \mathrm{c}\), are more easily and satisfactorily accounted for from other principles.

Vacuum Boileanum, is used to express that approach to a real vacuum, which we arrive at by means of the airpump. Thus, any thing put in a receiver so exbausted, is said to be pot in vacun: and thus most of the experiments with the air-pump are said to be performed in vacuo, or in vacuo Boileano.

Some of the principal plienomena observed of bodies in vacuo, are; that the heasiest and lightest bodies, as gold and a feather, fall with equal velocity :-that fruits, as grapes, cherries, peaches, apples, \&c, kept for any time in vacuo, retain their nature, freshness, colour, dxc, and those withered in the open air recover their plunpness in vacuo :-all lightand fre become inmediately extinct in vacuo:-little or no sound is heard from a bell rung in vacuo:-a bladder half full of air, will distend the bladder, and lift up 40 pound weight in vacuo:most animals soon expire in vacuo.

By experimeats made in 1704, Dr. Derham found that animals which have two ventricles, and no foramen ovale, as birds, dogs, cats, nice, \& c, die in less than half a minute; counting from the first exsuction: a mole died in one minute; a bat lived 7 or 8 . Insects, as wasps, bees, grasshoppers, \&c, seemed dead in two minutes; but after being left in vacuo 24 bours, they came to life again in the open air: saails continued 24 hours in vacuo, with412
out appearing much affecterl.-Seeds planterl in vacuo du not grow: Small beer dem, and loses all its taste, in vacuo: and air rushing through mercury into a vacuum, thmos the mere ury in a kind of shower upon the receiver, and producis a great light in a dark foom.

The air-pump can never produce a perfect vecuum : as is evident from its structure, and the manner of its working: in effect, esery exsuction only takes uway n part of the air; so that there is still some left after any Ginite number of exsuctions. For the air-pump has no longer any efiect but whle the spring of the air remainiug in the receiver is able to lift up the valats; and ulien the rarefaction is come to that drgree, you cun arnise no nearer to a vacuum; unless perhaps the air valves can be opened mechasically, indep-naent of the spring of the air, as it is said they are in some newly improved urrpumps.

Torriceltian Vacuum, is that made in the barometer tube, betivern the upper end and the top of the mercury. This is probably never a perfect und entire vacuum; is all fluids are found to yield or to rise in clastic vapaurs, on the removal of the pressure of the atmosphere. See Torntcellian, and Barometra.

VAl.VE, in Hydraulics, Pneumatics, \&c, is a kind of lid or cover to a tube or vessel, contrived to open one way; but which, the more forcibly it is pressed the other way, the closer it shuts the aperture: so that it either admits the entrance of a fluid into the tube, or vessel, and presents its return; or permits it to escape, and prevents its re-entrance.

Valves are of great use in the air-pump, and other wind machines: in which they are usually made of pieces of bladder. In hydraulic engines, as the emboli of pumps, they are mostly of strong leather, of a round figure, and fittell to shut the apertures of the barrels or pipes. Sometimes they are made of two round pieces of leather enclosed between two others of brass; having divers perforations, which are cosered with anotber piece of brass, moveuble upwards and downwards, on a kind of axis, which goes through the middle of them all. Sometimes th:y are made of brass, covered over with leather, and furnished with a fine spritig, which gives way upon a force applied against it; but oll the ceasing of that, returns the valve over the aperture. See Pump. See also Desaguliers' Exper. Philos. vol. 2, pa. 156, and pa. 1 so.

VANE, in a ship, \&c, a thin slip of some kind of matter, placed on high in the open air, turning eavily round oa an axis or spindle, and veered about by the wind, to show its direction or course.

Vanes, in Mathematical or Philosophical Instruments, are sights made to slide and move upon crossstaves, fore-staves, quadrants, \&c.

VAPOUR, in Meteorology, a watery exhalation raised up either by the beat of the sun, or any other heat, as fire, \&c. Vapour is considered as a thin vesicle of water, or other bumid matter, filled or inflated with air; which, being rarefied to a certain degree by the action of heat, ascends to some beight in the atmosphere, where it is suspended, till it returns in form of rain, snow, or the like. An assemblage of a number of particles, or vesicles of vapour; constitutes what is called a cloud.

Some use the term vapour indifferently, for all fumes emitted, either from moist bodies, as fluids of any kind; or from dry bodies, as sulphur, \&ac. But Newton, and
other authons, better distinguish between humid and dry fumus, calling the latter exhalations.

For the manner in which vapours are raised, and again preciputated, ser Cloud, Diw, Rain, Bakometsh, and particularly Evavoration.

It may here be aulded, with respect to the pinciples of solution ardopted to account for evaporation, and largely illustrated under that article, that Dr. Halley, about the besinning of the 18 th century, seems to have been acquainted with the solvent power of sir on water; for be says, that suppusing the earth to be cosered with water, nad the sun to move diurnally round it, the arr would of itseif imbibe a certain quantity of aqueous vapours, and \(r\)-tain them like sults dissolved in water; and that the arr warmed by the sun would sustain a greuter proportion of vapriers, as warm water will hold mure dissolsed salts; which would be discharged in dews, sinilar to the precipitalion of salis on the cooling of liquors. Platos. Trans. tul. 3.

Mr. Eeles, in 1755 , endeavoured to account for the ascent of vapour and exbalation, and their suspension in the atmosphere, by mealus of the electric fire. The sun, he achnowledges, is the great agent in detaching vapour and exhalations from their masses, whether be acts immediately by himsilf, or by his rendering the electric tire more actuve in its vibrations: but their subsequent ascent he attributes entirely to their being rendered specitically lighter than the lower air, by their conjunction with electrical fire: each particle of wapour, with the electrical fluid that surrounds it, occupying a greater space than the sane weight of air. Mr. Eeks also endeavours to show, that the ascent and descent of vapuur, attended by this fire, are the cause of all the winds, and that they furnish a sntisfactory solution of the ginetal phenomena of the weather and barometer. Pbilus. Trans. vol. 49, pa. 124.

Ir. Darwin, in 1737, published remarks on the theory of Mr. Eeles, with a vicw of confuting it; and attempting to acconnt for the aseent of vupours, by considering the power of expansion which the constituent parts of sume bodies acquire by heat, and also that some bodics bave a greater affinity to heat, or acquire it soorur, and retain it longer, than others. On these principles, be thinks, it is easily understund how water, whose parts appear from the seolipile to be capable of immeasurable expansion, should by heat alone becone specifically lighter than the common atmosplere. A small degree of heat is sufficient to detach or raise the vapour of water from the mass to which it belongs; and the rays of the sun communicate heat only to those bodies by which they are refracted, reflected, or obstructed; whence, by their impulse, a motion or vibration is caused in the parts of such bodies. Hence be infers, that the sphericles of vapour will, by refracting the solar rays, acquire a constant heat, though the surrounding atmosphere remain cold. If it be asked, how clouds are supported in the nbsence of the sun? it must be remembered, that large masses of vapour must for a considerable time retain much of the beat they have acquired in the day; at the same time reflecting how small a quantity of heat was neecssary to raise them, and that doubtless even a less will be sufficient to support them; as from the diminished pressure of the atmosphere at a given height, a less power may be able to continue them in their present state of rarefaction; and lastly, that clouds of particular shapes will be sus.
tained or elevated by the motion they acquire from winds. Philus. Trans. vul, 50, pa. 246.

The quantity ot vapour raised fiom the sea by the warmth of the sun, must be far greater than is commonly imagined. Dr. Halley has attempted to estimate it. For the result of his calculation, see Evapuration.

For the liffect of Vapour in the Furmation of Springs, \&cc, sen Spaing, and Rtver.

VaRENIUS (Beanabd), a learned Dutch geographer and physician, of the 17 th century, who was authur of the vest mathematicul treatise on Geography, intithed, Geographia Universalis, in qua atfectiones generalis Telluris explicantur. This excellent work liax been translated mito all languages, and was honoured by an edition, with unprovements, by Sir Isauc Newtun, lor the use of his academical students at Cambridge.

VARIABLE, in Genmetry and Analytics, is a term applied by mathematicians, to such quantitios as are considered in a variable or changeable state, either increasing or decreasting. Thus, the abscisses mud ordinates of an ellipsis, or other curve line, are vartable quantities ; because these vary or change their magnitude together, the one at the saine time with the other. But some quantities may be variable by themselves alune, or while those connected with them are constant : as the abscisses of a parallclogram, whose ordinates may be considered as all equal, and therefore constant. Also the diameter of a circle, and the parameter of a conic section, are constant, while their abscisses are variable.

Variable quantities are usually denoted by the last letters of the alphabet, \(s, y, x . \& c:\) while the cunstant ones are denoted by the leading letters, \(a, b, c, d c\). Some muthors, instead of variable and constant quantities, use the terms fluent and stable quantitics. The indefinitely small quantity by which a variable quantity is continually increased or decreased, in very small portions of time, is called the differential, or increment or decrement of that quantity. And the rate of its increase or decrease at any point, is calied its tluxion; while the variable quantity itself is called the fluent. And the calculation of these, is the subject of the new Methodus Differentialis, or Doctrine of Fluxions.

VAliablik: Motion, in Mechanies, is that motion of a body when subject to the contioual action of a furce which changes, or is different at every instant. We have instances of variable mution, in the unbending of springs: thuugh the velocity continues to be augmented, yet the degrecs by which the auginentation proceeds are diminishing. It is the same with regard to the degrees by which the motion of a ship arrives at unitormity: the action of the wind on the sails diminisbes in proportion as the vessel acquires greater velucity, because the action of the wind varies as the difference between its velucity and that of the sall on which it acts.

Fur an illustration of the different natures of constant and variable accelerating motions, see the art. Acceleration.

VARIATION, of 2uancities, in Algebra. See Chanaes, and Combination.

Calculus of Variations, is that by which, baving given an expression or function containing two or more variable quantities, whose relation is expressed by a determinate law, we find what that function becomes when the law itself is supposed to experience any variation indefinitely small, occasioned by the variation of one or of
several of the terms which express that law. The origin of this calculus is imputed to the circumstance of certain problems conerning the maxima and minima of quantities having brea proposed by John Bernoulli, to the muthematicians of Europe. Such a problem was that in which it was required to find, of all curves passing through two fixed points, and situated in the same vertical plane, that along which a body would descend from the bighest to the lowest point in the least time possible.

The first geometricians, remarking that nothing was obtaised by putting the differential of the time \(\frac{d_{3}}{\sqrt{x}}=0\), found that they could obtain a solution by making the time a ninimum for two successive clements of the curve : thus, if \(x, x^{\prime}, x^{\prime \prime}\) were three vertical ahscissus, atad \(y, y^{\prime \prime}\), \(y^{\prime \prime}\), the corresponding ordinates, the time would be ex-
 differential of which being taken, and put \(=0\), gave a resultung equation \(\frac{d y}{\sqrt{c} \times \sqrt{d x^{2}}+\frac{\left.d y^{T}\right)}{d}=b \text {, a constant }}\) quantity; and bence proved the curse to be a cycloid. -Euler, with far greater analytical knowledge than John Bernuulli, next triated these problems in a general manner, in his tract entitled, "Methodus inveniendas lineas curvas maximi minimive proprietate gaudentes; sive sulutio problematis isoperimetricalatissimo sensu accepti." M. Lagrange afterwards gave greater generality to this calculus, by making variable nut ouly \(y, d y, d^{2} y\), \(\& c\), Lut also \(x\).

The explanation of M. Lacroix affords as clear an idea of the calculus of variations as any that we are acquainted with.
"Suppose," says be, "the variable quantities at first connected together by an equation, or by any otber dependence, to change by reason of the form of the equation, or of the relation that results fiom the dependence established between them ceasing to be the same; this circumstance cannot be expressed in a mure general manner, than by regarding the increments of \(x\) and \(y\) us absolutely independent of each other ; since, in etfect, this bypothesis not designating any particular relation between \(x\) and \(y\), comprehends all. It follows thence, that the calculus of variations can only be empluyed fur expressions, to which the differential calculus has already bren applied; and it differs from the last only by the independence which it supposes between the variable quantities, which before were considered as connected by constant relations. The following example will illustrate this notion. The expression \(\frac{y^{2 d r}}{d y}\), which belongs to the subtangent of a curve, represents a determinate function of \(x\), when \(y\) is considered as a function whose composition in terms of \(x\) is known: and if this last changes, the first changes also. There will be perhaps some difficulty in conceiving how we can submit to calculation the variability of a function which is only the abstract dependence in which several quantities are with regard to each other: but this difficulty is removed, by considering that the connection between the quantitios \(y\) and \(x\) changes if thim first be made to vary independeutly of the second. Thus, in the example before us, if we supprose a to remain the same, and \(y\) aud \(\frac{d y}{d x}\) to change, the relation between \(r\) and \(y\) must necessarily have changed alro, since these quanti-*
tirs are the unundate conscquences nf that relation : \(\frac{d y}{d x}\), in the form \(\frac{w d r}{d y}\), may alune be made to vary, since it depend: only on one value of \(y\) : but, if an exprestion affected by the sign \(f\) (denoting the innegral of that expression) be considered, \(y\) and \(\frac{d y}{d r}\) miust be made lo vary at the same time; for it fullows from the theory for the formation of integrals, that the value of a like function deo pends on the const cutive value's of \(y\), which are deduccd from those of \(\frac{d y}{d x}\),
\({ }^{4}\) It is evident that, to take under this point of view the differential of any expression whatever, it is sufficient to make \(y_{1} d y, d^{2} y\), \&c, sary wishont altering \(x\); but in treating this latter quantily as vatiable us the first, we arrive at risults inore general and symmetrical than what are otherwise obtained, and wheb leati to very interesting remarks on the nature of the differential forms. Fur these reasons, we shall adopt in this chaptur the method of making \(x, d y, d^{3} y\) vary. That the syinbols of this new species of differentiation, in which \(I\) and \(y\) are considered as indepondent, may not be confounded with the symbols of the first, in which one of the variable quantities is regarded as a function of the other, we shall imploy, after the tnanner of lagrange, the characteristic of and we shall suppose, with him, that when \(y\) clanges only by virtue of the change of \(x\), which becomes \(x+d x\), its differential is \(d y\) : but that when the relation of \(y\) and \(x\) varies, these two quantities become respectively \(x+\delta x, y+\delta y\); and we note by the name of variations, the increments \(d x\) and \(\delta y\).
"Hence it follows that, as \(d u=\frac{d u}{d r} d x+\frac{d u}{d y} d y\), (u being a function of \(x\) and \(y\) ) so \(\delta u=\frac{\delta_{u}}{i x} \partial x+\frac{b_{x}}{\delta y} d y\).
"In applying this to the example \(\frac{y d x}{d y}\) we must regard \(\frac{d y}{d y}\) as a function of \(x\) and \(y\); whence it rosults that
\(\delta \frac{v d r}{d y}=\frac{d v^{2} y}{d y}+y^{\delta}\left(\frac{d r}{d y}\right)\), and \(\delta\left(\frac{d r}{d y}\right)=\frac{d y^{2} / \mathrm{r}-d \mathrm{tMty}}{d y^{2}}=\) \(\frac{d y d e r-d r d t y}{d y^{2}}\), for \(\delta d x=d \delta . r, \delta d y=d \delta y-"\)
M. Lacroix then proves \(d x=d \delta s, \& c\). After the methods for finding the variations of any function whutever, is given the application of the catculus to the problems of maxima and minima.

Variation, in Astronomy. - The Variation of the Moon, called by Bulliald, the Reflection of her Light, is the third inequality obscrved in the moon's motion; by which, when out of the quadratures, her true place ditfers from her place twice equatial. See Place, EquaTtov, \&c.-Newton makes the monors variation to arise partly from the form of her orbit, which is an ellipsis; and partly from the inequality of the spaces, which the moon describes in equal times, by a radius drawn to the earth.

To fund the Greatest Variation. Obscrve the moon's longitude in the octants ; and to the fime of observation compute the moon's place twice cquated; then the diflerence between the computed and observed place, is the greatest variation.
'Tycho makes the greatest variation \(40^{\prime} 30^{\prime \prime}\); and Kepler makes it \(51^{\prime} 49^{\prime \prime},-\) But Newton makes the greatest va-
riation, at a mean distance between the sun and the eartb. (t) be \(33^{\prime} 10^{\prime \prime}\) : at the other distances, the greatest variation is in a ratio compounded of the dupliente ratio of the times of the moon's synodical revolution dircectly, and the triplicate ratio of the distance of the sun from the earth insersely. And therefore in the sua's apogers, the greatest sariation is \(33^{\prime} 14^{\prime \prime}\), and in his perigece \(37^{\prime} 11^{\prime \prime}\); pro. vined that the eccentricity of the suin be to the transvirse semidiameter of the urbis magnus, as \(16 \frac{1}{6}\) to 1000 . Or, taking lhe mean mutions of the noun from the sun, as they are stated in 1)r. Halley's tables, then the groatest variation at the mesn disiance of the camh from the sun will be \(35^{\prime} 7^{\prime \prime}\), in the apogre of the sun \(33^{\prime} 27^{\prime \prime}\), and in his perigev \(3 i^{\prime} 51^{\text {F. }}\). Plibus. Nat. Princ. pr. 29, lib. 3.

Variation of Curvature, is the rite at which is varied the curvature of any curve, except that of the corcle, which is constant.

VARiathus, in Gengraphy, Navigation, \&ce, a turm applied to the devation oi the magnetie uevile, or compass, from the true worth point, either toward, the east of west ; called also the decination. Or the vartation of the compass is properily defined, the angle which a mag netic needie frev ly suspunded makes with the neridian line on an hurizontal plane ; or an arch of the borixun, comprehentied between the true and the magnetic novidians. In the sea-language, the variation is usually calied nurtheasting, or noith-westing.

All magntic bodus are found to range themselus, in some sort, according to the meridian; but they seldom agrev precierly with it: in one place they declise, from the noith towned the cast. in anwther toward the weat; and that zoe differemly ut diffich int tunes.

The variation of the coompass could not loing rmain a secret, after the invention of the compass itsell: accordingly Ferdinand, the son of Columbus, in bis life written in Spanish, and printed in Italiati at Vronice in 1571 , asserts, that his father observed it on the 14 th of September 1499 : though others seem to attribute the discovery of it to Sebastian Cabor, a Venctian, employed in the service of our king Henry VII, about the ycar 1500.-It now appears however, that this variation or declination of the needle was known even sotne conturies earlier, though it does not appear that the use of the needle itself in navigation was then known. For itscems there is in the hbrary of the university of Leyden, a small manuscript tract on the magnet, in Latin, written hy one Peter Alsiger, bearing date the 8 th of August 1269 ; in which the declinetion of the needle is particularly mentioned. Mr. Cuvallo has printed the chief part of this letter in the Supplement to his Treatise on Magnevism, with a translation; and it is to be wished he had printed the whole of so curious a paper. The curiosity of this letter, says Mr. Cavallo, consists in its containing almost all that is at present known on the subject, at least the most remarikable parts of it, mixed however with a gosd deal of absurdity. The laws of inagnetic attraction, and of the communication of that power to iron, the directive property of the natural magnet, as well as of the iron that bas been touched by it, and even the declination of the magnetic needle, are clearly: and unequivocally mentioned in it.

As this variution differs in different places, Gonzales d'Oviedi found there was none at the Azores; whence some grographers thought fit in their maps to make the first mocridian pass through one of these islands; it oot being then known that the varitation altered in time. See

Magnet; also Gilhert de Mugnete, Lond, 1600, pa. 4 and 5 ; or Purchas's Pilgrims, Lond. 16 25 , book 2, sect. 1.

Various are the lyypotheses that have been framed to account for this extraordinary phenomenon: we shall only notice some of the later, and more probable: just premising, thal Rebert Norman, the inventor of the dip* ping-ncedle, disputes against Cories's notion, that the varistion was caused by a point in the heavens; contending that it should be sought for in the earth, and proposes how to discover its place.

The first is that of Gilbert (De Magnete, lib. 4, pa. 151 \&c), which is followed by Cabeus, \&c. This notion is, that it is the tarth, or land, that draws the needle out of its meridian direction: hence they argue, that the seedle varied more or less, as it was more or less distant from any great continent; and cons quently that if it were placed in the middle of an ocean, equilly distant from equal tracts of land on each side, castward and westward, it would not decline eitber te the one or the other, but point exactly north and sounh. Thus, say they, in the Azores islands, which are equally distant from Atrica on the cast, and America on the west, bhere is no variation: but as ynu sail from thence towards Africa, the needle begins to decline toward the cast, and that' still more and more till you reacis the shore. Proceed still farther eastward, the declination gradually diminishes again, by reason of the land lett batund on the west, which continues to draw the needle. The same also obtains till you arrive at a place where the tracts of land on each side are equal ; and there again the variation will the nothing. But the misfurtune is, the law does not hold universally; for multitudes of observations of the variation, in different parts, made and collected by Dr. Halley, overturn the whole theory.

Others thercfore have recourse to the frame and compages of the eurih, considered as interspersed with rocks and shelves, which being gonerally found to run towards the polar negions, the needle comes to have a general tendency that way; but it seldom bappens that their difection is exactly in the meridian, and the needle bas consequently, tor the most part, some variation.

Others maintain that divers parts of the earth have different degrees of the magnetic virtue, as some nre more intermixed with heterngeneous matters, which prevent the free action or effect ot it, than others are.

Ohhers again ascribe all to maguelic rucks and iron mines, which, afiording more of the magnetic matter than other parts, attract or draw the needle inore.

Lastly, others imagine that earthquakes, or high titles, have disturbed and disfocmed several considerabie parts of the earth, and so changed the magnetic axis of the globe, which was onginally the same with the axis of the earth itself.

But none of these theories can he the true one; for still that great phenomenon, the variation of the variation, i.e. the continual change of the declination, in one and the same place, is not accountable for, on any of these foundations, nor is it even convistent with them.

Doctor Hooke communicated to the Royal Socirty, in 1674 , w theory of the variation; the substance of which is, that the magnet has its peculiar pole, distant 10 degrees from the pole of the carith, about which it moves, so as to make a revolution in 370 years: whence the variation, he says, has altered of late about 10 or 11 minutes every year, and will probably so continue to do for some time, when it will begin to proceed slower and slower, till at
length it become stationary and retrograde, and so return back again. Birch's Hist. of the Royal Society, vol. 3, pa. 131.

Dr. Halley has given a new system, the result of numerous observations, und evin of a number of voyages made at the public expence on this account. The light which this author has thrown upon this obscure part of natural history, is very great, and of important consmquence in navigation, \&ce. In this system he has reduced the several variations in divers places to a precise rule, or order, which before appeared quite precarious and arbitrary. His theory will therefore descrve a more ample detail. The observations it is built upon, as laid down in the Pbilos. Trats. No. 148, or Abr, vol. 2, pa.6\%4, are as follow :
Observed Variations of the Needle in divers places, and at divers times.
\begin{tabular}{|c|c|c|c|c|}
\hline Places observe! at. & \begin{tabular}{l}
Longitude frum \\
Lovidon
\end{tabular} & Latitude. & \[
\begin{gathered}
\text { Yrar of of } \\
\text { Oberove- } \\
\text { tion. }
\end{gathered}
\] & Variation olmerved. \\
\hline & & & & \\
\hline London & 00 & 5131 n & 1580 & 1115 e \\
\hline & & & 1622 & 6 Oe \\
\hline & & - & 1634 & 45 e \\
\hline & & & 1672 & 230 w \\
\hline & & & 1683 & 430 w \\
\hline Paris & 225 e & 4851 n & 1640 & 0 e \\
\hline & & & 1666 & 0 O \\
\hline & & & 1681 & 230 w \\
\hline Uramiburg & 13 oe & 5534 n & 1672 & 235 w \\
\hline Copenhagen & 1253 e & 5541 n & 1649 & 153 e \\
\hline & & & 1672 & 45 w \\
\hline Dantzick - & 19 Oe & 5423 n & 1679 & 7 \% w \\
\hline Montpelier & 40 e & 4337 n & 1674 & 110 w \\
\hline Brest & 425 w & 4823 n & 1680 & 145 w \\
\hline Rome & 13 Oe & 413011 & 1681 & 50 w \\
\hline Bayonne & 120 w & 4330 n & 1680 & 120 w \\
\hline Hudson's Bay & 7040 w & 3100 & 1668 & 19 15 w \\
\hline In Hudson's Straits & 57 ow & \(610 n\) & 1668 & 2930 w \\
\hline Baffin's Bay, Sir & & & & \\
\hline T. Sinith's Sound & 80 0w & 78 0n & 1616 & 570 w \\
\hline At Sea - - & 57 0 w & 3840 n & 1682 & 730 w \\
\hline At Sea & 3150 w & 4350 n & 1682 & 530 w \\
\hline At Sea & 420 & 21 on & 1678 & 0400 \\
\hline Cape Sit. Augustine & 3530 w & \(28 \mathrm{0s}\) & 1670 & 5 S0e \\
\hline Off ine mouth of River Plate & 53 0w & 3930 s & 1670 & 2030 e \\
\hline Cape Frio - & 4110 w & 2240 s & 1670 & 1210 e \\
\hline \(\left.\begin{array}{c}\text { Entrance of } \\ \text { Magellan's } \\ \text { Straits }\end{array}\right\}\) & 68 & 3230 s & 1670 & 170 e \\
\hline \[
\left.\begin{array}{l}
\text { West entrance } \\
\text { of ditto }
\end{array}\right\}
\] & 75 & 530 s & 1670 & 1410 e \\
\hline Baldivia - - & 73 0w & 40 os & 1670 & 810 e \\
\hline Cape Aguillas & 1630 e & 3450 s & 1622 & \\
\hline & & & 1675 & \(\begin{array}{ll}8 & 0 \\ 0 & \text { w } \\ 0\end{array}\) \\
\hline At Sea At Sea & \(\begin{array}{rl}1 & 00 \\ 20 & \\ 20 w\end{array}\) & \begin{tabular}{l}
34 \\
308 \\
54 \\
\hline 8
\end{tabular} & 1675 & \\
\hline At Sea
At Sea & 320 w & 24 Os & 1675 & 10 soe \\
\hline SI. Helena & 630 w & 16 Os & 1677 & 040 e \\
\hline Isle Aucension & 1430 w & 750 s & 1678 & 1 oe \\
\hline Johanna - & 4t 0 ec & 1215 s & 1675 & 1930 w \\
\hline Mombasa & 40 Oe & 408 & 1675 & 160 w \\
\hline Zucatra & 360 e & 1230 n & 1674 & 170 w \\
\hline Aden, Mouth of Red Sea & 47 30e & 13 On & 1674 & 150 w \\
\hline
\end{tabular}

VAR
\begin{tabular}{|c|c|c|c|c|}
\hline Places oluerved at. & Longitude fro.n IJ indon. & Latitult. & \[
\left.\begin{gathered}
\text { Year of } \\
\text { Whacrss- } \\
\text { tinn }
\end{gathered} \right\rvert\,
\] & Variation wherved. \\
\hline & & & & \\
\hline Diego & 61 op & 200 . & 1676 & 2030 w \\
\hline At Sea & (if 3) & 0 O & 1676 & 1330 \\
\hline At Sea & 55 Oe & 2705 & 1676 & 24 \\
\hline Bombay & 7230 e & 190 ll & 1676 & 120 w \\
\hline Cape Comorin & 760 e & 815 n & 1680 & 848 w \\
\hline Ballasore - & \(\checkmark 70 \mathrm{e}\) & 2130 n & 1680 & 810 w \\
\hline Fort St. Geor & 2/3 Oe & 131.5 n & 1680 & 10 w \\
\hline West Point of Javo & 1060 e & 640 s & 1676 & 310 w \\
\hline At Sea - & 58 & 39 0: & 1677 & 2730 w \\
\hline 1. St. Paut & \(72 \mathrm{0e}\) & \(\begin{array}{ll}38 & 08\end{array}\) & 1677 & 23 30 w \\
\hline At Van Dienien's & 1420 l & 4225 s & \(16+2\) & 0 \\
\hline At New Zealand & 170 Oe & 40 50. & 1642 & 9 Oe \\
\hline Three-kings Isle in ditto & 16980 t & 36 358 & 1642 & 840 e \\
\hline I. Rotterdam in the South Sea \(\}\) & 184 & 20153 & 1642 & 620 \\
\hline \(\left.\begin{array}{l}\text { Coast of New } \\ \text { Guinea }\end{array}\right\}\) & 149 Oe & 430 s & 1643 & 845 e \\
\hline West Point ofditio & 126 Oe & 026 & 1643 & 530 e \\
\hline
\end{tabular}

On these observed variations Dr. Halley makes several remarks, as to the variation in different parts of the world at the time of his writing, eastward and westward, and the situation and direction of the lines or places' of no variation: from the whole he deduces the following theory.

Dr. Halley's Theory of the Variation of the Magnetic Needle.-That the whole globe of the earth is one great magnet, having four magnetical poles, or points of attraction; near each pole of the equator two and that in those parts of the world which lie nearly adjacent to ally one of these magnetic poles, the needle is governed by it ; the nearest pole being always predominant over the more remote.

The pole which at present is nearest to us, he conjec. tures to lie in or near the meridian of the Land'senend of England, and not above \(7^{\circ}\) from the north pole: by this pole, the varations in all Europe and Tarlary, and the North Sea, are chiefly governed; though still with some regard to the other northern pole, whose situation is in the meridian passing about the middle of California, a nd about \(15^{\circ}\) from the north pole of the world, to which the needle has chiefly respect in all North America, and in the two oceans on either side of it, from the Azores westward to Japan, and farther.

The two southern maguetic poles, he inagines, are rather more distunt from the south pale of the world ; the one being about \(16^{\circ}\) from it, on a meridian \(20^{\circ}\) to the westward of the Magellanic Streights, or \(95^{\circ}\) wrst from London: this pole commands the meedle in all South America, in the l'acific Ocean, and the greatest part of the Ethiopic Occan. The oiber magnetic pole seems to have the greatest power, and the largest dominion of all, as it is the most remote from the pole of the world, being little less than \(20^{\circ}\) distant from it, in the meridian which passes through New Holland, und the island Celebes, about \(190^{\circ}\) cast from London: this pule is preduminant in the south part of Africa, in Arabia, and the Red Sera, in Persia, India, and its islands, and all over the Indian sea, from the Cape of Gool Hope castward, to the middle of the Great South Sca that divides Asia from America.

Such, he observes, secme to be the present disposition
of the magnetic virtue throughout the whole globe of the earth. It is then shown how this hypothesis accounty for all the variations that have been observed of late, aud how it answers to the several remarks drawn from the table. It is there inferred that from the whole it appears, that the direction of the nieedic, in the temperate and frigid zones, depends chiefly on the counterpoise of the forces of two magnetic poles of the same nature: as also why, under the same meridian, the variatiun should be in one place \(29 \frac{1}{8}\) degrees west, and in another \(20 \frac{1}{2} \mathrm{de}\) grees eust.

In the torrid zone, and particularly about the rquator, respect must be had to all the four poles, and their positions must be well considerid, otherwise it will not be easy to determine what the variation should be, the nearest pole being always strongest; yet so however as to be sometimes countirbalanced by the united forces of two more remote ones. Thus, in sailing from St. Helena, by the isle of Ascension, to the equator, on the north-west course, the variation is very little casterly, and unalterably the sume in that whole track; because the SouthAmerican pole (which is much the nearest in the aluresaid places), requiring a great casterly variation, is counterpoised by the contrary attraction of the NorthAmerican and the Asiatic south poles; each of which singly is, in these papts, weaker than the Aine rican south pole; and on the north-west course the distance from this latter is very litte varied; and as you recede from the Asiatic south-pole, the balance is sult preserved by an access toward the North-American pole. In this case no notice is taken of the European north pole; its meridian being a little removed from the meridians of thesc places, and of itself requiring the same variations which are bere found.
After the same manuer may the variations in other places about the equator be accounted for, upon Dr. Halley's hypothesis.-But still this will do nothing as to accounting for the continual variation or change of the declimation, in the same place.

To observe the Variation of the Needle.-Draw a meridian line, as directed under Meridian; then a stile being erected in the middle of it, place a needle upon it, and draw the right line which it hangs over. Thus will the quantity of the variation appear.

Or thus: As the former method of finding the variation cannot be applied at sea, others have been devised, the principal of which are as follow. Suspend a thread and plummet over the compass, till the shadow pass through the contre of the card; observe the rhumb, or point of the compass which the shadow touches when it is the shortest. For the shadow is then a meridian line; and consequently the variation is determined.

Or thus: Ubserve the point of the compass on which the sun, or some star, rises and sets; bisect the arch intercepted between the rising and setting points, and the line of bisection will be the meridian line; consequently the variation is had as before. The same may also be obtained from two equal altitudes of the same star, observed either by day or night. Or thus: Observe the rhumb upon which the sull or star rises and sets; and from the latitude of the place find the eastern or western amplitude: for the difference between the amplitude, and the distance of the rhumb observed, from the easteru rhatnb of the card, is the variation sought.

Or thus: Observe the altitude of the sun, or some star s , whose declination is known; and note the rhumb in the compass to which it then corresponds. Then in the triangle z ps, are known three sides, viz, PZ the co-latitude, ps the codeclination, and zs the co-altitude; the angle \(r\) zs is thence found by spherical trigonomerry; the supplement to which, viz Azs, is the azimuth from the south. Then the difference between the azimuth and the observed distance of the rhumb from the south, is the variation sought. See Azimuth Compass.

The use of the variation is to correct the courses a ship has steered by the compass, which must always be done before they are worked, or calculated.

Vallation of the Variation, is a gradual and continual change in the variation, observed in any place, by which the quantity of the variation is found to be different at different tames.

This variation, according to Henry Bond (in his Longitulle Found, Lond, 1670, par), "was first found to decrease by Mr. John Mar; 2dly, by Mr. Edmund Gunter: 3dly, by Mr. Henry Gellibrand; 4thly, by myself (Ilenry Bond) in 1610 ; and lastly, by Dr. Robert Hooke, and others, in 1665 ;" which they found nut by comparing together observations made at the same place, at differment times. The discovery was soon known abroad; for Kircher, in his treatise entitled Magnes, first printed at Rome in \(16+1\), says that our countryman Mr. John Greaves had informed him of it, and then he gives a letter of Mersenne's, containing u distinct account of it.

This continual change in the variation, is gradual and universal, as appears by numerous observations. Thus, she variation was, at Paris,

the variation towards the conclusion appearing obviously so vacillate about a limit. M. de Ia Lade (Exposition Ja Calcul Astronomique) observes, that the variation has changed, at Paris, \(26^{\circ} 20^{\prime}\) in the space of 150 years, allowing that in 1610 the variation was \(8^{\circ}\) e: and since 1740 the needle, which was always used by Maraldi, is more than \(3^{\circ}\) aclvanced toward the west, beyond what it was at that period: which is a change after the rate nearly of \(91^{\prime}\) per year.

At Cape d'Agulhas, in 1600 , it lad no variation; (whence the Porlugucse gave it that name) ;
in 1622 it was \(2^{\circ} \mathrm{w}\)
in \(1675=8 \mathrm{w}\)
in \(1692-11 \mathrm{w}\)
which is a change of nearly \(8^{\circ}\) per year.
Vol. II.


At St. Helena, thevariation, \({ }^{\prime} \quad\) in 1600 was \(8^{\circ} \boldsymbol{O}^{\prime} \mathrm{E}\)
which is a change of nearly \(5_{2}^{s \prime}\) per year.
At Cape Comorin, the variation, in 1620 was \(14^{\circ} 20^{\prime}\) w in \(1680-844 w\) in \(1688-730 w\) which is a change of nearly Git per year.

which till 1780 , is a change after the rate of \(10^{\prime}\) per year. But in the 32 years, from 1780 to 1812 , the change was only \(1^{\circ} 35^{\prime}\), being only at the rate of \(3^{\prime}\) a year. See Philos. Trans. No. 148 and No. 383, and also vol. 45, pa. 280, aud vol. 66, pa. 393. On the subject of the variation, see also Norman's New Attractive 1614; Burrows's Discovery of the Variation 1381 ; Bond's Longitide Found 1676 ; \&c.

Mr. Thomas Harding, in the Transactions of the Royal Irish Academy, vol. 4, has given observations on the variation of the magnetic needle, at Dublin, which are rather extraordinary. He says the change in the variaton at that place is uniform ; that from the year 1637 , in which the variation was nothing (the same as at London in that year), it has been going on at the medium rate of \(12^{\prime} 20^{\prime \prime}\) annually, and was in May \(1791,27^{\circ} 23^{\prime}\) west; exceeding that at London now by 3 or 4 degrees. He brings proof of his assertion of the uniformity of the variation, from different authentic records, and states the operations by which it is calculated. He concludes with -recommending accuracy in marking the existing variation when maps are made, as not only conducing to the exact definition of boundaries, but as laying the best foundation for a discovery of the longitude by sea or land.

Thenry of the Variation of the Variation,-According to Dr. Halley's theory, this change in the variation of the compass, is supposed owing to the difference of velocity in the motions of the internal and external parts of the globe. From the observations that have been cited, it seems to follow, that all the magnetical poles have a moion westward, but yet not exactly about the axis of the earth, for then the variations would continue the same in the same parallel of latitude, contrary to experience.

From the disagreement of such a supposition with experiments therefore, the learned author of the theory invented the following hypothesis: The external parts of the globe he considers as the shell, and the internal as a nucleus, or inner globe; and between the two he conceives a fluid medium. That inner earth having the same common centre and axis of diurnal rotation, may revolve with our earth every 24 hours: only the outer sphere having its turbinating motion somewhat swifter or slower than the internal ball; and a very minute difference in 4 B
length of time, by many repetitions, becoming sensibie; the internal parts will gradually rucede from the external, and they will appear to move, either eastward ir westward, by the difference of their motions.

Now, supposing such an internal sphere, having such a motion, the two great difficultes in the former hypotheses are easily sulved; fur if this extirior shell of curth be a magnet, having its pole at a distance from the poles of diumal rotation ; and of the interasal nucleus be likese wise a magaet, having its poles in two othrr places, distant also ftom the nxis; and these latter, by a slow gradual motion, change their place in respect of the external, a reasomble account may then be given of the four mage netical poles before inentioned, and also of the changes of the uredle's variation.

The author thinks that two of these poles are fixed, and the other two moveable; viz, that the fixed poles ate the poles of the extermal cortex or shell of the earth; and the other the poles of the magnetical nucleut, included and moveable within the fersincr. From the observations he infers, that the motion is westward, and consequently that the nucleas has not precisely attaned the sane velocity with the exurior parts in their diurnal sotation; but so very neatly equals it, that iu 36 家 revolutions the differnuce is scarcely sensible.

That there is ally difference of this kind, mrises from hence, that the impulse by which the diurnal motion was impressed on the carth, was given to the external parts, and from thence in time communicated to the internal; but so as not yet perfectly to equal the velocity of the first motion impressed on the superficial parts of the globe, and still preserved by them.

As to the precise perioul, obscrvations are wanting to determine it, though the muthor thinks we may rcasonably conjecture that the Amorican pole has moced westward \(46^{\circ}\) in 90 yuars, and that its whole period is performed in about 700 years.

Mr. Whisten, trt lis New Laws of Magnetism, raises several objections anaitst this theory- See Magnetism.
M. Euler tom, the son of the crlebrated mathematician of that name, lias controverted and censured Dr. Halley's theory. He thinks, that two inagnetic poles, placed on the surface of the eath, will sufficiently account for the variation: and be then endeavours to show, how we may determine the declination of the necdle, at uny time, and on cvery part of the glube, from this hypothesis.

Euler first examines the case in which the two nag. netic pules are diametrically opposite; 2d, he places them in the two opposite meriblias, but at unqual distances from the poles of the world; \(3 d\), he places thetn in the same meridians; fiually, he considers them situated in two different meridians. These four cases may become elfually important ; because if it is determined that there are only two magnetic poles, and that these poles clange their situations, it nav some time hereafter be discovered that they pass through all the different pasitions.

Since the needle of the compass ought always to be in the plans which passed through the place of observation and two magnetic poles, the prohlem is reduced to the discovery of the angle contained betwern this plane and the plane of the meridian. M. Fuler, ather having examined the different cases, finds that they also express the earth's magnetism, represented is the chart published by Messrs. Mouttaine and Dodson in 174t, particularly
throughout Viurope and North America, if the following principles are evtablished; viz. Between the arctic pole and the magnetic pole \(14^{\circ} 53^{\prime} ;-\) between the anarctic pole and the oulher magnetic pole \(29^{\circ} 23^{\prime}\);-the ungle at the north pole, formel by the meridians passing throuch the two inagnetic poles \(33^{\circ} 18^{\circ}\); - The longituite of the meridian which passes over the northern magnetic pole \(250^{\prime}\).

As the obsurvations which have been collected, with regard to the variation, are for the most part loose and inaccurntr, it is impursible to represent thent all with precision; and the great variations observed in the Indian occan seem to require, suys I.uler, that the first three quantities sbuuld be 14,35 , and 65 degrees. -Sce Cavallo's Treatise on Maguetism, pat. 1 t7.

In the menmir of Messrs. Biot and Ilumboldt, "On the sariations of the terrestital magnetism in dificrent latitudes," the position of the magnetic equator is determined Irom direct obsertations. "The inclimation of the plane of this circle to the astronomical equator, is stated to be \(10^{\circ} 58^{+} 56^{\text {F }}\), its uccidental node on that equator being at \(120^{\circ} ?^{\prime} 5^{\prime \prime}\) longitude west from I'aris, the other nowle at \(59^{\circ} 57^{\prime} 55^{\prime \prime}\) cast of Paris. The points where the axis of the mugnelic equator pierces the carth's surface. are, the northern point at \(79^{\circ} 1^{\prime} 4^{\prime}\) north lat. and \(30^{\circ} 2^{\prime} 5^{\prime \prime}\) west long. from Paris; the southern puint is situated in the same latitude south, and \(149^{\circ} 57^{\circ} 53^{\prime \prime}\) cast long. frone Paris.

Fariation of the Needle by Heat and Cold, otherwise called the Diurnat or Daily Variation.- There is a small varation of the variation of the magnetic needle, amounting only to a few tninutes of a diggree in the same place, at differntht hours of the same day, which is only discoverable by nice ubservations. Mr. George Graham made several suservations of this kind in the years 1722 and 1723, professing himself altogether ignorant of the cause of the phenomena he nbserved. Pbilos. Trans. Nio. 389.

About the ytar 1750, Mr. Wargentin, secretary of the Swedish Academy of Sciences, tuok notice both of the regular diurnal vatiation of the nerdle, aud also of its being disturbed at the time of the aurora borealis, as recorded in the Plilus. Trans. vel, 47, pa. 126.

About the your 1756, Mr. Cauton commenced a series of observations, anounting to near 4000 , with an excellent variation-cumpass, of about 9 inches dameter. The number of days on which these observations were made, was 603 , and the diurnal variation on 574 of them was regular, so as that the absolute variation of the needle westward was incroasing from about 8 or \(90^{\circ}\) clock in the morning, till about 1 or 2 in the afternoot,, when the needle became stationary for some time; ufter that, the absolute variation west ward was decreasing, and the needle came back again to its former situation, or nearly \(\mathbf{8 0}\), in the night, or by the next moruing. The tliurnal variation is irregular when the needle moves slowly east ward in the latter part of the morning, or westward in the latter part of the afternoon; also when it moves much either way after night, or suddenly both ways in a short time. These irregularities seldom happen more than once or twice in a month, and are always accompanied, as far as Mr. Canton observed, with an aurora borealis.

Mr. Canton lays down and evinces, by experiment, the following principle, viz, that the attractive power of the magnet (whether natural or artificial) will decrease whsle
the magnet is heating, and increase while it is cooling. He then proceeds to account for both the regular and irregular variation. It is evident, he says, that the magnetic parts of the earth in the north, on the east side and on the west side of the magnetic meridian, equally attract the north end of the needle. If then the eastern magneric parts be heated faster by the sun in the morning, than the western paris, the needle will move westward, und the absolute variation will increase : when the attracting parts of the earth on each side of the magnetic meridian have their heat increasing equally, the needle will be stationary, and the absolate variation will then be greatest : but when the western magnetic parts are cilter beating faster or cooling slower than the castern, the nerdle will move east ward, or the absolute variation will decrease; and when the chatern and western magnetic parts are cooling equally fast, the needle will again lie stationary, and the absolute variation will then be a minimum.

By this theory, the diurnal variation in the summer ought to exceed that in winter; and accordingly it is found by observation, that the diurnal variation in the months of June and July is alnost double of that in December and Januury.

The irregular diurnal vatiation must arisc from some other cauce than that of heat communicated by the sun; and here Mr. Canton has recourse to subterranean heat, which is generated without any regularity as to time, and which will, when it happens in the north, affect the attractive power of the magnetic parts of the earth on the north end of the needle. That the air nearest the earth will be most warmed by the heat of it, is obvious; and this has been often noticed in the murning, before day, by means of thermometers at different distances from the ground. Philos. Trans. vol. 48, pu. 526.

Mr. Canton has annexed to his paper on this subject, a complete year's observations; from which it appenrs, that the durnal variation increases from Janoary to June, and decreases from June to Iecember. Philos. 'I'rans. an. 1759, pa. 398. Abridg, val. 11, pa. 421.

It has also been observed, that different needles, especially if touched with different loadstones, will differ a few minutes in their variation. See Poleni Epist. Phil. Trans. No. 421 .

Dr. Lorimer (in the Supp, to Cavallo's Magnetism) adduces some ingenious observations on this subject. It must be allowed, says he, according to the observations of several ingenious gentlemen, that the collective magnetism of this earth arises from the magnetism of all the ferruginous bodies contained in it, and that the magnetic poles sbould therefore be considered as the centres of the powers of those magnetic substances. These poles must therefore change their places according as the magnetism of such substances is affected; and if with Mr. Canton we allow, that the general catuse of the diurnal variation arises from the sun's heat in the forenoon and afternoon of the same day, it will naturally oceur, that the same cause, being continued, may be sufficient to protluce the general variation of the magnetic needle for any number of years. For we must consider, that ever since any attentive observations have been made on this subject, the natural direction of the magnetic needle in Europe has been constantly moving from east to west, and that in other parts of the world it bas continued its motion with equal constancy.

As we must therefore admit, says Dr. Lorimer, that the heat in the different seasons depends chicfly on the sun,
and that the months of July and August are commonly the hottest, while January and February are the coldest months of the year; and that the temperature of the other months falls into the respective intermediate degrees; *o we must consider the influence of heat upon magnetism to operate in the like inanner, viz, that for a short time it scarcely manifests itself; yet in the course of a century, the constancy and regularity of it becomes sufficiently apparent. It would therefore be iflle to supprose, that such an influence could be derived from an uncertain or fortuitous cause. But if it be allowed to depend on the constancy of the sun's motion, and this appears to be a cause sufficient to explain the phenomena, we should (agreeably to Newton's first law of philusophizing) look no farther.

As we therefore consider, says he, the magnetic powers of the earth to be concentrated in the magnetic poles, and that there is a diurnal variation of the magnetic needle, these poles must perform a sinall diurnal revolution proportional to such variation, and return again to the same point nearly. Suppose then that the sun in his diurnal revolution passes along the northern tropic, or along any parallel of latitude between it and the equator; when be comes to that meridian in which the magnetic pole is situated, he will be much nearer to it, than in any other; and in the opponite meridian be will of course be the farthest from it. As the influence of the sun's heat will therefore act most powerfully at the least, and less forcibly at the greatest distance, the magnetic pole will consequently describe a figure something of the edliptical kind; and as it is well known that the greatest heat of the day is sotac time after the sun has passed the meridian, the longest axis of this elliptical figure will lie north-easterly in the northern, and south-easterly in the southern bemisphere. Again, as the influence of the sun's heat will not from those quarters have so much power, the magnetic poles cannut be moved back to the very same point from which they set out; but to one which will be a little more northerly and easterly, or more southerly and easterly, according to the hemisphercs in which they are situated. The figures therefore which they describe, may more properly be termed elliptoidal spirals.

In this manner the variation of the magnetic needle in the northern hemisphere may be accounted for. But with respect to the southern hemisphere we must recollect, that though the lines of declination in the northern hemisphere have constantly moved from west to east, yet in the southern hemisphere, it is equally certain that they have moved from cast to west, ever since any observations have been made on the subject. Hence then the lines of magnetic declination, or Halleyan curves, as they are now commonly called, appear to have a contrary motion in the snuthern hemisphere, to what they have in the northern; though both the magnetic poles of the earth move in the same direction, that is from west to east.

In the northern hemisphere there was a line of no variation, which had east variation on its eastern side, and west variation on its western side. This line evidently moved from west to east duriug the two last centuries; the lines of east variation moving before it, while the lines of west varkation followed it with a proportional pace. These lines first passed the Azores or Western Islands, then tbe meridian of London, and after a certain number of years still later, they passed the meridian of Paris. But in the southern hemisphere there was another line of no variation, which had east variation on its western side, and weat va-
riation on its eastern; the lines of east variation moving before it, while those of the west variation followed it. This line of no variation tirst passed the Cape des Aiguilles, and then the Cape of Good Hope; the lines of \(5^{\circ}, 10^{\circ}, 15^{\circ}\), and \(20^{\circ}\) west sariation following it, the same as was the case in the northern hemiphere, but in the contrary direction.

We may just farther mention the idea of Dr. Guwin Knight, which was, that this earth had originally received its magnetism, or rather that its magnetical powers liad been brought into action, by a shock, which entercal noar the southern tropic, and passed out at the northern one. His meaning appears to have beren, that this was the course of the magnetic fluid, and that the magoetic poles were at first diametrically opposice to each other. Though, according to Mr. Canton's doctrine, they would not bave long continued so'; for from the intense hrat of the sun in the torrid zone, according to the principles alreedy explained, the north pole must have soon retired to the northeastward, and the south pole to the south-eastward. It is also curious to observe, that on account of the southern hemisphere being culder upon the whole than the northern hemisphere, the magnetic poles would bave moved with unequal pace: that is, the north magnetic pole would have moved farther in any given time to the north-east, than the south magnetic pole could bave moved to the south-east. And, according to the opinions of the most ingenious authors on this subject, it is generally allowed, that at this time the north magnetic pole is considerably nearer to the north pole of the earth, than the south magnetic pole is to the south pole of the earth.

It may farther be added, that several ingenious sea officers are of opinion, that in the western parts of the English Channel the variation of the magnetic needle has already begun to decrease; hnving in no part of it ever amounted to \(25^{\circ}\). There are however other persons who assert that the variation is still increasing in the Channel, and as far westward as the 15 th argree of longitude and \(51^{\circ}\) of latitude, at which place they say that it amounts to about \(30^{\circ}\).

Of the Variation Chart. Doctor Halley having collected a multitude of observations made on the variation of the needle in many parts of the world, was lience errabled to draw, on a Mercator's chart, certain lines, showing the variation of the compass in all those places over which they passed, in the year 1700 , when he published the first chart of this kind, called the Variation Chart.

From the construction of this chart it appears, that the longitude of any of those places may be found by it, when the latitude and the variation in that place are known. Thus, having found the variation of the compass, draw a a parallel of latitude on the clart through the latitude found by observation; and the point where it cuts the curved line, whose variation is the same with that observed, will be the ship's place. A similar project of thus finding the longitude, from the known latitude and inclination or dip of the ncedle, was before proposed by Henry Bond, in his treatise entitled, The Longitude Found, printed in 1676 .

This method however is attended with two considerable inconveniencer: 1st, That wherever the variation lines run east and west, or nearly so, this way of finding the longitude becomes imperfect, as their intersection with the parallel of latitude must be very indelinite: and among all the trading parts of the world, this imperfec-
tion is at present found chiefly on the western coasts of Europe, between the latitudes of \(45^{\circ}\) and \(53^{\circ}\); and on the eastern shores of North America, with some parts of the Western Ocean and Hudson's Bay, lying between the said shores: but for the other parts of the world, a variation chart may be attended with considerable benefit. However, the variation curves, when they runeast and wist, may sonetimes be applied to good puipose in correcting the latitude, when meridian wbservations cannet be bad, as it often lappens on the northern coasts of America, in the Western Ocean, and about Newfoundland; for if the variation can be obtained exactly, then the cast and west curve, answering to the variation in the chart, will show the latitude.

2dly, As the deviation of the magnetical meridian, from the true one, is subject to continual alteration, therefore a chart to which the variation lines are fitted for any year, must in time become useless, unless new lines, showing the state of the variation at that time, be drawn on the chart: but as the change in the variation is very slow, therefore new variation charts published every 7 or 8 years, will answer the purpose tolerably well. And thus it has happened that Halley's ratiation chart has become useless, for want of encouragement to renew it from time to time,

However, in the year 1744, Mr. William Mountainc and Dir. James Dodson published a new variation chart, adapterl for that year, which was well received; and several instances of its great utility having been communicated to them, they fitted the variation lines anew for the year 1756 , and in the following year published the 3 d variation chart, and also presented to the Royal Society a curions paper concerning the variation of the magnetic needle, with a set of tables annexed, containing the result of upwards of 50 thousand observations, in six periodical reviews, from the yrar 1700 to 1756 inclusive, and adapted to every 5 degrees of latitude and longitude in the more frequented oceans; which paper and tables were printed in the Transactions for the year 1737.

From these tables of observations, such exiraordinary and whimsical irregularities occur in the variation, that we cannot think it wholly under the direction of one general and umform law ; but rather conclude, with 1)r. Knight, in the 87 th prop. of his Treatise upon Attiaction and Repulsion, that it is influenced by vanous and deffirent magnetic altractions, perhaps occasioned by the beterugeous compositions in the great magnet, the carth.

Many other observations on the variation of the magnetic needle, are to be found in several volumes of the Philos. Trans. See particularly vol. 48; pa. 875 ; vol. 50 , pa. 329 ; vol. 36 , pa. 220 ; and vol. 61, pa. 422.

Valliation Compass. See Compass.
Vabration of Curvature, ill Gcometry, is used for that inequality or change which takes place in the curvature of all curves except the circle, by which their curvature is more or less in different parts of thems. And. this variation constitutes the quality of the curvature of any line.

Newton makes the index of the inequaliy, or variation of curvature, to be the ratio of the fluxiun of the radius of curvature to the fluxion of the curve itself: and Maclnurin, to avoid the perplexity that different notions, connected with the same terms, uccasion to learners, hus adopted the same definition: but be suggests, that this ratio gives rather the variation of the ray of curvature, and that
it tuight have been proper to have neçasured the variation of curvature ratber by the ratio of the fluxion of the curvature itself to the fluxion of the curve; so that, the curvature being inversely as the radius of curviture, and consequently its tluxion as the tluxion of the radus itself directly, and the square of the radius inversely, its variation would bave been directly as the rueasure ot itnccording to Newton's definition, and iuversely as the square of the radius of curvature.

Accordug to this notion, it would have been measured by the angle of contact contained by the curve and circle of curvature, in the same manaer as the cursature itseli is measured by the angle of contact contained by the curve and tangent. The reason of this remark may appear from this example: The variation of curvature, according to Newton's explication, is uniform in the logarithmic spiral, the fluxion of the radius of curvature in this figure being always in the same ratio to the fluxion of the curve; and yet, while the spiral is produced, though its curvature decreases, it never vanish-s; which must appear a strange paradox to those who do not attend to the import of Newton's definition. Newton's Method of Fluxions and Inf. Series, pa. 76. Maclaurin's Flux, art, 386. Ptilos, Trans. No. 468, pa. 312.

The variation of curvature at any point of a conic section, is always as the tangent of the angle contained by the diameter that passes through the point of contact, and the perpendicular to the curve at the same point, or to the angle formed by the diancter of the section and of the circle of curvature. Hence the variation of curvature vanishes at the extremitics of either axis, and is greatest when the acute angle, contained by the diameter passing through the point of contact and the tangent, is least.

When the conic section is a parabola, the variation is as the tangent of the angle, contaiard by the right line drawn from the point of coutact to the frocus, and the perpendicular to the curve. See Cunvatume.

From Newton's definition thay be derived practical rules for the variation of curvature, as follows:
1. Find the radius of curvature, or rather its Auxion; then divide this fluxion by the fluxion of the curve, and the quotient will give the variation of curvalure; exterminating the fluxions when necessary, by the equation of the curve, or perbaps loy expressing their ratio by help of the tangent, or ordinate, or subnormal, \&e.
2. Since \(\frac{z^{\prime}}{-x y}\), or \(\frac{\dot{z}^{\prime}}{-y}\) (putting \(\dot{x}=1\) ) denutcs the radius of currature of any curve \(z\), whose absciss is \(x\), and prdimate \(y\); if the fluxion of this be divided by \(\dot{z_{1}}\), and \(\dot{z}\) and \(z\) be exterminated, the general value of the variation will come out \(\frac{-3 \dot{y} \dot{y}^{\prime}+\bar{y}\left(1+y^{2}\right)}{\dot{y}^{2}}\); theil substituting the values of \(\dot{y}, \bar{y}, \dot{\bar{y}}\) (found from the equation of the curve) into this quantity, it will give the variation sought.

Er. Let the curve be the parabola, whose equation is \(a x=y^{2}\). Here tben \(2 y \dot{j}=a \dot{x}=a\), and \(j=\frac{a}{2 y} ;\) lience \(\dot{y}=\frac{-a \dot{y}}{2 y y}=\frac{-a a}{4 y^{2}}\), and \(\frac{3}{y}=\frac{3 a a j}{2 y^{2}}=\frac{3 a^{3}}{3 y^{3}}\). Therefore \(\frac{-3 \mathrm{y}^{\prime}+y^{\prime}\left(1+j^{2}\right)}{y^{2}}=-3 j+\dot{y} \times \frac{1+j^{2}}{y^{2}}=\) \(\frac{-2 y}{2 y}+\frac{3 a^{3}}{y^{3} y^{2}} \times\left(1-\frac{a a}{4 y y}\right) \times \frac{160^{\circ}}{a^{4}}=\frac{6 y}{a}\), the variation so'ight. Emersod's Flux. ן1a. 228.

VARIGNON (Peter), a celebrated French mathematician and pricst, was born at Caen in 1654, and died 1722, at 68 years of age. He was the son of an architect in middling circunstances, but bad a college education, being imtended for the church. An accideut threw a copy of Euclid's Elements in his way, which gave him a stroug turn to that kind of learning. The study of geometry lud him to the works of Descartes on the same science, and there he was struck with that new light which has, trom thence, spread over the world.

At this time the abbe St. Pier re, who studied philosophy in the same college, becaine acquainted with hirs. A taste in common for rational subjects, whether physics or metaphysics, and continual disputations, formed the bonds of their friendship. They were mutually serviceable to each other in their studies. The abté, to enjoy Varignon's company with greater ease, lodged binn with himself; thus, growing still more semsible of his merit, be resolved to give him a fortutr, that he mighe fully pursue his genius, and improve has talents; and, out of only 18 hundred livres a year, u hich he had hamself, he conferred 300 of thete on Varignon.

The abbe, persuaded that he could not do better than go to Paris to study philosophy, settied there in 1686 , with M. Variguon, in the suburbs of St. Jacques. There each studied in bis own way; the abbé applying himself to the study oi men, manners, and the principles of government; whilst Varignon was wholly occupied with the mathematics. In these solitary suburbs le formed a connection with many other Icarned men; as Duhamel, Duverney, Delahire, \&cc. Duverney often asked his assistance ill those parts of anatomy connected with mechanics: they examined together the positions of the muscles, and their directions; hence Varignon learned a good deal of anatomy from Duverney, which be repand by the application of mathematical reasoning to that subject.

At length, in 1687, Varignon made bimself known to the public by a treatise on New Mechanics, dedicated to the Academy of Sciences. His thoughts on this subject were, in effect, quite new. He discovered truths, and laid open their sources. In this work, he demonstrated the necessity of an equilibriun, in such cases where it happrens, though the cause of it is not exactly hnown. This discovery Varignon made by the theory of compound inotions, and is whut this resay chietly treats upon.

This new erataise on mechanics was greatly admired by the mathematicians, and procured the author two considerable places, the one of geometrician in the Academy of Sciences, the uther of professor of mathematics in the Collgge of Mazarise, to which he was the first person raised.

Yarignon catched eagerly at the science of infibitesimals as soon as it appeared in the world, und became one of its moss carly cultivators. When that sublime and beautiful method was attacked in the Acatemy itself (for it could not excape the fate of all innovations), he became one of its most zealous defenders, and in its favmur he put a violence upon his natural character, which abhorred all contention. He sometimes lamented, that this dispute had interrupted bins in his enquiries into the integral calculation so far, that it would be difficult for hiun to resume his disquisition where he had left it off. He sacrificed infinitesimals to the interest of infinitesimals, and gave up the pleasure and glory of making a farther pron
gress in them when called upon by duty to untertake their defence.

All the printed volumes of the Academy bear withess to his application and industry. His works are never detached pieces, but complete theories of the haws of motion, central forces, and the resibtance of mediums to moving bodies, In these be makes such use of his rules, that nothing escapes him that bas any comection with the subject he treats.

Geometrical certainty is by no means incompatible with obscurity and confusion, and those are sometinces so great, that it is surprising a matbematician should net luse his way in so dark and perplesing a labyrimth. The works of M. Varigion never occasiun this disagreeable surprise, he makes it his chief care to place every thing in the clearest light; be does not, like some great geniuses, consult lus ease by declining to take the trouble of being methotical, a tronble much greater than that of composition itself; he doss not endeavour to acquire a reputation for profoundness, by leaving a great deal to be guessed by the reader.
'Though Variguon's constitution did not secm casy to be impaired, nssiduity and constant application brought upon him a severe disease in 1705. Great abilities are generally dangerous to the possessors. He was six months in danger, and three ycars in a languid state, which proceeded from his spirits being almost entirely exbausted. He said that sometimes, when delirious with a fever, be thought himself in the midst of a forest, where all the leaves of the trees were covered with algebraical calculations. Conderaned by his physicians, his friends, and himself, to lay aside all study, be could not, when alone in his chamber, avoid taking up a book of mathematics, which he hid as soon as be heard any person coming. He again resuned the attitude and behaviour of a sick man, and seldom bad occasion to connterfeit. Our author recovered from his disease; but the remembrance of what he had suffired did not make him tnore prudent for the future.

With regard to his character, Fontenelle observes, that it was at this time that a writing of his appenred, in which he censured Dr. Wallis for having advanced that there are certain spaces more than infinite, which that great geometrician ancribes to hyperbolas. He maintained, on the contrary, that they were finite. The criffism was softened with all the politeness and rexpect imaginable; but a criticism it was, though he had written it ouly for himself. He let M. Carré see it, when he was in a state that rendered hion indifierent about things of that kind; and that gentleman, influenced only by the interest of the sciences, caused it to be printed in the memoiry of the Academy of Sciences, unknown to the author, who thus made an attack against his inclination.

Notwithstanding his great desire of peace, in the latter part of his life he was involved in a dispute. An Italian monk, well versed in mathematics, attacked bim on the subject of tangents and the angle of contact in curves, such as they are conceived in the arithmetic of infinites; be answered by the last memoir he ever gave to the Academy, and the only one which turned on a dispute.

In the last two years of his life he was attacked with an astbmatic complaint. This disorder increased dally, and all remedies were incffectual. Ile did not however cease from any of his customary business; so that, after
having tinished his lecture at the College of Mazarine, on the 92ll of December 1722, he died suddenly the following night.

His character, says Fontenelle, was as simple as lis superior understanding could require. He was not apt to be jeulous of the fame of others: indeed he was at the head of the French mathernuticians, and one of the best in Europe. It must be owned however, that when a new idea was offered to him, he was too hasty to object. The fire of his genius, the various insights into every subject, inade toc mpetuous an opposition to those that wete otterefi; so that it was not casy to obtain from him a favourable attention.

His works that were published separately, were,
1. Projet d'une Nouvelle Mecbanique; 4to, Paris 1687.
2. Des Nouvelles Conjectures sur in Pesanteur.
3. Nouvelle Mechanique ou Statigue, 2 tom. 4 to, 1725.
4. Un Traite du Mouvement \& de la Mesure des Eaux Couruntes \&c. 17:25, in 4 to.
3. Eelairenssement sur l'Analyse des Infiniment Petits, in 410 ,
(i. Des Cahiers de Mathematiques, ou Elémens de Mathématiques ; in 1731.
7. Une Demonstration de la Possibilité de la Présence réelle du Corps de Jesus Christ dans I'Eucharistoc; in a collection entitled, l'ièces Fugitives sur I'lucharistie, published in 1730 ; an extraordinary thing for a mathematician to undertake to demonstrate; which be does, as might be expected, not mathematicully, , but suphistically.

As to his memoirs in the volumes of the Academy of Sciences, they are far too numerous to be here particularized; they extend through alroost all the volumes, down to his deatb in 1722.

VASA Concordia, in Hydravlics, are two vessels, so constructed, as that one of them, thongh full of wine, will not run a drop, unless the other, being full of water, run also. Their structure and apparatus may be seen in Wolfius, Element. Mathes tom. 3, Hydraul.

Vauban (Sabastian le Pbestre), a very great French enginerr, was born in 1633. He displayed great abilities and skill in many sieges, and his services were rewarded with the first military honours. He was made governor of Lisle, commissary-general of the fortificauons of France, and afterwards governor of the maritime pats of Flanders, and a marshal of France. He died in 1707, laving brought fortification to a degree of perfectiun unknown before. His writings on these subjects are still in very high esteem.

VAUL'T, in Architecture, an arched roof, so contrived, as that the several stones of which it consists, by ther disposition into the form of a curve, mutually sustain each other ; as the arcliez of bridges, \&c.

Vaults are to be preferred, on many occasions, to soffits, or flat ceilings, as they give a greater rise and clevation, and are also more firm and durable.

The ancients, Salmasius observes, bat only three kinds of vaults: the first the formix, made cradle-wise ; the 2 d , the testudo, tortoise-wise, or oven-wise; the 3d, the concha, made shell-wise. But the moderns subdivide these three kinds into a great many more, to which they give different names, according to their figures and use: some are circular, vehers ellipuical, \&ec.

Again, the sweeps of some are larger, and others less prortions of a sphere: alt above hemispheres are called hagh, or surmounted vaults; all that are less than hemispheres, are low, or surbased vaults, \(\mathrm{de},-\mathrm{ln}\) stme the heigitt in greater than the dianneter; in others it is less: there are others again quite flat, only made with haunses; others oven-like, and athers growing wider as thes leagihen, like a trumpet.

Vauits are either single, double, cross, diagonal, horizuntal, ascendmy, descending, angular, oblique, pendent, \&c, \&c. There are also (iothic vaults, with pendentiver, ice.

Mater VaUlts, are those which cover the principal parts of buildings; in contradistinction from the less, or subordinate, vaults, which only cover some small part; as a passage, a gate, \&c.

Double Vavle, is such a one as, being buitt over another, to make the exterior decoration range with -the itterior, leaves a space between the convexity of the one and the concavity of the other; as in the dome of St. Paul's at London, and that of St. Peter's at Rome.

Vaults with Compariments, are snch whose sweep, or inner face, is enriched with pannels of sculpture, soparated by platbands. Thesc compartiments, which are of biff:rent figures, according to the vaults, and are usually gili on a winte grinund, are made with stucco, on brick vaults; as in the church of St. Peter's at Rome; and with plaster, on timber vaults.

Theory of Vavirs - In a semicircular vault, or arch, being a hollow cylinder cut by a plane through its axis, stantiong on two imposts, and all the stunes ibat compose it treing cut and placed in such a manner, as that their joints, or beds, being prolonged, dow all meet in the centre of the vault; it is evident that all the stones must be cut wedgowise, or wider at Iop and above, than below ; by virtue of which, they sustain each other, and mutually oppise the cffort of their weight, which determines them to fall.

The stone in the middle of the vault, which is perpendicular to the borizom, and is ralled the key of the vault, is sustained on each side hy the iwo contiguous stencs, as by two inclined planes. The second stone, which is on the right or left of the key-stone, is sustained by a third; which, by virtue of the figure of the vauli, is necressarily more inclined to the seconil, than the second is to the first; and consequently the second, in the effort it makes to fall, employs a less purt of its weight than the first. For the same reason, all the stones, rechoning from the keystone, employ still a less and less patt of their weight, to the last; which, resting on the horizonial plane, employs no part of its weight, or makes no effort to fall, as being entirely supporied by the impost.

Now a great point to be aimed at in vaults, is, that all the several stones make an equal effort tofill: to effect this, it is evident that as each stolle, reckoning frotu the key to the impost, empluys a still less and less part of its while weight ; the first only employing, for example, one-half; the 2d, one-third; the 3d, one-fourih; \&e; there is no other way to make these different parts equal, but by a proportionable augmentation of the whole; that is, the second stoue must be heavier than the first, the third heavier than the second, and so on to the last, which should be vastly heavier.

Lahire demonstrates what that proportion is, in which the weights of the stones of a semicircular asch must be
increased, to be in equilibrio, or to tend with equal forces to full; which gives the firmest disposition that a vaulı can have. B fore him, the archiscets had no certain ruie to conduct themselves by; but did all nt random. lhechoning the degrees of the quadrant of the circle, from the keystone to the imposs, the length or weight of each stone must be so much greater, as it is farther from the key, Labise's rule is, to uugnent the weight of rach stone above that of the krystone, as tnuch as the tangent of the arch to the stone exceeds the tangent of the arch of half the key. Now the tungent of the last stone becomes infinite, and comsequently the weight should be so too ; but as infiuty bas no place in practice, the rule amouns to this, that the lasi stome be londed as much as possible, and the others in proporthn, that they may the better resist the effort which the vault makes to separate them; which is called the shoot or drift of the vault.
M. Parent, and other authors, have silace determined the curve, or figure, which the exiratos or outside of a vault, whose intrados or inside is sphericul, ought to have, that all the stones may the in equilibrio.

The above rule of Lahire's hus since been found not accurate. Se: Arcit, and Bridge. Scealsomy Tivatise on the l'rimciples of Bridges in my Tracts, and Einerson's Construction of Arches; abo M. Berard's Staique des Vontes.

Key of a Vaubit. Sce Key, and Voussonk.
Reins or Fillings up of a VAUlt, are the sides which sustan it.

\section*{Pendentive of a Visult. See Prindentive.}

Impost of a Vatlet, is the stone upon which is laid the first voussoir, or arch-stone of the vault.

VEADAR, in Chromology, the 13 th month of the Jewish ecclesiastical year, answering commonly to wur March; this month is intercalated, to prevent the beginning of \(\mathrm{Ni}_{9}\) aan from bring remosed to the end of February.

VECTIS, in Mechanics, one of the sitaple mechanical powers, more usually called the Lever.

VE:CTOR, or Radius Vector, in Astronomy, is a line conceived to be drawn from any planet moving round a centre, or the focus of an ellipse, to that conre, or fucus. It is so called, because it is that line by which the planet seems to be carricd round its centre; and with which it describe areas proportional to the tifics.

V'FLOCITY, Celerity, or Suifimess, in Mechanics, is that affection of motion, by which a inoving bedy passes ower a cerlam space in a certain time. This is alwoys pruporlianal to the space moved over in a given time, when the velocity is unitorm, or ulways thesame during that time.
Vulocity is either uniform or variable. Uniform, or equal velucity, is that with which a body passes over equal spaces in equal times. And it is variathe, or unequal, when the spaces passed over in rqual times are unequal ; in which case it is either accelernted ir retarded velicaty; and this acceleration, or retardation, may also be equal or uncqual, i.e. uniform or variable, \&c. See Accelemation, and Mutson.

Velocity is also either ulsolute or relative, Absolnte velocity is that we have hitherto been considering, in which the velocity of a body is considered simply in ilself, or as passing over a certain space in a certain time. But relative or respective velocity, is that with which bodies approach to, or recede from one another, whether they both move, or one of them be at rest. Thus, if one body move

VEI.
inclined planes, forming an obtuse angle, and that it is difwith the absolute velocity of 2 feet per second, and another with that of 6 feet per second; then if they move directly towards each other, the relative velocity with which they approach is that of 8 feet per second; but if they move both the saine way, so that the latter overtake the former, then the relasive velocity with which that overtakes it, is only that of + feet per second, or only half of the former ; and consequently it will require double the time of the former before they come in contact tugether.

Velocity in a Right Linc.- When a body moves with a uniform velocity, the spaces passed over by it, in differeut times, are proportional to the tines; also the spaces described by two different uniform velocitics, in the same time, are proportional to the velocities; and consequently, when both times and velocities are unequal, the spaces described are in the compound ratio of the times and velo-
 Hence also, \(v: v:: \frac{3}{T}: \frac{8}{8}\), or the velocity is as the space directly and the time reciprocally.
But in uniformly accclerated motions; the last degree of velocity uniformly gained by a body in beginning from rest, is proportional to the time; and the space described from the beginning of the motion, is as the product of the time and velocily, or as the square of the velocity, or as the square of the time. That is, in uniformly accelerated monions, \(v \propto t\), and \(s \propto t v\) or \(\propto v^{2}\) or \(\propto t^{2}\). And, in fluxions, \(s=r i\).
Velocity of Bodies moting in Curves.-According to Galileo's systeto of the descent of heavy bodies, which is now universally admitted among philosciphers, the velocities of a tooly falling vertically ure, at each moment of its fall, as the square roots of the heights from whence it has fallen; reckoning from the beginning of the descent. Hence he inferred, that if a body descend along an inclined plane, the velocitics acquired at different tinnes, will be in the same ratio: for since its velocity is all owing to its fall, and it only fulls as much as there is perpendicular beight in the inclined plane, the velocity should be still measured by that height, the same as if the descent were vertical.

The same principle led him also to conclude, that if a body full through several contiguous inclined planes, making any angles wilh each other, tuuch like a stick when broken, the velocity would still be regulated after the same manner, by the vertical heights of the different planes taken together, considering the last velocity as the same that the body would acquire by descending through the same perpendicular height.
This conclusion, it seems, continued to be acquiesced in, till the year 1672, when it was demonstrated to be false, by James Gregory, in a small piece of his, intitled Tentamina quadam Geomerrica de Motu Penduli et Projectorum. This piece has been very little known, because it was only added to the end of an obscure and pseudonymous picce of his, then published, to expose the errors and vanity of Mr. Stnclar, professol of natural philosophy ut Glasgow. This litile jeu d'esprit of Gregory is entitled, "The great and new Art of Weighing Vanity : or a discovery of the Igaorance and Arrogance of the great and new Artist, in his Pseudo-Philosoplical writings : by M. Patrick Mathers, Arch-Bedal to the University of St. Andrews." In the Tentamina, Gregory shows what the real velocity is, which a body acquires by descending down two contiguous
ferent from the velocity a body acquires by descending perpendicularly through the same heught; also that the velocity on quitung the first plane, is to that with which it enters the second, and in this latter direction, as radius to the cosine of the angle of inclination between the two planes.

This conclusion, bowever, Gregory observes, does nut apply to the motions of descent down any curve lines, be. cause the contiguous parts of curve lines do not form any angle between them, and consequently no part of the velocity is lost by passing from one part of the curse to the uther; bence lie infers, that the velocities acquired in descending down a continued curve line, are the same as by falling perpendicularly through the same height. This principle is then applied, by the author, to the motion of pendulums and projectiles.

Varignon too, in the year 1693, followed in the same track, showing that the velocity lost in passing from one right lined difection to another, becomes indefinitely small in the course of a curve line; and that therefore the doctrine of Galileo holds good for the descent of bodies down a curve line, viz, that the velocity at any point of the curve, is equal to that which would be acquired by falling through the same perpendicular altitude.

The nature of every curve is abundantly determined by the ratio of the ordinates to the corresponding abscisses; and the essence of curves in general may be conceived as consisting in this ratio, which may be varied in a thousand different ways. But this same ratio will be also that of two simple velocities, by whose joint effect a body may descrite the curve in question; and consequently the essence of all curves, in general, is the same thing as the concourse or conibination of all the forces which, taken two by two, may move the same body. Thus we lave a most simple and general equation of all possible curves, and of all possible velocities. By means of this equation, as soon as the two simple velocities of \(a\) borly are known, the curve resuling from them is immediatcly determined.

It may be observed, in particular, uccording to this equation, that an uniform velocity, combined with a velocity that always varies as the syuare roots of the heights, will produce the particular curve of a parabola, independent of the angle made by the directions of the two forces that give the velocities; and consequently a cannon ball, projected either horizontally or obliquely to the horizon, must always describe a parabola, were it not for the resistance of the air.

Circular Velocity. Sce Circulaf.
Initial Velocity, in Gunnery, denotes the velucity with which military projectiles issue from the mouth of the picce by which they are discharged. This, it is now known, is much more considerable than was formerly appreheladed. For the method of estimating it, and the result of a variety of experiments, by Mr. Robins, and myself, \&c, se the articles Gun, Gunnery, Puojectile, MesistANCE, and my Tracts, vols. 2 and 3.

Mr. Robins had binted in his New Principles of Gunnery, at another method of measuring the initial velocitics of military projectiles, viz, front the are of vibration of the gun itseli, in the act of expulsion, when it is suspended by an axis like a pendulum. And Mr. Thompson, in his experiments (Philos. Trans. vol. 71, pa. 229), has pursued the same idea at considerable length, in a number of expe-
riments, from which he deduces a rule for computing the velocrty, which is somewhat different from that of Mr. Robins, but which agrees very well with his own experiments.

This rule however being drawit only from the experiments with a musket barrel, and with a smail charge of powder, and besides being different from that in the theory as proposed by Robins; it was suspected that it would nut obsain when applied to cannon, or other large pieces of orinance, of different and various lengths, and to larger charges of ponder. For this reason, a great number of
experiments, as related in my Tructs, were instituted with cannon of various lengths, and charged with many different quantities of powder; and the initial velocities of the shot were computed buth from the vibration of a ballistic pendulum, and from the vibration of the gun itselt; but the consequence was, that these two hardly ever agrevd tigether, and in many cases they differed by almost 400 livet per second in the velocity. A brief abstract for a coniparison between these two tetheds, is contained in the tullowing tablet, viz,

Comparison of the Velocities by the Gun and Pendulum.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Gun. \\
No.
\end{tabular}} & \multicolumn{3}{|c|}{\(2 \mathrm{I}_{\text {unces. }}\)} & \multicolumn{3}{|c|}{4 Onters.} & \multicolumn{3}{|c|}{8 Ounces.} & \multicolumn{3}{|c|}{16 Oinces.} \\
\hline & \multicolumn{2}{|r|}{Veluciry hy} & \multirow[t]{2}{*}{Dif.} & \multicolumn{2}{|c|}{Velociay by} & Diff. & \multicolumn{2}{|l|}{Velocity by} & Diff. & \multicolumn{2}{|l|}{Velocity by} & Diff. \\
\hline & Gun. & Pend. & & Gun. & Pend. & & Gua. & Pend. & & Gun. & Pend. & \\
\hline 1 & 830 & 780 & 50 & 1135 & 11110 & 35 & 1445 & 1430 & 15 & 134.5 & \(137 \bar{t}\) & -3.2 \\
\hline 2 & 863 & 835 & 28 & 1203 & 1180 & 23 & 1521 & 15 SO & \(-39\) & 1485 & \(1650^{\circ}\) & \(-171\) \\
\hline 3 & 919 & 920 & \(-1\) & 1294 & 1300 & -6 & 1631 & 1790 & \(-159\) & - 1680 & 1998 & \(-318\) \\
\hline 4 & 929 & 970 & -41 & 1317 & 1370 & \(-53\) & 1669 & 1940 & \(-2 i 1\) & 1730 & 2106 & -376 \\
\hline
\end{tabular}

In this table, the first column shows the number of the gun, as they were of different lengths; viz, the length of number 1 was \(30 \frac{f}{f}\) inches, number 2 was \(40 \frac{1}{4}\) inches, number 3 was 60 inches, and number 4 was 83 mehes, nearly. After the first column, the rest of the table is divided into four spaces, for the four charges, \(2,4,8,16\) ounces of powder : and each of these is divided into three columns, in the first of the three is the velocity of the ball as determined from the vibration of the gun \(;\) in the second is the velocity as determined from the vibration of the pendulum; and in the third is the difference between the two, being so many feet per second, which is marked with the negative sign, or - , when the former velocity is too little, otherwise it is positive.

From the comparison contained in this table, it appears, in general, that the velocities, determined by the two different methods, do not agree together; and that thervfore the unethod of determining the velocity of the bull from the recoil of the zun, is not generally true, though Mr. Robins and Mr. Thompson had suspected it to be so: and consequently that the effect of the inflained powder on the recoil of the gun, is not exactly the same when it is fired without a ball, as when it is fired with one. It also appears, that this difference is no ways regular, neither in the different guns with the same charge of powder, nor in the same gun with different charges: that with very small charges, the velocity by the gun is greater than that by the pendulum; but that the latter always guita upon the former, as the charge is increased, and soun becotnes equal to it; afterwards it proceeds to excred it more and more: that the particular charge, at which the two velocities become equal, is dotherent in the different guns; and that this charge is less, or the equality sonner takes place, as the gun is longer. And all this, whether we use the actual velocity with which the ball strikes the pendulum, or the same increased by the velocily lost by the resistance of the air, in its Alight from the gan to the pendulum.

Viriual Velocity. Sce Viatual Velocity.
VENA Contracta, a term employed by Sir Isaac Newton to denote that section of a stream of flind issuing from an orifice in the side or buttom of a vessel, at the distance'of its diameter frum the orifice. Whed a fluid

Vol. II.
issues from a vessel, the velocity through the oritice does not arise from a continual acceleration of descending particles by the force of gravity, as in the case of a body falling freely, but it is communicated by the whole pressure of the surrounding thuit ; in consequence of which, the water rushing towards the orifice in all dircetions causes a contraction in the strean ; and at a distance from the orifice equal to its diameter. Sir lsaac Newtun measured the diameter of the section of the stream (which section he called by the above name), and found it to be to the diameter of the orifice as 21 to 25 : bence, the area of the orifice: the area of the vena contracta (they being supposed to be similar) ::252 \(: 21^{2}\), u hich is very nearly as \(\sqrt{2}: 1\); and as the velocity is inversely as the area of the section, the velocity at the vena cuntractu: the velocity at the orifice \(:: \sqrt{2}: 1\). Also from the quantity of water, running out in a given time, and the area of the vena contracta, Sir lsaac also determined that the velocity at the vena contracta is that which a body acquirea in falling down the altitude of the fluid above the orifice: hence the velocity at the orifice (being less than that at the vena contracta in the ratio of \(\sqrt{2}: 1\) ) is that which a body would acquire in falling down balf the altitupe. See the art. Water, Motion of.

VENTILATOR, a machine by which the noxious air of any close place, as an hospital, gaol, ship, chamber, \& c, may be discharged and changed fur fresh air.-The noxióus qualities of bad air have been long known; and Dr. Halcs and others have taken great pains to point out the mischiefs arising from foul air, and to prevent or remedy them. That philosopher proposed an easy and effectual one, by the use of his ventilators; the account of which was read before the lioyal Society in May 1741 ; and a farther account of it may be seen in his Description of Ventilators, printed at London in 8vo, 1743; and still farther in part 2, pa. 32, printed in 1738; where the uses and applications of them are pointed out for ships, and prisuny, \&c. For what is said of the foul air of ships may be applied to that of gaols, mines, workhouses, hospitals, harracks, \&c. In mines, ventilators may guaril against the suffocations, and other terrible accidentsarising from damps. The air of gaols has often proved infectious;

4 C
and we had a fatal proof of this, by the accident that happened some years since at the Old Bailey sessions. Aiter that, ventilators were used in the prison, which were worked by a small windmill, placed on the top of Newgate; and the prison became nore healthy.

Dr. Hales farther suggests, that ventilators might be of nse in making sslt; for which purpose there should be a stream of water to work them; or they might be worked by a windmill, and the brine should be in long narrow camals, covered with boards of canvas, about a foot above the surface of the brine, to confine the stream of air, so as to make it act on the surface of the brine, and carry off the water in vapours. Thus it might be reduced to a dry sath, with a saving of fuel, in winter and summer, or in rainy weather, or any state of the air whatever. Vennilators, he apprebends, might also scrve for drying liuen huag in low, long, narrow galleries, eqpecially in dump or rainy weather, and also in drying woollen clotis, after they are fulled or dyed; and in this case, the ventilators might be worked by the fulling water-mill. Ventilators might also be a useful appendage to malt and hop kilns; and the same suthor is farther of opinion, that a ventulation of warm dry air from the adjoining stove, with a cuutious hand, tught be of service to trees and plants in greenhouses; where it is will known that air full of the rancid vapours which fierspire from the plants, is very unfavourable to them, as well as the vapours from buman bodics ure to men: fur fresh air is as necessary to the healthy state of vegetables, as it is to that of animals.-Ventilators are also of excellent une for drying corn, hops, and malt. -Gunpowder may be thoronghly dried, by blowing air up through it by means of ventilators: which is of great advaitage to the strength of it. These ventilators, even the smaller ones, will alse serve to purify most cusily and effectually, the bad air of a ship's well, before a person is sent down into it, by blowing air through a trunk, reaching nearly to it; bontem. And in a similar manner may slaking water, and ill-tasted milk, Acc, be sweetened, viz, by passing a current of uir through them, from botton to top, which will carry the uffensive particles alung with it.

For these nod other uses to which they might be npplied, as well as for a particular account of the cunstructoon and disposition of ventilutors in ships, hospitals, pri= sons, \&xc, and the benelits attending them, see Hules', Treatine on Vemilators, part 2 passim; and the I'hilos. Trans. vol. 49, pa. 332.

The method of drawing off air from ships by means of fire-pipes, which some have preferred to ventilators, was published by sir Robert Moray in the Philos. Trans. for 1605 . These are meial pipes, about \(2 \frac{1}{y}\) inches diameter, one of which rarches from the fire-place to the well of the ship, and other three branches go to other pants of the ship; the stove hole and ash hole being clused up, the fire is supplied with air through these pipes. The defiects of these, cumpared with rentilators, are particulasly cxamined by 17r. Itales, ubi supra, pa. 119.

In the latter part of the year 1741, M. Tricwald, military architect to the king of swoden, informed the wecretary the the Royal Suciety, that be had in the preceding epring invented a machine for the use of ships of war, to dhaw out the fonl air from umiler their decki, which exhatested 36172 cubic feet of air in an hour, or at the rate of 21732 tuls in 24 hnurs. In \(17+2\) be sent one of these to France, which was approved of by the Academy of Scienees at

Paris, and the navy of France was orviered to be furnished with the like ventiators.

Mr. Erasmus King proposed to have ventilators worked by the fire engines, in mines. And Mr. Fitzgerald has suggested an improved method of doing this, which he has also illustrated by figurrs. Sce Pbilos. Trans, vol. 50, pa. 727.

There are various waya of veutilation, or changing the air of roonss. Mr. Tidd contrived to admit fresh air into a room, by taking out the middle upper nash pane of glasa, and fixing in its place a frame box, with an round bole in its middle, about 6 or 7 inches diameter; in which holes are fixed, bebind each uther, a set of sails of wry thim broad copper-plates, which spread over and cover the circular hole, si) as to make the air which enters the room, and turaing round these sats, to spread round is thin steets sideways ; and so not to incommode persons, by blowing diectly upon them, as it would do if it were not bindered by the sails.

This method however is very unseemly and disagreeable in good rooms; and therefore, instead of it, the late ingenious Mr. John Whitehurnt substituted another; which was, to open a small square or rectanglar bole in the party wall of the room, in the upper part near the cicling, at a corner or part distant Irom the firr ; and before it he placed a thin piece of metal or panteboard, \&ce, attached to the wall in its lower part just below the bole, but declining from it upwards, so us to give the air, that enters by the hole, a direction upwards against the cieling, along which it sweeps and disperses itself through the room, without blowing in a current against any person. This nuethod is sery useful to cure smoky chimbeys, by thus admitting conveuiently fresh air. A picture placed before the hole prevents the sight of it from disfiguring the room. This, and many other methods of ventilating, he meant to have published, and was occupied on, when death put an end to his useful labours. These have since been published, viz in 1794, 4to, by Dr. Willan.

IVNU's, in Astronomy, one of the inferior planets, but the brightest, and to appearance the largest, of all the planets; and is designed by the mark \&, supposed to be a rude representation of a female figure, with ber trailing robe. Venus is ensily distinguished from all the other planets, by lier whiteness and brightness, in which she exceeds all the rest, even Jupiter himaelf, and which is so considerable, that in a dnsky place she causes an objoct to project a sensible shadow, and she is often visible in the day-time. Her place in the system is the second from the sull, viz, between Mercury and the earth, and in ramgnitude is about "qual to the earth, or rather a little larger according to Dr. Iterschel's observations.

As Venus moves mund the sun, in a circle beneath that of the earth, slie is never seen in oppusition to him, nor indeed very fir from him; butseems to move backward and forward, passing him from side to side, to the distance of about 47 or 48 dcgrees, both ways, which is her greatest elougation. When she appears west of the sun, which is from her mferiur conjunction to her superior, she rises before liun, or is a morning star, and is called Phosphorus, or Luciter, or the Morming Star; and when she is eastwards from the sun, which is from ber superior conjanction to ber inferior, she sets after him, or is an evening star, and is then called Hesperus, or Veaper, or the Evening Star: bring cach of those in its turn for 290 days.

The real diameter of Venus is nearly equal to that of
the earth, being about 7900 miles; her apparent mean dhameter seen from the sun, or her horizontal parallax, \(30^{\prime \prime}\); but as seet from the earth \(18^{\prime \prime .79}\) according to Dr. Herschel, or \(16^{\prime \prime} \cdot 7\) by M. Lalande; her distatice from the sun 68 unillion of miles; her eccentricity \(\mathrm{Tf}^{\text {thes }}\) of the same, or 490,000 miles; the inclination of her orbit to the plane of the ecliptic \(3^{\circ} 23^{\prime}\); the points of their intersection or nodes are \(14^{\circ}\) of II and f; the place of ber aphelion \(=10^{\circ} 18^{\prime}\); her axis inclined to her orbit \(75^{\circ} \mathrm{O}\); her periudical course round the sun 224 days 17 hours; the diurnal rotation about her axis very uncertain, being according to Cassini only 23 hours, but according to the observations of Bianchini it is in 24 days 8 hours; though Dr. Herschel thinks it cannot be so much; and by M. Scbroeter 23h. 2lmin. See also Planets.

Venus, when viewed through a telescope, is rarely seen to shine with a full face, but has phases and changes just like those of the moon, being increasing, decreasing, horned, gibbous, \&c: her illuminated part being constantly turned toward the sun, or directed toward the east when she is a morning stat, and toward the west when an evening star. These different phases of Venus were first discovered by Galileo; who thus fulfilled the prediction of Copernicus : for when this excellent astronomer revived the ancient Pythagorean systera, asserting that the earth and planets move round the sun, it was objected that in such a case the phases of Venus should reseinble those of the moon; to which Copernicus replied, that some tume or other that resemblance would be found out. Galileo sent an account of the first discovery of these phases in a letter, written from Florence in 1611, to William de Medici, the duke of Tuscany's umbassador at Prague; desiring time to commuricate it to K'pler. The letter is extant in the preface to Kepler's Dioptrics, and a translation of it in Smith's Optics, pa. 416. Having recited the observations he had made, he adds, "We bave hence the inust certain, sensible decision and demonstration of two grand questions, which to this day have been doubtful and disputel among the greatest masters of reasoll in the world. One is, that the planets in their own nature are opake bodies, attributing to Mercury what we have seen in Venus: and the other is, that Venus necessarily moves round the sun; as also Mercury and the other planets; a thing well believel indeed by Pythagoras, Copernicus, Kepler, and myself, but never yet proved, as now it is, by ocular inspection on Venus."

Cassiui and Calupani, in the years 1665 and 1666, both discovered spots in the face of Venus: from the appearances of which the former ascertained ber motion about her axis; concluting that this revolution was performed in less than e tlay; or at least that the bright spot which the observed, Giished its period cither by revelution or libration in about 23 hours. And Lahire, in 1790, through a telescope of 16 feet, observed spots also in Venus; which be found to be larger than those in the moon.

The next ubservations of the same kind that occur, are those of siguior Bianchini at Rome, in 1726, 1727, 1728, who, with Canpani's glasses, discovered several dark spots in the disk of Vewus, of which he gave an account and a reprementation. in bis book entitled Hesperi et Phosphori Nova Phenomena, published at Rome in 1728 . From several successive observations Bianchini concludes, that a rotation of Venus ahout her axis was not completed in 23 heurts, as Cassini imagined, but in \(24 \frac{1}{2}\) days; that the
north pole of this rotation faced the 20th degree of Aqua rius, and was elevated 15 above the plane of the ecliptic, and that the axis kept parallel to itself, during the planct's revolution about the sun. Cassini the son, though he at. mits the accuracy of Bianchini's observations, disputes the conclusion drawn from them, and finally ohserves, that if we suppose the period oi the rotation of Venus to be 23 h . 20 min . it agrees equally well with the ohservations buth of his Gather and Bianchini ; but if she revolve in 2dd. oh. then his fatber's observations must be rejected as of no consequence.

In the Pbilos. Trans. 1792, are published the results of a course of observations on the planet Venus, begun in the year 1780, by M. Schroeter, of Lilienthal, Bremen. From these observations, the author infers, that Venus has an atmosphere in some respects similar to that of our earth, but far exceeding that of the moon in density, or power to weaken the rays of the sun: that the diurnal period of this planet is probably much longer than that of other planels: that the moon also has an atmosphere, tiough less dense and high than that of Venus: and that the mountains of this planet are 5 or 6 times as high as those on the earth.

Dr. Herschel too, between the years 1777 and 1703. has made a long series of observations on this planet, accounts of which are given in the I'hilos. 'Irans. for 17.93. The results of these observations are: that the planet revolves about its axis, but the time of it is uncertaia: that the position of its axis is also very uncertain: that the planet's atinosphere is very considerable: that the planet has probably hills and inequalites on its surface, but he has not been able to see nuch of them, owing perhaps to the great deusity of its atmospbere: as to the mountains of Vellus, no eye, he says, which is not considerably better than his, or assisted by much better instruments, will ever get a sight of them: and that the apparent diameter of Venus, at the mean distance from the earth, is \(18^{\prime \prime} \cdot 79\); whence it may be inferred, that this planet is somewhat larger than the earib, instead of being less, as former astronomers have imagined.
Sonetimes Venus is srem in the disk of the sun, in form of a dark round spot. 'These appearances, called transits, happen but seldom, vix, when the earth is about her todes at the time of her inferior conjunction. One of these transits was seen in Fingland in \(\mathbf{1 6 3 9}\) by Mr. Horrox and Mr. Crabtree; and two in the last crntury, vix, the one June 6, 1761. and the other in June 1769. There will not happen another of them till the year 1874 . See Paraliax. Eixcept such tranaits us these, Venus exhibita the same appearauces to us equalarly ertery 8 years ; her conjunctions, elongations, and times of tising and setting, being very searly the sanee, on the same days, as before.
In 1672 and 1686 , Cassini, with a telescope of 34 feet, thought he suw a satellite move round this planet, at the distance of about \(\frac{3}{3}\) of Venus's diameter. It had the same phases as Venus, but without any well-detimed forin; and its diameter scarce exceeded \(\frac{1}{5}\) of the diameter of Venus. Dr. Gregory (Astron. lib. 6, prop. S) thinks it more than probable that this was a satdlite; and suppuses that the reason why it is not mure frequenily bern, is the unfitness of its surface to reflet the rays of the sun's light; as is the case of the spots in the moon; for if the whole disk of the moon were composed \(4 \mathrm{C}:\)
nf such, he thinks she cculd not be seen so far ax to Vinus.

Mr. Short, in \(1 \% 40\), with a reflecting telescope of \(16 \frac{1}{2}\) inchey forcu, perecived a small star now Venns: with anothat teloseope of the same foe us, mombtying 50 or ( 00 times, and fitted with a micrumoter, le found its dintance from Vonus ubrut \(10^{\circ}\); and with a magnifying powt of ? 50 , he observed the star assume the same phases asith Venus; its diameter scemed to be about \(\frac{f}{5}\), ir somen hat less, of the diameter of Venus; its light not se bright and vivid, but eacieding sharp and well defined. He vowed it for the space of an hour; but never hat the good fortune to se it after the first muming. Philos. Trans. No. 459 . pa. 646.
M. Montaign, of Limoges in France, preparing for observing the transtt of 1701 , discovernd in the proceding month of Jlay a small star, abont the distance of \(20^{\circ}\) from Venus, the dinmeter of it being about \(\frac{q \text { of that of }}{}\) the planct. Others have also thought they saw a like appearance. And inelect it must be acknowledged, that Venus may bave a satellite, though it be difficult for us to see it. Its enlightened side can rever be finhy turned tnwards us, but when Venus is beioud the sun; in which cuse Venus liewelf appars little larger than an ordnary star, and dapetere ber satellite may be too small to be perccived at such a dintance. When she is between us and the sun, her noon has its dark side turned towarils us; and when Vonus is at her gratest elongation, there is but half the ralightened side of the moon turned toward us, and even then it may be too far distant to he seen by us. Bnt it was presumed, that the twor transits of 1761 , and 1769 , would afford opportunity for deternaning this point; and yet we do not fiod, though many observers directral their attention to this object, that any satellite was then seen in the sun's disk; unless we except two persons, viz, an anmymous wrieer in the London Clifonicle of May 18, who says that he saw the satellite of Venus on the sun the day of the transit, at St. Nent's in Hantingilonslive; that it moved in a track parallel to that of Venus, but nearer the ecliptic; that Venus quitted the sun's dhoh at 31 minutes atter 8 , and the satellite at 6 minutes nfter 9; and M. Mיntaign at Linoges, whose account of his observations is in the Memurs of the Academy nf Paris, whence the following certificate is ex-practed:-Certipicate. "We having examined, by order of the Academy, the remarks of \(\mathbf{I I}\). Baudounn on a new observation of the satellite of Venus, made at Li moges the 11th of May by M. Montaign. This fourth observation, of grat impurtance for the theory of the satellite, has shown that its revolution nust be longer than appeared by the first three obvervations. M. Baudouin believes it may be fixed at 12 days; as to its distance, it appears to him to be 50 semidianeters of Venus; whence he infers that the mans of Venus is equal to that of the carth. This mass of Venus is a very essential element to antronomy, as it enters into many computations, and produces different phenomena: \&c.

Signed I:Abbe De La Caille, De La lande."
VERBERATION, in Physies, a term uscd to express the cause of sound, which arises from a verberation of the air, when struck, in divers manners, by the beveral parts of the sonorous body first put into a vibratory motion.

VERNAL, something belonging to the spring srasm : as vernal signs, vernal equinox, de.

VPILNIER, is a scale, or a division, well adapted for the gradnation of mushimatical mistruments, so called from its inventor Peter Jernier, a gentleman of firanche Conté, who publonhed the di-covery in a small tract, entitleal Ia Cionstruction, I'Usage, et les Proprictez du Qualran! Nunveau de Mntinematique \&c, proted at Brissels in 1633. This was an improvenent on the metiond of dovionn proproevl by Jacobus Curtus, printed by Tycho in Clavin', Astrolate, in 1393. Vernier', method of divison, or dividing plase, bus been wry commonly, though erroneonly, called by the name of Nonius; the thethod of Nonius bemp vely different from that of Vernicr, and much less convenient.
When the relative unit of any line is sol divided intos many small equal parte, those parts may be too numerous to be intriduced, or if introduced, they thay be too close Io one athether to be readily counted or estinated; for which reason there lave been various methods contrived firr estinanting the aliquot parts of the small divisions, into which the relative unit of a line may be commodi-ou-ly divided ; and umens those methods, Verner's has been most justly preferred to all others. For a curious history of this, and other inventions of a similar nature, see Robins's Math. Tracts, vul. 2, pa. 265, Kc.

This improsel incthed of subdividing scater divisions, was first published by Peter Vermer, a prrivon of disunction in Franche Counte, it a very small tract, entithod. The Comstruction, the Use, and the Preperiies of a New Mathematical Quadiant, \&ic. In his dedication, bavibg showa its preference to whit has been done in the affair by Nunez and Clavius, he adds, Mine having all these advanages wer the others, it is not withuat reason that I call it new and of my own invention.

In t'e proface also be claims it as his own invention, and says, by it a quadrant of 3 inclics is rendered capable of determining munites. In his book he shows bow to apply it to instriments of different dimenions. His conirtance is a movenble arch divided into cqual parts, one less in number that the divisions ot the portion of the limb corresponsting to it.

Vernier's scale then, is a small moverable arch, or scale, sliding along the limb of a quadrant, or any other graduated acale, and divided imo equal paris, that are one less in number, than the clivisions of the purton of the limb corresponding to it. So, if we want to subdivide thé graduations on any scale into (fur ex.) 10 equal parts; we must nobe the vernier equal in length to 11 of those graduations of the scale, but dividing the same length of the vernier itself only into 16 rqual parts; fur then it is evident that cach division on the vernor will be fith part longer than the gradations on the instrunent, or that the division of the firmarr is equal to ro of the degree on the latter, as that gans 1 in 10 npon this.

Thus let AB be a part of the upper end of a barometer tube, the quicksilver standing at the point C ; from 28 to 31 is a part of the scale of inches, viz, from 28 inches to 31 inches, divided intn 10ths of inches: and the middle piece, from I to 10 , is the vernier, that slides up and down in a groove, and having 10 of its divisions equal to 11-10ths of the inches, for the purpose of subdividing every 10 th of the inch into 10 parts, or, the
inches into centesms or 100th parts. In pracice; the methor of connting is by obwrving (when the vermer is set wish its mudex an top, posinting exactly against the upper surface of the incrcury in the tube) which division of the vernier \(1 t\) is that exacily, or mearent, coincibles with a division in the scale of loths of inches, for that will show the number of looths, over the loths of inches next below the index at top. So, in the annexed figure, the top of the vernier is betwcen 2 and 3 tenths above the 30 inches of the baroine. ter; and because the 8 th division of the vernier is seen to colincide with a division of the cale, thes shows that it is 8 contesms more: so that the
 height of the quickuilver altogether, is \(30 \cdot 28\), that is, 30 inches, and 28 hundrodths, or 2 tenths and 8 hundredths.

If the scale were not inches and 10ths, but degrees of a quadrant, dec, shen the 8 would be \({ }^{3}{ }^{3}\) thes of a degree, or 48 ; or if every division on the scale be 10 minutes, then the vernier will subulivide it inso single minutes, and the 8 will then be 8 minutes. And so for any other case.

By aliering the number of divisions, either in the degress or in the vernier, or in both, an angle can be observed to many different degrees of accuracy. Thus, if a degree on a quidrant be divided into 12 parts, each being 5 minutts, and the leugth of the vermer be 21 sucb parts, or \(1 \frac{1}{2}^{\circ}\), and divided intu 20 parts, then
\[
\frac{1}{12} \times \frac{1}{20}=\frac{1^{\circ}}{240}=\frac{1^{\prime}}{4}=13^{\prime \prime}
\]
is the smallest division the vernier will measure to; Or , if the length of the vernier be \(27^{7}{ }^{\circ}\), and divided into 30 parts, then
\[
\frac{1}{12} \times \frac{1}{30}=\frac{1^{\circ}}{360}=\frac{1^{\prime}}{6}=10^{\circ}
\]
is the smullest part in this case: Also
\[
\frac{1}{12} \times \frac{1}{30}=\frac{1^{\circ}}{600}=\frac{1^{\prime \prime}}{10}=6^{\prime \prime}
\]
is the smallest part when the veraier extends \(44^{\circ}\). See Robertson's. Navigation, bouk 5, pa. 279.

But though the vernier was thus originally divided into one less than the corrospondent length on the pcale, yet a practice has gradually come into use, of dividing it into one part more than those of the scale; so that it is now more usual to practise this lutter way, than the former.
M. Delambre, in his Abrêgé d'Astronomie, 1813, pa. 48, says, The general formula is, to take \(n-1\) parts of the limb, and to divide them into \(n\) parts on the vermier, or the formula is \(\frac{n-1}{n}\); then the vernicr gives the \(\frac{1}{n}\) part of the division of the limb. This, says he, I call the Direct Vernier, because the numeration on it proceeds in the same way as on the limb. There is another, which I call the Retrograde, because the numeration on it rearls the contrary way: this is rather less common; and its formula is \(\frac{n+1}{n}\); but the principle is the same, as well as the use.

For the method of applying the vernier to a quadrant, see Hadley's Quadrant. And for the application of this instrument to a telescope, and the principles of its construction, se Smith's Oprics, broak 3, sect. 801.

VEHSE:D Sine, of an arch, is the part of tie diameter intercepted between the sine and the commencement of the are; und it is cqual to the difference between the radius andithe cosine. See'Versed Stne. And for coversed sine, sce Caverspd Sine.

VIRTEX of an Angle, is the angular point, or the point where the legs or sides of the angle meet.

Vertex of a Figure, is the uppermost point, or the vertes of the angle opposite to the base.

Ventex of a Carte, is the exirmity of the axis or diameter, or it is the point where the diameter meets the curve; which is also the vertex, of the dianueter.

Vertex of a Glass, in Opucs, the same as its pole.
Vertex is also used, in Astronomy, for the point of the heavens vertically or perpendicularly over our heads, also called the zenith.

Veatex, Paih of the. Sce Path.
\(V E R T I C A L\), something relating to the vertex or highest point. As,

Veatical Point, in Astronomy, is the same with vertex, or zenith.-Hence a star is said to be vertical, when it happens to be in that point which is perpendicularly over any place.

Veatical Circle, is a great circle of the sphere, passing through the zeniul and nudir of a place.-The vertical circles are also called azamuths. The meridan of any place is a vertical circle, viz, that particular one which passes throngh the north or south point of the horizon. All the vertical circles intersect one another in the zenith and nadir.

The use of the vertical circles is to estimate or measure the height of the stars \& c , and their distances from the zenith, which is reckoned on these circles; and to find their eastern and western amplitude, by obmpring how many degrees the vertical, in which the star rists or sets, is Jistant from the meridian.

Prime Featical, is that verticle circle, or azimuth, which passes through the poles of the meridian! or which is perpendicular to the meridian, und passes through the equinuctial points.

Prime Vehticals, in Dialling. See Prine Verticals.
Vertical of the Sun, is the vertical which passes through the centre of the sun at any noment of time.Its use is, in dialling, to find the declination of the plane on which the dial is to be drawn, which is done by observing how many degrees that vertical in distant from the meridian, after marking the poiut or line of the shadow on the plane at any times.

Vertical Dial. Sue Vertical Dial.
VErtical Line, in Dialling, is a line in any plane perpendicular to the horizun. - This is best found and drawn on an erect and reclining plane, by steadily bolding up a string and plummet, and then marking two points of the shadow of the threal on the plane, a good distance from each other; and drawing a line through these marks.

Vertical. Line, in Conics, is a line drawn on the vertical plane, and through the vertex of the cone.

Ventical Line, in Perspective. See Vertical Lise.
Vertical Plane, in Conics, is a plane passing through the vertex of a cone, and paralled to any conc section.

Vertical Plame, in Perspective. See Plane and Perspective.

Veatical Augles, or Opponite Angles, in Geometry, are such as have their legs or sides contintations of each other, and which cunsquently have the same vertex or angular point. So the angles \(a\) and \(b\) are vertical angles; us also the angles \(c\) and
 d. Vertical angles are equal to ench other.

VE:R'ICITY, is that property of the nagnet or loadstunc, or of a needle, \&e touched with it, by which it tarns or directs itself to some peculiar point, as to its pole.The attraction of the magnet was known long before its verticity.

VERU, a comet, according to sonse writers resembling a spit, being nearly the same as the lonchites, only ats head is rounder, and its train longer and sharper pointed.

VESPER, in Astronomy, called also Hesperus, and the Evening Star, is the planet Venus, when sle is eustward of the sun, and conserguently sets after him, and shines as an evening star.

VESPERTINE, in Astronomy, is when a planet is descending to the west after sun-set, or shines as an evening star.
VESTA, one of the small planetary bodies revolving between the planets Marsand Jupiter. It was discovered by M. Olbers the 29th of March, 1807 , and is the nearest to Mars of the 4 small planets. See my Recreations, vol. 3, pa. 144.

VESTIBULE, in Architecture, a kind of entrance into a large building; being an open place before the hall, or at the bottom of the staircase.

VIA Lactea, in Astronomy, the milky way, or Galaxy. See Galaxy.

Via Solis, or Sun's Way, is used among astronomers, for the ecliptic line, or path in which the sun seems always to move.
VIBRATION, in Mechanics, a regular reciprocal motion of a body, as, for example, a pendulurn, which being freely suspended, vibrates or swings from side to side of the vertical line. Mechanical authors, instead of vibration, often use the term oscillation, especially when speaking of a body that thus swinge by means of its own gravity or weight.

The vibratinns of the same pendulum are all isochronal; that is, they are performed in un equal time, at least in the same latitude; for in lower latitudes they are found to be slower than in higher ones. See Pgnduidum. In our latitude, a pendulum \(39 /\) inches long, vibrates seconds, making 60 vibrations in a minute.

The vibrations of a longer pendulum take up a longer time than those of a shorter one, and shat in the subduplicate ratio of the lengths, ar the ratio of the square ronts of the lengths. Thus, if one pendulum be 40 inches in length, and another only 10 inches, the former will be double the tume of the later in making a vibration; for \(\sqrt{ } 40: \sqrt{\prime} 10:: \sqrt{ } 4: \sqrt{ } 1\), that is as 2 to 1 . And because the, number of vibrations, made in any given time, is reciprocally as the duration of one vibration, therefore the number of such vibrations is in the reciprocal subduplicate ratio of the lengths of the pendulums.
M. Mouton, a priest of Lyolls, wrote a treatise, expressly to show, that by means of the number of vibrations of a given pendulum, ill a certain tume, may be established an
universal measure throughout the whole world; and may fix the several measures that are in use among us, in such a manner, as that they might be recovered again, if at any time they should chance to be lost, as is the case of most of the ancient measures, which we now only know by conjecture.

The Vibrations of a Stretched Chord, or String, arise from its clasticity; which prower being in this case sinilarto gravity, as acting unilormly, the vibrations of a chord follow the same laws as those of pendulums. Consequently the vibrations of the same chord cqually stretiched, though they be of unequal lengths, nie isochronel, or are performed in equal times; and the squares of the times of vibration are to one another inversely as their tensions. or powers by which they are stretched.

The vibrations of a spring too are proportional to the powers by which it is bent. These follow the sanue laws as thuse of the chord and peudulum; and consequently are isochronil ; which is the foundation of spring watcbes.

Vinmations are also used in Physics, icc, and for sevoral other regular alsernate motions. Scusation, for insstance, is supposed to be performed by means of the vibratory motion of the contents of the nerves, begun by external objects, and propagated to the brain. Tbis doctrine bas been particularly illustrated by Dr. Hartley, who has exteaded it farther than any' other writer, in estabiishing a new theory of our mental operations. The same ingenious author also applies the doctrine of vibrations to the explanation of muscular motion, which be thinks is performed in the same geocral manner as sensation und the perception of ideas. See his Observations on Man, vol. 1.

The several kinds and rays of light, New ton conceives to make vibrations of divers magnitudes; which, according to those magnitudes, excite sensations of several colours; much after the same manner as vibrations of air, according to their several magnitudes, excite sensations of several sounds. See the article CoLour.

Heat, according to the same author, is only an accident of light, occasioned by the rays putting a fine, subtile, etherral medium, which pervades all bodies, into a vibratory motion, which gives os that sensation. Sec Hest. From the vibrations or pulses of the same medinm, be accounts for the alternate fits of casy reflection and ready transmission of the rays.-In the Philosophical Transactions it is observed, that the butterfly, into which the silkworm is transformed, makes 190 vibrations or motions of its wings, in one coition.

VIETA (Frascis), a very celebrated French mathematician, was born in 1540 at Fontenai, or Fontenai-leConte, in Lower Poitou, a province of France. He was muster of requests at Paris, where he died in 1603, being the 63 d year of his agg. Among other branches of learning in which be excelled, he was one of the most respectable mathematicians of the \(16 t^{\text {th }}\) century, or indeed of any age. His wriungs abound with marks of great originaliny, and the finest genius, as well as intense application. Indeed such was the vigour of his perseverance, that he has sometimes reraained in his study for three days tugether, without eating or sleeping. His inventions and improvements in all parts of the mathematics were very considerable. He was in a mamner the inventor and introducer of specious algebra, in which letters are used instead of numbers, as well as of many beautiful theorms in that science full explanation of which may be found under
the article Algeara, and still more in my Tracts, vol. 2. He made also considerable improvements in geometry and trigonometry. His angular sections are a very ingenious and materly performance: by tiese he was enabled to resolve the problem of Adrian Roman, proposed to all mathematicians, amounting to an equation of the 45 th degree. Romanus was so struck with his sagacity, that be immediately quitted his residence of Wirtabourg in Franconia, and came to France to visit him, and solicit his friendship. His Apollonius Gallus, being a restoration of Apollonius's tract on Tangeacies, and many other geometrical pieces to be found in his works, give proofs of the fincst taste and genius for true geometrical speculations.-He gave some masterly tracts on trigonometry, both planc and spherical, which may be found in the collection of his works, published at Leyden in 1646, by Schooten, besides another large and separate volume in folio, published in the author's life-time at Paris in 1579, containing extensive trigonometrical tables, with the construction and use of the same, which are particularly described in the introduction to my Logarithms, pa. 4 Acc. To this complete treatise on trigonometry, plane and spherical, are subjoined several miscellaneous problems and observations, such as, the quadrature of the circle, the duplication of the cube, \&sc. Computations are here given of the ratio of the diameter of a circle to the circunference, and of the length of the sine of 1 minute, both to a great many places of figures; by which he found that the sine of 1 minute is betwcen 2908881959

\section*{and 2908882056;}
also the diameter of a circle being 1000 \&ce, that the perimeter of the inscribed and circumscribed polygon of 393216 sides, will be as follows, viz, the
perimeter of the inscribed pofygon \(\quad 31415926535\)
perim. of the circumscribed polygon 31415926537 and that therefore the circumference of the circle lies between these two numbers.

Vieta having observed that there were many faults in the Gregorian Calendar, as it then existed, he composed a new forin of it, to which he added perpetual canons, and an explication of it, with remarks and objections against Clavius, whom be accused of having deformed the true Lelian reformation, by not rightly understanding it.

Besides those, it seenis a work greatly esteemed, and the loss of which canuot be sufficiently deplored, was his Harmonicon Caleste, which, being communicated to father Mersenne, was, by some perfidious acquaintance of that honest-minded person, surreptitiously taken from him, and irrecoverably lost, or suppressed, to the gruat detriment of the literary world. There were also, it is said, other works of an astronomical kind, that have been buried in the ruins of time.

Vieta was aloo a profound decipherer, an accomplishment that prowed very useful to his country. As the different parts of the Spanish monarcby tay very distant from one another, when they bad occasion to communicate any secret designs, they wrote them in ciphers and unknown charscters, during the disorders of the league: the cipher was composed of more than 500 different characters, which yielded their hidden contents to the penctrating genius of Viets alone. His skill so discuncerted the Spanish councils for two years, that they published it at Rome, and other parts of Europe, that the French king had only discovered their ciphers by means of magic.

VINCULUM, in Algebra, a mark or character, either drawn over, or jucluding, or some other way accompanying, a factor, divisor, dividend, \&e, when it is compounded of several letters, quantities, or terms, to connect thein together us one quantity, and show that they are to be multiplied, or divided, dec, togetber.
Vieta, I think, first used the bar or line over the quantities, for a vinculum, thus \(\overline{a+b}\); and Albert Girard the parenthenis thus \((a+b)\); the former way being now chicfly used by the English, and the latter by most other Europeans. Thus \(\overline{a+b} \times c\), or \((a+b) \times c\), denotes the product of \(c\) and the sum \(a+b\) considered as one quantity. Aiso \(\sqrt{a+b}\), or \(\sqrt{ }(a+b)\), denotes the square root of the sum \(a+b\). Sometiases the mark : is set before a compound factor, as a vincnluni, especially whelt it is very ling, or aninfinite series; thus \(3 a \times: 1-\) \(2 x+3 x^{2}-4 x^{3}+3 x^{3} \& c\).

VINDEMIATRIX, or Vindemiator, a fixed star of the third magnitude, in the northern wing of the constellation Virgo.

VIRGO, in Astronomy, one of the signs or constellations of the zudiac, which the sun enters about the 21st or 22 d of August ; being one of the 48 old constellations, and is mentiunied by the astronomers of all ages and nations, whose works have reached us. Anciently the figure was that of a girl, almost naked, with an ear of corn in ber hand, evidently to denote the time of harvest aroong the people who inveated this sign, whoever they were. But the Greeks much altered the figure, with clothes, wings, dec, and variously explained the origin of it by their own fables: thus, they tell us that the virgin, now exalted into the shies, was, while on earth, that Justita, the daughter of Astraus and Ancora, who lived in the golden age, and taught mankind their duty; but who, when their crimes increased, was obliged to leave the earth, and take her place in the heavens. Again, Hesiod gives the celestial maid another origin, and says she was the daughter ol Jupiter and Thems. There are also others who depart from both these accounts, and make her to have been Erigone, the daughter of Icarius: while others make her Parthene, the daughter of Apollo, who placed her there; and others, from the ear of corn, make it a representation of Ceres ; and others, from the obscurity of her bead, of Fortune.
The ancients, as they gave each of the 12 months of the year to the care of some one of the 12 principal deities, so they also threw intal the protection of each of these one of the 12 signs of the zodiac. Hence Virgo, from the car of corn in her hand, naturally fell to the lot of Ceres, and we accordingly find it ca!led Signum Cereris.

The stars in the constellation Virgo, in Ptolemy's catalogue, are 32; in Tycho's 33; in Hevelius's 30 ; and in the Britannic 110.

VIRTUAL Focus, in Optics, is a point in the axis of a glass, where the cominuation of a refracted ray meets it. Thus, let \(D\) be the centre, and dase the axis of the glass AB; upou which falls the ray PA. Now this ray will not proceed
 straight forward, as A11, after passing the glass, but will take the course as \(A K\), being deflected from the perpendicular AD. If then the refracted ray \(k\) a be produced, by
 the Virtual forus, or point of divergence.

Virtual Velocity, of a point urged by any furce, sle: notes the element of the space which it would deacrite in the direction of the power, when thesystem is supposed to have sulfered an indefinitely small derangement.

The principle of virtual velocities, in mechanics, is much used by the foreign mathematicians, and is thus enunciated: It any system whateser, of bodies or points, be urged on powers in equilibrio, and there be given to this system any small motion, by virtue of which every point describes an indefinitely small space; then the smin of the products of each power multiplied by the space, which the point where it is applied would describe, according to the direction of the same power, will be always equal to zero or hothing; regarding as positive the small spaces described in the direction of the powers; and as negative, thase described in the opposite sense. - This principle is due to Galileo. For its history and demonatration, Lagrange, Mecanique, pa. 8. See also Fuurnier's demonstration in \(5^{\circ}\) Caheir du Journal de l'École Polytechnique.

VIS, a Latin word, signifying force or power ; adoptel by writers on physics, to express divers kinds of natural powers or faculties.

The term vis is either active or passive: the vis activa is the power of producing motion; the vis passiva is that of recriving or losing it. The vis activa is again subedivided into vis viva and vis mortua.

Vis Absoluta, or Absolute Force, is that kind of centripetal force which is measured by the motion that would be generated by it in a given body, at a given distance, and depends on the efficacy of the cause producing it.

Vis Acceleratrix, or Accelerating Force, is that centripetal force which produces an accelerated motion, and is proportional to the velocity which it generates in a given time; or it is as the motive or absolute force directly, and as the quantity of matter moved inversely.

Vis Impressa is defined by Newton to be the action exercised on any body to change its state, either of rest or uniform metion in a right line.-This force consivts altogether in the action; and has no place in the bedy after the action is ceased: for the body perseveres in cvery new state by the vis inertize alone. This vis impressa may arise from various causes ; as trom percussion, pression, and centripetal force.

Vis Inertia. See Inertia.
The vis inertix, the same great author elsewhere observes, is a passive principle, by which budes persist in their motion or rest, and receive motion, in proportion to the force impressing it, and resist as much as they are resisted. See Resistance.

Vis Insita, or Innate Force of matter, is a power of resisting, by which every bendy, as much as in it lies, endeavours to persevere in its present state, whether of rest or of motiot uniformly forward in a right line. This force is always proportional to the quantity of matter in the body, and differs in nething from the vis inertix, but in our manner of conceiviug it.

\section*{Vis Centripela. See Centripetal Force.}

Vis Mosrix, or Mocing Force of a centripetal body, is the tendency of the whole body towards the centre, rosulting from the tendency of all the parts, and is proportional to the motion which it generates in a given time;
so that the vis motrix is to the vis acceleratrix, as the motion is to the celerity : and as the quantity of motion in a booly is estinated by the protuct of the velocity into the guantity of matter, so the vis motrix arises from the vis acceleratrix multiplied by the quantity of matter. The followers of Labmiz use the term si, motrix for the force of a body in motion, in the same s-mse as the Newtonams use the terin vis inernx; this latter they allow to be inherent in a body at rest; but the forgier, or vis motrix, a furce inherens in the same body only while in now tion, which actually carries it from place to place, by acting upon it always with the same intensity in every pliyxical part of the line which it deseribes.

Vis Mortua, and Vis Viva, in Mechanics, are terms used by laibnitz and his followers for force, which they diatingnish intu two hinds, sis mortua, and sin viva; understanding by the former any kind of pressure, or an endeavour to meste, not sufficient to produce actual motion, unless its action on a budy be contmued for sume time; and by the latter, that force or power of acting which resides in a body in motion.

VISIBLIF, something that is an object of vision or sight, or the property of a thing seen.-The Cartesians say thut light alone is the proper object of vision. But according tu Newion, colour alene is the proper object of sight; coluur being that propery of hight by which the light itself is visitie, und by which the images of opake bodies are painted on the retina.
A. to the Sitmation and Place of Visible Objects:-Philosophers in getieral lad formerly tahen for granted, that the place to which the eye refers any visible object, seen by reflection or rifraction, is that in wish the visual ray nicets a perpendicular from the objuct upon the reflecting or the refiacting plane. That this is the rase with respect to plane mirrors is universalty acknowitolged; and some experiments with mirrors of other finms seem to favour the same concluaion, and thus attord \(r\) nsin for extending the analogy to all cases of vision. It a right line be held perpendicularly over a convex or concave mirror, its image serms to make one hne with it. The same is the case with a perpendicular tight line held within water; for the part which is wighin the water appears to be a contunuation of that which is withuut. But Dr. Barrow called in question this method of jutying of the place of an object, and so opened a new field of inquiry and debate in this branch of science. This, with oiher optical
Ginvestigations, he published in his Optical Lectures, first printed in 1674. According to him, we refer every point ot an object to the place trom which the pencils of light issue, or from which they would have issued, if no reflecting or refracting substance interrened. Pursuing this principle, Dr. Barrow procecied to investigute the place in which the rays issuing from each of the points of an oliject, and that reach the eye after one reflection or refraction, neet; and he fuutd that when the refracting surfuce was plane, and the refraction was made from a denser medium into a rarer, those rays would always meet in a piace between the eye and a perpendicular to the point of incideuce. If a convex mirror be used, the case will be the same; but if the mirror be plane, the rays will meet in the perpendicular, and beyond it if it he concave. The same author also determined, according to these principles, what form the inage of a right line will take when it is presented in uifferent manoers to a
spherical inirror, or when it is seen through a refracting needium.

Dr. lharrow however notices an objection against the maxim above-mentioned, concerning the supprised place of visible nbjects, and candidly owns that he was not able to give a satisfactory solution of it. The objection is this: Let an objict be placed beyond the focus of a convex lens, and if the cye be close to the lens, it will appear conlused, but very near to its true place. If the eye be a litte withelrawn, the confusion will increase, and the object will seem to come nearer; and when the eye is very near the facus, the confusion will be very great, and the object will appear to be close to the eye. But in this experiment the eye receives no rays but those that are converging; and the point from which they issue is so far from benng nearer than the object, that it is beyond it ; notwithstanding which, the objeet is conceived to be much closer thans it is, though no very distinct idea can be formed of its precise distance.
The first person who touk much notice of Dr. Barrow's hyputhesis, ant the difficulty attending it, was Dr. Berkeley, whu (in bis Esiay on a New Theory of Vision, pa. 50) ubserves, that the circle formed on the retina, by the rays which do not come to a focus, produce the same confusion in the eye, whether they cruss one another before they reach the retina, or tend to it afterwards; and therefure that the judgenent concerning distance will be the same in both cases, without any regard to the place from which the rays originally issued; so that in this case, by receding from the lens, as the confusion increases, which always accompanies the nearness of an object, the mind will judge that the object comes nearer, See Apparent Distance.
M. Bouguer (in his Traité d'Optique, pa. 104) adopts Barrow's general maxim, in supposing that we refer objects to the place from which the pencils of rays seemingly converge at their entrance into the pupil. But when rays issue from below the surface of a vessel of water, or any other refracting medium, he finds that there are always two different places of this seeming convergence: one of them of the rays that issue from it in the same vertical circle, and therefury fall with different degrees of obliquity on the surface of the refractiug medimin; and another, of those that full upon the surfuce with the same degree of obliquity, entering the eyc luterally with respect to one another. He says, sometiniss one of these images is attended to by the mind, and sometimes the other; and different images may be observed by different persons. And he alds, that an object plunged in water affords an example of this duplicity of images.
G. W. Kraffi bas ably supported Barrow's opition, that the place of any poiot seen by reflection from the surface of any medium, is that in which rays issuing from it, infinitely near to one anorber, would meet; and considering the case of a diblant object viewed in a concave mirror, by an eye viry \(n\) ar it, when the image, according to Euclid and other writers, would be between the eye and the object, and Barrow's rule cambot be applied, he says that in this case the speculum niay be considered as a plane, the effect being the same, only that the image is more obscure, Com. Pelrepol. wol. 12, pa. 252, 256. See Priestley's Hist. of Light \&cc, pa. 89, 688.

From the principle above illusirated, several remarkable phenomena of vision may be accounted for: us-That if Vol. II.
the distance between two visible objects be an angle that is insensible, the distant bedies will appear as if contiguous: whence, a continuous body being the result of several contiguous ones, if the distances between serveral visibles subtend insensible nngles, they will appear one continuous body; which gives a pretty illustration of the notion of a continuum.- Hence also parallel lime, and long vistas, consisting of parallel rows of tiees, serm to. converge more and more the fariher they are extended from the eye; and the roofs and floors of loug extendeal alleys seem, the former to descend, and the latter to ascend, and approach each other; because the apparent magnitudes of their perpendicular intervals are perpeetually diminishing, while at the same time we mistake their distance.

Anto the different Distances of Virible Oljects - The mind perceives the distance of visille objects, Ist, From the different configurations of the eye, and the mamiter in which the rays strike the eye, and in which the innage is impressid upon it. For the eye disposes itself differently, according to the different distances it is to see; viz, for remote objects the pupil is dilated, and the crystalline brought nearcr the retima, and the whole eye is rade more globous ; on the contrary, for near objects, the pupil is coniracted, the crystalline thrust forwards, and the eye lengthened. The mode of performing this, honever, has greatly divided the opinions of philosophers. See Priestley's Hist. of Light \&c, pa. 638-652, where the several opinions of Descartes, Kepler, Lahire, Leroi, Porterfield, Jurin, Musschenbruek, \& c, are stated and esamined.

Again, the distance of visible objects is juiged of by the angle the object makes; from the distinct or confused representation of the objects; and from the briskness or feebleness, or the rarity or density of the rays.

To this it is owing, 1st, That abjects which appear obscure or confused, are judgrd to be more remote; a principle which the painters make use of to cause some of their figures to apporar farther distant than others on the same plane. 2d. Hence also, romos whote walls are uhitened, appear the smaller; thot fields covered with snow, or white fowers, seen less than when clothed with grass; that mountains covered with snow, in the night time, appear the nearer, and that opaque bodies appear the more remote in the twilight.

The Magnitude of Visible Objects.-The quantity or magnitude of visible objects, is known chiefly by ithe angle contained between two rays drawn from the two extrumes of the olject to the centre of the eye. An object appears so latge as is the angle it subtends; or bodies sien under a greater angle appear grester; and those under a less angle, less, \&c. Hence the same olject appears grrater or less as it is nearer the eye or farther off. And this is called the apparent niagnitude.

But to judge of the real magnitude of an object, we must consider the distance; for since a near and a remole ribject may apprar under equal angles, though the magnitudes be different, the distance inust incerssatily be estimated, because the mugnitude is great or small according as the distance is great or small. So that the real mage nitude is in the compound ratio of the distance and the apparent nugnitude; at least when the subtended angh, or apparent magnitude, is very sroall ; otherwise, the rewi magnitude will be in a ratio compounded of the dibtance 4 D
and the sine of the apjarent magnitude, nearly, or nearer still its tangent.

Hence, objects seen under the same angle, have their zagnitudes in the same ratio as their distances. The chord of an arc of a circle appears of equal magnitude from every point in the circumberence, though one print be vastly mearer than unother. Or if the cye befixed in any point in the circunference, and a right live be moved round so as its extremes be always in the periphery, it will appear of the same mugnitude in every positiom: And the reason is, because the angle it subtrinh is alwass of the same maynitude. And hence also, the eye being piacid in any angle of a rugular polygon, the sides of it *ill all apjemar of equal magnitude; bring all equal chords of a circle drscribed about it.

If the magmtude of an ubject directly opposite to the eye be equal in it, distance from the eys, the whole object will be distinetly sexn, or taken in by the rye, but nothing more. And the neaner you apprench ant otect, the liss part you se of it. - The least anle under wheh an ord-naty object bercomes visible, is wbout one minate of a digree.

Of the Figure of Vistble Objects - This is entimated chefly from our opiuion of the stuatron of the sewral parts of the object. This upinion of the stuation, de, enables the mind to apprethend an external object uniler this or that figure, more justly than any smilitute of the innages in the retinn with the object can; the images being often elliptical, oblong, de, when the objects they exbibit to the mind, are circles, or squares, Acc.

The laus of vision wath regard to the figties of vivible objects are, 1. That if the centre of the eye be exactly in the directoon of a right line, the line will appear only as a point. 2 . If the eye be placell in the direction of a surface, it will appear only wa line. S. If a body be opposed directly townrds the eyc, m as only one plane of the surface can radiate on it, the booly will appear as a surface. 4. A remote arch, viewerl by an eye it the same plane with it, will apporar as a right line. 5. A sphere, viewed at a distunce, appears a cirche. 6. Angular fgures, at a distance, appuar round. 7. If the eye lowk obliquely on the centre of a regular figure, or a circle, the true figure will mot be seen; but the circle will appear oval, \&e.

Visible Horizom, Place, Ac. See the substantives.
VISION, is the act of acring, or of percoiving external objects by the argan of sight. When ans ubjuct is so dissposed, that the rays of lesht, conaing from all parts of it, enter the pupil of the eye, and present its image on the retina, that object is then swn. This is proved by experiment; for if the cye of any animal be taken out, and the skin and fat be carefully stript otif from the back part of it, till only the thin membrane, which is called the retina, remains to terminate it behind, and any object be placed before the front of the 'ye, the picture of that object will be seen figurell as with a pencil on that membrane. There ure thousands of exp-riments which prove that this is the mechanical effect of viston, or sering, but none of them appear so conveniently as this, whach is made with the very cye itself of an unimul; an eye of an ox mewly killed show, this happily, ant with very litule trouble. It will indecd appear singular th this, that the object is inverted, in the picture thus drawn of \(1 t\), in the eye; and the cave is the same in the eye of a living person.

Various other opinions however have been held concerming the means of vision among philosphers.

The Platonists and Stoits held vision to be effected by the emission of says out of the eyes; concriving that there was a kind of light thus riarted out; which, with the light of the external air, taking hold as it were of the objects, n:ndereal them visible; and thus returning back again to the eye, altend and new modified by the cuntact of the objict, made an inptrssion on the pupil, which gave the semation of the object.

Uur illusthous countryman, Roger Bacon, also assents to the upimon that sisual rays proceed from the eye; giving thes reasun for it, that every thing in nature is quaJitied to discharge its proper functions by its own powers, in the same tuanner as the sun, and otber celistul bodies. Opns Mnjus, pa. 2 s .9 .

The Ipicureams held, that vision is performed by the emanation of corporeal spectes or images fion objects; or a hind of atomical ellluvin continually liying of from the intimate parts of objects, to the eye.

The Peripatetics hold, with Epicurus, that vision is produced by the reception of spreies; but they differ from hun in the circumstances; fir they will have the species (which they call intentionales) to be incorporeal. It is true, Aristotle's doctrine of visuon, delivered in his chapter De Aspectu, amounts to mo more than this, that objects nust have some intermediate body, that by this they mag move the organ of sight. His which be uids, in another place, that when we percive trentios, it is their species, not theor matter, that we receive; as a seal makes an imsprestion on wax, without the wax trceiving any thing of thes seal.

But this vague and obscure account the Peripatetics have thought proper to improve. Accordingly, what their master culls specks, the disciplez, understanding of real proper specios, assert, that every visible object expresses a perfect mage of itself in the air contiguous to it; and this imuge another, sumen bat less, in the next air; and the thid another; and so on till the last image arrives at the crystalline, which they are of opinion is the chief organ of sight, or that which inmediately muves the soul. These inseges they call intentuonal species.

The modern phaturophers bowever, as the Curtesiatis and Newtunians, give a better account of vision. They all agree, that it is perfiwined by rays of light reflected from the several points of ubjects received in at the pupil, refracted and collected in their passage, through the coats and humuers to the retina; and this striking, or mahing an impression, on so many points of it; which inpression is convejed, by the correspondent capillaments of the opic nerve, to the brain, \&c.

Baptsia Porta's experiments with the camers obscura, about the middle of the 16 th century, convinced him that vision is performed by the intermission of something into the rye, and not by visual rays proceeding from the eje, as had been the general opinion before bas time; and he wav the first who fully satisfied himself and otbers on this subject; though several philusophess still adhered to the old opmaso.

As for the Peripatetic series or chain of images, it is a mere chimera; and Aristotle's meaning is better understrod without than with them. In fact, setting these assde, the Aristotelian, Cartesian, and Nowtonian doctrines of vision, are very consistent with one another; for

Newton imagines that vision is performed chiefly by the vibrations of a fine medium (which penetrates all bodies) excited in the bottom of the eye by the rays of light, and propagated through the capillaments of the optic nerve, to the sensorium. And Descartes roaintaius, that the sun pressing the materia subtilis, with which the whole universe is every where filled, the vibrations and pulses of that matter reflected from objects, are communicated ta the eye, and thence to the sensory: so that the action or vibration of a medium is equally supposed in all.

It is generally concluded then, that the images of objects are represented on the retina; which is only an expansion of the fine capillaments of the optic nerve, and from whence the optic nerve is continued into the brain. Now any motinn or vibration, impressed on uue extremity of the werve, will be propagated to the other: hence the impulse of the several reys, sent from the several points of the ubject, will be propagated as they are on the retina (that is, in thenr proper colours, \&c, or in particular vibrations, or modes of pressure, corresponding to them) to the place where those capillameuts are interwoven into the substance of the brain. And thus is vision brought to the common case of ansation.

Expericuce teaches us that the eye is capable of viewing objects at a certain distance, without any mental exertion. Beyond this distance, no meutal exertion can be of any avail: hut, within \(2 t\), the eye possesses a power of a lapting itself to the various occasions that occur, the excrcise of which depends on the volition of the mind. How this is effected, is a problem that has very much engaged the attention of oplical writers; but it is doulited whether it has yet been satisfactorily explained. The first theory for the solution of this problem is that of Kepler. He supposes that the ciliary processes contract the diameter of the cye, and lengthen its axis by a muscular power. But Dr. Thomas Young (in some ingenious Observations on Vision in the Plulos. Trans. 1793) ubserves, that these prucesses neither appear to contain any ranscular bibres, nor have any attachinent by which they can be capalle of performing this action.

Descarter ascribed this contraction and elongation to a muscularity of the crystalline, of which be supposed the ciliary processes to be the tenduns: but he neither demonstrated this muscularity, nor sulficienily considered the connexion with the ciliary processes.

De Lahire allows of no change in the eye, except the contraction and dilatation of the pupil: this opinion he counds on an experiment which Dr. Smith bas shown to be fallacious. Haller adopted his hyputhesis, notwith. standing its inconsistency with the principles of optics and constant experieace.

Dr. lemberton supposes that the crystalline contaius muscular fibres, by which one of its surfaces is flattened, while the other is nade convex: but he has not demonstrated the existence of these fibres; and Dr. Jurin has proved that such a change as this is inadequate to the effect.

Dr. Porterfiold conceives that the ciliary processes draw the crystalline forward, and make the connce mone convex. But the ciliary processes are incapable of this action; and it appears from Dr. Jurin's calculations, that a sufficient motion of this kind requires a very visible increase in the length of the axis of the eye; an incorase which has never yet been observed.

Dr. Jurin maintains that the urea, at its aftachment to
the cornea, is muscular: and that the cuatraction of this ring makes the cornea more convex. But this hypothesis is not sufficiently confirmed by observation.

Musechenbroek conjectures that the relaxation of this ciliary zone, which is nothing but the capsule of the vitreous humour where it receives the impression of the ciliary processes, perinis the coasts of the eye to push forward the crystallute and cornea. Such a voluntary relaxation huwever, Dr. loung observey, is wholly without example is the animal economy: besides, if it actually occurred, the coats of the eye could not act as be conceives; nor could they act in this manner without being observed. He adds, that the contraction of the ciliary sone is equally inadequate and unnecesesary.

Dr. Young, having examined these theories, and some others of less moment, proceeds to investigate a naure probable solution of this optical difficulty.-Advering to the observation of Dr. Porterlield, that those who have been cuuched have nut the power of accommodatiug the eye to different distances: and so the retiections of other writers on this subject; be was led to conclude that the raya of light, emitted by objects at a small distance, could ouly be brought to foci on the retina by a neares approach of the crystalline to a spherical form; and he inagined that no other power was capable of producing this clange, besides a muscularity of part or of the whole of its capsule:-but, on closely examining, first with the naked cye and then with a magnifier, the crystalline of an ux's eye turned out of its capsule, he discovered a structure which seened to remove the difficulties that have long embarrassed this branch of optics.
"The crystalline of the ox," says he, " is composed of various similar coats, each of which consists of six muscles, intermixed with a gelatinous substance, und attached to six membranous tendons. Three of the tendons are anterior, and three posterior; their length is about twoethirds of the semidiameter of the coat; their arrabsement is that of thre equal and equidistant rays, meeting in the axis of the crystalline; one of the anterior is directed towards the outer angle of the eye, and one of the prosteriur towards the inner angle, so that the posterior are placed opposite to the middle of the interstices of the anterior, and planes passing through each of the six, and through the axis, would mark on either surface six regular equidistant rays. The musculat fibies arise from both sides of each tendon; they diverge till they reach the greatest circumference of the coat; and, having passed it, they again converse, till they are attached respectively to the sides of the nearest tendons of the opposite surface. The anterior or ponterior portion of the six, viewed tugether, exhibits tho appearance of three pennifirm-tradiated muscles. The anteriop tendons of all the couts are situated in the aume planes, and the posterior ones in the continuations of these planes beyond the axis. Such an arrangement of fibres can be accounted for on no other supposition than that of inuscularity. This mass is inclosed in a strong menbranous capsule, to which it is loosely connected by minute vessels and nerves; and the connexion is more abservable near its greatest ciroumference. Between the mass and its capsuic is found a considerable quantity of an aqueous fluid, the liquid of the crystailine.
"When the will is excrted to view an object at a small distance, the influence of the mind is conveyed through the lenticular ganglion, formed from brancles of the third
and fifth pair of nerves by the filaments perforating the sclerutica, to the orbiculus ciliaris, wnteh may be consideral is an smatar plesus ot merves and veselts; and thence by the caliary processes to the muscle of the crystalliise, which, by the contration of it fibres, becones nuore cunvex, end collects the doverging nays to a forus on the retina. The ilispuation of fibies in each coat is admirsbly adapted to prodace tha change; for, stice the Ifast suiface that can contain a given bulik is that of a splere (Simpen's fiuxions, pa, \(486^{\circ}\) ) the contraction of any surface innst bring its contents nearec to a spinerical form. The hquid of the ery:talline secms to serve as a as urvia in facilitating tiee inotion, and to admit a sufficient change of the muscular part, with a smaller motion of the crosule."

Dr. Ioung procoeds to inquire whether these fitires cun produce an alteration in the form of the lens sufficreatly great to account for the known effects; and lie finds, by calculation, that, supnasing the crysialline to assume a spierical fiom, its diameter will be \(6+2\) thousandile of an inch, and its focal distance in the eye 926. Then, thoregarding the thickness of the cornea, we tind (by Suith, art. 370) that such an eye will collect those zays on the retima, which diserge from a point at the distance of 12 inclies and 8 .tentis. 'This is a greater change than is necessary for un ox's eye; for if it be supposed capable of distuict vision at a distance somewhat has than 12 inches, yet it is probably far short of being able to collect purailel rays. The human crystalline is susecptible of a much greater change of form. 'Ilec ciltary zone may admit of as much extension as this diminution of the diameter of the crystalline will require; and its elnsuctity will assist the cellular texture of the vitreous humenur, and perhaps the gelatinous part of the crystalline, itt restoring the indolent form.-Dr. Young apprehends that the sole office of the optic nerve is to convey sensation to the branin; and that the retina does not cuntribute to supply the lens with nerves.-As the human crystalline rescinbles that of the ox, it may reasonably be presumed that the action of both organs deperds on the same general principlis.

This theory of Dr. loung's however is strougly opprised by 1)r. Honack, (Philins. Trans, 1794, part2, pa. 196). 13e contests the existence of the tuusclis, which Dr. Finumg has ilezcribed, for sereral rasons. First, tron the thaneparency they must possess; otheruine there would be some irregularity in the refraction of thase rays which pass through the several parts, differing theth in shaperand density Another rircumstauce is the nuniter of these muscles. Dr. Young describss 6 in each lamina; and as Leuwenlisek makes 2000 lammax in all, therefore the number of muscles must amount to 12 thousund, the antion of which, Dr.llosack apprehends, must exceed comprebersion. But the existence of these muscles is still more doubtful, if the accuracy of Dr. llosack's observatoons be adinitted. With the assistance of the best ghasses, and with the greatest attention, he could not whe covir the struciure of the cryst. Iline discribed by Dr. loung. but found it to be perfectly transparene. He first observed the lens in its siscid state, and then exposed difficrent lenses to a nibderate degree of beat, so that they becatne opaque and dry; and it was elisy to separate the distince layers described by Dr. Young. These were sa numirous as not to admit of having, each of them six muscles. Another consideration, which seems to prove
that these layers posses no distinct muscles, is that, in this oprque state, thry are not visible, but consist of an almase intinte number of concentic fibres, not divided into particular utthdow, but similar to as many of the finest huiry ot equal thicknems, arranged in similar onders. This regular structure of layers, compeosed of concentic fibres, Dr. Hobsek thinks is much better adapted to the transmisien of the rays of light thith the Irregular structure of muscles. Besides, it ought to be considered that the cryatullue lems is not the mont essential organ in viewing otiject, at ditierent distances; and if this be the case, the proner of the ' ye cannot be owing to any changes in this leils. It is a huci, says Dr. Hosack, that we cant, in a great degree, du without it; as is the cuse after couching or eatraction, by which operation all its parts must be distroyrd. Dr, Porterfield, however, and Dr. Young, on his authority, maintan that patients, after the uperation of couclang, have nut tise power of accommoduting the eye to differint distances of objects. On the whole, Di. Hosack concludes thut no such muscles, as Dr. Young has described, exist, and that be must have been deceived by some other uppearances that resenibled muscios: neither will he allow the effects ascribed to the cilialy processer in changing the shape or situation of the lens.

Dr. Howack then proceds to illustrate the structure and use of the external nuscles of the eye; which are 6 in number, 4 called recti or struipht, and 2 wblique, and by means of which he thinks the bosinuss is effected. The common purposes to which these musclis are subsctient are well known: but tesides there, Dr. Husack suggests that it is not inconsistent with the general laws of nature, nor eveil with the animul economy to imagine that, from their combination, they should have a different uction and an alditional use. In deserbing the precise action of these muscles, he supposes an olject to be seen distinctly, first at the disance of 6 fect; in which cane the picture of it falls exactly on the retima. He then direces his attention to another object at the distance of 6 inches, as neurly as pussible in the same line. While lie is viewing this, he loses sughe of the first object, though the ruys proceeding from it still fall on the eye; and hence he infers that the cye must Inve undirgone some change; so that the rays neet eitiner before wr behind the rettra. But, as rays from a more disiant object concur sonner than those from a nearer one, the piciure of the mare simnite object must fall before the reina, while the aliers forin a distinct imape upron it. But yot the rye cuntinued in the name place; and thereftete the renue nuwt, by some means, huse bretl removed to a greater distance from the forepart of the eye, so as to riceive the picture of the nearer object. This object, he contenes, conld uot be wen distinctly, unless the retina were romoved to a grenter distance, or the refracting power of the media though uhich the rays passed were augmented:-but as the lens is the chief refracting medium, if we admin that thas has no pumer of clanging itselt, we are under the necessity of adupting the first of these two suppositions.

The next object of irquiry is, how the external muscles are capable of preducing the changes. The rorti are strong, broad, and Hat, and arise from the buck part of the orbut of the cyr; nud, passing over the bull as over a pulley, they are insested by broad flat tembons at the anterior part of the eyc. The oblique are inserted tuwards
the posterior part by sinsilar tendons. When these differeit muscles act jointly, the rye being in the horizontal position, and every muatie in action contracting itself, the hur real by their combination anut compress the sarious farts of the eye and lengeten its axis, white the oblique museles serve to krep the cye in its proper direce tion and situation. The convexity of the cornea, by means of ity groat elasticity, is also increased in proporton to the degree of pressure, and thus the rays of hught passing through it are wecessarily more converged. The clongation of the eye serves also ta lengthen the media, in the nqueous, crystalline, und vitroous humours through which the rays pass, so that their powers of refraction are proportionably increased. 'This is the general eff Cl of the contraction of the external muscles, nccorduig to Dr Husack's statement of itt: to which it may be adited, that we prissess the same power bf relaxing them in propurtion to the greater distance of the objuct, till we arrive at the utnast ertent of indolent visum. Dr. Hosack also illustrates this hypothesis by some experiments.
The miarepresentations of vision often depend on the distance of the sbject. Thus, it an opaque globe be placed at a moderate distance from the eye, the picture of it on the retina will be a circle properly diversified with light and shade, so that it will exette in tine mind the sensittion of a sphese or globe; but, if the glebe be placed at a groat distance from the eie, the distance betwern thone lights and shades, which form the picture of a glober, will be ituperceptible, and the globe will appenr no othere wise than as a circular plance. In a lummous glober, distance is not necessary in order to take off the representation of prominent and flat; an iron bullet, lieated very red hot, and held but a few yurds distance from the eye, appears a plane, not a prominent body; it has not the louk of a gluse, but of a circular plane. It is owing to this mivrepterentation of vision that we see the sun and moon flat by the naked rye, and the plamets also, through telescoper-, flat. It is in this lightit abo that astrunomers, when they prak of the sun, mons, and planets, as they uppar to our virw, call them the dishs of the suo, mosn, atal planets, which were.

The mater a globe is to the cye, the smaller segonent of it is visible, the farther of the greater, and at a due distance the lialf; und, on the same principle, the nearer the glube is to the cye, the unvater is is apparent chameter, that is, under the groater andle it will app-ar; the farther off the globe is placid, the less is its appar int sliameter. This is a propesituon of inpurtance, for, on this prituciple. We know that the same glutere, when it apuears larger, is nearer to one eye, and, when smaller, is farther off from it. Threforr, as the globes of the sun and tnoon continue alway - of the same sise, yet appear sometimes larger and sonuctimes smaller to us, it is evident, that they are sunietimes marer and somatimes farther off frum the place whence we siew them. Tuo globes, of different mugnitucle, may be made tu niprar of exactly the same diameter, if they be placed at different distances, and those distance be suactly proportioned to their diameters. Tir this it is owing, that we see the san and moon nearly of the same diumeter; they are, indeed, vastly different in real bulk, but, as the moon is placed greatly nearer to our eyen, the apparent magnitude of that smaller globe is isarly the same with that of the greater.

In this instance of the sun and moon for there cannot
be a more striking one) we sec the misrepresentation of vision in two or thrce severul whys. The appurent dinmeturs of these gluber are so nearly mqaid, that, in their several eliang's of place, they do, it tines, appenr to ins absultutely equal, or inutually greater thm eachother. This is oiten to be sern, but it is it no timee so cobvious, and so periecily evinced, ha it cellipes of the son, which are total, in these we see the apparent magnituifes of the two globes vary so much accoring to their di-tances, that sumenites the moon is largu enangh exuctly to cuver the tiok of the sun, sometimes it is larger, and a part of it every where extemis beyond the dish of the sun; und, on the contrary, somenners it is shallet, and, though the eclipse be absoIulely central, yet it in anmular, or a part of the stin's disk is setn in the midate of the eclijsed part, ontightemed, wol suriuunding the upaque body of the moon in turm of a lucid ring.

When an bhject, which is seen abose, without other olsjucts of comparian \(n\), is of a known mongnituele. wr judge of its distance by its appatent thasmotude; and costons teaches us to do this with tolerable accuracy. This is a practical use of the nisrepresentation of soisn. and, in the same manncr, knowing that we see thing, which are near us, distinetly, and thowe which are distant, contusedly, we judge of the dislance of an objict by the clearness, or contution, in which we see it. We abot juige yet more ausily und truly of the distance of an otjoct by comparing it to another seen at the same tume, the clismince of which is better known, and yet more by conparing it with sespral others, the distances of uhich are note ur less known, or more or less casaly judged of. These are the circumstances which assist us, even by the misrepresentation of viston, to judge of disaance ; but, without one or more of these, the rye does not, in reality, enable us tu juige contcerning the distance of objects.

This misrepresentation, though it serves us on some occasions, yet is very limited in its effects. Thecs, thomph it hi \(l_{1}\) sus greatly in distinguishing the distance of ebjects that are abolit -us, both with respect to ourselves and them, and with respect to themselses with one nother, yet it can do nothing with the wry remote. We see that immense concave cricle, in which we suppose the fixed stars to be placed, int all this vast removefrum us, and no change of place that we coold make to get nearer to it, would be of any avail tor deterniming the distance of the slars from one another. If we look at three or four churchen from a dintaice of as many mules, we see them sland in a certain position with rugard to one another. If we advance a great deal nearer-to itwen, we see that position dhtier, but, if we neove forwara only 8 or 10 leet, the difference is not perce ptible.
Thus, during the last two centuries, numerous dothts and disputaticus have been held amung anatonusts and philosophers, on the iminedate modr and nicans of vision by the eye: some moribing it to the instrumentality of the retina spread over the bottom or posierier part of the rye; and others th the opnque chorodes, tnimedintely belind the retina. By dissctiag the eyes of nuntials, to discover the nature and uxes of the several humatry and coats of that organ, it appears that the eye is justly considered as a natural achronatic instrument, or caniera obscurn, in which pictures of the external objects are exhitited as painted on the retima, by rays introiluced through the aperture of the pupil. This was beautitully demonsirated by the celebrated discovery of Scheiner. By taking tha

\footnotetext{
-
}
eye of an or, recently killed, and stripping the sclerotic coat with the ctobroides from its posterior portion, carefully preserving the retina as it lies upon the vitreous hunour ; then placing the eye in a suitable aperture in the wisdow-shuther of a darkened chamber, with the cornea outwards, a transparent miniature painting of the external landscape, in all its variety of figures and colours, is exhibited on the retina: this experiment established the gene\(r\) ral idcu that it is these pictures that we see, the sensaions of which aro conveyed to the sensorium by the optic serve, the expansion of its substance forming the retina.

This discovery however introduced a new difficulty: the objects exhibited on the retna were found to be completely inverted, tbe upper side being undermust, and the right side changed to the left, and vice versa. Though this inversion might be the natural optical effect of the structure of the eye, how comes it that we do not usually see objects by our cyes inverted, but always in their matural position. Tbis circumstance led to nurnerous disquisitions, mechanical, optical, and metaphywical, to account for it-In the coutroversy relating to which are found the names of Kepler, Descartes, Newton, Hooke, Lahire, Berkeley, Porterfield, Smith, Reid, Nichell, Priestley, Mariotte, Picard, Pacquet, and many obhers; most of thest agreeing to the general idea of the retina being the chief cause of vision, but mostly endeuvnuring in account for the circumstance of the inversion of the inages, while nevertheless the objuets are seets in their due pasitions. At length it was accidentally discovered by Mariothe, that there is a particular part io the bottom of the eye on which no image is painted, or on which the rays have no effect, viz, the part where the optic nerve is inserted. Now it the retina is ouly the extension or continuation of this part, Mariotte inferred that if this were the cause of vision, the insortion of the nerve aught to be at least as sumible to the ruys of light, as the rest of the retinu, which is only a duffusion of the former. M. considering fanther thats the choruides lined the whole of the botton of the eye, exeepting the place of the insertion of the optic nerve, that is, the whole of the space extibiting the painted images, he concluded thut the clforosies was the real seat and cause of vision, and not the relina.

This discovery and conclusion gave a new turn to the question, and the disquisitions of philomphers. Must of the beforementioned persons entered into the dispute, some adopting the one opinion and some the other, but without couning to auy settled and general ducision. Dr. Porterfild agries with the most part of optical writers, that the retina is the true seat of viniou; and that though it is expanded over the whole concave surface of the eys as far as the ligamentuan ciliare, yet it is not all equilly sensible. While Mr. Walker, with several others, is of a contrary opinhon: towards the clowe of his disquinition on visiun this a uthor addd, consistently with the theory just delivered, "I should conclule, that we have a dicided proof that the posteriou part of the retina is utterly insenstble, since at the entrance of the nerve, where it exists in the greatest quantity, it can be dernomstrated to be so; and that vision is wanting at this spot precisely, bucause where the nerre enters there is no choroitles to reflect the rays to the sensible anterior porton." Dr. Rejd, also ducidedly concludes, "We have reason to tellieve that the rays of light make some impresaton on the retina; but we are not conscious of this inporssonn; nor have anatomist or philosuphers been able to discover the nature and effects of it ;
whether it produce a vibration in the nerve, or motion of some subtile fluid in the nerve, or something different from either, to which we cannot give a name." See an account of the several arguments of the different writers, at the end of Dr. Priestley's Flistory of Optics.

After the contrary ideas and disquisitions of all the optucians and physiologists about the preference due to the one or the other of the two coats, the retima and the choroides, we bave just seen a small pamphlet, part of a promised greater work, the production of a clergyman of the name of Horn, on "The Seat of Vision," in 8vo. 1813, In this litule piece, after a neat and concise account of the different hyputheses and arguments of his predecensors in this line, the author relates some ingenious experiments accompanied with reflections on the subject, and 6ually deduces a theory which appears more rational and satibfactory than any of the former. He discharges the retina and the choroides each from the sole and exclusive office that had been assigned to it by the former contendiag parties, and assigns to each its necessary, but suburdinare office, in the faculty of vision, the principle and ultimate part being performed by the optic nerve, which conveys the sensatiou immediately to the sensorium in the brain.
After some pertinent reflections this author adds, "Persuaded, therefure, that I had actually discovered the true origin of the retina, and that it had in conseyuence lost all clain to superior sensibility, and to the principle function in rision, I was induced, from a general survey of the or'gan, to conclude that the sole use of this transparent membrane, in the mechanism of vision, is to produce reflection, in a manerer similar to the pulished surface of a metallic reflector, or perhaps it might, with more prupriety, be conpared to glass, the choroides behind answering the purpose of the metallic coating upon the convex surface of a mirror.
"In prosecutingthis inquiry, several circumstances contributed to direct my attention to the optic nerve, as the grand organ of vision. In surveying the general structure of the eye, I wis particularly atruck with the magnitude of this nerve, and the singular manner of its termintion in the concave surface of the globe. The oprici do not, like every other pair of norves, terminate in branches; they are the laraest in the system, yet the entire nervous substance perforatea the globe perpendicularly, presenting in its concavity a well detined circular barc, fringed with the cboroides, and covered with the retina. The base was not only rendered remarkailly distinct, by the following experiment; but at the same time 1 observed a beautiful etfect produced by light upon the nerve. Having procured the eje of an ox recently killed, after dividing it transversely, and abstraciing the vitreous humour from its posterior purtion, leaving about 4 lines of the nerve attached, I placed the segment of the globe in a suitable aperture made in a wimbow-shutter, with the concave surface inwards. Thus situated, having darkened the chaniber, the base of she nerve exhibited, in itw little bemisphere, an appearance beautifully distinct and luminous, having a striking rewemblance to the sun, as seen through one of those brownish fogs with which the atmosphete is sometime's charged in the witter season. The light which produced this plenomeuon, must have pervaded the whole extent of the nerve; for, being completely inclosed by the muscles and fat, it was impossible that any lateral lighe could bave contributed to the appearance. The same phenomeson may be seen, though with less effect, by
holding a similar portion of the globe between the eye and a lighted cantle.
"The reader must have anticipated, and therefore will now readily compretend the manner in which I conceive visiun to be acconiplished. Rays, from all points of such objects as are opposed to the organ, pass through the pupit, and, after refraction in the diferent humours, delineate perfect, but inverted pictures, on the retina at the bottom of the eye; these pictures are instantly refected, in their various colours and shades, on the anterior portion of the concavity; another reffection from hence raises images of the external oljects near the middle of the vitrenus homour, in their natoral order and position; these images make due impressions on the opposite base of the nerve, which are transmitted by it to the brain: thus the sensution is produced, and vision performed.
" Ever since Scheiner exhibited those beautiful pictures on the retina, philosophers have supposed the mind, sowehow, affected by the impressioms made on this membrane; but, mistaking the proper organ, thry always found the optical phenumena, and she rensations of vision. at variance, and laboured in vain to reconcile them. However, havug demonstrated, that neither the retina, uor the choroides, is the isumedite sat of vision; and having restored the optic nerve to that dignified function in the theory which it naturally possesses in the organ, all the inferior instruments will be found hamotiously cnoperating with it, in producing the various phenomena of vision.
" It is nolonger a quesion, why the optic nerve bus so very large a trunk bestoned on it; why the whol- nervous substance cuters the glabe perpendicwlaly, and its circular base apprars within, deatitute of the choroides. If the medallary substance had nut perforated the globe, or if the choroide menibrane bad covered the base of the serve; in either cas', it is rvident, threre could have been no mspression tade by the images in the eye on the neivous substance; corsequently, in such a diaporition of thangs, there would have been no sivion.
"Howewr, netwithstandite, this surprising coincidence of things, in favour of the base of the tiverie, as the immediate iustrument of vision, those conversant with the subject may have forceern whast thry deem an insuperable objection, which, as saon as it app'ars, they expect to lind me drop, and the whule superstrecture I have been raising come to the ground. In short, it is nothing less than the well-known fact, demonstrated by the experimeit of Mariotte, that the orgnat in totully insensible to the impression of light, at the very spot that 1 hase fixed on as the proper scat of vision.
"This phenomenon, I confess, appeared for some time a formidable obstacle; still, 1 fett a certain cotifidence powerfully inciting me to perseverance. More disposed to suspect some error in the conclusions drawn by philosophers from the experiment, than to duubt those principles, in the structure of the organ, by which the visual image is not only rectified, and ather difficult phenomena sulved, but uphil which I conceived a satisfactory theory of vision might be established; I procereded, the nure anxiously, to seck another sulution of this uptical diff. culty, than that commonly received.
"This inseasible spot in the organ of vision is indeed the bitden rock, of which the most specious thenries have been lost. Philosophers have been guilty of a fatal over-sight-they have tutally mistaken the real cause of this wonderful defect in vision; and consequently heve left the
most beautiful, if not the most important department of physical science, epveloped in mystery, and surrocinded with difficulties, which they confess to be inexplicable. The following optical facts will at once dispet the darkness which bas so long bung over this region of plitiosophy.
"If we take a convex lens, and place it in the window shutter of a dark room, and the eye be successively directed towards it, three effects will be produced. When the eye is situated farther \(I\) mon the fens than the focus of parallet rays, a vory distiuct, but diminished landscspe, with all the objects inverted, is seran in the lems. On the contrary, if the eye be pusited within the focal distance, the objects appear in their natural position, enlarged, but very indistitict. Now, undoubredly, the medium distance between these two siruations, in which she appearances of the objects are so very different, is the Irue locus of the lens, and the place where the images would be painted on a shect of paper interpused. But when the eye is brought to occupy this point, no image whutever, in the lens, impresses the organ ; a circular spot otaly is peicetved, uniformly tinged with the prevaling colour of the landscape : for instance, if the ground be coivered with soow the fens appears white: if the surrounding scenery consists of verdant fields, wivois, dec, the culour exhibitid by the lens is green ; or if the prospect be upward to the sky, the lens in this case assumes in aeure hese.
"Thus, the cause of that mysterious defect in the field of vison is detertid; the above lact affording a ckrar demonstration of the -ffect produced on the base of the optic nerve, by she famous experiment with the patch upon the wall. Let the wall in thes exper riment be blue, or green, dr any colour whatever, the paper is constantly loas in the general bue of the ground upon which it ts lixed. But if the loss of the object proceeded trom a real insensibility of the nerve, or retis at this place, whatever the colour of the wall might br, a very pereeptible dark spot would, invariatuly, be snbsututed in its stad. So far is thus, however, frum betug the effict produced by the expernment, that, when the wall hupprem to be white, and even a black paper is fixed upon it, to ubseurity can be discemed: the biark patchit vinurely lost, and an unilurm whiteness takes pensersion of its place.
". After this induction of facts, confinmed by the laws of optics, the concluston can ine kenger be coubtul, that the surprosing defect in vision, diveovered by Mariotte, is neither to be attributed to any inemsibility in the retina, nor to the nerse itself, which in the true scat of vision: the phenomenon proceeds sulely from the pupil. When the base of the nerve is brought, by distorturg the orgen, into a struight dimetion with the pupt and the object, the pencils of 19)", procerting from the pupil, have their fuet on the base of the neive; and therofore, agreably to the plienomenom of the lim alove described, that portion of the cornea and hmurours an the axis of the rye, equal to the diamcter of the pural, is tinged with the colour of the ground upun which the paper is fixid; therefore, while the object, situated in a line with the pupil and base of the nefve, makes nomuression upoin titis, still, the surtounding objects hase their forms distinctly painted upon and refiected from the retina. The images, thus fromed in the vitreous humour, make the same impnessions upon the bave of the netve, as in ordimary vision: and lence a fathfol representation is made to the mind of the whotescene, except that portion in the centre corresponding to the di-

VIs
Field of Visbon. Sce Field.
VISUAL, relating to sight, or sceing.
Vistal Angle, is the angle under which an object is seen, or which it subtends. Soe Angle.

Vimual Libe. See Link.
Visual Point, ill Pirspective, is a point in the horizoutal line, where all the ocular rays unite. Thus, a pursoin standing in a long straight gallery, and looking forward; the sides, fiesor, and cetling seem to mect and tonel one unother in this paint, or combin centre.

Viseat. Kiys, are lims of light, couceived to come from ath wbiect to the ege.

VITLLLiJO, of Vitallo, a Polish mathematician, of the 13elt century, as he Bourished abunt 1854. We have of bus a large Treatise on Optics, the best edition of which is that of \(15 ; 2\). Vitellu was the first optical writer of any consequence wnohe the u odern liuropeans. He collected all that was given by Euchd, Arrhimedes, Ptolemy, anl aibuzen; though liss sork is of but little Use in the present day.

VITILEOC's Hunomr, or Vitrins Humor, denates the third or glassy hunwur of the eye; thus called from its resemblance to molted glass. It lies under the rrystalline; by the impression of which, its fore part is rendered concare. It greatly exceeds in quantuty both the aqueous and erystallime humours take.in together, and consequently occupies much the greatest part of the cavity of the globe of the eye. Scheiner says, that the refractive power of this humour is a medium between those of the aqueous, which does not difficr tuuch frotn water, and of the crystalline, which is nearly the same with glass. Hawhsbee makes its refractive power the same with that of water; and, according to Robertson, its specific gravity agrees nearly with that of water.
 Isbrated Ronan arclitect, of whom however nothing particular is hnown, but what is to be collected from his ten bosiky De Architectura, still extant. In the preface to the sixth torek he states, that he was carefully educated by his parents, and iustructed in the whoie circle of arts and sciences; a circumstance which be speaks of with much gratitude, laying it down as certain, that no man can bee a complete architect, without some kouwledge and skill in every one of them. And in the preface to the first book he infurms us, that he was known to Julius Casar ; that be was afterwards recommended by Octavia to her brother Angustus Cesar; and that he was so favoured and provided for by this emperor, ax to be out of all frar of poverty as long as he might live.

It is supposed that Vitruvius was born either at Rome or Verons ; but it is not known which. Ilis books of aschitecture are addressed to Augustus Casar, and not only show consummate skilt in that particular science, but also very upcommon genius and matural abilities. Cardan, in his 16th book De Subultate, ranks Vitruvius as one of the 12 pernons, whom he supposes to have excelled all men in the force of genius and inwotion; and would not have scrupled to have given him the first placr, if it could be imagined that he had delivered nothing but his own discoveries. Thone 12 pirsuns werc, Euclid, Archimedes, Apullonius Pergaus, Aristotle, Archytas of Tarentum, Vitruvius, Achindus, Mahomet Ibn Moses the inventor or improver of Algebra, Duns Scotus, Ricbard Suisset surnamed the Calculator, Galen, and Ileber of Spain.

The architecture of Vitruvius has been often printed; but the best edition is that of Amsterdam in \(\mathbf{1 6 4 9}\). Perrault also, the noted French architect, gave an excellent French translation of the same, with the addition of notes and figures; the first edition of which was published at Paris in 167 s , and the second, much improved, in 1684. -Mr. William Newton too, an ingenious architect, and date surveyor to the works at Greenwich Hospital, pubJished in 1780 \&c, curious commentaries on Vitruvius, illustrated with figures; to which is added a description, with figures, of the Military Machines used by the Ancients.

VIVIANI (Vincentio), a celebrated Italian mathematician, was born at Florence in 1621 or 1622 . He was the last disciple of the illustrious Galileo, and lived with him from the 17 th to the 20th year of his age. After the death of his great master, he passed two or three years more in prosecuting geometrical studies without interruption; and in this time it was that he formed the design of his Restoration of Aristeus. This ancient geometrician, who was contemporary with Euclid, had composed five books of problems De Lucis Soldis, the bare propositions of which were collected by Pappus, but the books are entirely lost; which Viviani undertook to restore by the force of his genius.

He discontinued this work, bowever, before it was finished, in order to apply himself to another of the same kind; and that was, to restore the 5th book of Apollonius's Conic Sections. While he was engaged in this, the famous Borelli found, in the library of the grand duke of Tuscany, an Arabic manuscript, with a Latin inscription, which imported, that it contained the 8 books of Apollonius's Conic Sections; of which the 8th however was not found to be there. He carried this manuscript to Rome, in order to translate it, with the assistance of a professor of the Oriental languages. Viviani, very unwilling to lose the fruits of his labours, procured a certificate that he did not understand the Arabic language, and knew nothing of that manuscript ; he was so jealous on this liead, that he would not even suffer Borelli to send him an account of any thing relating to it. At length he finished his book, and published it, 1659, in folio, with this title, De Maximis \& Minimis Geometrica Divinatio in quintum Couicorum Apollonii Pergxi. It was found that he had more than diviaed; as he seemed superior to Apollonius himself.

After this, Viviani was obliged to interrupt his studies for the service of his prince, in an affair of great importance, which was, to prevent the inundations of the Tiber, in which Cassini and he were employed for some time, though nothing was entirely executed.

In \(166+\) he had the honour of a pension from Louis the 14th, a prince to whom he was not subject, nor could indeed be useful. In consequence he resolved to finish his Divination on Aristeus, with a view to dedicate it to that prince; but he was interrupted in this task again by public works, and some negociations which his royal master intrusted to him.-In 1666 be was honoured by the grand duke with the title of his first mathematician.He resolved three prublems, which had been proposed to all the mathematicians of Europe, and dedicated the work to the memory of Mr . Chapelain, under the title of Enodatio Problematuni \&c,-He proposed the problem of the quadrable spherical surface, of which Leibnitz and I'Hospital gave solutions by the Calculus Differentialis. Yol.II.
-In 1669, he was chosen to fill, in the Royal Academy of Sciences, a place among the 8 foreign associates. This new favour reanimated his zeal; and he published three books of his Divination on Aristeus, at Florence in 1701, which be dedicated to the king of France. It is a thin folio, entitled, De Locis Solidis secunda Divinatio Geometrica, \&c. This was a second edition enlarged; the first having been printed at Florence in 1673.-Viviani empluyed the fortune, which be had raised by the bounties of his priuce, in building a magnificent house at Florence; in which hę placed a bust of Galileo, with several inscriptions in honour of that great man; and died in 1703, at 81 years of age.
Viviani had, suys fontenelle, that innocence and simplicity of manners which persons commonly preserve, who have less commerce with men than with books; without that roughness, and a certain savage fierceness, which those often acquire who have only to deal with books, not with inen. He was affable, modest, a steady and faithful friend, and, what includes many virtues in one, he was grateful in the highest degree for favours.

ULLAGE, of a Cask, in Gauging, is so much as it wants of being full.

ULLOA (Don Antoxio DE), a learned Spaniard, was born in 1716, and died in 1795. His progress in science was so rapid, that at the age of 18 he was associated with George Juan and la Condamine, at the instance of Louis the 15 th of France, and under the patronage of the king of Spain, to proceed to South America, to make observations for ascertaining the figure of the earth. He continued in America till 1744, when returning, he was taken prisoner, and brought to England, where he was elected a \(\boldsymbol{r}\), R.s. He wat afterwards made governor of louisiana. An account of his voyage was published at Madrid in 1748, in 5 vols. 4 to.

ULTERIOR, in Gcography, is applied to some part of a country or province, which, with regard to the rest of that country, is situate on the farther side of a river, or mountain, or other boundary, which divides the country into two parts.

\section*{ULTimate Ratios. Sce Prime, \&e.}

ULTRAMUNDANE, beyond the world, is that part of the universe supposed to be without or beyond the limits of our world or system.

UMBILICUS, and Umailical Point, in Geometry, the same with focus.

UMBRA, a Shadow. See Liout, Shadow, PgyumBRA, \&c.

UNClA, a term generally used for the 12th part of a thing; in which sense it occurs in Latin writers, both for a weight, called by us an ounce, and a measure called an inch.

UNCI平, in Algebra, first used by Vieta, are the numbers prefixed to the letters in the terms of any power of a binomial ; now more usually, and generally, called coefficients. Thus, in the 4 th power of \(a+b\), viz, \(a^{4}+\) \(4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}\), the unciae are \(1,4,6,4,1\).

Briggs first showed how to find these unciæ, one from another, in any power, independent of the foregoing powers. They are now usually found by what is called Newton's binomial theorem, which is the same rule as Briggs's, but in another form. See Binomial.

UNDECAGON, is a polygon of eleven sides.
If the side of a regular undecagon be 1 , its arca will be \(+\mathrm{E}\)
\(9 \cdot 3656399=\frac{4}{4} \times\) tang. of \(733^{7} \mathbf{T}\) degrees; and therefore if this number be multiplied by the square of the side of any other regular undecagon, the product will be the area of that undecagon. See my Mensuration, pa. 85, \& \(c\), 4 th edit.

UNDETEARMINED, is sometimes used for IndetermiNate.

UNDULATORI Motion, is applied to a motion in the air, by which its part, are agntated like the waves of the seat ; as is suppessed to be the case when the string of a musical instrument is struck. This undulatory motion of the air is supposed the matter or cause of sound.-Instead of the undulatory, some authors choose to call tisis a vibratory motion.

UNEVEN Number, the same as odd number, or such as cannot be divided by 2 without lcaving 1 remaining. The series of uneven numbers are 1,3,3,7,9, \&c. See Number, and Odd Number.

UNFORMED Stars, are such as were not contained in the constellations. But on the modern celestial globes, the constellations are made to include those unformed stars.

UNGULA, in Geometry, is a part cut off a cylinder, cone, \&c, by a plane passing obliquely through the base, and part of the curve surface; so called from its resemblance to the (ungula) hoof of a horse sc. For the contents \&ce of such ungulas, see my Mensuration, pa. 161, \&c, 4th edition.

UNICORN, in Astronomy. Sce Monoceros.
UNIIORM or Equable Motion, is that by which a body passes always with the same celerity, or over equal spaces in equal times. Sec Motiox.-In unifurm manfions, the spaces described or passed over, are in the compound ratio of the times and velocities; but the spaces are simply as the times, when the velocity is given; and as the velocities, when the time is given.

Untrons Matter, in Nisural Philosophy, is that which is all of the same hind and texture.

UNISON, in Music, is when two sounds are exactly alike, or the same note, or tone. What constitutes a - unison, is the equality of the number of vibrations, made in the same time, by the two sonorous bodies,-It is a noted phenomenon in music, that an intense sound being raised, either with the voice or a sonorous body, another sonoruus borly near it, whose tone is either unison or octave to that tone, will sound its proper note, unison or octave, to the given note. The experiment is easily tried with the strings of two instrumuts; or with a voice and harpsichord; or a hell, or even a drinking-glass.

This phenomenon is thus accounted for: One string being struck, and the air put into a vibratory motion by it; every other string, within the reach of that motion, will receive some impression from it: but each string can only move with a determinate velocity of recourses or vibrations; and all unisons proceed from equal vibrations; and other concerds from other proportions of vibration. The unison string then, keeping equal pace with the sounding string, as having the sane tneasure of vibrations, must have ins motion continued, and still improved, till at length its motion become sensible, and it give a distinct sound. Other concording strings have their motions propagated in different deprees, according to the frequency of the coincidence of their vibrations with those of the sounded string: the octave therefore most sensibly;
then the 5 th; after which, the crossing of the motions prevents any sensible effect.

This is illustrated, as Galileo first suggested, by the pendulum; which being set a-moving, the motion may be contimued and augmented, by making frequent, light, coincident impulses; as blowing on it when the vibration is just finished: but if it be touched by any cruss or opposite motion, and that frequently, the motion will be interropted, and cease altogether. So, of two unison strings, if the one be forcibly struck, it communicates motion, by means of the air, to the other; and both performing their vibratoons together, the motion of that other will be inproved and heightened by the frequent impulses received from the vibrations of the first, because given precisely when the other has finished its vibration, and is ready to return: but if the vibrations of the chords be unequal in duration, there will be a crossing of motions, more or less, according to the proportion of the inequality; by which the motion of the untouched string will be so checked, as never to be sensible. And this we find to be the case in all consonances, except unison, octave, and the fifth.

UNIT, Unite, of Uxttr, in Aritbinetic, the number one, or one single individual part of discrete quantity: Sec Nvmber. - The place of units, is the first place on the right hand in integer numbers.- According to Euclid. unity is nut a number, for le defines number to be a nulittude of units.

UNITY, the abstract or quality which constitutes or denominates a thing one.

UNIVERSE, H collective name, signifying the assemblage of heaven and earth, with all things in them. The Ancients, and after them the Cartesians, imagine the universe to be infinite; and the reason they give is, that it implies a contradiction to suppose it finite or bounded; since it is impossible not to conceive space beyond any limits that can be assigned; which space, according to the Cartesians, is body, and consequently part of the universe.

UNLIKF, suanritics, in Algebra, are such as are expressed by different letters, or by different powers of the same letter. Thus, \(a\), and \(b\), and \(a^{2}\), and \(a b\) are all unlike quantitics.

Unlikr Sigus, ate the different signs + and -.
UNLIMITED or Indererminate Problem, is such a one as admits of many, or even of infinite answers. As, to divide a given traagle into two equal parts; or to describe a circle through two given punts. See Diopmanstine and Indererminate.

VOID Space, in Physics. See Vactum.
VOLTAISM, or GALVAW 18 sy , is a curiousand important branch of electricity, depending on metallic combinations fint accidentally discovered by professor Gaivani, of Bologna, about the year 1790. As we are indebted to that gentleman for the earliest insulated facts which paved the way to this science; so it appears we are indebted to professor Volta for their explanation, and application to purposes of real utility; and to sir Humphry Davy for the grand and simple law of nature by which they operate it the production of effects.

Fir a history of the dicovery and practice of this cutious branch of electricity, sce our article Galvantsm.

VOLUTE', in Architecture, a kind of spiral scroll, and used in the lonic and Composite capitals; of which it makes the principal characteristic and ornament.

VORTEX, or Wihr liwimp, in Metenrology, a sudden, rapid, violent motion of the air, in circular whirling directions.

Vontex is also used for an edily or whirlpool, or a body of water, in certain seas and rivers, which runs rapidly round, forming a sort of cavity in the middle.

Vortex, in the Cartesian Plilosophy, is a system or collection of particles of matter moving the same way, and about the sande axis.-Such vortices are the grand machines by which these phatosophers attempt tu solve most of the motions and other phenomena of the beavenly bodies. And accordingly, the doctime of these vortices makes a great part of the Cartesian philosophy.

The matter of the world they hold to have been divided at the beginning into innunerable anall equal particles, each endowed with an equal degrec of motion, both about its own centre, and spparately, so as to constitute a fluid. Several systems, or collections of this matter, they further stale, have been endowed with a common motion about certuin points, as common centres, placed at equal chastances, and that the matters, moving round these, composed so many vortices.

Then, the primitive particles of the matter they suppose, by these intestine motions, to become, as it were, ground into spherical figures, and so to compose globules of divers magnitudes; which they call the matter of the second element: and the particles rubbed, or ground off them, to bring them to that form, they call the matter of the first element. And since there would be more of the first element than would suffice to fill all the vacuities between the globules of the second, they suppose the remaining part to bedriven towards the centre of the vortex, by the circular motion of the globules; and that being there amassed into a splere, it would produce a body like the sum.

This sun being thus formed, and moving about its own axis with tlie common matter of the vortex, would necessarily throw out some parts of its matter, through the vacuities of the globules of the second element constituting the vortex ; and this especially at such places as are farthest from its poles; recciving, at the same time, in, by these poles, as much as it loses in its equatorial parts. And, by this means, it would be able to carry round with it those globules that are marest, with the greater velocity; and the remoter, with less. And by this means, thuse globules which are nearest the centre of the sun, must be smallest; because, were they greater, or equal, they would, by reason of their velocity, have a greater centrifugal force, and recede from the centre. If it should happen, that any of these sun-like bodies, in the centres of the several vortices, shonld be so incrustated, and weakened, as to be carried about in the vortex of the true sun ; if it were of less solidity, or had less motion, than the globules towards the extremity of the solar vortex, it would descend towards she sun, till it met with globules of the same solidity, and susceptible of the same degree of motion with itself; and thus, being fixed there, it would be for ever after carried about by the motion of the vortex, without either approaching any nearer to the sun, or receding froin it; and so would become a planet.

Supposing then all this; we are next to imagine, that our system was at first divided intoseveral vortices, in the centre of each of which was a lucid apherical body ; and that some of these, being gradually incrustated, were stwallowed up by others which were larger and more
powerful, till at length they were all destroyed, and received by the largest solar vortex; except some few which were thrown off in right lines from one vortex to another, and so became comets.

But this doctrine of vortices is, at best, merely bypotheugal. It does not pretend to show by what laws and means the celestial notions are effected, so much as by what means they pussibly might, in case it should have so pleased the Creator. But we have another principle which accounts for the same phenomena as well, and far better shan that of vortices; and which we plainly find has an actual existence in the nature of things: and this is gravity, or the weight of bodies.

There is, in the Phllosophical Transactions, a Physicomathematical temonstration of the impossibilty and insufficiency of vorrices to account for the Celestial Phenomena; by Muns. de Sigorne. See No. 457, seet. vi. pa. 409 et serf. -Thes author endeavours to show, that the mechanical generation of a vortex is impossible; and that it has only an axitugal force, and not a centrifugal and centripetal one; that it is not sufficient for explaining gravity and its properties; that it destroys Kepler's astronomical laws ; and therefore he cuncludes, with Newton, that the hypothesis of vortices is fitter to disturb than explain the celestial motions. We must refer to the dissertation itself for the proof of these assertions. SeeCartestan Philosophy.

But these vortices having long since been excladed by all philosophers, as utterly inconsistent with the laws and phenomena of the universe, it is useless to dwell longer upon them.

VOSSIUS (Gerard John), one of the most learned and laborious writers of the 17 th century, was of a considrable family in the Netherlands; and was born in 1577, in the Palatinate near Heidelberg, at a place where his father, John Vossius, was minister. He first learned Latin, Greek, and Philosophy at Dort, where his father had settled, and died. In 1595 be went to Leyden, where he farther pursued these studies, in conjunction with mathematics, in which science he made a considerable progress. He became master of arta and doctor in philosophy in 1598 ; and soon after, director of the college at Dort; then, in 1614, director of the theological college just founded at leyden ; and, in 1618 , professor of cloquence and chronology in the academy there, the same year in which appeared his History of the Pelagian Controversy, This history procured him much odium and disgrace on the continent, but an ample reward in England, where archbishop Laud obtained leave of king Charles the 1st for Vossius to hold a prebendary in the church of Canterbury, while he resided at Leyden: this was in 1629 , when he came over to be installed, took a doctor of laws degree at Oxford, and then returned.In 1683 he was called to Amsteriam to fill the chair of a professor of history; where he died in \(16+9\), at 72 years of age; after having written and published as many works as, when they came to be collected and printed at Amsterdam in 1695 kc , made 6 volumes folio, writings which will long continue to be read with pleasure and profit. The principal of these are,-1. Etymologicon Lingue Latine.-2. De Origine \& Progressu Liololatriax-3. De Historicis Grecis.-4. De Historicis Latinis.-5. De Arte Grammatica.-6. De Vitiis Sermonis \& Glosematis La-tinu-Barbaris.-7. Institutiones Oratoria,-8. Institutiones Poctice-9. Ars Historica.-10. De quatuor Ar-
+E2
'tibus popularibus, Grammatice, Gymnastice, Musice, \& Graphice.-11. De Philologia.-12. De Universa Mathesens Natura \& Constitutione.-13. De Philosophia.14. De Philossphorum Sectis.-15. De Veterum Poetarum Temponibus.

Vossius (Denis), son of the foregoing, died at se years of age, a prodigy of learning, whose incessant studies brought on lim so imnature a death. There are of his, among other smaller pieces, Notes on Cesar's Commentaries, and on Maimonides on Idolatry.

Vossius (Francis), brother of Denis and son of Gerard John, died in 1645, after having published a Latin poem in 1640 , on a naval victory gained by the celebrated Van Troinp.

Vossius (Gerard), brother of Denis and Francis, and son of Gerard Jolin, wrote Notes upon Paterculus, which were printed in 1639. He was one of the most learned critics of the 17 th century; but died in 1640 , like his two brothers, at a very early age, and before their father.

Vossics (Isaac), was the youngest son of Gerard John, and the only one that survived lum. He was born at Layden in 1618, and was a than of great talents and learning. His father was his only preceptor, and his whole time was spent in study. His merit recommended him to a correspondence with queen Cbristina of Sweden, who employed him in some literary commissions. At ber request, he made several journeys into Sweden, where he had the honour to teach her the Grech language; though she afterwards discarded him on bearing that he intended to write against Salmasius, for whom she had a particular regard. In 1663 he received a handsome present of money from Louis the 14th of France, accompanicd with a complimentary letter from the minister Colbert.-In 1670 he came over to Eingland, when he was created doctor of laws at Oxford, and hing Charles the 2d made him canon of Windsor; though be knew his character well enough to say, there was nothing that Vossius refused to believe, excepting the Bible. He appears indeed, by his publications, which are neither so numerous nor so useful as his father's, to have been a most credulous man, while he afforded many circumstances to hring his religious faith in question. He died at his lodgings in Windsor Castle, in 1689 ; leaving behind him the best private library, as it was theta supposed, in the world; which, to the sharue and reproach of England, was suffered to be purchased and carried away by the university of Leyden. His publications chiefly were:-1. Periplus Scylacis Caryandensis, \&c, 1639.-2. Justin, with Notes, 1640.-3. Ignatil Epistol \(r\), \& Barnabe Epistola, 1646.4. Pomponius Mela de Situ Orbis, 1648.-5. Dissertatio de vera Etate Mundi, \& cc, 1659.-6. De Septuaginta Interpretibus, \&c, 1661.-7. De Luce, 1662.-8. De Motu Marium \& Ventorum,-9. De Nili \& aliorum Fluminum Origine. -10 . De Poematum Cantu \& Viribus Rythmi, 16ї3.-11. De Sibyllinis aliisque, quare Christi natalem priecessere, 16:9.-12. Catullus, \& in cum Isaaci Vossii Observationes, 1684.-13. Variarum Observationum liber, 1685 , in which are contained the following pieces: viz, te Antiqua Romx \(\mathbb{\&}\) aliarum quarundam Urbium Magnitudine; De Artibus \& Scientiis Sinarum ; De Urigiue \&e Progressu Pulveris Bellici apud Europaeos; De Triremium \& Liburnicarun Constructione; De Emendatione Longitudinum; De patefacienda per Septentrionem ad Japonenses \& Indos Navigatione;

De apparentibus in Lana circulis; Diurna Tellaris conversione omnia gravia ad mediun tendere.
VOUSSOIRS, vault-stones, are the stones which immediately form the arch of a bridge, \&c, bcing cut somewhat in the manner of a truncated pyramid or wrdge, their under sides constituting the intrados, to which their joints or ends should be every where in a perpendicular direction.
The length of the middle voussoir, or key-stone, and which is the least of all, should be about it or \(\frac{1}{1}\) th of the span of the aich; froin hence these stones should be made larger and larger, all the way down to the inupost; that they may the wetter sustain the great weight which rests upon them, without being crushed or broken, and that they may slso bind the firmer together.

To find the just length of the voussoirs, or the figure of the extrados, when that of the intrador is given; see the Principles of Bridges in my Tracts, or Emerson's Construction of Arches, in his voluine of Miscellanies.

URANIBCHGH, or celcstial town, the name of a celebrated observatory, in a castle in the litile island Weenen, in the Suund; built by the celebrated Dainsh astronomer, 'I'ycho 13ralie, who furuished it with instruments for observing the coorse and motions of the heavenly bodies. -This observatory, which was finished alout the year 1580, had not subsisted above 17 years when Tycho, who little thougit to have erected an edifice of so short a duration, and who had even published the figure and pesition of the heavens, which he bad chosen for the noment to lay the first stone in, was obliged to abandon his country. Soon afier this, the persons to whom the property of the islund was given, demolished the bailding: part of the roils was dispersed into divers places: the rest served to build Tycho a handsome seat upon his ancient estate, which to this day bears the name of Uraniburgh; and it was here that Tycho composed his catalogue of the stars. Its latitude is \(55^{\circ} 54^{\prime}\) nortb, and longitude \(12^{\circ} 47^{\prime}\) vast of Greenwich.
M. Picart, making a voyage to Uraniburgh, found that Tycho's meridian line, there drawn, deviated from the meridian of the world; which seems to confirm the conjecture of some persons, that the position of the meridian line may vary.

URANOLITE; the same as AEuolite.
URANLS, a new prinary planet, discovered by Dr. Herschel at Bath, in the night of March 13, 1781. It is sometines also called the Georgian Plant, and the New Planet, from its having been newly or lately discovered, also Herschel's Planel, from the nane of its discoverer, and the Planet llerschel, or simply HerscheL. The planet is denoted by this character H .

This plan+t is the remotest of all those that are yet known, though not the largest, being in point of magnitude less than Saturn and Jupiter. Its light, says Dr. Herschel, is of a blucish-white colour, and its brilliancy between that of Venus and the moon. With a telescope that magnifics about 300 times, it appears to have a very well defined visible disk ; but with instruments of a smalt power, it can hardly be distinguished from a fixed star of between the 6ith and 7 th magnitude. In a very fine clear night, when the moon is absent, a good eye will perceire it without a telescope.

From the observations and calculations of Dr. Herschel and other astronomers, the elements and dimensions \&e of this planet, have been collected as below.

Place of the node . . . . \(2^{*} 11^{\circ} 49^{\circ} 30^{\prime \prime}\)
\(\begin{array}{llllll}\text { Place of the aphelion in } 1795 & 11 & 23 & 33 & 55\end{array}\)
Inclination of the orbit - - . . . 4335
Time of the peribelion passage, Sept. 7, 1799
Excentricity of the orbit \(\ldots=8203\)
Half the grater axis - . . 19.0818 of Earth's dist.
Revolution - . - - . . \(83 \frac{\mathrm{f}}{\mathrm{f}}\) sidereal years
Diameter of the planet \(\quad\) - 34217 miles
Propor. of diam. to the eartb's - 4.3177 to 1
Its bulk to the earth's - - - \(80 \cdot 4926\) to 1
Ins density as . . . . . . 2204 to 1
Its quantity of matter . . - 17.7406 to 1
And heavy bodien fall on its surface 18 feet 8 inches in one second of time. See Planet, \&ec.

Dr. H. has also discovered 6 satellites belonging to this planet; the periodical revolutions of which are completed in the respective times following:-151, 5d 21 h 25m; 9d, 8d 17 h 1 m 9 s ; 3d, \(10 \mathrm{~d} 23 \mathrm{~h} 4 \mathrm{~m} ; 4 \mathrm{th}, 13 \mathrm{~d}\) 11 h 5 m 2 s ; \(5 \mathrm{th}, 38 \mathrm{~d}\) 1h 49 m ; 0 th, 107 d 16 h 40 m .
- The orbits of these satellites make very large angley with the ecliptic; and it has bern asserted that their real motion is retrograde; but this is probably an optical illusion.

URSA, in astrunomy, the Bear, a name common to two constellations of the northern hemisplere, near the pole, distinguished by Major and Minor.

Ursa Major, or the Great Bear, one of the 48 old constellations, and perhaps more ancient than many of the others; being familiarly known and alluded to by the oldest writers, and is mentioned by Honcras observed by navigators. It is supposed that this constellation is that mentioned in the book of Job, under the name of Chesil, which our translation has rendered Orion, where it is said, "Canst thou loose the bunds of Chesil (Orion) ?" It is farther said that the ancients represented each of these two constellations under the form of a wa:gon drawn by a tean of horscs, and the Greeks originally called them waggons and two bears; they are to this day popularly called the wans, or waggons, and the greater of them Charles's Wain. Hence is remarked the propriety of the expression, " loose the bands \&c," the binding and loosing being terms very applicable to a harness, \&c.

Perhaps the Egyptians, or whoever else were the people that invented the constellations, placed those stafs, which are near the pole, in the figure of a bear, as being an animal inhabiting towarts the north pole, and making neither long journeys, nor swift motions. But the Greeks, in their usual way, have adapted sonne of their fables to it. They say this bear was Callisto, daughter of Lycaon, king of Arcadia; that being debauched by Jupiter, he afterwards placed her in the heavens, as well as her son Arcturus.

The Greeks called this constellation Arctos and Helice, from its turning, round the pole. The Latins from the name of the nymph, as variously writien, Callisto, Megisto, and Flemisto, and from the Arabians, sometimes Feretrum Majus; the Great Bier. And the Ursa Minor, they called Fereirum Minus, the Little Bier. The Lalians have followed the same custom, and call then Catalctto. They spoke also of the Phenicians being guided by the Lesser Bear, but the Greeks by the Greater.

There are two remarkable stars in this constellation,
viz, those in the iniddle of his body, considered as the two hindermost of the wain, and called the pointers, because they ulways point nearly in a direction towards the north pole star, and so are useful in finding out this star.
The stars in Ursa Major, are, uccording to Ptolenny's catalogue, 35 ; in Tycho's 56 ; in llevelius's 73 ; but in the Britannic catalogue 87.

Unsa Minor, the Little Bear, called also Arctos Minor, Pheenice, and Cynosura, one of the 48 old constellations, and near the north pole, the large star in the tip of its tail being very near to it, and thence called the pole-star.
The Phenicians guided their nasigations by this constellation, for which reason it was called Phenice, or the Phenician constellation. It was also called Cynosura by the Greeks, because, according to some, that was one of the dogs of the huntress Callisto, or the Great Buar; bat according to others Cynosura was one of the Idwan nymphs that nursed the infant Jupirer; and some say that Ca llisto was another-of them, and that, for their care, they were tak'll up together to the skies. - Ptolenily places in this constellation 8 stars, Tycho 7, Herelius 12, and Flamsteed 24.

URSUS (Nicholas Raimares), a very extraordinary character, and distinguished in the sciunce of astronomy. was born it Ilenstedt in Dithmarsen, in the duchy of Holstein, about the year 1550. He was a swincherd in his youth, and did not begin to read till he was 18 years of age; but then he employed all the hours he conld spare from his daily labour, in learning to read and write. He afterwards applied himself to study the'languages; and, having a strong genius, made a rapid progress in Greek and Latin. He quickly learned also the French langunge, the mathematics, astronomy, and philosophy; and most of them without the assistance of a master.

Having left his native country, he gained a maintenance by teaching; which he did in Denemark in 1584 , and on the frontiers of Poonerania and Puland in 1585 It was in this place that he invented a new system of astronomy, very little different from that of 'Tycho Bralie. This he communicated, in 1586, to the landgrave of Il sase, which gave rise to a terrible dispute between ham and Tycho. This celebrated astronomer chargel him with being a plagiary ; who, as he related, happening to come with his master into his study, saw there, drawn on a piece of paper, the figure of his system ; and afterwards insolently boasted that he himself was the inventor of it. Ursus, on this accusation, wrote furionsly agninst Tycho, called the honour of his invention in question, ascribing the system to Apollonius P'ergwus ; and in short abused him in so brutal a manner, that he was like to be prosecuted for it. Ursus was afterwards invited by the emperir to teach the mathematics in Prague; from which city, to avoid the presence of Tycho, lie withdrew silently in 1589, and died soon afier.

He made some inprovement in trigonometry, and wrote several books, which discover the marks of his hasty sturlies; bis crudition being indigested, and his style incorrect, as is almost always to be observed of persons that are late-learnetl.

VULPECULA et Anser, the Fox and Goose, in Astronomy, one of the new constellations of the nurthern hemisphere, made out of the unformed stars by Hevelius, ia which be reckons 27 stars; but Flamsteed counts 35.

WAD, of Wadding, in Gunnery, a stopple of paper, hay, straw, old rope-yarn, or tuw, rolled firmly up like a ball, or a short cylinder, and forced into a gun up to the powder, to keep it close in the chamber; or secure the shut from rolling out, as will as, according to some, to prevent the inflamed powder from dilating around the sides of the ball, by its windage, as it passes along the chace, which it was thought would much diminish the effort of the powder. But, from the accuate experiments lately made at Woolwich, it has not been found to have any such effect..

WADIIOOK, or Worm, a long pole with a screws at the end, to draw out the wad, or the charge, or paper \&e from a gun.

WAGGONER, in Astronomy, is the constellation Ursa Major, or the Great Bear, called also vulgarly Charles's Wain.

Waggoner is also used for a rootier, or book of charts, describing the sas, their coasts, Ac.

Wales (Whitam), prasa. by his matoral talents and close upplication, rose from a low situation, little connected with learning, to some of the lirst ranks in literary pursuits. We observe his ewrly labours in the currespondence of the Ladies' Diary, that very usefol little work, which has formed moat of our eminent mathematicians. Here, and in sume other periodical publications, for many years is ubservel the gradual itspravement of Mr. W. in the various mathematical sciences. Mr. W, was deemed a fit person to be sent to a distant country (Hudson's Bay), to observe the transit of Venus over the sun 1769; and tho manner in which he discharged that trust did honour to bistalents. On his retorn he communicated to the Ruyal Society an excellent paper of observations made at that station, which was inserted in their Transactions, vol. for 1769 ; and the ycar following came ont his general ubservations made at Hodson's Bay, in a large \(4 t 0\) volume. Mr. W. next, in the character of astronomer, accompanicd Capt. Cook, in his first voyage, 17721774; and again in his other voyage of \(1770-1779\). In 1777 came out his Observations on a voyage with Capt. Cook; and in 1778 Remarks in Dr. Forster's Account of the Voyage, in which he showed considerable talents as a controversial writer. Soon affer his return from the last voyage, Mr. W. was elected a F. R.s. where Ge proved a very useful member; and, on the death of Mr. Daniel llarris, he was appointed mathematical master to Christ's Hospital, London ; and, some years after, secretary to the board of langitude; bath which offices he held till the time of his death, which happened in 1798, at about 64 years of age.

In 1781, Mr. W. published an Enquiry into the State of the Population in Eigland and Wales : and in 1794 his treatise on the Longitude by "limekeepers. Mr. W. published an ingenious restoration of one of the lost pieces of Apollonius: and it has been said he was author of one of the dissertations on the achronical rising of the Pleiades, annexed to Dr. Vincent's Voyage of Nearchus, 1797. Besides all these, Mr. W. wrote some ingenious papers in the Philts. Trans- and in various periodical publications, particularly the Ladies' Diaries, sometimes
signed with his own name, and sometimes under certain fictitious signutures, as G, Celti, Felix M•Cnithy, dec.

WALLIS (Dr. Jous), an eminent Einglish mathematician, was the son of a clergyman, and born at Ashford in Kent, Nov. 23, 1616. Atter being instructed, at different schools, in grammar learning, in Latin, Gieek, and Hobrew, with the rudiments of logic, music, and the French language, he was placed in Fmanuel college, Combridgc. About 1640 lee entered into orders, and was chosen fellow of Queen's college. He kept his fellowship till it was vacated by his marrage, but quitted bis college to be chaplain to sir Richard Darley; after a year spent in this situation, he prassed two more as chaplain to ledy Vere. While he lived in this family, he cultivated the art of deciphering, which proved wery useful to bim. on several occasions: he met with rewards and preferment from the government at bome for deciphening letters for them ; and it is said, that the elector of Brandenburg sent him a gold chain and medal, for explainiag for hin some letters written in ciphers.

In 1643 he published Truth Tryed, or Animadversions on Lurd Brooke's treatise, called The Nature of Truth \&c; styling himelf " a minister in London," probably of St. Gabriel Fenchurch, the sequestration of which had been granted to lim.-I: 1644 he was chosen one of the scribes or secretaries to the assembly of divines at Wesbminster.

Acadetnical studics being much interrupted by the civil wars in both the universitics, many learned men from them resorted to Londou, and formed ussemblies there. Wallis belonged to one of these, the members of which met once a week, to discuurse on philowophical matters; and this society was the rise and beginning of that which was afterwards incorporated by the name of the Roryul Society, of which Wallis was one of the most early members.

The Savilian professor of geometry at Oxiord being rjected liy the parliamentary visitors, in 1649 , Wallis was appoint-d to succeed him, and he opened his lectures there the same year. In 1650 he published some Animadversions on a book of Mr. Baxier's, entitled, "Aphorisms of Justitication and the Covenant." And in 1653, in Latin, a Grammar of the English tongue. for the use of foreigners; to which was added, a tract De Lurpurla seu Sonorum Formatione, \&c, in which be considery philosophically the furmation of all sounds used in prticulate specch, and shows how the organn being put into certain positions, and the brath forced out from the tangs, the person will thos be made to speak, whether he liear himself or not. Pursuing these reflections; he was led to tbink it possible, that a deaf person might be taoght to sperak, by being directed so to apply the organs of speech, as the sound of each letter required, which children learn by imitation and frequent attempts, rather than by art. He made a trial or two with success; and particularly on one Popban, which involved him in a dispute with Dr. Holder, of which some account has alreally been given in the life of that gentleman.

In 1654 he took the degree of doctor in divinity; and the year after became engaged in a long controversy with

Mr. Hobbes. This philosopher having, in 1655, printed his treatise De Corpore Philosophico, Dr. Wallis the same year wrote a confutation of it in Latin, under the title of Elenchus Geometriae Hoblianae; which so provoked Hobbes, that in 1656 he published it in English, with the addition of what he called, "Six Lessons to the Professors of Mathematics in Oxford." Upon this Dr. Wallis wrote an answer in English, entitted, " Due Correction for Mr. Hobbes; or School-discipline for not saying his Lessons right," 1656 : to which Mr. Hobbes replied in a pamphlet called "ETIIMAI, \&c, or Marks of the absurd (ieometry, Rural Language, Scottish Chureh-politics, and Barbarisms, of John Wallis, 1657." This was immedintely rejoined to by Dr. Wallis, in Hobbiani Puncti Dispunctio, 1657. And here this controversy seems to have ended, at this time: but in 1661 Mr. Hobbes printed Examinatio \& Emendatio' Mathematicorum Hodiernoruns in sex Dialogis; which occasioned Dr. Wallis to publish the neat year, Hobbius Heautontimorumenos, addressed to Mr. Boyle.

In 1657 our author collected and published his mathematical works, in two parts, entitled, Mathesis Universalis, in \(4 t 0\); and in 1658, Commercium Epistolicum de Quastionibus quibusdam Mathematicis nuper habitum, in \(4 t 0\); which was a collection of letters written by himself and many learned ment, as Lord Brounker, Sir Kenelm Jighy, Fermat, Schooten, and others.

Wallis was this ycar chusen Custos Archivorum of the university. On this occation Mr. Subbe, who, on account of his friend Mr. llobbet, had before waged war also against Wallis, published a pamphlet, entitled, "The Savilian Professor's Case Stated," 16.58. Dr. Wallis replied to this: and Mr. Stubbe republished his case, with enlargements, and a vindication against the exceptions of Dr. Wallis.

On the Restoration it appears he met with great respect ; the king thinking favourably of him on account of some services be had done both to himself and his father Charles the first. He was therefore confirmed in his places, also admitted one of the king's chaplains in ordinary, and appointed one of the divines empowered to revise the Book of Common Prayer. He complied with the terms of the act of uniformity, and conninued a steady conformist till his death. He was a very useful member of the Royal Society; and kept up a literury correspondence with many learned men. In 1670 he published his Mechanica; sive de Moru, 4to. In 1676 he gave an edition of Archimedis Syracusani Arenarius \& Dimensio Circuli ; and in 1682 he published from the manuscripts, Claudii Ptolomai Opus Harmonicum, in Greek, with a Latin version and notes; to which he afterwards added, Appendix de veterum Harmonica ad bodiernain comparata, \&c. In 1685 he published some theological pieces; and, about 1690 , was engaged in a dispute with the Unitarians; also, in 1692, in unother dispute about the sabbath. Indeed his books on subjects of divinity are very numerous, but nothing near so important as his mathematical works.

In 1685 he published his History and Practice of Algebra, in folio; a work replete with learned and useful matter. Besides the works above-mentioned, he published many othery, particularly his Arithmetic of Infinites, a book of genius and good invention, and perhaps almost his only work that is so, for he was much mure distinguished for his industry and judgment, than for his
genins. Also a multitude of papers in the Philos. Trans. in almost every volume, from the 1st to the 95 th volume. In 1697, the curaturs of the university press nt Oxford thought it for the honour of the university to collect the ductor's mathematical works, which had been printed separately, some in Latin, some in Einglish, and published them all together in Latin, in 3 vols. tolio, 1699.

Dr. Wallis died at Oxiutd the 2sth of Uctober, 1703, in the 88 th year of his age, leaving behind him one son and two daughters. We are informed that he was of a vigorous constitution, and of a mind which wes strong, cahu, serene, and not casily ruffled or ciscomposed. He speaks of lonself, in his letter to Mr. bimeth, in a strain which shows him to have been a very cautious and prudent man, whatever his secret opinions and attachments might be: he concludes, "It bath been my endeavour all along to act by moderate principles, being willing, whatcser side was uppermost, to promote any good design, for the true interest of religion, of learning, and of the public goad."

WALMESLEY' (Charles), d.d. f.b.s. was an English Benedictine monk, and a Roman Catholic bishop; also senor bishop and vicar npostolic of the western district, as well as ductor of theology in the Sorbonne. He died at Bath in 1797, in the 76th year of bis age, and the 4 lst of his episcopacy. Dr. W. was the last survivor of those eminent mathematicians, who were concerned in regulating the chronological style in England, which produced a clinnge of the style in this country, in the year 1752. Bestdes some ingenious astronomical essays in the Philos. 'Trans. he published several separate works, both on mathemutics and theology ; as, 1. Analyse des Mesures des Hapports et des Angles, 4t0, 1749 ; being an extension and explanation of Cotes's Harmonia Mensurarum. 2. Theorie du Monument des Apsides, 8vo, 1749. 3. De Inaequalitatibus Motuum Lunarium, 4to, 1758. An explanation of the Apocalypse, Ezekiel's Vision, \&ec: By the fire at Bath atthe nune of the riots, several valuable manuscripts, which he had been compiling durng a wellspent life of labour, and travelling through many countries, were irretrievably lust.

WARD (Dr. Setu), an English prelate, chiefly famous for his knowledge in wathematics and astronomy, was the son of an attorney, and born at Buntingford, Hertfordshire, in 1617 or 1618 . From hence he was removed and placed a student in Sidney-college, Cambridge, in 1632. Here he applied with great vigour to his studies, particularly to the mathematics, and was chosen fellow of his college. In \(16+0\) be was pitched upon by the vicechancellor to be prevaricator, which at Oxford is called terro-filius; whose office it was to make a witty speech, and to laugh at any thing or any body: a privilege which he exercised sa freely, that the vice-chancellor actually suspended him from his degree; though he reversed the censure the day following.

The civil war now breaking out, Ward was involved not a little in the consequences of it. He was ejected from his fellowship for refusing the Covenant; against which he soon after joined with several others, in drawing up that celebrated treatise, which was afterwards printed. Being now obliged to leave Cambridge, he resided for some time with certain friends about London, and at other times at Aldbury in Surriy, with the noted matbematician Oughtred, where he prosecuted his mathematical studies. He afterwards lived for the most part, till 1649 , with Mr.

Ralph Freeman at Aspenden in Hertfordshire, whose sons he instructed as their preceptor; after which he resided sume months with lord Wenman, of Thame Park, in Oxfordshire.

He had not been long in this family before the visitation of the university of Oxford began; the cffect of which was, that many learned and eminent persons were turned out, and among them Mr. Greaves, the Savilian professor of Astronomy: this gentleman laboured to procure Ward for his successor, whose abilities as an astronomer were universally known and achnowleilged; and effected it; Dr. Wallis succeeding to the Geometry professorship at the same time. Mr. Ward then entered himself of Wadham college, for the sake of Dr. Wilkins, who was the warden; and be lost no time in bringing the astronomy lectures, which harl long been neglected and disused, into repute again; and for this purpose he read them very corstantly, never missing one reading day, during the time he held the lecture.

In 1654 , boih the Savilian professors did their exercises, in order to proced doctors in disinity; and when they were to be presented, Wallis claimed precedency. This occasioned a dispute; which being decided in favour of Ward, who was really the eenior, Wallis went out grand compounder, and so obtained the priority. In 1659 , Ward was chosen president of Trinity college; but was obliged at the Restoration to resign that place. He had recompense made him, however, by being presented in 1660 to the rectory of St. Laurence Jewry. The same year he was also installed precentor of the church of Exeter. In 1661 he becane fellow of the Koyal Society, and dean of Exeter; and the year following he was advanced to the bishopric of the same church. In 1667 he was translated to the see of Solisbury : and in 1671 was made chancellor of the order of the garter; an honour which he afterwards procured to be permanently annexed to the see of Salisbury, after it had been held by laymen for above 150 years.

Dr. Ward was one of those unhappy persons who have the misfortune to survive their sonses, which happened in consequence of a fever badly cured: he lived till the Revolution, but without knowing any thing of the matter; and died in Junuary 1689, about 71 years of age. He was the author of several Latin works in astronomy and different parts of the mathematics, which were thought excellent in their day; but their use has beell superseded by later improvements and the Newtonian philosophy. Some of these were,
1. A Philosophical Vissay towards an Eviction of the Being and Altributes of Ged, \&c, 16i52.-2. 1)e Cometis, Sec; 4to, 1653.-3. In Ismaelis Bullialdi Astronomia Inquisitio; tho, 1653 -4. Idea Trigonometria demonstrata; 4to, 1654.-5. Astronoma Geometrica; 8vo, 1656. In this work, a method is proposed, by which the astronomy of the planets is geometrically resolved, either on the Elliptical or Circular motion; it being in the third or last part of this work that he proposes and explains what is called Ward's Circular tiypothesis6. Excrectation epistolica in Thome Hobtii Pbilosophiam, ad D. Joannem Wilkius; 1656 , 8vo.

But that by which the has chiefly signalized himself, as to astronomical invemion, is his cclebrated approximation to the true place of a planet, from a given mean anomaly, founded os an hypothesis, that the motion of a planet, though it be really performed in an elliptic orbit, may
yet be considered as equable as to a angular velocity, or with an uniform circular motion round the upper focus of the ellipse, or that next the aphelion, as a centre. By this means he rendered the praxis of calculation much easier than any that could be used in resolving what has been conunonly called Kepler's problem, in which the coequate anomaly was to be immediately investigated from that of the mean elliptic one. His hypothesis agrees pretty well with those orbits which are elliptical but in a very small degree, as that of the Earth and Venus: but in others, that are more elliptical or excentric, as those of Mercury, Mars, \&c, this approximation stuod in need of a correction, which was made by Bulliald. Both the method, and the correction, are very well explained and demonstrated, by Keill, in this Astronomy, lecture 24.

WaRGENTIN (Peter), an ingenious Swedish mathemanician and astronomer, was born Sept. 22, 1717, and died Dec. 13, 1783 . He became secretary to the Academy at Stuckholm in 1749, when the was only 32 years of age; and lie became successively a member of most of the literary academips in Viurope, as London, Paris, Petersburg, Gottingen, Upsal, Copenhagen, Dronlheim, \&c. In this country lie is probably most known on account of his tables for computing the eclipses of Jupiter's satellites, which are annexed to the Nautical Almanac of 1779. I know not that he has published any separate work; but his communications were very numerous to several of thise Academies of which he was a member; as the Academy of Stockholm, in which are 52 of his memoirs; in the Philosophical 'Iransactions, the Upsal Acts, the Paris Mcmoirs, Kc.

WARING (EDWARD), M.D. and r.R.s. was born about the year 1736, near Shrewsbury, were also he. died, August 15, 1798, in the sixty-third year of his age. After his carly education at that place, be was sent to Magdalen college, Cambridge, in 1753. Here his talents for abstruse calculations soon distinguished him; so that, on taking his first degree, in 1737 , he was ranked as senior wrangler, or the first student of the year, Mr. John Jebb being the second on the list. The lucasian professorship of mathematics in the university becoming vacant, by the death of Mr. John Colson, in \(1759, \mathrm{Mr}\). W. was elected to that office ill Jan. 1760. On this occasion some remarkuble circumstances took place. Before his election, Mr. W, gave a small specimen of bis abilities, as a procf of his fituess fer that office, by the publication of the first chapter of his Miscellanea Analytica. This specimen was attacked, and his election opposed, by Dr. l'owell, of St. John's college, with the view of serving his friend Mr. Maseres (the present cursitor baron of the exchequer), then a candidate also for the vacant professorship. This opposition produced several curious pamphlets between the two parties, by Dr. Powell and Mr. Maseres on the one side, and by Mr. Waring, assisted by his friend Mr. Wilson (afterwards one of the judges, sir John Wilson), on the other side; which however ended in the success and election of the latter.

In 1762 Mr . W. published complete his Miscellanea Analytica, one of the most abstruse books, written on the abstrusest parts of Algebra; which might at least have the effect of extending the author's title to ingenvity. Mathomatics however did not engross the whole of his attention : be could allow some part of his time to the study of medicine; and in 1767 he was admitted to the degree of M. D. though he never after practised as a phy-
sician. Mathematics again engaged his chief attention, und he successively produced a number of pieces, of a like abstruse kind as the former; several of which were inserted in different volumes of she Philos. Trans., and some he published in separate works ; as, the Meditationes Ana1yticas, in 1770; the Proprietates Algebraicarum Curvarum, in 1772; aud the Meditationes Analytica, in 1776. To these inight be added a work, written in his retirement, on morals and metaphysics; of which a few copies only were printed, and presented to his friends. As also a pamphlet published at Cambrilge, in which algebraic quantitics are translated into probable relations, and some theorems on probabilities thence deduced. In the sante pampliet are farther added some new propositions on chances, on the values of lives, oll survivorships, \& c.

Most of these essays give proofs of the strong powers of the author's mind, both in abstract science, and its application to plitosophy: though they labour, in common with his other works, under the disavantage of being conveyed in a very unatiractive form.

In his disposition and character, Dr. W. is represented as of infexible integrity, great modesty, plainness, and simplicity of manners; of a meekness and a diffidence of mind to such a degree, as to be always embarrassed before strangers. His extreme short-sightedness too, joined to the natural want of order and method in his mind, which nppeared remarkably even in his band-writing, rendered his mathematical conppositions so confused and embarrassed, that in manuscript they were often utterly inexplicable: a circumatance which inay account for the numerous typographical errors in his publications.

Besides the works before-mentioned, Dr. Waring gave a number of valuable papers to the Philosophical Tranzactions of the Royal Society.

WATCH, a small portable machine, or movement, for measuriug time; having its motion commonly regulated by a spiral spriug. Perhaps, strictly speaking, watches are all such movements as show the parts of time ; as clocks are such as proclaim them, by striking on a bell, \&c. But commonly, the terin watch is appropriated to such as are carried in the pocket ; and clock to the large movements, whether they strike the hour or not.

Spring or Pendulum Watcues stand on much the same principle with pendulum clocks. For if a pendulum, describing sinall circular arcs, make vibrations of unequal lengths, in equal times, it is because it describes the greater arc with a greater velocity; so a spring put in motion, and making greater and less vibrations, as it is more or less strong, and as it has a greater or less degree of motion given it, performs them nearly in equal times. Hence, as the vibrations of the penduluin had been applied to large clocks, to rectify the inequality of their motions ; so, to correct the unequal motions of the balance in watches, a spring is added, by the isochronism of whose vibrations the correction is to be effected. The spring is usually wound into a spiral; that, in the little compass allotted it, it may be as long as possible; and may have strength enough not to be mastered, and displaced by the incqualities of the balance it is to regulate. The vibrations of the two parts, viz, the spring and the balance, should be of the saine lengit; but so adjusted, as that the spring, being more regular in the length of its vibrations than the balance, may occasionally communicate its precision to the latter.

The Incention of Spring or Pocket Watches, is due to the Vob. 11 .

16th century. It is true, as we are informed, in the history of Charles the 5 th, that a watch was presented to that prince: but this was probably no more than a kind of clock to be set on a table: some resemblance of which we have still remaining in the ancient pieces made before the year 1670 . Some accounts also state, the first watches were made at Nuremberg in 1500, by Peter Hell, and were called Nuremberg eggs, on account of their oval form. And farther, that the same year, George Purbach; a mathematician of Vienna, employed a watch that pointed to seconds, for astronomical observations, which was probably a kind of clock. In effect, it is between Hooke and Huygens that the glory of this excellent invention lies: but to which of them it properly belongs, has been greatly disputed; the English ascribing it to the former, and the French, Dutch, \&c, to the latter. Derham, in his Artificial Clockmaker, says positively, that Dr. Hooke was the iaventor; and adds, that he contrived various means of regulation: one was with a loadstone: another with a tender straight spriag, one end of which played backward and forward with the balance; so that the balance was to the spring as the ball of a pelidulum, and the spring as the rod of the same: a third method was with two balances, of which there were divers kinds ; some laving a spiral spring to the balance for a regulator, and others without. But the way that prevailed, and which still continues in mode, was with one balance, and one spring running round the upper part of the verge of it: though this has a disadvantage, which those with two springs, \&ec were free from; in that, a sudden jerk, or confused shake, will alter its vibrations, and disturb it very much.

The time of the se inventions was about the year 1658; as apprars, among other evidences, from an inscription on one of the double-balance watches presented to king Charles the second, viz, Rob. Hooke inven. 1658. T. Tompion fecit, 1675. The invention soon came into repute both at home and abroad ; and two of the machines were sent for by the dauphin of France. Soon after this, M. Huygens's watch with a spiral spring got abroad, and excited uncominon interest in England, as if the longitude could be found by it. It is certain however, that this invention was later than the year 1673, when bis book De Horol. Oscillat. was published ; in which there is no mention of this, though he speaks of several other contrivances in the same way.

One of these the lord Brounker sent for from France, where M. Huygens obtained a patent for thein. This wateh agreed with Dr. Hooke's, in the application of the spring to the balance ; only that of Huygetis had a longer spiral spring, and its pulses and beats were much slower; also the balance, instead of turning quite round as Dr. Hooke's did, turned several times every vibration. Huygens also invented divers other kinds of watches, some of them without any string or chain at all, which he called pendulum watches.
Mr. Derham suggests that he suspects Huygens's fancy was first set to work by some intelligence he might have of Hooke's invention from Mr. Oldenburg, or some other of his correspondents in England: though Mr. Oldenburg vindicates himself against that charge, in the Pbilos. Trans. Nos. 118 and 129.

Watches, since their first invention, have gone on in a continued course of improvement, and they have lately been brought to great perfection, both in England and in

4 F

France, but more especially the former, particularly owing to the great encouragement that has been given to them by the board of longitude. Some of the chief writersand improvers of watches, are, Le Roy, Cumminy, Harrison, Mudge, Emery, and Arnold. Sce Derhaw's Artifcial Clockmaker; Cummins's Principles of Clock and Watch work; Mudge's Thoughts on the Mcans of improving Watches, \&c.

Striking Watcues, are such as, besides the proper watch part, for measuring tume, have a clock part, for strking the hours, \&c. These are real clocks; only moved by a spring instead of a weight ; and are properly called pocket-clocks.

Repeating Watches, are such as, by pulling a string, \&c, repeat the hour, quarter, or minute, at any time of the day or night.-This repetition was the invention of Mr. Bariow, being first put in practice by him in larger movements or clucks, about the year 1676 . The contrivance immediately set the other artists to work, who soon devised many ways of effecting the same. But its application to pocket-watches was not hnown before king James the second's reign; when the ingenious mentor above mentioned was soliciting a patent fur it. The talk of a patent engaged Mr . Quare to resume the thoughts of a fike contrivance, which he had in view some years before: he now effected it; and being pressed to indeavour to pre vent Mr. Barlow's patent, a watch of each kind was produced before the king and council; on trial of which, the preference was given to Mr. Quare's. The ditierence between them was, that Barlow's was made to repeat by pushing in two pieces on each side the watch-hox; one of which repeated the hour, and the opher the quarter: whereas Quare's was made to repent by a pin that stuck out near the pendant, which being thrust in (as is now done by forcing in the pendant itself) repeated both the hour and quarter with the same thrust.

\section*{Of the Mechanism of a Watc.I.}

Watches, as well as clocks, are composed of wheels and pinions, with a regulator to direct the quickness or slowness of the wheels, and of a spring which communicates motion to the whole machine. But the regulator and spring of a watch are vastly inferior to the weight and pendulum of a clock, neither of which can be employed in watches. Instead of a pendulum, therefore, they are obliged to use a balance ( \(\mathrm{pl}, 40\), fig. 4) to ditect the mos tion of a watch; and of a spring (fig. 6), which serves, instead of a weight, to give motion to the whceis and balance.

The wheels of a watch, like those of a clock, are placed in a frame, formed of two plates and four pillars. Fig. 3. represents the inside of a watch, after the plate ( fg .5 ) is taken off. \(A\) is the barrel which contains the spring (fig. 6 ) ; the chain is rolled about the barrel, with one end of it fixed to the barrel \(A\), and the other to the fusce \(B\).

When a watch is wound up, the chain which was upon the barrel winds about the fusec, and by this means the spring is stretched; for the interior and of the spring is fixed by a spring to the immoveable axis, about which the barrel revolves; the exterior end of the spring is also fixed to the inside of the barrel, which turns upon an axis. It is there casy to perceive how the spring extends itself, and how its clasticity forces the barrel to turn round, and consequently causes the chain which is upon the fusee to unfold and turn the fusee; the motion of the fusee is com-
municated to the wheel cc; then by means of the teeth, to the pinion \(c\), which carries the whel \(D\); then to the pinton \(d\), which carries the wheel E ; then to the pinion e, which carries the wheel 5 ; then to the pinion \(f\), upon which is the balancr-wheel c, whow pisut runs in the piece a, called the potance, and a called a follower, which are fixed oin the plate lig. 5. This plate, of which only a part is represented, is applied to that of fig. 3, in such a manuer, that the pivots ot the wheels enter into holes made in the plate fig. 3. Thus the impressed forece of the spring is communcated to the wheels: and the pinion \(f\) Leing then connected to the wheel \(Y\), obliges it to turn (tig. 7 ). This wisel acts on the pallans of the verge 1, 2, (lig. 4) the axis of which carries the balance nu (fig. 4). The pirot 1 , in the end of the serge, enters into the hole e in the potance a (fig. 5). In this figure the pallats are represented; but the balance is on the other side of the plate, as may be seen in fig. 11. The piwt 3 of the balance enters into a hole of the cock nc (fig. 10), as represented in fig. 12. Thus the balance turns between the cock and the potance \(c\) ( 6 g .5 ), as in a kind of cage. The actoon of the thalance-wheel upon the pallats \(1,2,(\) fig. 4\()\) is the same with that of the same whech in the clock; i. e. in a watch the balance- wheel causes the balance to wbrate buch wards and forwards libe a pendulum.

At each vibration of the balance a pallat allows a tuoth of the balance-wheel to escape; so that the quickness of the motion of the wheels is entirely determined by the ceIerity of the sibrations of the balance, and these vibrations of the balance and motion of the wheels are produced by the action of the spring.

But the yurckness or slowness of the vibrations of the balance deprends not soblely on the action of the great spring, but chiefly on the action ot the spring abc, called the spiral spring (6ig. 13) situated under the balance 11, and represcmed in (tig. 11); the exterior ent ul the spiral is fixed to the pina (fig. 13). This pin is applied near the plate in \(a\) (tig. 11) ; the interior end of the spiral is fixed by a peg to the centre of the balance. Hence if the balance be turned upon itsolf, the plates remaining iramoveable, the apring will extend itself, and make the balance perform one revolution. Now, afere the spiral is thus extended, if the balance be left to itself, the clasticity of the spiral will bring back the balance, and in this manner the alternate vibrations of the balance are protuced.

In fig. 7 all the whets above described are represented in such a manuer, that we may eavily perceive at first sight how the motion is communicated from the barrel to the balance.

In fig. 8 are represented the wheels under the dial-plate, by which the hands are moved. The pinion \(a\) is made to fit tight on the prolonged pivut of the wheel D (fig. 7), and is called a cannon pinion. This wheel revolses in an bour. The end of the axis of the pinion a, upon which the minute hand is fixed, is square; the pimion (fig. 8) is indented into the whel \(b\), which is carried by the pivion \(a\). Fig. 9 is a wheel fixed on a barrel, into the cavity of which the pinion a enters, and on which it turns freely. This wheel revolves in 12 hours, and carries ulong with it the hour-hand.

WATER, in Physiology, a clear, insipid, and colourless fluid, coagulable into a transparent sold substance, called ice, when placed in a temperature of \(32^{\circ}\) of I'abrenheit's thermomiter, or lower, but volatile and thuid in every degree of heat above that; and when pure, or Ireed from
heterogencous particles, is reckoned one of the four elcinents.

By sime late experiments of Messrs. Lavoisier, Watt, Cavendish, Priestley, Kirwan, \&c, it appears, that water emsists of dephlogisticated air, and inflammable air or phlogiston intimately united; or, as Mr . Watt conceives, of those two principles deprived of part of their latent heat. And in some instances it appears that air and water are mutually convertible into each other. Thus, Mr. Civendish (Philos. Trans. vol. 74, pa. 128) recites several experiments, in which he changed common air into pure water, by decornposing it in conjunction with iaflammable air. Dr. Pricstley likewise, having decomposed dephlogisticated and inflammable air, by firing them together by the electric explosion, found a munitest decomposition of water, which, as nearly as he could judge, was equal in weight to that of the decomposed air. He also made a number of other curiousexperiments, which seemed to favaur the idea of a conversion of water into air, without absolutely proving it. The difficulty which M. Deluc and others have found in expelling all air Irom water, is best accounted for on the supposition of the generation of air from water ; and, admitting that the conversion of water into air is effected by the intimate union of what is called the principle of heat with the water, it appears sufficiently analogous to other changes, or rather combinations, of sobstances. Is not, says Dr. Priestley, the acid of mitre, and also that of vitriol, a thing as unlike to air as water is, their propertics being as remarkably different ? And yet it is demonstrable that the acisl of nitre is convertible into the purest respirable air, and probably by the union of the same principle of heat. Philos. Trans, vol, 73, pa. 414 \&c.

Indeed there seems to be water in all bodies, and particles of almost all kinds of matter in water; so that it is hardly ever sufficiently pure to be considered as an eleinent. Water, if it could be bad alone and pore, Boerbaave argues, would have all the sequisites of an element, and be as simple as fire; but there is no expedient hitherto discovered for procuring it so pure. Rain water, which seems the purest of all those we know of, is replete with infinite exhalations of all kinds, which it imbibes from the air: so that, if filtered and distilled a thousand times, there still remain feces. Besides this, and the numberless impuritics it acquires after it is raised, by mixing with all sorts of efflucia in the atmosphere, and by falling upon and running over the earth, houses, and other pluces. There is also fire contained in all water; as appears from its fluidity, whech is owing to fire alone. Nor can any kinds of filtering throngh sand, stonc, \&cc, free it entirely from salts \&c. Nor have all the experiments that have been invented by the philosophers, ever been able to derive water perfecily pure. Hence Boerhanve says, that he is convinced no person ever saw a drop of pure water; that the utmost of its purity known, only amounss to its being free from this or that hind of matter; and that it can never, for instance, be quite deprived of salt ; since air will always accomplany water, and air always contains salt.

Water seems to be diffused everywhere, and to be present in all space wherever there is matter. There are hardly any bonlies in nature but what will gield water: it is even asserted that fire itself is not without it. A single grain of the fiery salt, which in a moment's time will penetrate through a man's hand, readily imbibes half its weight of water, and melts even in the driest air pos-
sible. Among innumerable instances, hartshorn, kept 40 years, and turned as hard and dry as any metal, so that it will yield sparks of fire when struck against a flint, yet being put into a glass vessel, and distilled, will afford fith part of its quantity of water. Bones dead and dried 25 years, and thus become almost as hard as iron, yet by distillation have yiclded half their weight of water. And the hardest stones, ground and distilled, always discover a portion of it. But hitherto no experiment shows, that water enters as a principle into the combination of metallic matters, or even into that of vitrescible stones.

From such considerations, philusophers have been led to hold the opinion, that all things were made of water. Basil Valentine, Paracelsus, Van Helmont, and others have maintained, that water is the elemental matter or stamen of all things, and suffices alune for the production of all the visible creation. Thus too Newton: "All birds, beasts, and fishes, insects, trees, and vegetables, with their several parts, do grow out of water, and watery tinctures, and salts; and by putrefaction they all relurn again to watery substances." And the same doctrine is held, and confirmed by experiments, by Van Helmont, Boyle, and others.

But Dr. Woodward endeavours to show that the whole is a mistake.-Water containing extraneous corpuscles, 50 me of which, according to him, are the proper mattei of nutrition; the water being still found to afford so mucb the less nourishment, the more it is purified by distillation. So that water, as such, does not scem to be the proper nutriment of vegetables; but only the vehicle which contains the nutritious particles, and carries them along with it, through all the parts of the plant.

Helmont however carries his system still farther, and imagines that all bodies may be reconverted into water. His alkubess, he affirms, adequately resolves plants, animals, and minerals, into one liquor, or more, according to their several internal differences of parts; and the alkahest, being abstracted again from these liquors, in the same weight, and with the same virtues, as when it dissolved them, the liquors ma;; by frequent cohobations from chalk, or some other proper matter, be totally deprived of their seminal endowments, and at last return to their first matter; which is insipid water.

Spirit of wine, of all other spirits, seems freest from water: yet Helment affirms, it may be so united with water, as to become water inself. He adds, that it is material water, only under a solphureous disguise. And the same thing he observes of all salts, and of oils, which may be almost wholly changed into water.

No standard for the Weight and Purity of WatreWater hardly ever continues two moments exactly of the same weight; by reason of the air and firc contained in it. The expansion of water in boiling shows what effect the different degrees of fire have on the gravity of water. This makes it difficult to fix the specific gravity of water, in order to settle its degree of purity. However, the purest water we can obtain, according to the experiments of Hawskbee, is 850 times heavier than atmospheric air: or according to the experiments of Mr. Cavendish, the thermometer being at \(30^{\circ}\) and the barometer at 291 4 , about 800 times as heavy as air: and according to the experiments of sir (ieo. Shuckhurgh, when the baromeser is at 29.27 and the thermometor at 53 , water is 836 times lieavier than air; whence also may be deduced this general proportion, which may be accounted a standard, vis,
that, when the barometer is at \(30^{\circ}\) and the thermometer at \(55^{\circ}\); then water is 820 times beavier than air ; also that in such a state the cubic foot of water weighs 1000 ounces avoirdupors, and that of air \(1 \cdot 222\), or \(1 \frac{2}{8}\) nearly, also that of mercury 13600 ounces; and for other states of the thermometer and barometer, the allowance is after this rate, viz, that the column of mereury in the barometer varies its length by the 10 thousundih part of itself for a change ufeach single degree of temperature, and water changes by zedze part of its beight or magnutuide by each degree of the same. However, we have not any very exact standard in air; fur water being so) much heavicr than air, the more water there is contained in the nir, the heavier of course must the air be; as indeed a considerable part of the weight of the ntmosphere'seems to arise from the water that is contained in it.

Properties and Effects of Waten-Water is a very volatile body. It is entirely reduced into vapours and dissipated, when exposed to the action of fire and unconfined.

Water hested in an open vessel, acquires no more than a certain determinate degree of heat, whatever be the intensity of the fire to which it is exposed ; which greatest degree of heat is when it boils violently:

It has breen found that the digree of lieat necessary to make water boil, is variable, according to the purity of the water and the weight of the atmosphere. The annexed table sbows the degree of beat at which water boils, at various heights of the barometer, being a medium between those resuluing from the experiments of \(\operatorname{sir}\) Geu. Shuckburgh and M. Deluc.

Water is found the most penetrative of all bodies, atter fire, and the most difficult to confine; passing through lea-
\begin{tabular}{|c|c|}
\hline Height at the Barometer. & Heat ut Huatirg
Water. \\
\hline Inclics. & "- \\
\hline 26 & 205 \\
\hline \(26 \frac{1}{2}\) & 206 \\
\hline 27 & \(206 \cdot 9\) \\
\hline 275 & 207.7 \\
\hline 28 & 208.5 \\
\hline 281 & 209.4 \\
\hline 29 & \(210 \cdot 3\) \\
\hline 291) & 211.2 \\
\hline 30 & 912.0 \\
\hline 301 & . 2128 \\
\hline 31 & 213.6 \\
\hline
\end{tabular} ther, bladders, \&c, which will confine air; making its way gradually through woods ; and is only rotainable inglass and metals; nay it was determined by experiment at Florence, that when shut up in a spherical vessel of gold, which was pressed with a great foree, it made its way through the pores even of the gold itself.

Water, by this penetrative quality alone, may be inferred to enter the composition of all hodies, both vegetable, animal, fossil, atad even mineral; with this particular circumstance, that it is easily, and with a gentle heat, separable again from bodies it hal united with.

And yet the same water, as little cobesive as it is, and as easily separated from most bodies, will cohere firmly with some others, and bind them together in the mont solid masses; as in the tempering of earth, or ashes, clay, or. powdered bones, \&c, with water, and then ilried and burnt, when the masses become hard as stones, though without the water they would be mere dust or powder. Indeed it appears wonderful that water, which is otherwise an almost universal dissolvent, should nevertheless be a great coagulator.

Some bave imagined that water is incompressible, and therefore non-elastic; founding their opinion on the colcbrated Florentine experiment above mentioned, with the
globe of gold; when the water being, as they say, incepable of condensation, rather than gield, transuded through the pores of the metal, so that the ball was found wet all over the outside ; till at lenyth making a cleft in the gold, it squirted out with great whemence. But the truth of the conclusions drawn trom thas Fluren: tine expernment has been very justly yuestumed; Mr. Canton having proved by accurate experiments, that water is actually compressed even by the weight of the aturosphere. See Comprenston.

Bersider, the diminution of size which water suffers when it passes to a luss degree of heat, sufficiently shaws that the particles at this fluid are, like those of all other known substances, cupable of approaching nearer together.

Ditch WaTER, is often used as an object for the microscrope, and seldom fails to afford a great variety of animalcules; often uppearing of a greenish, redaish, or gellowish culour, from the great multitudes of them. And to the same cause is to be ascribed the green skim on the surface of such water. Duughill watur is also full of an immenee crowd of animaicules.

Fresh Wargh, is satd of that which is insipid, or without salt, and modorous; being the naturaland pure state of the element.

Hard Water, or Crude Warter, is that in which soap docs net dissolve completely or uniformly, but ts cuidled. The dissolving power of hatd water is lens than that of soft; and lonere its untimess for washing, bleachng, dyeing, beiling kutchen vegenables, Ac. The harchess of water may arise either Irom salis, or trom gns. That which arises from salts, may be disconered und remedied by adding some drops of a solution of fised alkuli; but the latter by boiling, or exposure to the open air--Spring waters are often hard; but river water soft. Hiard waters are remurkably indisposed to corrupt; they even preserve putrescible subntances for a considerable lougth of time : hence they seem to be best fitted for hieping at sea, especially as they are so easily softened by a little alkaline salt.

Iutrid Waten. is that which has acquired an offensive sunell and taste by the putrescence of animal or vegetable substances contained in it. This kind of water is in the highest degree pernicious to the human constitution, and capable of bringing on mortal diserases even by its smell. Quicklime put into water is uwful to preserve it longer sweet; or even exposure to the air in broad shallow vessels. And putrid water may be in a great measure sweetened, by passing a current of fresh air through it, from bottom to top.
Rain Waten may be considered as the purest distilled water, but impregnated during its passage through the air with a considerable quantity of putrescent matter ; whence it is superior to any other in lertilizing the earth. llence also it is inferior for domestic purposes to spring or river water, even if it could be readhly procured: but such as is obtained from spouts placed below the roofs of houses, the common way of procuring it in this country, is evidently very impure, and becomes putrid in a shert time.

River or Running Water, is next in purity to show or distilled water; and for domestic purposes superior to both, in having less putrescent matier, and inore fixed air. That however is inuch the purest that runs over a clean rocky or stony bottom. River waters generally
putrefy sooner than those of springs. During the putrefaction, they throw off a part of their heterogeneous matter, and at length become sweet again, and purer than ut first; after which they conmonly prescrie a long time: this is remarknbly the case with the Thames water, taken up about Loudun; which is commonly used by scanen, in their voynes.

Sald Warer, such as has much salt in it, so as to be sensible to the taste.

Sea Water, or Water of the sea, is an assemblage of bodies, in which water can scarcely be said to have the principal part: it is an universal colluvies of ail the bodies in nature, sustained and kept floating in water as a vehicle: being a solution of commensalt, sal catharticus amarus, a selenitic substance, and a compound of muriatic acid with mugnesia, mixed together in various proportions. It may be freshened by simple distillation without any addition, and thus in has sometimes been useful in long voyages at sea. sea water by itsolf has a purgative quality, owing to the salt is contains; and bas been greatly recommended in scruphulous disordets. Sea water is about 3 patts in 100 heavier than common water; and its temperature at great depths is from 34 to 40 degrees; but near the surface it follows mote nearly the tenprorature of the air.

Snow WATER, is the purest of all the common waters, when the snow has berfl collected pure. Kept in a warm place, in clean giass vessels, 1 mit clusely stopped, but covered from dusi, de, snow water becomes int time putrid; though in well-stopped bettles it remains unaltered for several years. But distilled water suffers no alteration in either circumstance.

Spring Watea is commonly imprognated with a small portion of imperiect neutral salt, extracted from the difterent strala, lirrough which it percolates. Some contain a vast quanting of stony matter, which they deposit as they run shong, and thus form masses of stone; sometimes incrustating various anmal and vegetable matters, which they are therefore sad to petrify. Spring water is much used for domestic purposes, and un account of its coolness is an agrerable drink; but on account of its being usually somewhat hard, is inferior to that which has run for a considerable way in a channel. Spring water arises from the rain, and from the mists and moisture in the atmospliere. Thesc falling uping bills and other parts of the earth, soak into the ground, and pass along till they find a vent out again, in the form of a spring.

Water-Bellows, in Mechanics, ure bellows, for blowing air into furnaces, that are worked by the force of water ; or air blown in by the fall of water.

Water-Clock. See Clepaydra.
Water-Engine, un engine for extinguishing fires; or any engine to raise water; or any engine moved by the force of water. See Engine, und Stean-Eingine.

Waten-Gage, an instrument for measuring the depth or quantity of any water. See Gage.

Water-Level, is the true level which the surface of still water takes, and is the inost correct of any.

Water-Logged, in Sea-Language, denotes the state of a ship when, by receiving a great quantity of water into her hold, by leahing, \&e, she has become heavy and inactive upon the sea, so as to yield without resistance to the effort of every wave rushing over her deck.

Wateb-Machine. See Machine.
Water-Measurc. Salt, sca-coal, \&c, while on buard
vessels in the pool, or river, are measured with the cornbushel heaped up; or else 5 striked pecks are allowed to the bushel. This is called water-measure; and it exceeds Winchester measure by about 3 galluns in the bushel.

Water-Microscope. See Microscope,
Water-Mill. See Mily.
Motion of Waten, in Hydraulics. The theory of the motion of running water is one of the principal objects of hydraulics, and to which many eminent mathenaticians have paid their attention. But it were to be wished that their theoriss were nore consistent with each other, and with experience. The inquisitive reader may consult Newton's Principia, lib. 2, pr. 36, with the comment. Dan. Bernoulli's Hydrodynamica. J. Bernoulli, Hydraulica, Oper. tom. 4, pa. 389. Dr. Jurin, in the Philos. Trans. No. 4i2. Gravesande, Physic. Elem. Mathem. lib. 3, par. 2. Maclaurin's Flux. art. 537. Poleni de Casteilis, Ximenes, D'Alembert, Bossu, Buat, and many others.

But notwithstanding the labours of all these eminent authors, this intricate subject still remains in a great measure obscure and uncertain. Even the simple case of the motion of running water, when it issues from a hole in the bottom of a vessel, has never yet been determined, so as to give universal satisfaction to the learned. On this head, it is now pretty generally allowed, that the velocity of the issuing stream, is equal to that which a heavy body acquires by falling through the lueiglit of the fluid above the hole, as may be demonstrated by theory: but in practice, the quantity of the effluent water is much less than what is given by this theory, owing to the obstruction to the motson in the bole, partly from the sides of it, and partly from the different directions of the parts of the water in entering it, which thence obstruct each other's motion. And this obstruction, nud the diminution in the quantity of water run out, is still the more in proportion as the hole is the smaller; in such sort, that when the hole is very small, the quantity is diminished in the ratio of \(\sqrt{2}\) to 1 very nearly, which is the ratio of the greatest dimulion; and for larger apertures, the diminution is always less and less. This fact is ascertained, or admitted by Newton, and all the other philosophers above mentoned, with some small variations.

That the velocity of the water in the hole, or at least some part of it , as that for example in the middle of the stream, is equal to that above-mentioned, is even evinced by experiment, by directing the stream eibler sideways, or upwards: for in the former case, it is found to range upon an horizontal plane, a distance that just answers to that velocity, by the nature of projectiles; and in the latter case, the jut rises nearly to the height of the water in the vessel; which it could not do, if its velocity were not equal to that acquired by the free descent of a body through thut height. Hence it is evident then, that the particles of the water, which are in the hole at the same moment of time, do not all issue out with the same velocity; and, in fact, the velocity is found to decrease all the way from the middle of the hole, where it is greatest, towards the side or edge, where it is the least.

At a small distance from the hole, the diameter of the vein of water is much less than that of the aperture itself. Thus, if the diameter of the hole be 1 , the diameter of the yein of water just without it, will be \(\frac{2}{2} \frac{1}{5}\), or \(0 \cdot 84\), accord ing to Newton's measure, who first observed this phenorecnon ; and according to Poleni's measure 0.78 nearly.

By the experiments of Buat (Principes d'llydraulique), the quantity by theory is to that by experiment, for a small aperture inade in the thin side of a reservoir, as 8 to 5 . When a short pipe is alded to the hole outwards, of the leagth of two or three times its diameter, that ratio is as 16 to 13. And when the shnot pipe is all within stide the vessel, as in the margin, the same ratio becomes that of 3 to 2 . Poleni also found that the quantity of water flowing through a pipe or tube, was much greater than that through a hole of the same diameter in the thin side or bottom
 of the vessel, the height of the head of water above each being the sanc. See also many other curious circumstances in Buat's Principes above-mentioned.

Some authors give this rule for finding the height due to the velocity in a fat orifice, or a medium among all the parts of it, such that this medium velocity being drawn into the area of the hole, shall give the quantity per second that runs through: viz, let a denote the area of the surface of the water in the vessel, \(a\) the area of the oritice by which the water issues, and is the hright of the water above the orifice; then, as \(2 \mathrm{~A}-a: \mathrm{A}:: 1 \mathrm{I}: h\), the height due to the medium velocity, or the heught from which a body must freely descend, by the foree of gravity, to acquire that mean velocity.

Authors are not yet agreed as to the force with which a vein of water, spouting from a round hole in the side of a vessel, prosses on a plane directly opposed to the motion of the vein. Most authors agree, that the pressure of this vein, flowing unifurmly, ought to be equal to the weight of a cylinder of water, whose base in equal to the orifice through which the water flows, and its height equal to the height of the water in the vessel above the hole. The experiments made by Nariotte, and others, seem to countenance this opinion. But Dan. Bermulli rejects it, and estimates this pressure hy the weight of a column of the fluid, whose diameter is equal to the contracted vein (according to Newton's observution ubove-mentioned), and the height of which is equal to double the altitude due to the real velocity of the spouting water; and this pressure is also equal to the force of repulsion, arising from the reaction of the spouting water on the vessel. The ingemous author remarks that he spraks ouly of single veins of water, the whole of which are received by the planes on which they press; for as to the pressures exerted by fluids surrounding the bodies they press upon, as the wind, or a river, the case is difierent, though confounded with the former by writers on this subject. Hydrodynamica, pa. 289.

A nother rule however had bren adopted by the Academicians of Paris, who made a number of experiments to confirm or establish it. Hist. Acad. Paris, ann. 1679, sect. 3, cap. 5.
D. Bernoulli, on the other hand, thinks his own theory is sufficiently established by the experiments he relates: for the particulars of which sec the Acta Petropolitana, vol. 8, pa. 122. This ingenious author is also of opinion that his theory of the quantity of the force of repulsion, exerted by a veill of spouting water, inight be usefully applied to move ships by pumping; and he thinks the motion produced by this repulsive force would fall little, if at all, short of that produced by rowing. He has given his reasoms and coinputations at length in his Hydrodynamica, 13. 293 \&c.

This science of the pressures exerted by water or other fluids in motion, is what Bernoulli calls Hydraulico-statica. T'his science differs from hydrostatics, which considers only the pressure of water and other fluids at rest ; whereas hydraulico-statics considers the pressure of water in motion. Thus the pressure exerted by water moving through pipes, upon the sides of those pipes, is an hydraulico-statical consideration, and has been erroneously determined by many, who have given no other rules in these cases, lut such as are applicable only to the pressure of fluids at rest. See Hydrodynam. pa. 256 \&cc.

Water-Pois. Sce Hydrometer, and Arfometer.
Dr. Hooke contrived a water-poise, which may be of good service in examining the purity \&c of water. It consists of a round glass ball, like a bolt head, about 3 inches diameter, with a narrow stem or neck, the 2tht of an inch in diameter; which being poised with red lead, so as to make it but little heavier than pure sweet water, and thus fitted to one end of a fine balance, with a counterpoise at the other end; on the least addition of even the 2000th part of salt to a quantity of water, half an inch of the neck will emerge above the water. Philus. Trans. No. 197.

Maising of Water, in Hydraulics. The great advantage of raising water by engines for the various purposes of life, is well known. Machines have in all ages been contrived with this view; a detail of the best of which, with the theory of their construction, would be very curious and instructive. M. Belidor has executed this in part in his Architecture Hydraulique. Dr. Desaguliers has also given a description of several engines to raise water, in his Course of Experimental Philosophy, vol. 2; and there are several other smaller works of the same kind.

Engines for raising water are either such as throw it up with a great velocity, ns in jets; or such as raise it from one place to another by a gentle motien. For the general theory of these engines, sce Bernoulli's Hydradynamica. -Desaguliers has setuled the maximum of engines for raising water, thus: A man with the best water engine cannut rasce above one hogshead of water in a minute, 10 feet high, to hold it all day; but he can do almost twice as much for a minute or two.

Water-Spone. Sce Spout.
Water-Wheel, an engine for raising water in great quantity out of a deep well, \&c. Sce Prasian-Wheel.

Water-Works. Sue Raising of Water.
WAVE, in Physics, a volume of water elevated by the action of the wind \&c, upon its surface, into a state of fluctuation, and accompanied by a cavity. The extent from the bottom or lowest point of one cavity, and across the elevation, to the bottom of the next cavity, is the breadith of the wave.

Waves are considered as of two kinds, which may he distinguished from each other by the names of natural and "accidental waves. The intural waves are those: which are regularly proportioned in stze to the strength of the wind which produces them. The accidental waves are thase occasioned by the wind's reacting on itself by repercussion from bills or bigh shores, and by the dashing of the waves themselves, otherwise of the natural kind, against rochs and shoals; by which ineans these waves acquire an clevation much above what they can have in their natural state.

Boyle proved, by numerous experiments, that the nost violent wind never penetrates deeper than 6 feet into the water: and it scems a natural consequence of this, that

\section*{W A V}
[
3:1]
W A \(v\)
the watter moved by it can only be elevated to the same height of 6 feet from the level of the surface in a calm; and these 6 feet of elevation being added to the 6 of excavation, in the part from whence that water so elevated was raised, should give 12 feet for the utmost elevation. of a wave. This is a calculation that does great honour to its author; as many experiments and observations have proved that it is very nearly true in deep seas, where the waves are purely natural, and have no accidental causes to render them larger than their just proportion.

It is nut to be understuod however, that no wave of the sea can rise more than 6 feet above its natural level in open and deep water; for some vastly higher than these are formed in violent tempests in the great seas. These howe ever are not to be accounted waves in their natural state, but as compound waves formed by the union of many others; for in these wide plains of water, when one wave is raised by the wind, and would elevate itself up to the exact height of 6 feet, and no more, the motion of the water is so great, and the suecession of waves so quick, that while this is rising, it receives into it several other waves, each of which would have been at the same beight with itself; these run into the first wave one after another, us it is rising ; by which means its rise is continued much longer than it naturally would have been, and it becomes accumulated to an enormous size. A number of these complicated waves tising together, and being continued in a long succession by the continuation of the storm, make the waves so dangeruus to ships, which the sailors in their phrase call mountains high.

Diffrent waves do not disturb one another when they move in different directions. The reason is, that whatever figure the surface of the water bas acquired by the motion of the waves, there may in that be an elevation and depression; as also such a motion as is required in the motion of a wave,

Waves are often produced by the motion of a tremulous body, which alsu expand themselves circularly, though the body goes and returns in a right line ; for the water which is raised by the agitation, descending, forms a cavity, which is every where surrounded with a rising.

The Motion of the WA ves, is a subject which makes an article in the Newtonian philosophy; that author having explained their motions, and calculated theit velocity from mathematical principles, similar 10 the motion of a pendulum, and to the reciprocation of water in the two legs of a bent and inverted syphon or tube.

His proposition concerning such canal or tube is the 44th of the 2d book of his Principia, and is this: "If water ascend and descend alternately in the erected legs of a canal or pipe; and a pendulum be constructed, whose length between the point of suspension and the centre of oscillation, is equal to half the length of the water in the canal; then the water will ascenll and descend in the same times in which the pendulum oscillates." The author hence infers, in prop.45, ibat the velocity of waves is in the subduplicate ratio of their breadtis; and in prop. 46, he proceeds "To find the velucity of waves," as follows: " Let n findulum be constructed, whose length between the point of suspension and the centre of oacillation is equal to the breadth of the waves; and in the time that the pendulum will perform nne singleoscillation, the waves will advance forward nearly a space equal to their breadth. That which I call the breadth of the waves, is the transverse measure lying between the deepest part of the hol-
lows, or between the tops of the ridges. Let AACDEF represent the surface of stagnant water ascending and descending it successive waves; also let \(A, C, E, \& c\), be the

tops of the waves ; and \(B, D, F, \& C\), the intermediate hollowe. Because the motion of the wases is carried on by the successive ascent and descent of the water, so that the parts of it, as \(A, c, z, \& c\), which are highest at one time, become lowest immediately after; and because the motive force, by which the highest parts descend and the lowest ascend, is the weight of the clevated water, that alternate ascent and descent will be analogous to the reciprocal motion of the water in the canal, and observe the same laws as to the times of its ascent and dexcett ; and therefore (by prop. 44, above-inentioned) if the distances between the highest places of the waves \(A, C, E\), artd the lowest \(n\), D, F, be equal to twice the length of any pendulum, the highest parts A, \(\mathbf{C}, \mathrm{E}\), will become the lowest in the time of one oscillation, and in the time of another uscillation will ascend again. Therefore between the passage of each wave, the time of two oxcillations will intrrvene; that is, the wave will describe its breadıh in the tine that the pendulum will oscillate twice; but a pendulum ot 4 times that length, and which therefore is equal to the breadth of the waves, will just oscillate once in that time. 2.E. \(\boldsymbol{I}\).
"Corol. 1. Therefore waves, whose breadth is equal to \(39 \frac{1}{4}\) inches, or \(3 \frac{3}{8}\) fect, will advance through a space equal to their breadhh in one second of time ; and therefore in one minute they will go over a space of \(19.5 \frac{1}{\mathrm{~g}}\) feet; and in an hour a space of 11737 fec , nearly, or 2 miles and al most a quarter.
"Corol. 2. And the velocity of greater or less waves, will be augmented or diminished in the subduplicate ratio of their breadth.
"These things (Newton adds) are true on the supposition, that the parts of water uscend or descend in a right line; but in fact, that ascent and descent is rather performed in a circle; and therefore I propose the time defined by this propoxition as only near the truth."

Stilling Waves by means of Oil. 'This curious property, though well known to the ancients, as apperars from the writings of Pliny, was for many ages either quile unnoticed, or trested as fabulous by succecding philusophers. Of late it has, by means of IJr. Franklin, again aitracted tho attention of the learned; though it appears, from some anecdotes, that seafaring people havenlwuys beet acquainted with it. In Martin's descriptionof the Western Islands of Scotland, we have the following passagu: "The steward of Kilda, who lives in Pabbay, is accustomed, in time of a storm, to tie a bundle of puddings, made of the fat of sea-fowl, to the elld of lis cable, and let it full into the sea behind bis rudder. This, he says, hinders the waves from breaking, and calms the sea." Mr. Pennant, in his British Zoology, vol.iv, under the urticle Seal, takes notice, that when these animals are devouring a very bily fish, which they always do under water, the waves above are remarkably smooth; and by this mark the fishermen know where to find them. Sir Gilbert Lawson, whoserved long in the army at Gibraltar, assured Dr. Franklin, that the fishermen in that place are accustomed to pour a little oil on the sca, in order to still its motion, that they may be enabled to sce the oysters lying at its bottom, which are
there very large, and which they take up with a proper instrument. A similar practice obtains among fishermen in various other parts, and Dr. Franklin was informed by an old sea-captain, that the fisherinen of Lisbon, when about to return into the river, if they saw too great a surf on the bar, would earpty a bottle or two of oil into the sea, which would suppress the breakers, and allow them to pass freely.

The doctor having resolved in his mind all these pieces of information, became impatient to try the experiment himself. At last having an opportunity of observing a large pond very rough with the wind, the dropped a small quantity of oil into it. But having at first applied it on the lee-side, the oil was driven back again upon the shore. He then went to the windward side, and poured on about a tea-spuon-full of oil; this produced an instant calin over a space several yards square, which spread amazingly, and extended itself gradually till it came to the lee-side; making all that quarter of the pond, perhaps half an acre, as smooth as glass. This experiment was often repeated in different places, and always with succes. Our autbor accounts for it in the following manner:
"There seems to be no nutural repulsion between water. and air, to keep them from coming into contact with each other. Hence we find a quantity of air in water; and if we extract it by means of the air pump, the same water again expossed to the air will soon imbibe an equal quan-tity.- Therefore air in motion, which is wind, in passing over the sinooth surface of water, may rul, as it were upon that surface, and raise it into wrinkles ; which, if the wind continues, are the elements of future waves. The smallest wave once raised does not immediately subside and leave the neighbouring water quiet; but in subsiding raises nearly as much of the water next to it, the friction of the parts making little difference. Thus a stone dropped into a pool raises first a single wave round itself, and leaves it, by sinking to the bottom; but that first wave sutsiding raises a second, the second a third, and so on in circles to a grat extent.
" A small power continually operating, will produce a great action. A finger applied to a weighty suspended bell, can at first move it but little; if repeatedly applied, though with no greater strength, the motion increases till the bell swings to its utmost height, and with a force that cannot be resisted by the whole strength of the arm and body. Thus the sinall first raised waves being continually acted on by the wind, are, though the wind does not increase in strength, continually increased in magnitude, rising bigher and extending their bases, so as to include a vast mass of water in each wave, which in its motion acts with great violence. But if there \(l\) or a mutual repulsion between the particles of oil, and no attraction between oil and water, oil dropped on water will not be held together by adhesion to the spot whereon it falls; it will not be imbibed by the water; it will be at liberty to expand itself; and it will spreat on a surface that, besides britug smooth to the must perfect degree of polish, prevents, perhaps by repelling the oil, all immediate contact, keeping it at a minute distance from itself; and the expansion will continue, till the mutual repulsion between the particles of the oil is weakened and reduced to nothing by their distance.
"Now I imagine that the wind blowing over water thus covered with a film of oil cannot easily catch upon it, so as to raise the first wrinkles, but slides over \(i t\), and leaves
it smooth as it finds it. It moves the oil a little indeed, which being between it and the water, serves to slide with, and prevents friction, as oil does between those parts of a machine that would otberwise rubhard together. Hence the oil dropped on the windward side of a pond proceeds gradually to lecward, as inay be seen by the smoothness it carries with it quite to the opposite stale. For the wind being thus prevented from raising the first wrinkles that I call the elements of waves, cannot produce waves, which are to be made by continually actuug on and enlarging those elements; and thus the whole pond is calmed.
"Totally therefore we might suppress the waves in any required place, if we could come at the windward place where they take their rise. This in the ocean can seldom if eser be dune. But perhaps something may be done on particular occasions to moderate the violence of the waves when we are in the midst of them, and prevent their breaking when that would be inconvement. For when the wind blows fiesh, there are coptinually rising on the back of every great wase a number of small unes, which ruughen its surface, and give the wind hold, as it were, to push it with greater force. This hold is diminished by preventing the gencration of those small ones. Alld possibly too, when a wave's surface is oiled, the wind, in passing over it, may rather in some degree press it down, and contribute to prevent its rising again, instead of promoting it.
" 'This, as mere conjecture, would have little weight, if the apparent effects of pouring oil into the midst of wave were not considerable, and as yet not otherwise accounted for.
"When the wind bluws so fresh, as that the waves are not sufficiently quick in obeying its impulse, their tops, bcing thinner and lighter, are pushed forward, broken, and turned wer in a white fiam. Common waven hitt a veasel witbout entering it; but these, when large, sometimes break above and pour over it, doing great damuge.
"That this effect might in any degree be preveuted, or the beight and violence of waves in the sea moterated, we had nocertain account; Pliny's authority for the practice of scamen in his time being slighted. But discoursing lutely on this subject with his excellency Count Bentinck of Holland, his son the honourable captain Bentinck, and the learned professor Allemated (to all whom 1 showed the experiment of smoothing in a windy day the large piece of water at the head of the green park), a letter was mentioned which had boen received by the count from Batavia, relative to the saving of a Dutch ship in a storm by pouring wil into the sca."

WAY of a \$hip, is sometimes used for her wake or track. But more commonly the tenn is understood of the course or progress which she makes on the water under sail : thus, when she begins her motion, she is said to be under way; when that motion increases, she is said to have fresh way through the water; when she goes apace, they say she has a good way; and the account of her rate of sailing by the log, they call, keeping an account of her was. And because most ships are apt to fall a little to the leeward of their truc coursc, it is customary, in casting up the log-board, to allow something for her leeward way, or lceway. Hence also a ship is said to have beadway, and stern-way.

WAY.WISE:R, an instrument for measuring the road, or distance travelied; called also Penaxbulator, and Pedometer, See tbese two articics.

Mr. Lovell Edgworth communicated to the Society of

Arts, \&c, an account of a way-wiser of his invention; for which he obtained a silver medal. This machine consists of nave, furmed of two round flat pieces of wood, 1 inch thick and 8 inches in diameter. In each of the pieces there are cut eleven grooves, if of an inch wide, and \(\mid\) deep; and when the two pieces are screwed together, they enclose eleven spokes, forming a wheel of spokes, without a rim; the circunference of the wheel is exactly one pole ; and the instrument may be easily taken to pieces, and put up in a small compass. On each of the spokes there is driven a ferril, to prevent them from wearing out; and in the centre of the nave, there is a square hole to receive an axle. Into this hole is inserted an iron or brass rod, which has the thread of a very fine screw worked upon it from one end to the other; upon this screw hangs a nut which, as the rod turns round with the wheel, advances towards the nave of the wheel or recedes from it. The nut does this, because it is prevented from turning round with the axle, by having its centre of gravity placerl at some distance below the rod, so as always to hang perpendicularly like a plummet. Two sides of this screw are filed away that, and have figures engraved on them, to show by the progressive motion of the nut, how many circunvolutions of the wheel and its axle have bren made: on one side the divisions of miles, furlongs, and poles are in a direct order, and on the other side the same divisions are placed in a retrograde order.

If the person who uses this machine places it at his right hand side, holding the axle Inosely in his hands, and walks forward, tbe wheel will revolve, and the nut advance from the extremity of the rod towards the nave of the wheel. When two miles have been measured, it will have come close to the wheel. But to continue this measurement, nothing more is necessary than to place the wheel at the left hand of the operator; and the nut will, as lie continues the course, recede from the axle-tree, till another space of two miles is measured.

It appears, from the construction of this machine, that it operates like circular compasscs ; and does not, like the common wheel way-wiser, measure the surface of every stone and molehili, \&c, but passes over most of the obstacles it meets with, and measures the chords only, instead of the arcs of any curved surfaces upon which it rolis.

WEATHER, denotes the state or disposition of the atmosphere, with regard to heat and cold, drought and moisture, fair or foul, wind, rain, hail, frost, snow, fog, \&c. Sce Atmompiere, Hail, Heat, Frost, Raix, \&c.

There does not appear in all philosophy any circumstance of more immediate concern to us, than the state of the weather; asit is in, and by means of the aynosphere, that all plants are nonrished, and all anmats live and breathe; and as any alterations in the density, heat, purity, \(\$ \mathrm{kc}\), of that, must neccssurily be attended with proportionable ones in the state of these.

The great, but regular alturations, a little change of weather produres in many parts of inanimate matter, every person knows, from the common instance of barometers, thermometers, hygrometers, \& C ; atal it is owing partly to our inattention, and partly to our unequal and intemperate course of life, that we also, like many other animals, do not fed as great and as regular ones in the tubes, chords, and fibres of our own bodies.

To establish a proper theory of the weather, it would be necessary to have registers carefully kept in divers parts

Vol. II.
of the globe, for a long series of years; from which we might be enabled to determine the directions, breadth, and bounds of the winds, and of the weather they bring with them; with the correspondence between the weather of divers places, and the difference betwcen one kind and another at the same place. We might thus probably in time learn to furetell many great emergencies; as, extraordinary heats, rains, frosts, droughts, dearths, and even plagues, and other epidemical diseases, \&c.

It is however but very few, and partial registers or accounts of the weather, that have been kept. The Royal Society, the French Academy, and a few particular philosophers, have at times kept such registers as their fancies have dictated, but never a regular and correspondent series in naany different places, at the same time, followed with particular comparisons and deductions from the whole, \&c. The mot of what has been done in this way, is as follows: The volumes of the Philosophical Transactions from year to year ; the same, for instructions and examples pertaining to the subject, vol. 65, part 2, art. 16 ; Eras. Bartholin has observations of the weather for every day in the year 1671 ; Mr. W. Merle made the like at Oxford, for 7 years ; Dr. Plot clid the same at the same place, for the year 1684 ; Mr. Hillier, at Cape Corse, for the years 1686 and 1687 ; Mr. Hunt and others at Gresham College, for the years 1695 and 1696 : Dr. Derham at Upminster in Essex, for the years 1691, 1692, 1697, 1698, 1699, 1703, 1704, 1705; Mr. Townley, in Lancashire, in 1697, 1698; Mr. Cunningham, at Erain in China, for the years \(1698,1699,1700,1701\); Mr.Locke, at Onts in Essex, 1692; Dr. Scheuchaer, at Zurich, 1708; and Dr. Tilly, at Pisa, the same year; professor Toaldo, at Padua, for many years ; Mr. T. Barker, at Lyndon, in Rutland, for many ycars in the Philos. Trans. : Mr. Dalton for Kendal, and Mr. Crosthwaite for Keswick, in the years \(1788,1789,1790,1791,1792, \& c\); and several others. The register now kept, for many years, in the Philos. Trans. contains an account, two times every day, of the thermometer, barometer, hygrometer, quantity of rain, direction and strength of the wind, and appearance of the atmosphere, as to fair, cloudy, foggy, rainy, \&c. And if similar registers were kept in many other parts of the globe, and printed in such-like public transactions, they might readily be consulted, and a proper use made of them, for establishing this science on the true basis of experiment.

From many experiments, some general observations have been made, as follow: That barometers generally rise and fall teg.ther, even at very distant places, and a consequent conformity and similarity of weather; but this is the more uniformly so, as the places are nearer together, as might be expected. That the variations of the barometer are greater, as the places are nearer the pole; thus, for instance, the mercury at London has a greater range by 2 or 3 lines than at Paris; and at Paris, a greater than at Zurich; and at some places near the equator, there is scarcely any variation at all. That the rain in Switzerland and Italy is much greater in quantity, for the whole year, than in Essex; and yet the rains are more frequent, or there are more rainy days, in Essex, than at either of those places. That cold contributes greatly to rain; and this apparently by condensing the suspended vapours, and so cuusing them to descend: thus, very cold wonths, or seasons, are commonly followed immediately by very rainy ones ; and cold summers are always wet ones. That high

4 G
ridges of mountains, as the Alps, and the snows with which they are covered, not ouly affiet the neighbouring places by the colds, rains, vapours, \& \(c\), which they produce; but even distant countries, as England, uftes partake of their effects. See a collection of ingenious and meteorological observations and conjecturrs, by Dr. Franklin, in his Experiments, \&c, pa. 182, \&c. Also a Meteorological Register keptat Mansfield Woodhouse, from 1784 to 1794, Notingham 1795, 8vo; and Kirwin's ingenious papers on this subject in the Transactions of the Irish Academy, vol.5. See also the articles Evaporation, latw, and Wind.

Other Prognostics and Observatims, are as follow :
That a threk dark sky, lavting for some time, without either sun or rain, always becomes first tair, and then foul, i. e. it changes to a fair clear sky, before it turus to rain. And the reason is obvious : the atmosphere is replete with vapours which, though sufficient to reffect and intercept the suu's rays from us, yet want density to deacend; and while the vapours continue in the same state, the wather will do so too: accordungly, such weather is commonly attended with moderate warmith, and with little or no wind to disturb the vapours, and a heavy atmonphere to sustain them; the barometer bring commonly bigh; but when the cold approaches, and by condensing the vapours drives them into elouds or drops, then way is made for the sun beams; till the same supours, by farther condensation, be formed into rain, and fall down in drops.

That a change in the warnth of the weather is followed by a change in the wind. Thus, the northerly and southerly winds, though commonly accounted the causrs of cold and warm weather, are really the effects of the cold or warmth of the atmosphere; of which Dr. Derham assures us he had so many confirmatious, that he makes no doubt of the fact. Thus, it is common to ohserve a warm southerly wind suddenly changed to the north, by the fall of snow or hail; or to have the wind, in a cold frosty morning, north, when the sun has well warmed the air, shift towards the south; and again 'turn northetly or easterly in the cold evening.
That most vegetables expand their flowers and down in sunshiny weather: and towards the evening, and against rain, close them again ; especially at the beginning of their flowering, when their seeds are tender and sensible. This is visible enough in the down of dandelion, and other downs; and eminently so in the flowers of pimpernel; the opening and shutting of which make what is called the countryman's weather-wiser, by which he foretels the weather of the following day. The rule is, when the flowers are close shut up, it betokens rain, and foul weather; but when they are spread abroad, fair weather.

The stalk of trefoil, lord Bacon observes, swells against rain, and grows more opright; and the like may be observed, though less sensibly, in the stalks of most other plants. He adds, that in the stubble fields there is found a small red flower, called by the country people pimpernel, which, opening in a morning, is a sure indication of a fine day.
- It is very conceivable that vegetables should be affected by the same causes as the weather, as they may be considered as so many hygrometers and thermometers, consisting of an infinite number of trachear, or air-vessels; by which they have an immediate communication with the air, and partake of its moisture, heat, \&c.

Hence it is, that every kind of wood, even the hardest
and most solid, swells in moist weather; the vapours easily insinuating themselves into the pores, especially of the lighter and drier kinds. And hence is detived a very extraordinary use of wood, viz, for breaking rocks or milstones. The method at the quarsies is this: Having cut a rock into the form of a cylinder, the workmen divide it into several thinner cylinders, of horizontal courses, by making boles at proper aistauces round the grat one; into these holes they drive picces of sullow wood, dried in an oven; these in moist weather, imbiling the buinidity from the air, swell, and, acting like wedges, they break or cleave the rock into several fat stones. And, in like manner, to separate large blocks of stone in the quarry, they wedge such pieces of wood into holos, forming the block into the intended shape, and then pour water upon the wedges, to produce the effect more immediattly.

Weatner-Glasea, are instruments contrived to show the state of the atmospliere, as to lieat, cold, moisture, weight. \&c c ; and so to measure the changes that tahe place in those reeprects; by which ineans we are enabled to predict the alteration of weather, as to rain, wind, frest, \&cc. -Under the class of weather-glass\%, are comprebended barometers, thermometors, hygrometers, nanometers, and anemometers.

WEDGE, in Geometry, is a solid, having a rectangular base, and two of its opposite sides enting in an acies or edge. Thus, \(A\) A is the rectangular buse; and de the edge; a perpendicular CE, from the edge to the base, is the height of the wedge. When the length of the edge DC is equal to the lengit of the bise \(s\). which is the mont.common form of it, the wedge is equal to half a rectangular prism of the same base AB and height ze; or it is then a whole triangular prism, having the triangle BCG for its base, and ag or dc for its height.
 If the edge be mure or less than ag, its solid content will also be more or less. But, in all cases of the wedge, the following is a general tule for finding the content of it, viz,

To twice the length of the base add the length of the cage, multiply the sum by the breadth of the base, and the product by the height of the wedge; then \(\frac{1}{6}\) of the last product will be the solid content.

That is, \((2 A G+D C) \times A F \times \frac{7}{6} E C=\) the content. Sce this rule demonstrated, and illustrated with examples, in my Mensuration, pa. 141, 4th edition.

Wedge, in Mechanics, one of the five mechanical powers, or simple engines; heing a geometrical wedge, or very acute triangular prism, applied to the splitung of wood, or rocks, or raising great weights.

This machine is made of iron, or some other hard matter, and applied to the raising of vast werghts, or separating very firm blocks of wood or stone, by introducing the thin edge of the wedge, and driving it in by blows struck upon the back by hammers or mallets.

The wedge is the most powerful of all the simple machines, having at almost unlimited and double advantage over all the other simple mechanical powers; both as it may be made vastly thin, in proportion to its beight; in which consists its own natural power; and as it is urged by the force of percussion, or of smart blows, which is a force incomparably greater than any mere dead weight or

\section*{WEE}
pressure, such as is employed on other machines. And accordingly we find it produces effects vastly superior to those of any otber power whatever; such as the splitting and raising the largest and hardest rocks; or even the raising and lifting the largest ship, by driving a wedge under it; which a mau can do by the blow of a matlet: and thus, the small blow of a hammer, on the back of a wedge, appears to be incomparably greater than any mere pressure, and will overcome it.

To the wedge may be referred all edge-tools, and instruments that have a sharp point, in order to cut, cleave, slit, split, chop, pioree, bore, or the like; as knives, hatchets, swords, bodkins, \&c.

In the wedge, the friction against the sides is very great, at least equal to the force to be overcome; because the wedge retains any position to which it is driven; and therefure the rusistance is at least doubled by the friction.

Authors have been of various opinions concerning the principle from which the wedge derives its power. Aristotle considers it as two levers of the first kind, inclined towards each other, and acting in opposite directions. Guido Ubaldi, Mersenne, ikc, will have them to be levers of the second kind. But Delanis shows, that the wedge cannet be reduced to any lever at all. Others refer the wedge to the inclined plane. And others again, with Destair, will hardly allow the wedge to bave any force at all in itself; ascribing tnuch the greatest part to the mallet which drives it.
The doctrine of the force of the wedge, according to some writers, is contained in this proposition: "If a power directly applied to the head of a wedge, be to the resistance to be overcome, as the breadth of the back GB. is to the height Ec ; then the power will be equal to the resistance; and if increased, it will overcome it."

But Desaguliers has proved that, when the resintance acts perpendicularly against the sides of the wedge, the power is to the whole resistance, as the thickness of the back is to the length of both the sides taken together. And the same proportion is adopted by Wallis (Op. Math. vol. 1, pa. 1016), Keill (Intr. ad Ver. Phys.), Gravesande (Elem. Math. Lib. 1, cap. 14), and by almost all the modern mathematicians. Gravesande indeed distinguishes the mode in which the wedge acts, into two cuses, one in which the parts of a block of wood, \&c, are separated farther. than the edge has penetrated to, and the other in which they have not separated farther: In his Scholium de Ligno findendo (ubi supra), he observes, that when the parts of the wood are separated before the wedge, the equilibrium will be when the force by which it is pushed in , is to the resistance of the wood, as the line DE drawn from the middle of the base to the side of the wedge but perpendicular to the separated side of the wood pg continued, is to the height of the wedge DC; but when the parts of the wood are separated no farther than the wedge is driven in, the equilibrium will be, when the power is to the resistance, as the half base \(A D\), is to its side \(A C\).

Mr. Ferguson, in estimating the proportion of equilibrium in the two cases last mentioned by Gravesande, agrees with this author, and other modern philosophers, in the latter case; but in the former he contends, that
when the wood cleaves to any distance before the wedge, as it generally does, then the power impelling the wedge, will be to the resistance of the wood, as halt its thickness, is to the length of either side of the cleft, estimated from the top or acting part of the wedge: for, supposing the wedge to be lengthened down to the bottom of the cleft, the power will be to the resistance, as half the thickness of the wedge is to the length of either of its sides. See F'erguson's Lect. pa. 40, \&c, 4to. See also Desagu. Exp. Phil. vol. 1, pa. 107; and Ludlam's Essay on the Power of the Wedge, printed in 1770; \&c.

The generally acknowledged property of the wedge, and the simplest way of demonstrating it, may be the following: When a wedge is kept in equilibrio, the power acting againat the back, is to the force acting perpendicularly against either side, as the breadth of the back \(A B\), is to the length of the side Ac or sc.-Demonura. For any three forces which sustain one another in equilibrio, are as the corresponding sides of a triangle that are drawn perpendicular to the directions in which the forces act. But \(A B\) is perpendicular to the force acting on the back, to drive the wedge forward; and the sides AC and BC are perpendicular to the forces acting on thens; therefore the three forces are as the said lines AB, AC, ac.

Hence, the thinuer a wedge is, the greater is its effect, in splitting any body, or in overcoming any resistance against the side of the wedge.

WEDNESDAY, the 4 th day of the week, formerly consecrated by the inhabitants of the northern nations to Woden or Uden; who, being reputed the author of magic, and inventor of all the arts, was thought to answer to the Mercury of the Greeks and Romans, in bonour of whom the same day was by them called dies Mercurii ; and bence it is denoted by astronomers by the character of Mercury 8.

WEEK, n division of time that comprises seven days.
The origin of this division of werks, or of computing time by sevenths, is much controverted. If has often been thought to bave taken its rise from the four quarters or intervals of the moon, between ber changes of phuses, which, being about 7 days distant, gave occasuen to the division: but others more probably from the seven planets.

Be this however as it may, the division is certanly very ancient. The Syriuns, Egyptians, and most ot the otiental nations, appear to have used it from the earliest ages : though it did not get tooting in the west sill mitroduced by Christianity. The Romans reckoned their days not by sevenths, but by ninths; and the ancient Greeks by decads, or tenths; in imitation of which the new Frence calendar seems to have been framed.

The Jews divided their time by weeks, of 7 days each, as prescribed by the law of Masev; in which they wree appointed to work 6 days, and to rest the 7 th , in commemoration of the creation, which being effected in 6 days, God rested on the 7th.

Some authors will even have the use of weeks, anung the other eastern nations, to bave procteded from the Jews; but with little sppearance of probability. It is with better reason that olters suppose the use of wieks, among the eastern nations, to be a reminant of the tradition of the creation, which they had still retained with divers others; or else from the number uf the platers.

The Jews denominated the-days of the week, the first, second, third, fourth, and fifth; and the sixth day they
named the preparation of the sabbath, or 7 th day, which answered to our Saturday. And the like method is still kept up by the cbrisuan Arabs, Persians, Ethiopians, \&cc.

The ancient heathens denominated the days of the week from the seven planets; which names are sull mostly retained among the christians of the west: thus, the first day was called dies solis, sun-day; the 24 dies lunee, moon-day; \&c; a practice the more natural on Dion's principle, that the Kigyptians took the division of the weck itself from the seven planets.

In fact, the true reason for these denominations seems to be founded in astrology. For the astrolugers distributing the government and direction of all the hours in the
 that the government of the first hour of the first day fell to Saturn, that of the second day to Jupiter, \&ec, they gave each day the name of the planet which, according to their doctrine, presided over the first bour of it, and that according to the order above stated. So that the order of the planets in the week bears little relation to that in which they follow in the beavens; the former being grounded on an imaginary power each planet has, in its turn, on the first bour of each day.

Dion Cassius gives anotber reason for the denomination, drawn from the celestial harmony. For it being observed, that the harmony of the diatessaren, which consists in the ratio of 4 to 3 , is of great force and effect in music; it was thought proper to proceed directly from Saturn to the Sun; because, according to the old system, there are three planets between Saturn and the Sun, and 4 from the Sun to the Moon.
Our Saxon ancestors, before their conversion to Christianity, named the seven days of the week from the sun and moon and some of their deified heroes, to whom they were peculiarly consecrated, and representing the ancient gods or planets; which names we have received and still retain: Thus, Sunday was devoted to the Sun; Monday to the Moon; Tursday to Tuisco; Wednesday to Woden; Thursday to Thor, the thunderer; Friday to Friga or Friya of Fraz, the wife of Thor; and Saturday to Seater. And nearly according to this order, the inodern astronomers express the days of
- Sunday
( Monday
\({ }^{*}\) Tuesday
Wednesday
4 Thursday
\& Friday
b Saturday the week by the seven plancts as annexed.

In the same order and number also do these obtain in the Hindu days of the week. See Kindersley's Specimens of Hindu Literature, just published, 8vo.

WEIDLER (Johs Faederice) was professor of mathematics at Wittemberg. Besides a number of communications to the Royal Society, contained in vols. 36,38 , 39, 40, 41, of the Philos. Trans. he was author of several separate works : as, 1. Institutiones Mathematicas, in 8 vo, 1725. This is a very thick volume, and contains a general, though concise course, of all the mathematical sciences. 2. Observationes Meteorologicze et Astronomicar, 1729. 3. Historia Astronomica, in 4to, 1741.

WELGH, WAY, or WEy, a weight of cheese, wool, \& c, containing 256 pounds avoirdupois. Of corn, the weigh contains 40 bushels; of barley or malt, 6 quarters.

WEIGHT, or Gravity, in Physics, a quality in natural bodies, by which they tend towards the centre of the earth : and it is equal to the effort necessary to prevent a body from falling. See Gravity.

Weight, like gravity, may be distinguished into absolute specific, and relative. Newton demonstrates, 1. That the weights of all bodies, at equal distances from the centre of the earth, wre directly proportional to the quantuies of matter that each contains: Whence it follows, that the weights of bodics lrave no dopendence on their shapes or textures; and that all spaces are not equally full of matier.
2. Un different parts of the rarth's surface, the weight of the same body is ditferent ; owing 10 the spheroidal figure of the earth, which causes the body on the surface to be nearer the centre in going from the equator towards the poles: and the increase in the weight is nearly in proportion to the versed sine of double the latitude; or, which is the same thing, to the square of the right sine of the latitude: the weight at the equator to that at the pole, being as 229 to 230 ; or the whule increase of weight from the equator to the pole, is the 229th part of the former.
3. That the weights of the same body, at different distances above the carth, are inversely as the squares of the distances from the centre. So that, a body at the distance of the moon, which is 60 semidiameters from the earth's centre, would weigh only the 3600 th part of what it weighs at the carth's surface.
4. 'That at different distances within the earth, or below the surface, the weights of the sane body are directly as the distances from the earth's centre: so that, at balf way toward the centre, a body would weigh hot half as much, and at the very centre it would bave no weight at all.
5. A body immersed in a Aluid, which is specifically lighter than itself, loses so much of its weight, as is rqual to the weight of a quantity of the fluid of the same bulk with itself. Nence, a body loses more of is weight in a beavier fiuid than in a ligbter one: and therefure it weighs more in a lighter fluid than in a heavier one.
The weight of a cubic foot of pure water, is 1000 ounces, or \(62 \frac{1}{4}\) pounds, nvoirdupois. And the weights of the cubic foot of other bodies, ure as set down under the article Specific Gravtry.

In the Philos. Trans. (No. 458, pa. 457 \&c) is contained some account of the analogy between English weights and measures, by Mr. Barlow. He states, that anciently the cubic foot of water was assuraed as a general standard for liquids. This cubic frot, of \(62 \frac{1 \mathrm{lb}}{}\), multiplied by 32, gives 2000, the weight of a ton: and hence 8 cubic fcet of water madd a hogshead, and 4 hogsheads a tun, or ton, in capacity and denomination, as well as weight.

Dry measures were raised on the same model. A bushel of wheat, assumed as a general standard for all sorts of grain, also weigbed \(62!\) lb . Eight of these bushels make a quarter, and 4 quarters, or 32 bushels, a ton weight. Coals were sold by the chaldron, supposed to weigh a ton, of 2000 pounds; though ill reality it weighs perhaps upwards of 3000 puunds.

Hence a ton in weight is the common standard for liquids, wheat, and coals. Had this analogy been adhered to, the confusion now complained of would have been avoided. - It may reasonably be supposed that corn and other commodities, both dry and liquid, were first sold by weight; and that measures, for convenience, were afterwards introduced, as bearing some analogy to the weights befure used.

Weicut, Pondus, in Mrchanics, denotes any thing to be raised, sustainerl, or moved by a machine; or any thing that in any manner resists the motion to be produced. In all machinex, there is a natural and fixed ratio between the weight and the maving power; and if they be such as to balance each other in equibbrio, and then the machine be put in motion by any other force; the weight and power wil always be reciprocally as the velocities of them, or of their centres of gravity ; or their momentums will be equal, that is, the product of the weight multiplied by its velocity, will be equal to the product of the power maltiplied by its valocity.

Weight, in Commerce, denotes a body of a known weight, appointed to be put into a balance against other bodies, whose weight is required to be known. These weights are usually of lead, iron, or brass; though in scveral parts of the East Indies common tlints are used; and in some places a sort of little beans. The diversity of weights, in all nations, and at all times, makes one of the most perplexing circumstances in commerce, \&c. And it would be a very great convenience if all nations could agree on a universal standard, and syatem, both of weights and measures.

Weights may be distinguished into ancient and modern, foreign and domestic.

\section*{Modern Weignts, used in the several parts of Europe, and the Levunt.}

Egglish Weients. By the 27th chapter of Magna Churta, the weights are to be the same all over England; but for different comnodities there are two different kinds, viz, troy weight, and avoirdupois weight.

The origin from which both of these are raised, is the grain of wheat, gathered in the middle of the ear: 32 of these, well dried, made one pennyweight, 20 pennyweights - . - une ounce, and 12 ounces - - - one pound troy; by Stat, 51 Hen. I11; 31 Fdwr. I; 12 Hen. VII.

A learned writer has shown that, by the laws of assize, from William the Conqueror to the reign of Ilenry V1I, the legal pound weight contained a pound of 12 ounces, raised from 32 grains of wheat; and the legal gallun measure contained 8 of those pounds of wheat, 8 gallons making the bushel, and 8 bushels the quarter.

Henry V[I. aliered the old English weight, and introduced the troy pound in its stead, being 3 quarters of an ounce only heavier than the old Saxon pound, or 1-16th heavier. The first statute that directs the use of the avoirdupuis weight, is that of 24 Henry VIII; and the particular use to which this weight is thus dirceted, is simply for weighing butcher's meat in the market; though it is now used for weighing all kinds of coarse and large articles. This pound contains 7000 troy grains; while the troy pound itself coutains only 5760 grains, and the old Saxon pound weight but 5400 grains. Philos. Trans. vol. 65, art. 3.

Hence there are now in common use in England, two different weights, viz, truy weight, and avoirdupors weight, the former haing employed in weighing such fine articles as jewels, gold, silver, sjlk, liquors, \&c: and the latter for coarse and heavy articles, as bread, corn, flesh, butter, cherse, tallow, pitch, tar, iron, copper, tin, sce, and all grocery wares. And Mr. Ward supposes that it was brought into use from this circuinstance, viz, as it was customary to allow larger weight, of such coarse articles,
than the law had expressly enjoined, and this he observes happened to be a 6 th part more. Apothecaries buy their drugs by awoirdupois weight, but they compound them by troy weight, though under some litile variation of name and divisions.

The troy or gone pound weight in Scotland, which by statute is to buthe same as the French pound, is commonly supposed equal to \(15 \frac{1}{2}\) Einglish troy ounces, or 7560 grains; but by a mean of the standards kept by the dean of gild of Edinburgh, it weighs \(7599_{r^{\prime} \delta}^{\prime}\) or 7600 grains nearly.
The following tables show the divisions of the troy and avoirdupois weights.
\[
\begin{gathered}
\text { Table of Troy Weight, as used, } \\
\text { 1. By the Goldstniths, \&c. } \\
\text { Grins Pennyw. } \\
24=1 \mathrm{dwt} \text {. } \\
480=20=1 \mathrm{os} \text {. } \\
5760=240=12=1 \mathrm{lb} \text {. } \\
\text { 2. By the Apothecaries. } \\
\text { Cruiss Seraples } \\
20=18 \\
60=3=1 \text { Dram } 3 \\
480=24=8=1 \text { Uunce } 3 \\
5760=288=96=12=1 \mathrm{lb} . \\
\text { Table of Avoirdupois Weight, } \\
\text { Drams } \\
16=1 \\
256=16=11 \mathrm{lb} . \\
7168=448=28=1 \text { quar. } \\
28678=1792=112=4=1 \mathrm{cmt} \text {. } \\
573440=35840=2240=80=20=1 \text { ton. }
\end{gathered}
\]

Mr. Ferguson (Lect. on Mech. pa. 100, 4t0) gives the following comparison between troy and avoirdupois weight.

175 troy pounds are equal to \(1+4\) avoirdup. pounds.
175 troy ounces are equal to 192 avoirdup. ounces.
1 troy pound contains 5760 grains.
1 avoirdupois pound contains 7000 grains.
1 avoirdupois ounce contains \(437 \frac{1}{2}\) grains.
1 avoirdupois dram contains \(27 \times 3+375\) grains.
1 troy pound contains \(13 \mathrm{oz} .2 \cdot 651428576\) drams avoirdupois
1 avoirdup. 1 b . contains 1 lb .2 oz .11 dwts 16 gr . troy
The noneyers, jewellers, \&c, have a particular class of weights, for gold and precious stones, viz, carat and grain, the carat being 24 grains; and for silver, the pennyweight and grain. The first have also a peculisr subdivision of the troy grain; thus, dividing

> the grain into 20 mites
> the mite into 24 droits
> the droit into 20 periots
> the periot into 24 blanks.

The dealers in wool have likewise a particular set of weights; viz, the sack, weigh, tod, stone, and clove, the proportions of which are as below: viz,
the sack containing 2 weighs
the weigh -61 tods
the tod \(-=2\) stones
the stone \(-=2\) cloves
the clove -7 pounds.

Also 12 sacks make a last or 4368 pounds.

Farther,
56 lb of old hay, or 60 lb new hay, make a truss. 40 lb of straw make a truss.
36 trusses make a load, of hay or straw.
14 lb make a stone.
5 lb of glass a stone.
French WEiohts. The common or theld old pound weight, is to the Euglish troy pound, as 21 to 16, and to the avoirdupois pound as 27 to 25 ; it therefore coniains 7560 troy grains ; and it is divided into 16 ounces like the pound avoirdupois, but mure particularly thus: the pound into 2 mares; the mare into 8 ounces; the ounce into 8 gros, or drams; the gross or dram into 3 denters, Paris scruples or pennyweights; and the pennyweight into 24 grains ; the grain being an equivalent to a grain of wheat. So that the Paris ounce contains \(472 \frac{1}{2}\) troy grains, and therefore it is to the English troy ounce as 63 to 64. But in several of the French provinces, the pound is of other different weights. A quintal is equal to 100 pounds.
Table of old French Weights with the Equivalent in Troy and Aroirdupois Wright.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline French. & oz. & \[
\begin{aligned}
& \text { Troy. } \\
& \text { dwi. }
\end{aligned}
\] & gro. & Aroir
or & & hids. \\
\hline 1 Pound & 15 & 14 & 20 & 17 & 4 & 34 \\
\hline 1 Marc & 7 & 17 & 10 & 8 & 10 & 17 \\
\hline 1 Ounce & & 19 & \(16 \frac{1}{4}\) & 1 & 1 & 27 \\
\hline 1 Gros & & 2 & 11 & & 2 & 16 \\
\hline 1 Scruple & & & 193 & & & 72 \\
\hline 1 Grain & & & 4 & & & 03 \\
\hline
\end{tabular}

The new French weights are those which bave for their measure a unit, called a gramme. This gramme is the absolute weaght of the cube of the centimetre, or 100 th part of the metre, or \(3 \frac{3}{3}\) Finglish feet, of distilled water, taken at its maximum of density; and answers to 19 Paris grains, or to 154 Enghish grains. The kilogramme, or the weight of a 1000 grammes, is equal to about \(32 \frac{1}{6}\) troy ounces. See the article Measures.

The weights above enumerated under the two articles of English and French weights, are the same as are used throughout the greatest part of Europe; only under somewhat different names, divisions, and proportions. And besides, particular nations have also certain weights peculiar to themsclves, of too little consequence here to be enamerated. But to show the proportion of these several weights to one another, there may be here added a reduction of the divers pounds in use throughout Europe, by which the other weights are estinated, to one standard pound, vis, the old pound of Amsterdam, Paris, and Bourdeaux ; as they were accurately calculated by M. Ricard, and published in the new edition of his Traite de Commerce in 1722.
Proportion of the WEIGHTS of the chief Cities in Europe, to that of Amrerdum, or the old French Pound.

100 pounds of Amsterdam are equal to
\begin{tabular}{rlll}
108 lbs of Alicant & \(95 \%\) lbs of Bergen, Norw. \\
105 & Autwerp & 111 & Bern \\
120 & Archangel, or & 100 & Brsancon \\
& Spoedes & 100 & Bilboa \\
105 & Arschut & 105 & Buis le Duc \\
120 & Avignon & 151 & Bologna \\
98 & Basil & 100 & Bourdeaux \\
100 & Bayoune & 104 & Bourgen Bresse \\
166 & Bergamo & 103 & Bremen \\
97 & Berg.op Zoom & 125 & Breslaw
\end{tabular}

Weignts comionued. 100 pounds of Amsterdam are equal to 105 lbs of Bruges \(\quad 114 \mathrm{lbs}\) of Madrid
\begin{tabular}{|c|c|c|c|}
\hline 05 & Bruges & 114 & Madrid \\
\hline 105 & Brussels & 105 & Malues \\
\hline 105 & Cadiz & 123 \({ }^{\frac{1}{2}}\) & Murseillcs \\
\hline 105 & Cologne & 154 & Messina \\
\hline \(107 \frac{8}{7}\) & Copenlagen & 168 & Milan \\
\hline 87 & Cunstantinople & 120 & Montpelicr \\
\hline \(113 \frac{1}{2}\) & Duntzic & 125 & Muscovy \\
\hline 100 & Dort & 100 & Nantes \\
\hline 97 & Dublin & 100 & Nancy \\
\hline 97 & Ejinburgh & 169 & Naples \\
\hline 143 & Flurence & 98 & Nuremberg \\
\hline 98 & Franckfort, sur & 100 & Paris \\
\hline & Maine & 112 \({ }^{\frac{1}{2}}\) & Revel \\
\hline 105 & Gaunt & 109 & Riga \\
\hline 89 & Geneva & 100 & Rucbel \\
\hline 163 & Genoa & 146 & Rome \\
\hline 102 & liamburg & 100 & Rotterdam \\
\hline 125 & Kuuingsberg & 96 & Rusen \\
\hline 105 & Leupsic & 100 & S. Malo \\
\hline 106 & Lajden & 100 & S. Sebastian \\
\hline 143 & Leghoin & 1587 & Saragosa \\
\hline \(105 \frac{1}{3}\) & Lirge & 100 & Seville \\
\hline 106 & Lisbon & 114 & Smyrua \\
\hline 114 & Lisle & 110 & Strin \\
\hline 109 & London, avoirdu- & 81 & Stockholm \\
\hline & pois. & 118 & Tholouse \\
\hline 105 & Luuvain & 151 & Turin \\
\hline 105 & Lubeck & \(158 \frac{1}{2}\) & Valencia \\
\hline \(141 \frac{1}{4}\) & Lucce & 182 & Venice \\
\hline 116 & Lyons & & \\
\hline
\end{tabular}
1. The weights of the ancient Jews, reduced to the English troy weights, will stand as below:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & 1 b & or & & gr \\
\hline Shekel & - & - & 0 & 0 & & 24 \\
\hline Munch & - & - & 2 & 3 & 6 & 104 \\
\hline Talent & & & 113 & 10 & 1 & \(10 \frac{2}{7}\) \\
\hline
\end{tabular}
2. Grecian and Roman weights, reduced to English troy weight, are as in the following table:


The Roman ounce is the English avoirdupois ounce, which they divide into 7 denarii, as well as 8 drachms; and as they rechoned their denarius equal to the Attic drachm, this will make the Attic weights one-eighth heavier than the correspondent Roman weights. Arbuth,
Regulation of Weiohts and Meankes.-This is a branch of the king's prerogative. For the public convenience, these ought to be universally the same throughout the nation, the better to reduce the prices of articles to equivalent values. But as weight and measure are things in their nature arbitnary and uncertain, it is necessary that they be reduced to some fixed rule or standard. It is however impossible to fix such a standard by any writted law or oral proclamation; as no person cam, by
words only, give to another an adequate iden of a pound weight, or foot-rule. It is thereture expedient to have recourse to some visible, palpable, material standard; by forming a comparison whith which all weights and measures nay be reduced to one uniform size. Such a atandard was anciently kept at Winchester: and we find in the laws of king Edgar, near a century before the conquest, an injunction that that measure should be observed throughout the realm.

Most nutions have regulated the standard of measures of length from some parts of the human body; as the palm, the hand. the span, the fosit, the cubit, the ell (wina or arm), the pacr, and the fathom. But as these are of different dimensious in men of different proportions, ancient bistorians inform us, that a new standard of length was fised by our king Heary the first; who commanded that the ulas or ancient ell, which answers to the modern yard, swould be made of the exact length of his own arm.

A standard of long measure being once obtained, all others are easily derived from it; those of greater length by multiplying that original standard, those of less by dividing it. Thus, by the statute called compositio ulnarum et perticarum, \(5 \frac{1}{2}\) yards make a perch; and the yard is subdivided into S feet, and each foot into 12 inches; which iuches will be each of the length of 3 barley-corns. But some, on the cuntrary, derive all measures, hy composition, from the barley-corn.
superficial neeasures are derived by squaring those of length; and measures of eapacity by cubing them.

The standard of weights was originally taken from grains or corns of wheat, whence our lowest denomination of weights is still called a grain; 32 of which are directed, by the statute called compositio mensurarum, to compors a pennyweight, 20 of which make an ounce, and 12 ounces a pound, \&c.

Under king Richard the first it was ordained, that there should be only one weight and one measure throughout the nation, and that the custedy of the assize or standard of weights and meavures, should be committed to certan persons in wery city and borough ; whence the aucient office of the king's ulnager seenis to have been derived. These orignal standards were calied pondus regis, and mensura domini regis, and are directed by a variety of subsequent statutes to be kept in the exchequer chamber, by an officer caliod the clerk of the market, except the - wine zallon, which is committed to the city of London, and kept in Guilithall.

The Scottish standards are distributed anong the oldest boroughs. The elwand is kept at Edinburgh, the pint at Stirling, the pound at Lanark, and the firlot at Linlithgow.

The two principal weights established in Great Britain, are troy weight and avoirdupois weight, as before mentioned. Under the liead of the former it may farther be added, that

A carat is a weight of 4 grains; but when the term is applied to gold, it denotes the degree of finencss. Any quantity of gold is supposed divided into 24 parts. If the whole mass be pure gold, it is said to be 24 carats fine; if there be 23 parts of pure goin, and one part of alloy or base nictal, it is said to be 2.3 carats fine, and so on.

Pore gold is tun soft to be used for coin. The standard coin of this kingdom is 22 carats fine. A pound of 3 tan-
dard gold is coined into \(44 \pm\) guineas, and therefore every guinea should weigh \(5 \mathrm{dwts} 9 \mathrm{f} \frac{\mathrm{y}}{}\) grains.

A pound of silver for coin contains 11022 dwts pure silver, and 18 dwts alloy: and standard silver-plate, 11 ounces pure silver, with 1 ounce nlloy. A pound of standard silver is coined Into 62 shillings; and therefore the weight of a shilling should be 3 dwts 20 it \(^{5}\) grains.

Universal Standard for Wrig hits and Measures.
Philosophers, from their habits of grneralizing, have often mute speculations for forming a general standard for weights and mensures through the whole world. These have beell devised chiefly of a plalosophacal nature, as best adapted to universality. Atier the invention of penduluin clocks, it first occurred that the length of a pendulum which should vibrnte seconds, would tee proper to be mode a universal standard for leugths; wherher it should be called a yard, or any thing else. But it was found, that it would be difficult in practice, to measure and determine the true length of such a pendulum, that is the distance between the point of suspension and the point of oscillation. Auotlicr cause of inaccuracy was afterwards discovered, when it was found that the seconds pendulum was of different lengits in all the different latitudes, owing to the spberoidul figure of the earti, which causes that all places in different latitudes are at different divances from the centre, and consequenily the pendulums are ncted on by different forces of gravity, and therefore require to be of different lengths. In the fatitude of London this is found to be 39 inches.

The Society of Arts in London, among their many lauduble and patriotic endeavours, oftered a handsome premium for the discovery of a proper standard for wetghts and measures. This brought them many expedients, but none that merited any attention. except one, an improvement in the method of the pendulum, by Mr. Hatton, in the year 1779. This consisted in the application of a moveable point of suspenston to one and the same pendulum, in order to produce the full and absolute effect of two pendulums, the difference of whose lengths was the intended measure. Here also the ratio of their lengths was easily detcrmined, from observing the number of vibrations performed in a given time at each point of suspension. Whence there being two equations and two unknown quantities, the actual lengths of the pendulums themselves might be readily deduced by simple algebraic rules.
The late ingenious Mr. Whiteburst much improved on Mr. Hatton's original notion, in his essay published in 1787 under the title of "An attempt towards obtaining invariable Measures of Length. Capacity, and Weight, from the Mensuration of Tiune, Exc." Mr. Whitehurst's proposal is to obtain a measure of the greatest length that conveniency will permit, from two pendulums whose vibrations are in the ratio of 2 to 1 , and whose length coincide with the English standard in whole numbers. His numbers were chasen with considerable judgment and skill. On a supposition that the length of the seconds pendulum, in the latitude of London, is \(39 \frac{1}{5}\) inches, the length of one vibrating 42 times in a minute must be 80 inches; and that of another vibrating 84 times in a minute must be 20 iuches; their difference 60 inches, or 5 feet is his standard measure. The difference of the lengths of two pendulums, however, resulting from his experiment, was 59892 inches, instead of 60 , the dif-
ference being accasioned by an error in the original assumption of 39.2 inches instead of 39.128 or 391 inches, as it is very nearly. Still, Mr. Whiteliurst has accomplished a principal part of his grand design, by showing how an invariable standard may always be found for the same latitude. But this is by no means all that is wamted.

The French philosophers have gone much farther, and have very judiciously deduced the measures of capacity, and those of weight from the standard linear measure; confining themselves throughout to the decimal division.

But their system is liable to this heavy objection, that it slepends on an accurate measure of a quarter meridian of the earth, at the same time that no such accurate measure has as yet been obtained; and at the same time probably that the meridians deffer so widely anong thems.-Ives as to leave no reasonable expectation that a correct nedium length of a meridian will ever be found.

Some other method then must be resorted to, if we wish to obtain a universal measurn, which at the same time that it shall be invariable, slaall be easily recovered on the supposition that the actual standard is lost. Perbaps the least objectionable way would be to take for the length of the metre the length of a simple pendulum vibrating seconds at the equator, at a certais beight above the surface of the sea, when the thermometer is at a fixed medium temperature: the length of the metre would then be about 39.027 Finglish inches, instead of \(39.370: 3\), the metre of the new Freneb systemn. The magnitude of the are, the stere, the gramme, \&c, (or any other terms thought proper to intruduce fur similar purposes), might have the same relations to the metre as in the Frunch system. Thus should we possess a standard taken from the gravitating force of the globe we inhabit, and which might be safrly considered as invariable, so long as the constitution of the earth and its time of rotation remain the same.

The material standard itself also might be chosen of some shape that should possess the double advantage of being little affected by changes of temperature, and being a pendulum whose distance between the point of suspension and centre of oscillation, should be exactly cqual to a fixed dimension of the pendulum that might radily be measured with exactness. Such a body we have in a right-angled cone, or oue the diatneter of whose base is equal to its altitude; for when this cone is suspended by its vertex as a centre of motion, the centre of oscillation is in the centre of the base; and when it is suspended by its base, the centre of oscillation coincides with the vertex of the solidi ; the longth of the isochronous simple pendulum being in both cases equal to the altitude of the cone, or to the diameter of its base.

The universal standard for lengths being once established, those of weights, \&ec, evidently follow. For instance, a vessel of certain dimensions, being filled with distilled water, or sorne other homogeneous matter, the weight of that may be cunsidered as a standard for weights. Sce also cur article Measure.

Weight of the Air, Water, \&c. Sce those articles severally. See also Specipic Gravity.

WI:RNER (Jons), of Nuremberg, was born in 1468 and died 1528, and appears to have been the best mathematician of bis time, being bighly distinguished as an
astronomer, a geometrician, dec, and well deserving of being better known than be 19, having contributed by his writings on tiggononetry, and other parts of the mathematics, to ditfuse 4 taste for these sciencrs. It apprats that lie wrote 5 bocks on triangles. In his time the use of the cross-statd began to be introduced among seamen; this anctent instrument being described by him, in lus Annotations on the tirst book of Ptoleme's Gengraphy, printed in 1514; whete he recommends it for observing the distance between the moon and some star, in order thence to deterimine the longitude. In 1322, be published Opera Mathematica at Nuremberg, in 410, containing a specimen of the Conics, with some solid prublems, and in which also the detcrasined the precension of the equinux more exactly \(t\) an it had before beell done.

WERSI, a Russian newsure of leagth, equal to 3500 Enighsh feet, or \(\frac{2}{4}\) wf an Enghsh mile.

WEST', one of the cardinal ponts of the horizon, or of the compass, diametitenlly oppusite to the east, or lying on the left hand when we face the north. Or west is strictly the intersection of the prime vertical with the horizon, of that side where the sun sets.

West Wind, is alsu called Zephyrus, and Favonius.
West Dief. Sce Dial.
WLSTERN Amplitude, Horizon, Ocean. See the several articles.

WhorING, in Navigation, is the quantity of departure made good to the westward from the meridian.

Wr.Y. See Weroh.
WHALE, in Astronomy, one of the constellations. See Cetus.

WHEILL, in Mecbanics, a simple machine, consisting of a circular piece of wood, metal, or other matter, that revolves on an axis. This is otherwise called Wheel and Axle, or Axis in Paritruchio, us a mechanical power, being one of the most frequent and uscful of any. In this capacity of it, the wheel is a kind of perpetual lever, and the axis another lesser one; or the radius of the wheel and that of its axis may lee considered as the longer and shorter arms of a lever, the centie of the whecl being the fulcrum or point of suspension. Whence it is, that the power of this machine is estimated by this rule: As the radius of the axis is to the radius of the whed or of the circumference; so is any given power, to the weight it will sustain.

Wherls, as well as their axes, are frequently dented, or cut into teeth, and are then of use on many vecasions: as in jacks, clocks, mill-work, \&c; by which means they are capable of moving und ucting on one another, and of being combined together to any extent; the teeth either of the axis or circumference working in those of otier wheds or axles; and thus, by multiplying the power to any extent, a very great effect is produced.

To compute the power of a combination of Wheels; the tecth of the axis of every wheel acting oll those in the circumference of the text following. Multiply continually together the radii of all the axes, as alsa the radii of all the wheck; then it will be, as the former product is to the latter, so is a given power applied to the circumference, to the weight it can suttain. Thus, for example, in a combination of five wheels and axlis, to find the weight a man can sustain, or raisc, whose force is equal to 150 pounds, the radii of the wheels being 30 inches, and those of the axes 3 inches.
w HE
Here \(3 \times 3 \times 3 \times 3 \times 3=243\),
and \(30 \times 30 \times 30 \times 30 \times 30=24300000\), therefore as \(243: 24300000:: 150: 15000000 \mathrm{lb}\), the weight he can sustain, which is more than 6696 tons weight. So prodigions is the incruase of power in a combination of whecls!

But it is to be obscrved, that in this, as well as every otber mechanical engine, whatever is gained in power, is lost in time ; that is, the weight will move as much slower that the power, as the force is incr-ased or multiplied, witich in the example above is 100000 times slower.

Hence, having given any power, and the weight to be raised, with the proportion between the wheels and axles necessary to that effect; to find the number of the wherls and axles. Or, having the tumber of the wheels and axles given, to find the ratio of the radii of the whecls and axies. Here, putting
\[
\begin{aligned}
& p=\text { the power acting on the last wheel, } \\
& w \equiv \text { the weight to be raised, } \\
& r=\text { the radius of the axies, } \\
& \mathrm{n}=\text { the radius of the wheels, } \\
& n=\text { the number of the wheels and axles } ;
\end{aligned}
\]
then, by the general proportion, as \(r^{n}: \boldsymbol{m}^{n}:: p: w\); there fore \(p \mathrm{a}^{n}=w y^{*}\) is a general theorem, from whence may be found any one of these five letters or quantities, when the other four are given. Thus, to find \(n\) the number of wheels: we bave first
\(\frac{n^{n}}{r^{n}}=\frac{w}{p}\), then \(n=\frac{\log \cdot w^{n}-\log \cdot p}{\log \cdot R-\log \cdot r}, \quad\) And to find the ratho of the wheel to the axle, it is \(\frac{n}{r}=\sqrt[n]{P}\).

Wheves of a Clock, \& \(\&\), are, the crown wheel, contrat wheel, great wheel, second wheel, third wheel, striking wheel, detent wheel, \&c.
Wheels of Coaches, Carts, Waggons, \&c. With respect to wheels of carriages, the following particulars are collected from the experiments and observalions of Desaguliers, Beighton, Camus, Ferguson, Jacub, Sc.
1. The use of wheels, in carriages, is twofold; viz, that of dimitushing or more easily overcoming the resistance or friction from the carriage ; and that of nore easily overcoming obstacles in the road. In the first case, the friction on the ground is transferred in some degree from the outcr surface of the wheel to us nave and axle; and in the latter, they serve easily to raise the carriage over obstacles and asperities met with on the roads. In both these cases, the height of the wheel is of inaterial consideration, as the spokes act as levers, the top of an obstack being the fulcrum, their length enables the carriage more easily to suimount them; and the greater proportion of the wheel to the axle serves more easily to diminish or to overcome the friction of the axle. See Jacob's Obscrvations on Wheel Carriages, pa. 23 \&c.
2. The wheels should be exactly round; and the fellics at right angles to the naves, according to the incliation of the spokes.
3. It is the most general opinion, that the spokes be somewhat inclined to the naves, so that the wheels may be dishing or concave. Indeed if the wheels were always to roll on smooth and level ground, it would be best to make the spokes perpendicular to the naves, or to the axles; because they would then bear the weight of the load perpendicularly. Bugpecause the ground is commonly uneven, one wheel often falls into a cavity or rut, whed the ether does not, and then it sustains much mose of the Vol. II.

1 ]
W H F:
weight than the other dors; in which case it is best for the wheels to be dislied, because the spokes become perpendicular in the rut, and therefore have the greatest strength when the obliquity of the ruad throws most of the weight on them; while those on the high ground have less weight to bear, and therefore need not be at their full strength.
4. The axles of the wheels should be quite straight, and perpendicular to the shafls, or to the pole. When the axles are straight, the rims of the wheels will lee parallel to each other, in which case they will move the easiest, because they will be at liberty to procced straight forwards. But in the usual way of practice, the ends of the axles are bent downwards; which always keeps the sides of the wheels that are next the ground nearer to each other than their upper sides are; and this not only makes the wheels drag sideways as they go along, and given the load a much greater power of crushing them than when they are parallel to each otber, but also endangers the overturning the carriage when a wheel falls into a hoie or rut, or when the carriage goes on a road that has one side lower than the other, as along the side of a hill. Mr. Beighton bowever has oflered several reasons to prove that the axies of wheels ought not to be straight; for which see Desaguliers's Exp. Phal. vol. 2, Appendix.
5. Large wbecls are found more advantageous for rolling than small ones, both with regard to their power as a longer lever, and to the degree of friction, and to the advantage in getting oker holes, rubs, and stones, \(\& c\). If we consider wheels with regard to the friction on their axles, it is evident that small wheels, by turning oftener round, and swifter about the axles, than large ones, must bave tuuch mure friction. Again, if we consider wheds as they sink into holes or soft enrth, the large wheels, by sinking less, must be mucb casier drawn out of them, as well as more easily over stones and obstacles, from their greater length of lever or spokes. Desaguliers has brought this matter to a mathematical calculation, in his Experim. Philos. vol, 1, pa. 171, \&c. See also Jacob's Observ, pa. 63.

Hence it appears then, that whecls are the more advatutageous as they are larger, provided they are not more than 5 or 6 feet diameter; for when they exceed these diniensions, they become too heravy; or if they are anade light, their strength is proportionably diminished, and the length of the spokes renders them nore liable to break; besides, horses upplicd to such wheels would not be capable of exerting their utmost strength, by having the anles higher than their breaste, so that they would draw downwards; which is even a greater disadvantage than small whecls have in occasioning the horses to ilraw upwards.
6. Carriages with 4 wheels, as waggons or coaches, are much more advantageous than carringes with \(2 w\) heels, as carts and chaises; for, with 2 whecls it is plain the thler horse carries part of the weight, isi one way or otber: in going down hill, the weight bears on the horse; and in going up hill, the weight falls the other way, and lifes the horse, which is still worse. Besides, as the wheels sink into the holes in the roads on different sudes, the shaits strike against the tiller's sides, which occasions the death of many horses: morenver, when one of the wheely sinks into a bole or rut, half the weight falis that way, whinch endangers the overturning of the carriage.
7. It would be much more advantageous to make the 4 wheels of a cuach or waggon large, and ncarly of a 4 H
beight, than to make the fore wheels of only half the diameter of the hind wheels, as is usual in many places. The fore wheds have cominonly been made of a less size than the hind ones, both on account of turning short, and to avoid culting the braces. Crane-necks have also been inwelled for turning yet shorter, and the fore wheels have been lowered, so as to go quine under the bend of the crane-neck.

It is accounted a great disadvantage in small wheels, that as their sale is below the bow of the horsus' breasts, the horses ant ouly have the londed carriage to draw along, but alsor part of in weight to bear, which tiles thems sum, and makes stiem grow much stifier in their hams, than they would if they diew on a l sel with the ture axle.

But Mr. Beighton disputes the propriety of fixing the line of tracion on a level woth the breast of a horse, and says it is Coatrary to reason and experience. Horses, he says, have hille or na powir to draw but what they derive from tietr weipht ; without which shey could not take hold of the ground, und then mey must slip, and draw nothing. Common experience also, teaches, that a horse must have a certain weight on his back or shoulders, that be may draw the better. And when a horse draws hard, it is observed that he bends forward, and brings his breast near the ground; and then if the wheels are high, he is pulling the carriage agarast the ground. A horse tackled in a waggon will draw twit or three ton, because the point or lise of traction is below his breast, by the lowness of the wheels. It is abo cummon to see, when one horse is drawing a heavy load, especiully up hill, his fore leet will rise from the ground; in which case it is usual to add a wright on his back, to keep his fore part down, by a person mounting on his back or shoulders, which will enable him todraw that load, which be could not move before. The greatest stress, or main business of draving, says this ingenious writer, is to overcome obstacles; for on level plans the drawing is but little, and then the horse's back need be pressed but with a sunall weight.
8. Tbe utility of broad wheels, in amending and preserviug the roads, bas been so long and generally achnowledged, as to have occusioned the legislaturg to enfarce therr use. At the same time, the proprietors and drivers of carriages seem to be convinced by experience, that a narrow-wheeled carriage is more casily and sperdily drawn by the same number ot horses, than a broad-wherled one of the same burtien : probably because they are much lighter, and have less friction on the axle.

On the subject of this article, see Jacob's Observ. \&c. on Whecl-Carriages, 1773, pa. 81 ; Desagul. Fixper. Phil. vol. 1, pa. 201 ; Marun's Phil. Brit. vol. 1, pa. 229 ; and Brewster's valuatile edition of Ferguson's Lictures, toth the work itself and the Appendix to the same, where several new observations dec aregiven on this subject. See also the Report of the Committee of the House of Communs, on Acts regarding the use of Brond Wheels, and other tnaters relaning to the Preservation of the Public Ruads.-Abridged in the Repertory of Arts, No.64, New Series.

Blowing WueEz, is a machine contrived by Desaguliers, for drawing the foul air out of any place, of for forcing in fresh, or doing boih successively, without oqnening duors or minilows. See Philos. Trans, No. 437. The intention of this macbine is the same as that of Haleg's venulator, but not so effectual, nor so convenient. Sce Disag. Exper. Philos. vol.2, pa. 563, 568.-This wheel is
also called a centrifagal wheel, because it drives the air with a centrifugal force.

Wrter Whevl, of a Mill, that which receives the impulse of the stream by means of ladle-bourds or fluatfluards. M. Parent, of the Academy of Sciences, has deterinined that the greatest effect of an undershot wheel, is when its velocity ts equal to tue 3d part of the velocity of the water that drives or ke-ps it in motion: but it ought to be the half of that velocity, as is fully shown in the article Mill, in this Dictionary. In fixing an undershot wheel, it ought to be conndered whether the water can run cicar off, so as to cause no back-water to stop its motion. Concerming this article, see Desagul. Exp. Philos. vol. 2, pa422. Also a variety of experiments und observations relating to undershot and overshot wheels, by Mr. Smeaton, in the Philus. Trans. val. 51 , pa. 10s).

Aristote's Witesl. Bee Ruta Aristorelica.
Meusuring Wheel. Sce Peaambulatom.
Orffyrens's Wheel. Sce Orfiymeus.
Persian Wheel. Ser Pensian.
Wheel Barometer. Sue Bakumeter.
WHIRL POOL, an eddy, vortex, ur gulf, where the water is continually \({ }^{\text {entring }}\) round.

Those in rivers are very cammun, from various accidents, and are usually very trivial, and of bule consequence. In the sca they are more rare, but more dangerous. Sibbald has related the cffects of a very remarkable matine whirlpool among the Orcades, which would prove very dangerous to strangers, tbough it is of no consequence to the people who are used to it. This is not fixed to any particular place, but appears in various parts of the limits of the sea among these islands. Wherever it appears it is very furious; and boats \&c would inevitably be drawn in and perish with it ; but the perple who navigate them are prepared for the event, and always carry an empty vessel, a log of wond, or large bundle of straw, or some such thing, in the boat with them; as soon as they perceive the whirlpool, they tuss this within its vonsex, kereping themselves out; thi- substance, whatever it be, is immediately received inn the centre, and carricd under water; and as soon as this is done, she surface of the place where the whirlpool was becomes sinooth, and they row over it winh safety: and in ubout an hour they see the vortex begin again in some other place, usually at about a male's distance from the first.

WHIIRLING-TABL.F., a machine contrived for representing several phenomena in opilosuphy and nature; as, the principal laws of gravitation, and of the planetary motıons in curvilinear orbists.

The figure of thes instrument is exhibited fig. 1, pl. 41: where As is a streng frame of wood; B a winch fixed on the axis \(c\) of the wheel \(n\), aboot which is the catzut string \(\boldsymbol{r}\), which also goes round the small wherls \(o\) and \(\mathrm{m}_{\text {, }}\) crossing between them and the great wheel p. On the upper end of the axis it the whel 6 , above the frame, is fixed the rouml board \(d\), to which nay be occasonally fixed the bearir msx. On the axis of the whol H is fixed the bearer \(\$\) gz, and when the winch \(s\) is turned, the wherls and bearersareput into a whirling monom. Fach bearcer has two wires \(w, x\), and \(5, z\), fixed and screwed :ight into them at the ends by nut on the outside; and when the nuts are unscrewid, the wares may be drawn out in order to change the balls \(U, v\), which slide upon the wires by means of braas liopss fixed into the balls, and preventing their touching the woud below
them. Through each ball there passes a silk line, which is fixed to it at any lingth from the centre of the hearer to its end, by a nut-screw at the top of the ball; the shank of the serew gonng into the centre of the ball, and pressing the line aganot the under side of the hule which it runs tirough. The line goes from the ball, and under a small pulley fixed in the middle of the bearer; then up through a sucket in the round plate (s and \(\tau\) ) in the fuddile of rach bearer; then through a slit in the middle of the square top ( 0 and \(p\) ) of each tower, and going over a suall puliey on the top comes down again the same way, and is at last fastened to the upper end of the socket fixed in the middle of the round plate above-mentioned. Each of these plated \(s\) and \(r\) has four round boles near their edges, by which they slide up and down on the nures, which make the coriuer of each lower. The balls and plates being thus connected, each by its particular line, it is plain that if the balls be drawn outward, or towards the end \(m\) and \(s\) of their respective bearers, the round plates \(s\) and \(r\) will be drawn up to the top of their rem spective towars 0 and \(p\).

There are several brass weights, some of 2 , some of 3 , and others of 4 ounces, to be occavionally put within the towers \(O\) and \(P\), on the round plates \(s\) auil \(\tau\) : each weight having a round hole in the woiddle of \(i\), for going on the suckets or axes of the plates, and being sha from the edge to the hole, that it may slip over the line which comes from each ball to its respective plate.

For a specimen of the experiments to be made with this machine, may be subjoined the following.
1. Removing the bearer mx, put the loop of the line \(b\) to which the ivory ball \(a\) is fastened over a pin in the centre of the board \(d\), and turn the winch 8 ; and the ball will not immediately begin to move with the board, but, on account of its inactivity, endeavour to remain in its state of reat. But whea the ball has acquired the same velocity with the board, it will remain on the same part of the board, having no relative motion upon it. However, if the board be suddenly stopped, the ball will continue to revolve on it, until the friction stups its notion: so that matter resists every change of state, from that of rest to that of motion, and vice versa.
2. Put a longer cord to this ball; let it down through the hollow axis of the bearer mx and wheel g , and fix a weight to the end of the cord below the machine; and this weight, if left at liberty, will draw the ball from the edge of the whirling board to its centre. Draw off the ball a little from the centre, and turn the winch; then the ball will continue to revolve with the board, and gradually fly farther from the centre, raising up the weight below the machine. And thus it appears that all bodies, revolving in circles, have a tendency to fly off from thuse circles, and must be retained in them by some power procecding from or tending to the centre of motion. Stop the machine, and the ball will continue to revolve for some time on the board; but as the friction gradually stops its motion, the weight acting upon it will bring it nearer and nearer to the centre in every revolution, till it brings it quite thither. Hence it appesrs, that if the plamets met with any resistance in going round the sun, its attractive power would bring them nearer and nearer to it in every revolution, till they would fall into it.
3. Take hold of the cord below the machine with one hand, and with the otber throw the ball upon the round board as it were at right angles to the cord, and it will re-
volve on the board. Then, observing the velocity of its motion, pull the cord below the machine, and thas bring the ball nearer the centre of the boaru, and the ball will be seen to revolve with an increasing vilocity, as it approaches the centre: and thus the planets which are nearest the sun perform quicker revolutions than those which are more remote, and move with greater velocity in every part of their respective circles.
4. Remove the ball \(a\), and apply the bearer mx, whose centre of motion is in its middle at \(w\), directly over the centre of the whirling board \(d\). Then put tho balls (v and \(u\) ) of equal weight on their bearing wires, and having fixed them at equal distances from their respective centres of motion \(w\) and \(x\) upon their silk cords, by the screw nuts, put equal weights in the towers o and P . Lastly, put the catgut strings \(\mathbf{E}\) and F on the grooves 0 and \(u\) of the small wheels, which, being of equal diameters, will give equal velocitics to the bearers above, when the winch \(a\) is turned; and the balls \(u\) and \(v\) will tly off toward \(m\) and x , and raise the weights in the towers at the same instant. This shows, that when bodies of equal quantities of master sevolve in equal circles with equal velucitis, their centrifugal forces are cqual.
5. Take away these equal balls, and put a ball of 6 ounces into the beater \(m x\), at a 6 th part of the distance uz from the centre, and put a ball of one ounce into the opposite bearer, at the whole distance \(x y=5: 5\); and \(6 x\) the balls at these distances on their cords, by the screw nuts at the tup: then the ball \(v\), which is 6 times as heavy as the ball \(v\), will be at only a 6 th part of the distance from its centre of motion; and consequenlly will revolve in a circle of only a 6 th part of the circumference of that in which v revolves. Let equal weights be put into the towers, and the winch be turned : as the catgut string is on equal wheels below, it will cause the balls to revolve in equal times; but \(v\) will move 6 times as fast as \(v\), because it revolves in a circle of 6 times its radius, and both the weights in the towers will rise at once. Hence it uppears, that the centrifugal furces of revolving bodies are in direct proportion to their quantities of matter multiplied into their respectlve velocities, or into their distance from the centres of their respective circular orbits.

If these two balls be lixed at equal distancis from their respective centres of motion, they will move with equal velocities; and if the tower o has 6 times as much weight put into it as the tower \(P\), the balls will raise their weights exactly at the same moment: i. e. the ball \(v\). being 6 times as heavy as the ball \(v\), has 6 times as much centrifugal force in describing an equal circle with an equal velucity.
6. Let two balls, \(v\) and \(v\), of equal weights, be fixed on their cords at equal distances from their respective centres of motion \(w\) and \(x\); and let the catgut atring e be put round the wheel k (whose circumference is only half that of the wheel \(\boldsymbol{H}\) or \(\mathbf{6}\) ) and over the puliey \(s\) to herep it tight, and let 4 times as much weight be put into the tower pas in the tower 0 . Then turn the winch m, and the ball \(v\) will revolve twice as fust as the ball \(u\) in a circle of the same diameter, becuuse they are equidistant from the centres of the circles in which they revolve; and the weights in the towers will both rise at the same instant; which shows that a double velocity in the same circle will exacily balance a quadruple power of attraction in the centre of the circle: for the weights in the towers may be considered as the attractive forces in the
\(4 \mathrm{H}_{2}\)
centres, acting on the revolving lalls; which moving in equal circles, are us if they both moved in the same circle. Whence it appears that, it bodics of equal wights revolve in equal circles with unequal velocities, thetr centrifugal forces are us the squares of the velucities.
7. The catgut string retmaining as before, let the distance of the ball \(v\) from the centre \(x\) be equal to 2 of the divistions on its bearer; and the distance of the ball 4 from the centre we be and a 6 th part; the baits themselves being equally heavy, and \(v\) inaking twa revolutions by turning the winch, whilst \(\mathbf{v}\) makes une; so that if we suppose the ball v to revolue in one second, the ball U witl revolve in 2, the squares of which are 1 and \(4:\) therefore, the squase of the period of \(v\) is contained 4 times in the square of the period of \(u\). But the distance of \(v\) is 2 , the cube of which is 8 , and the distance of \(v\) is \(3 \frac{1}{6}\), the cube of which is 32 very prarly, in which 8 is contained 4 times: and therefore, the squares of the periods \(v\) and \(u\) are to each other as the cubes of their distances from \(x\) and \(w\), the centres of their respective circles. And if the weight in the tower o be 4 ounces, or equal to the square of 2 , which is the distance of \(v\) from the centre \(x\); and the weight in the tower P be 10 ounces, nearly equal to the square of \(3 \frac{1}{6}\), the distance of U from \(w\); it will be found on turning the machine by the winch, that the balls \(v\) and \(v\) will rase their respective weights at very nearly the same instant of time. This expernment confirus the famous proposition of Kepler, viz, that the squares of the periodical times of the planets round the sun are in proportion as the cubes of their distances frum him ; and that the sun's attraction is inversely as the square of the distance from his centre.
8. Take of the siring E from the wheols v and n , and let the string F remain on the wheels D and o ; take away also the bearer \(\mathbf{x x}\) from the whirling-board \(d\), and instead of it put on the machine AB (fig. 2), fixing it to the centre of the board by the pins \(c\) and \(d\), so that the end \(o f\) may rise above the board to an angle of 30 or 10 degrecs. On the upper part of this machine, there are two glass tubes \(a\) and \(b\), closely stopped at hotb ends, each tube bring about three quarters full of water. In the tube \(A\) is a litte quicksilver, which naturally falls down to the cond a in the water; and in the tube \(b\) is a smull cork, Hoating on the top of the water, and small enough to rise or fall in the tube. White the board \(b\) with this machine on it continues at rest, the quicksilver lies at the bottom of the tube \(a\), and the cork flouts on the water ncar the top of the tube \(b\). But, on turuing the winch and moving the machine, the contents of each tube fly off towards the uppernoust ends, which are farthest from the centre of motion ; the heavicat with the greatest force. Consequently, the quicksilver in the tube \(a\) will fly off quite to the end \(f\), occupying its bulk of space, and excluding the water. which is lighter than itself: but the water in the tube \(b\), flying off to it higher end \(e\), will exclude the cork from that place, and cause it to descend toward the lowest enit of the tube; for the heavier body, having the greater centrifugat force, witl possess the upper part of the tube, and thu lighter body will keep between the heavier and the lower purt.

This experiment demonstrates the absurdity of the Cartesian doctrine of vortices; for, if a planet be more dense or bravy than its bulk of the vortex, it will fly off in it farther and further from the sun; if less dense, it will descend to the lowest part of the vortex, at the sun: and
the whole vortex itself, unless prevented hy some obstacle, would fly quite oft, togetiner wish the planets.
9. It a body be sn placed on the whirling-hoard of the maclune (big. I) that the centre of gravity of the budy be directly over the centre of the board, and the board be muved ever so rapidly by the winch n , the body will turn round with the boaril, without removing from tts middle ; for, as all parts of the body are in equitibrio round its centre of gravity, and the centre of gravity is at rest in the centre of inntion, the centrifugal force of all parts of the body wilt be equal at equal distances from its centre of motoon, nid therefore the body will remain in its place. But it the contre of gravity be placed ever so little out of the centre of motion, and the machine be turned swittly round, the body wilt lly off towards that side of the board on which its cenare of glavity lies. Then if the wire \(c\) (fig. 3) with its little ball a be taken away from the semiglobe \(A\), and the Hat side \(f\) of tbe semi-glube be laid on the whirling-board, so that their centres may coincide; if then the board be turned everso quickly by the winch, the semi-globe will remain where it was placed: but if the wire \(\mathbf{c}\) be acrewed into the semi-globe at \(d\), the whole becomes one body, whose centre of gravity is at or near d. Fix the pin c in the centre of the whirling-board, and let the deep groove \(b\) cut in the flat side of the semi-globe be put on the pin, so that the pin may be in the centre of \(A\) (sefig. 4), where the groove is to be represented at \(b\), and let the board be turned by the winch, which will carry the little bail a (fig. 3) with its wire c, and the semi-globe \(A\), round the centre pin \(c i\); and then, the centrifugal forse of the little ball B , weighing one ounce, will be sogreat as to draw off the semi-globe A, weighing two pounds, until the end of the groove at c strikes against the pin \(c\), and so prevents a from going any farther : otherwise, the celttrifugal force of a would have been sufficient to have carried a quite off the whirling-board. Hence we see that, if the sun were placed in the centre of the orbits of the planets, it could not possibly remain there; for the centrifugal forces of the planets would cairry them quite off, and the sun with them; especially when several of them happened to be in one quarter of the heavens. For the sun and planets are as much connected by the mutual attraction subsisting between them, as the bodies \(A\) and \(n\) are by the wire \(c\) fixed into them both. And even if there were butone planet in the whote heavens to revolve about ever so large a sun in the centre of its orbit, its centrifugal force would soon carry off buth itself and the sun: for the greatest body placed in any part of free space could be casily moved; because, if there were no other body to attract it, it would have no weight or gravity of itself, and consequently, though it could have no tendency of itself to remove from that part of space, yet it might be very easily moved by the force of any otber substance.
10. As the centrifugal force of the light hody \(s\) will not allow the heavy body a to remain in the centre of motion. even though it be 24 times as beavy as 8 ; let the ball a (fig. 5) weighing 6 ounces be connected by the wire c with the ball B . weighing one ounce, and let the fork F: be fixed into the centre of the whirling-board; then, hang the balls on the fork by the wire c in such a manmer that they may exactly balance each other, which wilt be when the centre of gravity between them, in the wire at \(d\), is supported by the fork. And this centre of gravity is as much nearer to the centre of the ball a than
to the centre B , as A is heavier than a allowing for the weight of the wire on each side of the fork. Then, let the machine be moved, and the balls a and B will revolve about their common ceutre of gravity \(d\), keeping their balance, because ether will nat allow the other to Hy off with it. For, supposing the ball a to be only one ounce in weight, and the ball a to be six ounces; then, if the wire c were equally heavy on each side of the forh, the centre of gravity \(d\) would be 6 tumes us far from the centre of B as from the centre of A , and consequently \(s\) will revolve with 6 times the velocity of \(A\), which will give a 6 thines as much centrifugal force as any single ounce of \(A\) bas; but then as \(B\) is only one ounce, and a six nunces, the whole centrifugal force of A will exacily balance that of B ; and therefore, each body will detain the other, so as to retain it in its circle.

Hence it appears, that the sun and planets must all move round the common centre of gravity of the whole system, in order to preserve that just balunce which takes place among them.
11. Renove the furks and balls from the whirlingboard, and place the trough AB (fig. 6) thereun, fising its centre to that of the board by the pin H . In this trough are two balls d an.f E of uncefual weights, connected by a wire \(f\), and made to slide easily on the wire stretched from end to end of the trough, and made fast by nut screws on the ouiside of the ends. Place these balls on the wire \(c\), so that their cominon centre of gravity \(g\), may be directly over the centre of the whirling-board. Then turn the machine by the winch ever so swiftly, and the trough and balls will move round their centre of gravily, so as neither of them will fly off; becausk, on account of the equilibrium, each ball "erains the other with un equal force acting aganst it. But if she ball e be drawn a little more towards the enil of the trough at A, it will renuve the centre of gravity towards that end from the centre of mution; and then, upon turnug the machine, the 'little ball g will fly off, anil strike with a considerable force against the enil \(A\), and draw the great ball \(B\) into the middle of the trough. Or, if the great ball d be drawn towards the end a of the trough, so that the centre of gravity may be a linle towards thent end from the centre of motion; and the machine be turned by the winch, the great ball in will by off, and strike violeutly against the end B of the trough, abd will bring the little ball E into the midulle of it. It she trough be not mede very strung, the bull b will break through it.
12. Mr. Fergusun has explained the reason why the tides rise at the same time en upposite sides of the earth, and consequently in opposite durctions, by the following new experiment on the whirling-table. For this purpose, let \(a b c d\) (fig. 7) represent the carth, with its side \(c\) turned toward the moun, which will then attract the water so as to raise them frosas \(c t 0 \mathrm{~g}\) : and in order to show that they will rise as high at the same time on the oppriste side from a to \(r\); let a plate an (fig. 8) be fixed on one end of the flat bar DC, with such a circle drawn on it as \(a b c d\) (ing. 7) to represent the round figure of the earth and sea; and an ellipse as efgh to repressent the swelling of the tide at \(e\) anil \(g\), occasioned by the influence of the moon. Over this plate AB suspend the three ivory bulis \(e, f, g\), by the silh lines \(h, i, k\), fastened to the tops of the wires \(n, 1, k\), so that the ball at \(c\) may hang freely over the side of the circle \(e\), which is farthest from the moon \(M\) at the other cad of the bar; the ball at \(f\)
over the centre, and the ball at \(g\) over the side of the circle \(g\), which is nearest the moon. The ball \(f\) may represent the centre of the earth, the ball \(g\) water on the side next the moon, and the ball \(e\) water on the opposite side. On the back of the moon m is fixed a short bar x parallel to the lorizon, and there are three holes in it above the hutle weights \(p, q, r\). A silken thread o is thed to the line \(k\) cluse above the ball \(g\), and passing by one side uf the inoon m goes thrnugh a hole in the bar N , and has the weight \(p\) hung to it. Such anuther thread \(m\) is lied to the line \(i\), close above the ball \(f\), and, passing through the centre of the moon \(m\) and middle of the bar \(x\), has the weight \(q\) hung to it, which is lighter than the weight \(p\). A thiril thread \(m\) is tied to the line \(k\), close above the ball \(e_{\text {, }}\) and, passing by the other side, of the mnon 3 through the bar N , has the weight \(r\) hung to it, which is lightec than the weight \(q\). The use of these three unequal weights is to represent the monn's unequal attraction at differeut distances from her; so that if they are left at liberty, they will draw all the three balls towards the moon with difierent degrees of force, and cause them to appear as in fig. 9, in which case they are evidently farther from each other than if thry hung freely by the perpendicular lines \(h, i, k\). Hence it apprars, that as the moon attracts the side of the carth which is nearest her with a greater degree of force than she does the contre of the earth, she will draw the water on that side more than the centre, and cause it to rise on that side: and as she draws the centre more than the opposite side, the centre will recede farther from the surface of the water on that opposite side, and leave it as high there as she raised it on the side next leer. For, as the centre will be in the middle betueen the tops of the opposite elevations. they must of course be equally high on both sides at the satne time.

However, upon this supposition, the earth and moon would som come together; and this would bo the case if they had not a motion round their common centre of gravity, to produce a degree of centrifugal force, sufficient to balance their mutual attraction. Such motion they have; for as the moon revolves in her orbit every nonth, at the distance of 240000 miles from the earih's centre, and of 234000 niles from the centre of gravity of the eath and moon, the rarth alas goes round the saine centre of gravity every month at the distance of 6000 miles from it, i. e. from it to the centre of the earth. But the diameter of the earth being, in round numbers, 8000 miles, its side next the moon is unly 2000 miles from the common centre of gravity of the earth and moon, its centre (i000 miles from it, and its farthest side from the moon 10000 miles. Consequently the centrifugal forces of these parts are as 2000,6000 , and 10000 ; i.e. the centrifugal force of any side of the earih, when it is turned from the moon, is 5 tines as great as when it is turned towards the moon. And as the mmon's attraction, expressed by the number 6000 at the carth's centre, hexps the carth from flying out of this monthly circle, it must be greater than the centrifugal force of the waters on the side next her ; and consequently, her greater degree of attraction on that side is sufficient to raise them; but as her attraction on the opposite side is less than the centrifugal force of the water there, the excess of this force is sufficient to raise the water just as bigh on the opposite side.

To prove this experimentally, let the bar Dc with its
furniture be fixed on the whirling-board of the machine (fig. 1.) by pushing the pia F snto the centre of the buard; which pin is in the ceatre of gravity of the whole bar with its three balls, e,f,g, and moon \(x\). Now if the whirling-board and bar be turned slowly round by the winch, till the ball \(f\) hangs over the centre of the circle, as 1 ll tig. 10, the ball g will be kept towards the moon by the hewvest weight \(p\) ( fig .8 ), and the ball c , on account of its greater contritugal force, and the less weight \(r\), will fly off as far to the other side, as in fig. 10. And thus, while the machine is kept turning, the balls \(e\) and \(g\) will hang over the ends of the ellipse ifk. So that the centrifugal force of the ball e will exceed the moon's attraction just as much as her attraction excceds the centrifugal force of the ball \(g\), whale her attraction just balances the centrifugal force of the bail \(f\), and makes it keep in its circle. Hence it is evident, that the tides must rise to equal heights at the same time on opprosite sides of the earth. See Ferguson's Lectures on Mechanics, leet. 2, and Desag. Ex. Phil. vol. 1, lect. 5.

WHIRLWIND, a wind excerdungly rapid and impetuous, which moves in a spiral manner, as well as horizontally, which is but only of short duration. Dr. Franklin, in his Plysical and Meteorological Observations, read to the Royal Society in 1756, supposes a whirlwind and a waterspont to proceed from the same cause, namely a stream of clastic matter rushing violently into the atmosphere out of the earth : their only difierence being, that the latter passes over the water, and the former over the land. This opinion is corroborated by the observations of M. de la Pryme, and many others, who have remarked the appearances and effects of both to be the same. They have both a progressive as well as a circular motion; they usually rise after calms and great heats, and mostly happen in the warmer latitudes: the wind blows every way from a large surrounding space, both to the waterspout and uhirlwind; and a waterspout has, by its progressive motion, passed from the sea to the land, and produced all the phenomena and effects of a whirlwind: so that there is no reason to doubt that they are meteors arising from the sanue general cause, and explicable on the same principles, furnished by clectrical experiments and discoverics. Sec Humbicane, and Waterspout. For Dr. Franklin's ingenious method of accounting for both these phenomena, see his Letters and Papers, \&c, vol. 1, pa. 191, 216, \&c.

WHISPERING-Places, are places where a whisper, or other small noise, may be heard from one part to ansther, to a great distance. They depend on a principle, that the voice, \(d x\), being applied to one end of an arch, easily passes by repeated reflecuons to the other. Thus, let ABC represent the segment of a sphere; and suppose a low voice uttered at \(A\), the vibrations extending themselves every way, some of them will impinge on the
 points \(E, E, \& c c\); and thence be reflected to the points \(F\), \(\mathrm{y}, \mathrm{\& c}\); thence toa, \(\omega, \& \mathrm{c}\); tull at last they meet in c ;
where by their union they cause a much stronger sound than in any part of the scginent whatever, even luuder than at the point from which thry set out. Accurdingly, all the contrivance in a a hispering-place is, that near the person who whispers, there be a smooth wall, arched either cylindrically, or elliptically, \&c. \(\Lambda\) circular arch will do, but not so well.

Some of the most remarkable places for whispering, are the following: viz, The prison of Dionysins at Syracuse, which increased a soft whipper to a loud noise; or a clap of the hand to the report of a canmun, \&c. The aqueducts of Claudius, which conducted a voice 16 niles: beside divers others mentuned by Kircher in his l'bonurgia. In England, the most considerable whigpering places are, the done of St. Paul's church, London, where the tiching of a watch may be heard from side to side, and a very soft whisper may be sent quite round the dome: this I)r. Derham found to hold not only in the gallery below; but above on the scaftold, where a whisper wuuld be carried over a person's head round the top of the arch, though there be n large opening in the middle of it into the upper part of the dome. And the celebrated whisper-ing-place in Gloucester cathedral, which is only a gallery above the east end of the chuir, leading from one side of it to the other. See Birch's Il ist. of the Royal Soc. vol. 1. pa. 120.

WHISTON (Weltam), an English divine, philosopher, and mathematician, of uncommon abilities, learning, and extraordinary character, was born the 9th of December 1667, at Nurtun in the county of Leicester, where his father was rector. He was educated under his father till he was 17 years of age, when he was sent to Tamworth school, and two years after admitted of Clarehall, Cambridge, where he pursued his studies, and particularly the mathematics, with great diligence. During this time he becume afflicted with a great weakness of sight, owing to close study in a whitened room ; which was in a good masasure relieved by a little relaxation from study, and tahing off the strong glare of light by hanging the place opposite his seat with green.

In 1693 he breame master of arts and fellow of the college, and son after commenced one of the tutors; but his ill state of health soon after obliged him to relinquish this profession. Having entered into orders, in 1694 he became chaplain to Dr. More, bishop of Norwich; and whale in this station he published his first work, A New Theory of the Farth \&c; in which he undertook to prove that the Mosaic doctrine of the earth was perfectly agireable to reasou and philosophy: which work, liaving much ingenuity, though it was written against by Mr. John Ketl, brought considerable reputation to the author.

In the year 1698, bishop More gave him the living of Lawestoff in Suffolk, where he immediately went to reside, and devoted himstf with great diligence to the discharge of that trust - In the brginning of the lust century he was made sir Isaac Newton's deputy, and nfterwards his successor, in the Lucasian professorship of nathematics; when he resigned his living at Lowestuff, and weut to reside at Cambridge. From this time his publications became very frequent, both in theology and mathematics. Thus, in 1702 he published, A Short View of the Chronology of the Old Testament, and of the Harmony of the four Evan-gelists.-In 1707, Pralectiones Astronamica; besides 8 Serinons on the Accomplishment of the Scripture Prophecies, preached at Boyle's lecture; and Newton's Arith-
metica Universalis.-In 1708, Tacquet's Euclid, with selert theorems of Archineme; the former of which had accodentaligy bern has first mitroduction to the study of the mathenatics. - In the same yas he drew up an liswiy on the Apustnlical Constututum, which the vice chancellor refused his lienece for printimg. The author intorns us, he hall read over the two fist centuries of the church, and found that the Eusebian or drand ductrme was chas fly the docirme of those ages, which, taough deemed heterodux, he thought it his duy to discoser. - In 1709, be published a volume of Sernions und Eissays on vartous suljects.In 1710, Pixectionas l'hymico-Mathematice, which, with the Praelectonss Astrunomica, were translated and published in kinglish. And it may be suid, with ne smali honour to the mumory of Mr. Whiston, that he way one of the first who explamed the Newtonian philusopliy in a popular way, so as to be intelimple to the ga ik rality of readers.-Among other things also, he tramslated the Apustolical Culbututione intu Einglish, which favoured the doctrine of the supremacy of the Fatber and subordinatuon of the son, vulgarly called the Arian heresy: on which his triends began to be alarmed tor him; and the consequence showed it was not groundless; ior, Oct. 30, 1710, be was deprived of his professorship, and expelled the universty of Cambridge, after he had been tormally convened and interrogated tor several successive days.At the conclusion of this jear, he wrote his Historical Prefice, afterwards pretixed to his Primitive Christianity Revived, containing the reasuss for his dissent from the commonly received notions of the I'rinity, which work he published the next year, in 4 volumes 8 vo, for which the Convication fell upoll him must vehemently.

In 17 ts, he and Mr. Ditton composed their scheme for finding the longitude, which they published the ycar following, a method which collsisted io measuring distances by means of the velocity of sound; some more particulars of wisch are related in the life of Mr. Diton.- In 1719, he published an ironical Letter of 'Thanks to doctor Robinson, hishop of London, for his late Letter to his clergy against the use uf New Furms of Doxulogy. And, the same year, a Letter to the earl of Nottingham, concerning the Eternity of the Son of Giod, and his Holy Spuirit. -In 1720, he was prupused by sir Hans Sloane and Dr. 1 lalley to the Ruyal Society as a memher; but was refused udmittance by sir Isanc Newton the president.

Un Mr. Whiston's expulaion from Cainbridge, he wellt to London, where he conterred with Doctors Clarke, Hoadley, and other leartied men, who endeavoured to moderate his zcal, which however he would not sutticr to be tainted or corrupted, and many were not much satisfied with the aullority of tbese constitutions, but approved his intugrity. Mr. Whistun now settled iu Londall with his family; whers, without sufiering his ardour to be intimidated, he continued to write, and to propagate his Primitive Cbristianity with as much fervency us if he had been in the most thourishing circumstances; which however were so bad, that, in 1721, a suliscription was made for the support of biz family, which anounted to 470 ol . For though tie drew sume pootits from reading astronomical and philosuphical lectures, ated also from his publications, which were very numerous, yet these nf themselses were very ustufficiont; nor, when joined with the benevolence and charity of those who loved and estemed hom for his learning, integrity, and piety, did they prevent his being irequently in great distress.-In 1722 he published
an Essay towards restoring the true text of the Old Testa-ment.- \(\ln 1724\), The Literal Accomplishment of Scripture Prophicies.-Akn, The Caiculation of Solar Eclipses without Paralaxes.-In 1726, Ut the Thundering Legion \&c. -In 17.7, A Collection of Authentue Records belonging to the Oid and New Toutarent.-In 1730, Memoirs of the Lafe of Dr. Samiel Clarke.-In 1732, A Vindication of the Tirstumony of Phlegon, or all Account of the Great Darkiess and Earthquake at our Saviour's Passion, described hy Phlegon.-In 1736, Athanassan Forgeries, \&c. And the Primitive Fucharis: revived - In 1737, The Astronomical Year, particularly of the Comet toretold by sir Isauc Newton.-Alse the Genuine Works of Flavius Jose-phus.-In 1739, Mr. Whistull put in his claim to the ma-themiti-al protessorship at Cambridge, then vacant by the death of Dr. Suunderson, in a lutter to Dr. Ashton, the muster of Jesus-culloge; but 110 regard was pand ty it.In 1745, he puulshed his Primitive New Testament in English.-In 1748, his sacred History of the Old and New Testament. Also, Memoirs ot his own Life and Writings, which are very curious.

Whiston contiaued many years a member of the established church; but at length forstook it, on account of the realing of the Athanasian Creed, and went over to the Baptists; which happend while her was at the house of Samuel Barker, Fisq, at Lindno in Rutlandshire, who had married his daughter; where he died, after a week's illness, the 22d of August 1752, at upwards of 84 years of age.-We have mentioned the principal of his writings in the foregoing memoir; to which may be added, Chronological Tables, published in 1750; and one paper only in the Philes 'I rans, vol. 31, on two mock suns, and a halo seen in Oct. 1721.

The character of this conscientious and worthy man has been attempted by two very able parsunages, who were well acquanted with bim, namely, bishop Hare and Mr. Collons, who unite in giving him the highest applauses, for his integrity, piety, \&ec.-Mr Whiston left some children behind hum; unong them, Mr. John Whiston, who was tor many years a very considerable bookseller in Londoll.

WHITE, one of the colours of bodies. Though white cannot properly be said to be one colnur, but rather a composition of all the colours together: for Newton has demonstrated that bodies only appear white by reflecting all the kinds of coloured rays alike; and that even the light of the sun is onty white, because it consists of all calours mixed tagether.
This may be showy mechanically in the following manner: Take seven parcels of coloured fine powders, the same as the promary colours of the rainbow, taking such quantilies of there as shall be proportional to the reppective breadths of these colours in the rainbow, which are of red 45 parts, orange 27 , yellow 48 , green 60 , blue 60 , indigo 40, and of volet 80 ; then mix intimately together these seven purcels of powdern, and the mixture will be a pretty white colonr: this is only simular to the unning the prismatic colours together again, to form a whte ray or pencil of light of the whole of thelu. The sanee thans is performed conveniemtly thus: Lat the fat upper serface of a top be divided into \(\$ 60\) equal parts, all anound its edges then divide the ame surface into seven wetors in the proportion of the numbers abowc; by worll radii or lines drawn from the conter next let the respectise colours be pannted in a lively manner on these spaces, but
so as the edge of each colour may be made nearly like the colour next adjoining, that the separation may not be well distanguislied by the eye; then if the tn p be made to spin, the colours will thus seen to be mixed all together, and the whole surfuce will appear of a uniform whiteness: if a large round black spot be painted in the midjle, su as there may be only a broad tiat ring of colours around it, the experiment will succeed the better. See Newton's Optics, prop. 6, book 1; and Ferguonn's Tracts, pa. 296.

White botics are found to take beat slower than black ones; because the latter absorb or imbibe rays of all kinds and colours, and the former reflect them. Hence it is that black paper is socomer put in flame, hy a burningglass, than white; and beuce also black closhes, hung up in the sun by the dyens, dry seoner than white ones.

WHITEHCRST (Jons), an ingenious Eloglish philosopher, was born at Congleton in the county of Chishire, the 10th of April 1713, beng the son of a clock and watchmaker there. Of the early part of his life but little is known. On his quitting school, where it seems the education he received was very defective, he was brought up by his father to his owu profession, in which he soon gave hopes of his future eminence.

It was carly in life that, from his vicinity to the many stupendous phenomena in Derbyshire, which were constantly presented to his observation, his attention was excited to inquire into the various causes of then.

At about the age of 21 , his cagerness after new ideus carried him to Dublin, having heard of an ingetious piece of mechanism in that city, being a clock with certain cusious appendages, which he was very desirous of seeing, and no less so of conversing with the maker. On his arrival however, he could neither procure a sight of the former, nor draw the least hint from the latter, concerning it. Thus disappointed, he fell upon an expedient for accomplishing his design; and accordingly took up bis residence in the house of the mechanic, paying the more liberally for his hoard, as he thus had hopes of more readily obtaining the indulgence wished for. He was accommodated with a room directly over that in which the favourite piece was kept carefully locked up: and he had not long to wait for his gratification; for the artist, while one day employed in examining his machinc, was suddenly called down stairs; which the young inquirer bappening to overbear, softly slipped into the room, inspected the machine, and, presently satisfying himself as to the secret, escaped undiscovered to his own aparment. His end thus compassed, he shortly afier bade the arust farewell, and returned to his father in England.

About two or three years after his return from Ireland, he left Congleton, and entered into business for himself at Deiby, where he soon procured great emplnyment, and distinguished himself very much by several ingenious pieces of mechanism, buth in his own regular line of business, and in various other respects; as, in the comstruction of curious thermoneters, barumet-rs, and other philosphical insiruinents, as well av in ingenious conerivances for water-works, and the erection of varous larger machmes: being consulted in almost all tie undertakings in Derbysiiire, and in the nemptreuring countien, where the aid of superior skill in mechanacs, puctmatics, and hydructics, was requinite.

In this matner his time was futly and unefully empl yyed in the country, ull, in 1775, when the act passed for the better regulation of the gold coin, he was appointed
stamper of the money-weights; an office conterred on him, altogether unexpectedly, and without solicitation. On this occasion he removed to London, where be spent the remainder of his days, in the constant hubits of cultivating some useful parts of philosuphy and mechauism. And here bis house became also the constant resort of the ingemous and scientific at large, of whatever nation or rank, and this to such a degree, as very oftell to impede him in the regular prosecution of his own speculations.

Int 1778, Mr. Whitehurst published his Inquiry into the Origimal State and Formation of the Earth; of which a sccond cdition appeared in 1786 , considerably enlarged and improsed; and a third in 1792. This was the labonr of many years; and the numerous investigations necessary to its completion, were in themselves also of so untoward a nature, as at times, though be was naturally of a strong eonstitution, not a little to prejudice his bealth. When he first entered on this sperics of research, it was not atogether wish a view to investigate the formation of the earih, but in part to obtain such a competent knowledge of subterraneous gcograplyy as might become subservient to the purposes of human like, by leading mankind to the discovery of many valuable substances which lue concealed in the lower regions of the earth.

May the 131h, 1779, he wus clected and admitted a F.llow of the Royal Sooiety. He was also a member of some other philosophical societies, which appointed him of their resjective bodics, withnut his previous knowlerge; but so renote was be from any thing that might suvour of ostentation, that this circymstance was known only to a very few of his most confidential friends. Befnre he was aulritted a member of the Royal Society, three several papers of his had heen inserted in the Philosophical Transactions, vix, Thermometrical Observations at Derby, in vul. 57 ; An Account of a Machine for raising Water, at Oulton, in Cheshire, in vol. 65 ; and Jixperiments on Ignited Substances, vol, 66: which three papers were printed afterwards in the collection of his works in 1792.

In 1783 be made a sccond visit to Ireland, with a view to ixamine the Giants' Causeway, and other nonhern parts of that island, which he found in be chiefly composed of volrahic matter: an account and representations of which are inserted in the latter editions of his lnquiry. During this excursion, he erected an engine, for raising water from a well, to the summit of a hill, in a bleachang ground, at Tullidoi, in the county of Tyrone: it is worhed by a current of water, and for its utility is perhaps unequalled in any country.

In 1787 lie published, An Attempt toward obtaining Invariuble Measures of Length, Capacity, and Weight, from the Mensuration of Tine. His plan is, to obtain a measure of the greatest length that conveniency will ferinit, fron two pendulums wbose vibrations are ill the ratio of 2 to 1 , and whose lengths coincide nearly with the English standard in whole numbers. The numbers which he has chusen show much ingenuity. On a supprasition shat the length of a sconds produlum, in the lautude of Lundon, is \(39 \frac{1}{3}\) inches, the length of one vibratiog 42 times in a minute, must be 80 mehes; and of anuther vibrating 84 times in a ninute must be 20 inches ; their difference, 60 inches, or 5 feet, is his standard measure. By the experiments however, the difference between the lengths of the two pendulurn rods, was found
to be only 59.892 inches, instead of 60 , owing to the error in the assumed lensth of the seconds pendulum, \(39 \frac{f}{5}\) inches being greater than the truth, which ought to be \(39 \frac{1}{\frac{1}{2}}\) very nearly. By this experiment, Mr. Whitehurst obtained a fact, as accuratély as may be in a thing of this nature, viz, the ditierence between the lengths of two pendulum rods whose vibrations are hnown: a datum from which may be obtained, by calculation, the true lengths of pendulams, the spaces through which beary bodies fall in a given time, and many other particulars relating to the doctrine of gravitation, the figure of the earih, dc, \&c.

Mr. Whitehurst had been at times subject to slight at tacks of the gout, and lie had for several years felt himself gradually declining. By an attach of that disease in his stumach, after a struggle of two or three months, it put ant end to his laborious and useful life, on the 18th of February 1785 , in the 75 th ycar of his age, at his house in Bolt-court, Fleet-street, being the same house where another eminent self-taught phitosopher, Mr. James Ferguson, had just before him lised and died.

For several years before bis death, Mr. Whitehurst had been at times occupied in arranging and completing some papers, for a treatise on Chimneys, Ventilation, and Gar-dea-stoves; which have since been collected and given to the public, by Dr. Willan, in 1794.
llowever respectable Mr. Whitehurst may have been in mechanics, and those parts of natural science which be more immediately"cultivated, he was of still higher account with his acquaintance and friends on the score of his moral qualitics. To say nothing of the uprightness and punctuality of his dealings in all transactions relative to business; few men have beel known to possess more benevolent affections than he, or, being possessed of such, to direct them more judiciously to their proper ends. With regard to bis person, be was above the middle stature, rather thin than otherwise, and of a countenance expressive at once of penetration and mildness. lis fine gray locks, unpolluted by art, gave a venerable sir to his appcarance. In dress he was plain, in diet temperate, in lis general interconrse with mankind easy and obliging, In company he was cheerful or grave alike, according to the dictate of the occasion; with now and then a peculiar species of humour about him, delivered with such gravity of mantier and utterance, that those who knew him but slightly were apt to understand him as serious, when he was merely playful. But where any desire of infurtnation on subjects in which he was conversant was expressed, he omitted no opportunity of insparting it.

WHITSUNDAY, the 50th day or seventh Sunday from Easter.-The scuson properly called Pentecost, is popularly called Whitsuntide; because, it is said, in the primitive church, the newly baptized persons came to church between Enster and Pentecost in white garments.
WILKINS (Dr.Jons), a very mgenious and learned Englinh bishop and mathematician, was the son of a goldsmith at Oxford, and born in 16\%. After being educated in Crreck and Latin, in which he made a very quick progress, le was entered a student of New Inn in that university, when he was but 13 years of age; hut after a short stay there, be was removed to Magdalen Hall, where he took his degress. Having entered into boly orders, he first became chaplain to Willian Iard Say, and atterwards to Charles Count Palatine of the Rhine, with Vol. II.
whom he continued some time. Adlering to the parliament during the civil wars, they made him warden of Wadlam college about the year 1648 . In 1656 he married the sister of Oliver Cromwell, then lord protector of England, who granted him a dispensation to hold his wardenship, notwithotanding his marriage. In 1659, he was by Richard Cromwell made master of Trinity college in (ainbridge; but ejected the yrar following, on the restoration. Ile was thell chosen preacher to the socicty of Gray's Inn, and rector of St. Lawrence Jewry, Londou, on the promation of Dr. Seth Ward to the bishoprick of Fineter. Ile was one of the first members of the Royal bociety, was chosen of their council, being indeed their first chief secretary, und proved one of their most eniuent members. He was atterwarils made dean of Rippon, and in 166 s bishop of Cliester; but died of the stone in \(167 \%\), at 58 years of age.

Bishop Wilkius was a man who thought it prudent to submit to the powess in being; lie therefore subscribed to the solemn league and covenant, while it was enforced; and was equally ready to swear allegiance to king Charles when he was restoted: this, with his moderate spirit towards dissenters, rendered him not very agrevable to the churchnen; and yet several of them could not but give him one of the lest of claracters. Burnet writes, that " be was a man of as great a mind, as true a judgment, as cminent virturs, and of as good a soul, as any he ever knew : that through he married Cronuwell's sister, jet he made no other use of that alliance, but to do geod offices, and to cover the university of Oxford from the sturness of Owen and Goodwin. At Cambridge, he joined with those who studied to propagate better thoughts, to divert men from parties, or from narrow notions, from superstitious conceits, and fierceness about opinions. He was also a great observer and promoter of experimental philosophy, which was then quite a new subject, and much sought after. He was naturally ambitious, but was the wisest clergyman I ever knew. He was a lover of mankind, and had a delight in doing good." The same bistorian mentions afterwards another quality which Wilkins possessed in a supreme degrec, and which it was well for him he did, since he had great occasion for the use of it; and that was, says he, "a courage, which could stand against a current, and against all the reproaches with which ill-natured cleraymen studied to load him."

Of his publicutions, which are all of them very ingemious and learned, and many of them particularly curious and entertaining, the first was in 1638, when he was only 24 years of age, vix, The Discovery of a Ncw World; or, A Discourse to prove, that it is probable there may be another Habitable World in the Moou; with a Discourse concerning the Possibility of a Passage thither.In 1640, A Discourse concerning a New Planet, tending to prove that it is probable our earth is one of the Pla* nets.-In 1Gb1, Mercury ; or, the Secret and Swift Messenger; showing, how a man may with Privacy and Speed communicnte his Thoughts to a Friend at any Distance, 8 vo.-In 1648, Mathematical Magic; or, the Wonders that may be performed by Mathematical Geometry, 8vo. All these pieces were published entire in one volume sro, in 1703, under the title of, The Mathematical and Plitosophical Works of the Right Rev. John Wilkins, \&c; with a print of the author and general title page handsomely engraven, and an account of his life and writings. To thiy collection is also subjoinced an 41
abstract of a larger work, printed in 1668 , folio, eatitled, An Essay towards a Real Character and a Philosophical Language. These were all his mathematical and philosophical works; beside which, he wrote several tracts in theology, natural religion, and civil polity, which were much esteemed for their piety and moderation, and went through several editions. He was also the inventor of the Perambulator, or Measuring-whech.

WILSON (ALEX) M. D. was professor of astronomy in the university of Glasgow, and also very respectably learned in other arts and sciencea, and was author of some ingeniuus papers in the Philos. Trans. He was also remarkably eminent as a founder of printing-types, an art which lie carried to a high state of excellence. Dr. Wilson died Oct. 18, 1786, and was succecded, in both his professions, by bis ingenious and learned son.

WINCH, a popular term for a windlass. Also the bent handle for turning round wheels, grmel-stones, \&c.

WIND, a current or stream of aur, especially when it is moved by some natural cause. Winds are denominated from the point of the compass or horizon they blow from ; as the east wind, north wind, suuth wind, \&e. Winds are also divided into several kinds; as general, particular, perennial, stated, variable, dec.

Constant or Perenaial Win is, are those that always blow the same way; such as the rematkable onc between the two tropics, blowing constantly from east to west, called also the general trade-wind.

Stated or Periodical Win ds, are those that constantly return at certain times. Such are the sea and land breezes, blowing from land to sea in the morning, and from sea to land in the evening. Such also are the shifting or particular trade-winds, which blow one way during certain months of the year, and the contrary way the rest of the year.

Variable or Erratic Winns, are such as blow without any regularity either as to time, place, or direction. Sucb are the winds in the interior parts of Eingland, \&e : though some of these claim their certain times of the day; us, the north wind is most frequent in the morning, the west wind about noon, and the south wind in the night.

General Wind, is such as blows at the same time the same way, over a very large tract of ground, must part of the year; as the general trade-wind.

Particular \(\mathrm{W}_{1} \mathrm{NDs}\), include all others, except the general trade winds. Those peculiar to one little canton or province, are called topical or provincial winds. The winds are also divided, with respect to the points of the compass or of the horizon, into cardinal and collateral.

Cardinal Winds, are those blowing from the four cardinal points, east, wist, north, and south.

Collateral Win ds, are the intermediate winds between any two cardinal winds, and take their names from the point of the compass or horizon they blow from.

In navigation, when the wind blows gently, it is called a breeze; when it blows harder, it is called a gale, or a stiff gale; and when it blows very hard, a storin. For a particular account of the trade-winds, monsoons, \& c , see Philos. Trans. No. 183, or Abrisg. vol. 1, pa. 375. Also Robertson's Navigation, book 5, sect. 6.

A wind blowing from the sea, is always moist ; ns bringing with it the copious evaporation and exhalations from the waters: also, in summer, it is cool; and in winter warm. On the contrary, a wind from the continent, is always dry; warin ia summer, and cold in wiater. Our
northerly and southerly winds however, which are usually accounted the causes of cold and warm weather, Dr. Derham observes, are really rather the effect of the cold or warmth of the atmosphere. Hence it is that we often find a warm southerly wind suddenly change to the north, by the fall of snow or hail ; and in a cold frosty morning, we find the wind north, which afterward shifts about to the southerly quarter, when the sun has well warmed the air; and again in the cold evening, turns northerly, or castcrly.

Physical Cause of Winds. Some philosophers, as Descartes, Ruhault, \&c, account for the general wind, frota the diurual rotation of the carth; and from this general wind they derive all the particular ones. Thus, as the earth turns eastward, the particles of the air near the equator, being very light, are left behind; so that, in respect of the earth's surface, they move westwards, and become a constant casterly wind, as they are found betucen the tropics, in those parallels of Intitade where the diurnal motion is swiftest. But yet, against this hypothesis, it is urged, that the air, being hept close to the carth by the principle of gravity, would in time aequise the same degree of velocity that the earth's surface moves with, as well in respect of the diurnal rotation, as of the annual revolution about the sun, which is about 30 times swifter.

Dr. Halley therefore subatitutes another cause, capable of producing a like constant effict, not liable to the same objections, but more agreeable to the known properties of the elements of air and water, and the laws of the motion of fluid bodies. And that is the action of the sun's beams, as he passes every day over the air, earth, and water, combined with the situation of the adjoining continents. Thus, the air which is less rarefied or expanded by heat, must have a motion towards thove pults which are more rarefied, and l'ss ponderous, to bring the whole to an equilibrium; and us the sun keeps contimally shifting to the westward, the tendency of the whole body of the lower air is that hay. Thus \(n\) general easterly wind is formed, which being impreswd on the air of a vast occan, the parts impel one another, and so kerp moving till the next return of the sun, by which so much of the motion as was luast, is again restored; and thus the easterly wind is made perpetual. But as the air towards the north and somh is less rarefied than in the middle, it follows that from both sides it ought to tend towarils the equator.

This motion, compouniled with the former easterly wind, accounts for all the phenomena of the gerieral tradewinds, which, if the whole surface of the globe were sea, would blow quite round the world, as they are found to do in the Allantic and the lithiopic occans. But the large continents of land in this midtlle tract, being excessirely \({ }^{*}\) beated, communicate their heat to the sir above them, by which it is exceedingly raretied, which makes it necessary that the cooler and denser air should rush in towards it, to restore the equilibrium. 'This is supposed to be the cause why, near the coast of Guinea, the wind always sets in on the land, blowing westerly instead of easterly.

From the same cause it happens, that there are such constant calms in that part of the oscan collod the rains; for this tract being placed in the middle, between the westerly winds blowing on the coast of Ciuinca, and the easterly trade-winds blowing to the westward of it; the tendency of the air here is indifierent to cinber, and so stands in equilibrio between buth; and the weight of the
incumbent atmosphere being diminished by the continual contrary winds blowing hence, is the reason that the air here retains not the copinus vapour it receives, but lets it fall in so frequent rains.

It is also to be considered, that to the northward of the Indiatn ocean there is every where land, within the usual limits of the latitude of \(30^{\circ}\), viz, Arabia, Persia, India, \&ec, which are subject to excessive beats when the sun is to the north, passing nearly vertical; but which are temperate enough when the sun is removed towards the other tropic, because of a ridge of mountains at some distance within the land, said to be often in winter covered with snow, over which the air as it passes must needs be much chilld. Hence it happens that the air coming, according to the general rule, out of the north-east, to the Indian sea, is sometimes hotter, sometimes colder, than that which, by a circulation of one current over another, is returned out of the south-west ; and consequently sometimes the under current, or wind, is from the north-east, soinctimes from the south-west.

That this has no cther cause, appears from the times when these trinds set in, viz, in \(A\) pril: when the sun begins to warm these countrics to the norih, the south-west monsoons begin, and blow during the heats till October, when the sun having retired, and all thiugs growing cooler northward, but the heat increasing to the south, the northeast winds enter, and Llow all the winter, till April again. And it is doubtless from the same principle, that to the southward of the equator, in part of the Indian ocean, the north-west winds succeed the south-east, when the sun draws near the tropic of Capricorn. Philos. Trans. No. 183.

But some philosophers, not satisfied with Dr. Halley's theory above recited, or thinking it not sufficient for explaining the various phenomena of the wind, have had recourse to another cause, viz, the gravitation of the earth and its atmosphere towards the sun and moon, to which the tides are confessedly owing. They allege that, though we cannot discover aërial tides, of ebb or flow, by means of the barometer, because columns of air of unequal height, but different density, may have the same pressure or weight ; yet the protuberance in the atmosphere, which is continually following the moon, must, say they, occasion a motion in all parts, and so produce a wind more or less to every place, which conspiring with, or being counteracted by, the winds arising from other causes, makes thent greater or less. Several dissertations to this purpose were published, on occasion of the subject proposed by the Academy of Sciences at Berlin, for the year 1746. But Musschenbroek will not allow that the attraction of the moon is the cause of the general wind; because the east wind does not follow the motion of the moon about the earth; for in that case there would be more than 24 changes, to which it would be subject in the course of a year, instead of two. Introd. ad Phil. Nat. vol.2, pa. 1102.

And Mr. Henry Eeles, conceiving that the rarefaction of the air by the sun cannot simply be the cause of all the regular and irregular motions which we find in the atmosphere, ascribes them to another cause, viz, the ascent and descent of vapour and exhalation, attended by the electrical fire or fluid; aud on this principle be has endeavoured to explain at large the general plienomena of the weather and barometer. Philos. Trans. vol. 49, pa. 124.

Laws of the Production of Winn.
The chief laws conceraing the production of wind, may be collected under the following heads.
1. If the spring of the air be weakened in any place more than in the adjoining places, a wind will blow through the place where the dirninution is; because the less clastic or forcible will give way to that which is more so, and thence induce a current of air into that place, or a wiud. Hence, because the spring of the air increases, as the compressing weight increases, and compressed air is denser than that which is less compressed ; all winds blow into rarer air, out of a place filled with a donser.
2. Therefore, because a denser air is specifically beavier than a rarer; an extraordinary lightness of the air in any place must be attended with extraordinary winds, or storms. Nuw, an extraordinary fall of the mercury in the barometer showing an extraordinary lightness of the atmosphere, it is no wonder if that foretels storms of wind and rain.
3. If the air be suddenly condensed in any place, its spring will be suddenly diminished; and hence, if this diminution be great enough to affect the barometer, a wind will blow through the condensed air. But since the air cannot be suddenly condensed, unless it has before been much rarcfied, a wind will blow through the air, as it cools, after having been violently heated.
4. In like manner, if air be suddenly rarefied, its spring is suddenly increased; and it will therefore flow through the air not acted on by the rarefying force. Hence a wind will blow out of a place, in which the air is suddenly rarefied; and on this principle probably it is, that the sun, by rarefying the air, must have a great influence on the production of winds.
5. Most caves are found to emit wind, either more or less. Musscbenbroek has enumerated a variety of causes that produce winds, existing in the bowels of the earth, on its surface, in the atmosphere, and above it. See Introd. ad Phil. Nat, vol. 2, pa. 1116.
6. The rising aad changing of the winds are determined by weathercocks, placed on the tops of high buildings, \&c. But these only indicate what passes about their own height, or near the surface of the earth. And Wolfius assures us, from observations of several years, that the higher winds, which drive the clouds, are different from the lower ones, which move the weathercocks. Indeed it is no uncommon thing to sce one tier of clouds driven one way by a wind, and another tier just over the former driven the contrary way, by another current of air, and that often witb very different velocities. And the late experiments with air balloons have proved the frequent existence of counter wiuds, or currents of air, even when it was not otherwise visible, nor at all expected; by which they have been found to take very diffierent and unexpected courses, as they have ascended to higher elevations in the atmosplere.

Laws of the Force and Velocity of the Wix D.
Wind being only air in motion, and the motion of a fluid against a body at rest, creating the same resistance as when the body moves with the same velocity through the fluid at rest; it follows, that the force of the wind, and the laws of its action on bodies, may be referred to those of their resistance when moved through it; and as these circumstances have been treated pretty fully under the article Resistance of the Air, there is no occasion here to make a repetition of them. Wo there laid down 412
both the quantity and law of such a force, on bodies of different shapes and siaes, maving with all degreen of vebucity up to 2000 fert per aecond, and also for planes set at all degrees of obliquity, or inchmation to the direction of motion; all these circumstances having, for the tirst time, been determined by real experiments.

As to the Velocity of the Wind: philosophers have made use of various methosis for determining it. The method employed by Dr. Derham, was by letting light downy feathers fly is the air, and nicely obstrving the distance to which they were carned in any number of half seconds. He says that he thus masasured the velocity of the wind in the great storm of August 1705, which he fouml moved at the rate of 33 feet in half a secund, or 43 miles per hour: whence he concludes, that the most vehrment wind does nut fly at the rate of above 50 or 60 miles an hour; and that at a medium the velocity of winal is at the rate of 12 or 15 miles per hour. Philos. Trans. No. 318 .

Mr. Brice observes however, that experiments with feathers are liable to much uncertainty; as they hardly ever go forward in a straight direction, but spirally; or else irrcgularly from sille to side, or up and down.

He therefore comsiders the motion of a cloud, by nucans of its shadow over the surlace of the earth, as a much more accurate measure of the velocity of the wind. In this way be found that the wind, in a considerable storm, moved at the rate of near 63 miles an hour; and when it blew a fresh gale, at the rate of 21 miles per hour: and in a sinatl breeze it was near 10 miles an hour. I'bilos. Trans. vol. 56, pa. 226.

In the Philos. Trans. for 1759, pa. 165, Mr. Sineaton has given a table, communicated to him by a Mr. Rouse, for showing the force of the wind, with several ditferent velocitics, which is bere inserted below, as I find the numbers nearly agree with my own experiments mate on abe reavtance of the air, when the resisting surfaces are reduced to the same size, by a due proportion for the resistance, which is in a higher degree than that of the surfaces. The table of my results is printed under the urticle Anemamerib.
A Table of the different Volocities and Forces of the Wind, acconling to their common appellations.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Velocity of the Wind.} & \multirow[t]{2}{*}{Perpendienlar forse ou 1s4. foot, in avoudupois pownds.} & \multirow[b]{2}{*}{Common appellations of the Winds.} \\
\hline Miles in one howr. & \(=\) feet in one se cond. & & \\
\hline 1 & 1.47 & - 005 & Hardly percoptible. \\
\hline 2 & \(2 \cdot 93\) & -020 & \} Just perceptible. \\
\hline 3 & 4.40 & \({ }^{\circ} \mathrm{OH4}\) & \(\}^{\text {3ust }}\) perceptible. \\
\hline 4 & 5.87
7.33 & .079
.123 & \} Gentle pleasant wind. \\
\hline 10 & 14.67 & -492 & \\
\hline 15 & 22.00 & \(1 \cdot 107\) & \} Pleasant brisk ga \\
\hline 20 & 29.34
36.67 & \(1 \cdot 968\)
\(3 \cdot 075\) & \} Very brisk. \\
\hline 25 & 36i.67 & 3.073 & \} Very brisk. \\
\hline 30
35 & \(44 \cdot 01\)
\(5 \cdot 64\) & 4.429
6.027 & \} High Winds. \\
\hline 35 & \(5 \cdot 34\)
58.68 & 6.027
7.873 & \\
\hline 45 & 6601 & 9.963 & \} Very bigh. \\
\hline 50 & 75.35 & 12.300 & A storm or tempest. \\
\hline 60 & 88.02 & 17.715 & A great storm. \\
\hline 80 & 117.36 & 31.490 & \begin{tabular}{l}
A hurricane. \\
A hurricane that tears up
\end{tabular} \\
\hline 100 & 146.70 & 49200 & \[
\begin{aligned}
& \text { trees, and carries buildings } \\
& \text { \&c betore it. }
\end{aligned}
\] \\
\hline
\end{tabular}

The velocity and furce of the wind are alsodetermined esperimentally by vanous machues, called anemometers, wibd-lurasurers, or wind-gages; the deseription of which see under these articles.

The force of the wind is nearly as the square of the velocity, or but little above it, in thase velocities. But the force is much more than in the simple ratio of the surfaces, with the same velocity, and this increase of the ratio is the more, as the velocity is more. Hy accurate experiments with two planes, the one of \(17 \frac{1}{5}\) square inches, the wther of S2, which are nearly in the satio of 5 to 9, 1 found their resistances, whih a velocity of 20 feet per secontel, to be, the one 1.196 ounces, and the other 2.548 ounces; which are in the ratio of 8 to 17 , being an increase of between \(\frac{1}{3}\) and \(\frac{1}{6}\) pait more than the ratio of the surfaces.

WINDAGE, of a GMA, is the difficrence betwern the diameter of the bore of the gun, and the diamster of the bull. Formerly the windage appuinted in the Finglibb service, viz, y'g of the diameter of the hore, of long usage, has beell lar too nuch, perbaps owing to the first want of roundness in the ball, or to rust, foultuess, and irregularities in the bore of the guu. But lately a beginning bas been made to diminish the windage, which cannot tail to be of great advanage; as the shot will go inuch truer, and have less room to bounce about from sile to side, to the grat damage of the gon: and besides, much lens powiser will serve for the samee effict, as in some cases \(\frac{f}{6}\) or the itflamed punder escapes by the windage. The Frenchallowance of windage is \(\frac{1}{2}\), of the diameter. For inore on this sulyect, see the experiments described in my Tracts, vols, 2 and 3 .

WINDI,ASS, or Windlace, a particular machine used for raising heavy weights, as guns, stons, anchors, \&c.

This is a very simple machiue, consisting only of an axis or roller, supported hotizontally at the two ends by two posts and a pulley: the two posis meet at top, being placed diagonally, so as to prop each other; anal the axis or roller goes through the two post, and turns in them; the pulley being fastened at top, where the posts join. Lastly, there are two staves or handspihes, which go through the roller, to turn it by; and the rope, which goes over the pulley, is wound on and off the saine.

Wixmeass, in a Ship, is min instrument in small shipg placed upon deck, but just abaft the foremost. It consists of a stont piace of timber, in form of an axletree, placed horizontally on two pieces of wood at the ends, on which it is turned about by means of handspiker, put itto holis made for that purpose. This instrument serves for weighiing auchors, or hoisting any great weight in or out of the ship; it will purchase much more than any capstan, and that without any danger to those who heave; for if, in heaving the windlass about, uny of the handspikes should happen to break, the windlass would stop of itself.-Sce fig. 15, pl .40 .

Wtyb-Ciage, in Pucumatics, an instrument serving to determine the velocity and force of the wind. See Anemometer, Anemoscope, and the article just above, concerning the force and velocity of the wind.

Dr. Hales had various contrivances for this purpose. He found (Statical Essays, vol. 2, pa. 326) that the air rushed out of a smith's bellows, it the rate of 681 feet in in swond of time, when compressed with a turce of half a pound on every square inch lying un the whole upper surface of the bellows. The velocity of the air, as it passed
out of the trmink of his ventilators, was found to be at the rate of 3000 feet in a minute, which is at the rate of 34 mikes an bour. The same author observes, that the velocity with which inpelled air passes out at any orifice, may be determined by hanging, a light valve over the nose of a bellows, by pliant leathern hinges, which will be much agitated and lifted up from a perpendicular to a more than horizontal position by the force of the rushing air. There is also another more accurate way, he says, of estimating the velocity of air, viz, by holding the urifice of an inverted glass siphon full of water, opposite to the stream of air, by which the water will be depressed in one Irg, and raised in the other, in proportion to the force with which the water is impelled by the air. Descrip. of Ventilators, 1743, pa.12. And this perhaps gave Dr. Lind the idea of his wind-gage, mentioned below.
M. Bouguer contrived a simple instrument, by which may be immediately discovered the furce which the wind exerts of a given surface. This is a bollow tube, аАвв (fig. 14, pl. 40), in which a spiral spring en is fixed, that may be more or less compressed by a roil ysd, passing through a hole within the tube at AA. Then hasing observed to what degree different forces or given whights are capable of compressing the spiral, mark divisions on the rod ia such a manner, that the mark ats may iudicste the weight requisite to force the spring into the situation \(\mathbf{C D}\) : afterwards join at right angles to this rod at \(p\), a plane surface ere of any given area at pleasure; then let this instrument be opposed to the wind, so that it may strike the surtace perpendicularly, or parallel to the rod; then will the mark at s show the weight to which the force of the wind is equivalent.

Dr. Lind has also contrived a simple and casy apparatus of this kind, nearly on the last idea of Dr. Hales mentioned above. This instrument is fully explained under the aricle Asrmometen, and a tigure of it given, pl. 3, tig. 4.

Mr. Benjamin Martin, from a hint first suggested by Dr. Burton, contrived an anemoscope, or wind guge, of a construction like a wind-mill, with four sails; but the axis which the sails turn, is not cylindrical, but onnical, like the fusee of a watch; abont this fusce winds a cord, having a wright at the end, which is wound always, by the force of the winel, on the sails, till the weight just balaners that force, which will be at a thicker part of the fusec when the wind is strong, and at a smaller part of it when it is weaher. But though this instrument shows wheo a wind is stronger or weaker, it will neither show what is the actual velacity of the wind, nor yet its force upon a square foot of direct surface; because the sails are set at an uncertain oblique angle to the wind, and this acts at different distances from the nxis or centre of motion. Martin's Phil. Brit. vol. 2, pa.211. See the 6g. 5. plate 3, vol. 1.

Wind-Gun, the same as Air-Gum; which see.
Wind-Mill, a kind of mill which receives its motion from the inpulse of the wind. -The internal structure of the windmill is mucb the same with that of watermills: the difference between them lying chiefly in an external apparatus, for the apphiation of the power. This apparatus consists of an avis EE (fig. I1, pl. +1), through which pass perpendicular to it, und to each other, two arms or yards, \(A B\) and \(C D\), nsually about 32 fert long: on these gards are formed a kind of sails, vaucs, or flights, in a trapezoid form, with parallel ends; the greater of which ins is about

6 fect, and the less ra are determined by radii drawn from the centre E , to t and H .

These sails are to be capable of being always turned to the wind, to receive its impulse: for which purpuse there are two different contrivances, which constitute the two different kinds of windmills in common use.

In the one, the whole machine is supported upon a moveable arbor, or axis, fixd upright on a stand or foot ; and turned round occasionally to sult the wind, by means of a lever.

In the other, only the cover or roof of the machine, with the axis and sails, in like manner turns round with a parallel or horizontal motion. For this purpose, the cover is built turret-wise, and encompassed with a woeden ring, having a groove, at the buttom of which are placed, at certain distances, a number of brase truckles; and within the groove is anobler ring, on which the whole turret stands. 'To the moveable ring are connected beams \(a b\) and \(f e\); and to the bean \(a b\) is fasteried a rope at \(b\), having its other end fitted to a windlass, or axis-lit-peritruchio: this rupe being drawn through the iron hook \(G\), and the windlass turned, the sails ate moved round, and set fronting the wind, or with the axis pointing straight against the wind.

The internal mechanism of a windmill is exhibited in fig. 12; where atho is the upper room, and noz the lower one; As the axle-tree passing through the nill; suww the saits covered with canvas, set obliquely to the wind, and turning round in the order of the letters ; CD the cogwhecl, having about 48 coss or teeth, \(a, a, a, k c\), which carry round the lantern Ey, having 8 or 9 trundles or rounds, \(c, c, c\), dec \(^{2}\), together with its upright axis 0 N ; ik is the upper mill-stone, and 1,2 the lower; \(Q R\) is the bridge, supporting the axis ur spindle as; this bridge is supported by the beams \(c d, \mathbf{x}\), wedged up at \(c, d\) and \(\mathbf{x}\); \(z Y\) is the lifting tree, which stands upright ; \(a b\) and of are levers, whose centres of invtion are \(z\) and \(e\); \(f g h i\) is a cord, with a stone \(i\), going about the pins \(g\) and \(h\), and serving as a balance or counterpoise* The spindle \(t x\) is fixed to the upper millstone 1 K , by a piece of iron called the rynd, and tixed in the lower side of the stone, which is the only one that lurns about, and its whole weight rests on a hard stone, fixed in the bridge QR at \(N\). The trunde \(E P\), and its axis 6t, may be tahen away; for it rests by its lowes part at \(/\) by a square sucket, and the top runs in the edge of the beam w. By bearing down the end \(f\) of the level \(f e, b\) is raised, which also raises 2 Y , and this raises Yx , which lifis up the bridge UR, with the axis NG, and the upper stume 1 k ; and thus the stones are set at any distance. The lower or immoseable stone is fixed upon strong beams, and is broader than the upper one: the meal is conveged through the tunnel no into a chest; P is the hopper, into which is put the corn, which 1 uns through the spout \(r\) intu the hole \(f\), and so falls brtween the stones, where it is ground to meal. The axis of is square, which shaking the apout \(r\), as it gues round, makes the corn run out; \(r\) s is a string going about the pin s, and serving to mose the spout uenrer to the avisor farther from it, so as to make the coril run faster or Jower, according to the velecity and force of the wind. And when the wind is strong, the sails are unly covered in part, or on one side, or perlaps only one half of two opposite sails. Toward the end a of the axletree is placed another engwheel, trundle, and miflstones, with a:a apparatus like that just described; so that the samee axis moves two stones at once;
and when only one pair is to grind, one of the tranalles and its spindle are taken out: xyl is a girth of pliable wood, fixed at the end \(x\); the other end \(l\) bcing tied to the lever \(k m\), moveable about \(k\); and the end \(m\) being put down, draws the girth ryl close to the cogwheel, which gently and gradually atops the motion of the mill, when required : \(p q\) is a ladder for ascending to the higher part of the mill; and the corn is drawn up by means ot a rope, rolled about the axis AB, when the mill is at work. See Mill.

Theory of the Windmill, Position of the Sails, \&c.
Were the sails set squarc on their arms or yards, and perpendicular to the axletree, or to the wind, no motion would ensue, because the direct wind would heep them iu an exact balance. But by setting thent obliquely to the common axis, like the sails of a smoke-jack, or inclined like the rudder of a ship, the wind, by striking the surface of them obliquely, turns them about. Now this angle which the sails are to make with their common axis, or the regree of weathering, as the mill-wrights call it, so as that the wind may have the greatest effect, is a matter of nice inquiry, and has much occupied the thoughts of the mathematician and the artist.

In examining the compound motions of the rudder of a ship, we find that the more it approaches to the direction of the keel, or to the course of the water, the more weakly this strikes it; but, on the other hand, the greater is the power of the lever to turn the vessel about. The obliquity of the rudder therefore has, at the same time, both an advantage and a disadvantage. It bas been a point of inquiry therefore to find the position of the rudder when the ratio of the advantage over the disadvantage is the greatest. And M. Renau, in bis theory of the working of ships, has found, that the best situation of the rudder is when it makes an angle of about 55 degrees with the keel.

The obliquity of the sails, with regard to their axis, has precisely the same advantoge, and disadvantage, with the obliquity of the rudder to the keel. And M. Parent, seeking by the new analysis the most advantageous situation of the sails on the axis, finds it the same angle of about 55 degrees. This obliquity bas been determined by many other mathematicians, and found to be more accu: rately \(54^{\circ}\) 44 \({ }^{\prime}\). See Maclaurin's Fluxions. pa. 733; simpson's Fluxions, prob. 17, pa. 521 ; Martin's Philos. Britan. vol. 1, pa. 220, vol. 2, pa.912; \&c.

This inclination of the sails to their axis, however, is only that which gives the wind the greatest force to put the sail in motion, but not the angle which gives the force of the wind a maximum on the sail when in motion: for when the sail has a certain degree of velocity, it yields to the wind; and then that angle must be increased, to gire the wind its full effect. Maclaurin, in bis Fluxions, ph. 734, has shown also how to determine this angle.

It may be observed, that the incrense of this angle should be different according to the different velocities from the axletree to the further extremity of the sail. At the beginning, or axis, it should be \(54^{\circ} 44^{\prime}\); and thence continually increasing, giving the vane a twist, and so cousing all the ribs of the vane to lie in different planes.

It is farther observed, that the ribs of the vane or sail ought to decrease in length from the axis to the extremity, giving the vane a curvilinear form; so that no part of the force of any one rib be spent on the rest, but all move independent of each other. The twist above mentioned, and the diminution of the ribs, are exemplified in the wings of birds.

As the ends of the sail nearest the exis cannot move with the same velocity which the tips or farthest ends have, though the wind acts equally atrong on them both, Mr. Ferguson (Lect. on Mech. pa. 52) suqgests, that perhaps a better position than that of stretching them along the arms directly from the centre of motion, inight be, to have them set perpendicularly across the farther ends of the arms, and thre adjusted lengthwise to the proper angle: for in that case both ends of the sails would move with the same velocity; and being farther from the centre of motion they would have so much the more power, and in this case there would be no occasion for having them so large as they are generally made; which would render them lighter, and consequently there would be so much the less friction on the thick neck of the axle, when it turns in the wall.
, Mr. Smeatun (Philos. Trans. 1759), from bis experiments with windmill sails, deduces several praciical maxims: as, 1 . That when the wind falls on a concave surface, it is an advantage to the power of the whole, though every part, taken separately, should not be disposed to the best advantage. By several trials he has found that the curved form and position of the suils will be best regulated by the numbers in the following table:

2. That a broader sail requires a greater angle; and that when the sail is broader at the extremity, ihan near the centre, this shape is more advantageous than that of a parallelogran.
3. When the sails, made like sectors of circles, joining at the centre or axis, and filled up about 7-8ths of the whole circular space, the effect was the greatest.
4. The velucity of windmill sails, whether unloaded, or loaded so as to produce a maximum of effect, is nearly as the velocity of the wiad; their shape and position being the same.
5. The lond at the maximum is nearly, but somewhat less than, as the square of the velocity of the wind.
6. The effects of the same sails at a maximuin, are nearly, but somewhat less than, as the cubes of the velocity of the wind.
7. In sails of a similar figure and position, the number of turns in a given time, are reciprocally as the radius or length of the sail.
8. The effects of sails of similar figure and position, are as the square of their length.
9. The velocity of the extremities of Dutch mills, as well as of the enlurged sails, in all their usual positions, is considerably greater than the velocity of the wind.
M. Parent, in considering what figure the sails of a windmill should have, to receive the greatest impulse from the wind, finds it to be a sector of an ellipsis, whose centre is that of the axletree of the mill; and the less semiaxis the height of 32 feet; as for the greater, it follows necessarily from the rule that directs the sail to be inclined to the axis in the angle of 55 degrecs.

On this foundation he assumes four such sails, each being a quarter of an ellipse; which he shows will re-
ceive all the wind, and lose none, as the common ones do. These 4 surfaces, multiplied by the lever with which the wind acts on one of them, express the whole power the wind has to move the machine, or the whole power of the machine when in motion.

The same author also observes that a wind mill with 6 elliptical sails, would still have more power than one with only four. It wouldi only have the same surface with the four; since the 4 contain the whole space of the ellipsis, as well as the 6. But the force of the 6 would be greater than that of the 4 , in the ratio of 245 to 231. If it were desired to have only two sails, each being a semi-ellipsis, the surface would still be the same; but the power would be diminished by nearly 1-3d of that with 6 sails; because the greatness of the sectors would much shorten the lever on which the wind acts.

Mr. Parent has also considered which form, among the rectangular sails, will be most advantageous; i, e. that which shall bave the product of the surface by the lever of the wind, the greatest. The result of this inquiry is, that the width of the rectangular suil should be nearly double its length; whereas usually the length is made almost 5 times the width.

The power of the mill, with four of these new rectangular sails, the same author shows, will be to the power of four clliptic sails, nearly as 13 to 23: which leaves a considerable advantage on the side of the elliptic ones; and yet the force of the new rectangular sails will still be considerably greater than that of the common ones.
M. Parent also considers what number of the new sails will be most advantageous; and finds that the fewer the sails, the mure surface there will be, but the power the less. Farther, the power of a windmill with 6 sails is denoted by 14, that of another with 4 will be as 13, and another with 2 sails will be denoted by 9 . That as to the common windmill, its power still dimiuisher as the breadth of the sails is smaller, in proportion to the length: and therefore the usual proportion of 5 to 1 is exceedingly disadvantageous.

WINDOW, ๆ. d. wind-door, an aperture or opening in the wall of a house, to admit the air and light.

Before the use of glass became general, which was not till' towards the end of the 12 th century, the windows in England scem generally to have been composed of paper, oiled, buth to defend it against the weather, and to make it more transparent; as now is sometimes used in workshops and unfinished buildings. Some of the better sort were furnished with lattices of wood or sheets of linen. These it seems were fixed in frames, called capsamenta, and bence our casements still so common in some of the counties.

The chief rules with regard to windows are, 1. That they be as few in number, and as moderate in dimensions, as may be consistent with other respects ; inasmuch as all openings are weakenings of the structure.
2. That they be placed at a convenient distance from the angles or corners of the buildings : both for strength and beauly.
3. That they be made all equal one with another, in their rank and order; so that those on the right hand may answer to those on the left; nnd those above be right over those below, both on account of strength and beauty.

As to their dimensions, care is to be taken, to give them neither more nor less than is needful; regard be-
ing bad to the size of the rooms, and of the bailding. The apertures of windows in middle-sized bouses, may be from 4 to 5 feet; in the smaller ones less; and in large buildings more. And the height may be double their width at the least: but in lofty rooms, or large buildings, the height may be a 4 th, or 3 d , or half their breadth more than the double.

Such are the proportions for windows of the first story ; and the breadth must be the same in the upper stories; but as to the height, the second story may be a 3d part lower than the first, and the third story a 4th part lower than the second.
WINDWARD, in Sea Language, denotes any thing towards that point whence the wind blows, in respect of a ship.

Sailing to Windward. See Sailing.
Windwand Tide, a tide that runs against the wind.
WING (Vincent), a considerable matheraatician and astruloger of the 17 th century, who died about 1668. He was author of several popular astronomicul and other works : as, 1. Astronomia Instaurata, fol. 1656.-2. Celestial Harmony of the Visible World, fol. 1657.3. Astronomia Britannica, fol. 1669 , a work of merit,4. Ephemerides for 13 years, from 1659 to 1671 .5. Compuratio Catholica, \&cc. Mr. Wing was much connected with the Stationers' Company, in the publication of their almanacs, one of which, in a broal sheet, is still continued in his name; and another, a book almanac, was only discontinued a very few years ago.

WINGATE (EDNUND), one of the clearest writers on arithmetic \&c in the English language, was the son of Ruger Wingate, esq. of Bornend and Sbarpenkoe, in Bedfordshire, but was born in Yorkshire in 1593: In 1610 he became a commoner of Queen's college, Oxford; but after taking a degree in arts, he removed to Gray's Inn, London, where he studied the law. But his chief inclination was to the mathematics, which he had studied with much success at college. In 1624 he was in France, where he published the Scale or Rule of Proportion, which had been invented by Edmund Gunter, of Gresham college. While in that country, he gave instructions in the English language to the princess Henrietta Maria, afterwards wife of Charles the first, and to her ladices. After his return to England, he became a bencher of Gray's Inn; and on the breaking out of the great rebellion, he joined the popular party, took the covenant, was made justice of the peace for the county of Hedford, where he resided at Woodend, in the parish of Harlington, and his name occurs in the register of Ampthill church, as a justice, in 1654, when, according to the republican custom of that period, marriages were celebrated by the civil magistrates. In 1650 he took the oarh, commonly called the Engageniont, lecame intimate with Cromwell, and was chosem into his parliament for Bedford. He was also appointed one of the commissioners, for that county, to cject from their situations, those loyal clergymen and schoolmasters who were accused as being scandalous and ignorant. He died in Gray's Inn, in \(16 ; 36\), and was buried in the parish church of St. Andrew, Hlolborn.

The works of Mr. Wingate, are,
1. The Use of the Proportional Rules in Arithmetic and Geometry. Also the Use of the Iogaritburs of Numbers, with thrse of Sines and Tangents. Printed in French, at Pariy, in 1624, 8 vo, and at I.endon, in English, in 1626, 1615, and 1658. - In this book, Mr. W. sjeaks of having
been the first who earried the logarithms to France; but an edition of Napier's Descriptron and Construction of Logarithms was printed at Lyous in the year 16y0, being 4 years raslier than Wingete's publication.
2. Of Natural and Arnficial Arithmetic, or Arithmetic made easy; London, \(16 \mathrm{ju}, 8 \mathrm{gvo}\). It bat also gone through numerons other cditions, the best of which is that by Mr. Dodson.
3. Tables of Logarithms of the Sines and Tangents of all the Degrecs and Minutes of the Quadrant. With the use nnd application of the same. London, 1633, 8vo.
4. The Construction and Use of 1 agatithas, with the Resolution of Triangles, sxc.
5. Ludus Mathematicus; or an Explamation of the Description, Construction, and Cise of the Numerical Table of Proportion. London, t654, Sve.
6. Tactometria, sen Tetagne-nometria, or the Geometry of Regulars, Sic. Svo.
7. The Exaci Surveyor of Land, \&c, Svo.
8. An exact Abridgement of all statutes in force and use from the Magna Charta, to \(16+t\), 8 vo.
9. The Body of the Common Law of England, \&c ; 8vo, 16is5, \&c.
10. Maxims of Reason, or the Reason of the Common Law of England; 1658, folio.
11. Statuta Pacis; or, the Table of all the Statutes which any way concern tbe office of a Justice of l'cace, \&c. 12 mo .
12. An edition of Britton, a lawyer who wrote in the reign of Edward the lst; a very uscful law book, 1640 , 12 mo .

Mr. W. it is supposed, was also the editor of some other law books, which show equal judgment and industry; but he is now to be remembered only as a mathematician.

WINTER, one of the four scasons or quarters of the year.-Winter properly commences on the day when the sun's distance from the zenith of the place is the greatest, or when his declination is the greatest on the contrary side of the equator; and it ends on the day when that distance is a mean between the greatest and least, or when be next crosses the equinoctial.

At and near tbe equator, the winter, as well as the other seasons, return twice every year; but allother plnces have only one winter in the year; which in the northern hemisphere begins when the sud is in the tropic of Ca pricorn, and in the soutbern liemisphere when he is in the tropic of Cancer ; so that all places in the same bemishere have their winter at the same time.

Notwithstanding the coldness of this season, it is proved in astronomy, that the sun is reaily nearer to the carth in our winter than in summer: the reason of the defect of heat being owing to the lowiress of the sun; or to the obliquity of his rays.

WITCHELL (Georoe ), E.R.s. a good astronomer and mathematician, was born in 1788. He was maternally descended from the celebrated cluck and watch maker Daniel Quare, in which busincss he was himself brought up, and was educated in the principles of the Quakers, all his progeniton tor many gencrations haviug bern of that community, and whowe simplicity of manners and integrity of chatacter he practised through life. It appears that Mr. W. cultivated the study of astronomy at a very early age indect, as be had a conmunication on that subject published in the Gentleman's Diary tor 1741,
which must have been written before he was 13 years of age. Soon atter tbis he became a pretty constant uriter in both the Diaries and the Gentlematis Magazine, a practice which be continued a long time, somenmes under his uwn name, but more frequently with the initials G. W. only. In \(176+\) Mr. W. published a mnp, exhibiting the paswage of the moon's shadow user England in the great sular eclipse of April that year ; the exact correspondence of which to the viberrations gained him great reputation. In the following year lie presented to the comnissioners of longitude a plan for calculating the efficts of refraction and parallax, on the moon's distance from the sun or a star, tin fucilitate the discovery of the lungitude at sca. Having bren elected \(\boldsymbol{r}\). r.s. and taught mathema:ics in Londun for many years with much seputation, he ma** in 1367 , appomed head master of the Royal Naval Academy at Purtsmouth, on the recession of Mr. Robertsun; where he died by a paralytic stroke in 1783, at 57 years of age, and was succeeded in that office by Mr. Baitey.

WULFF, Wolfies, (Curtstian,) baren of the lioman empire, privy councllor to the king of I'russia, and chancellor to the university of thalle in Saxony, as weh as member of many of the literary academies in f.urope, was born at Breslau in 1679. After studying philosophy und mathematics at Breslau and Jena, he obtained permission to give lectures at Leipsic ; which, in 1;03, he opened with a dissertation, Pinlusophia Practica Úniversalis, Mcthodo Mathematica conscripta, which served greatly to enhance the reputation of his talents. Ile publisbed two other dissertations the same grar ; the first De Rotis Dentatis, the other De Algoritimo Infinitesimali Differentiali: which obtained him the henourable appellatiot of Assistant to the Faculty of Philosophy at Leipsic.

He now accepted the professurship of mathematics at Halle, and was elected into the society at Leipsic, at that time engaged in publishing the Acta Eruditorum. After having inserted in this work many important picces relating to mathematics and plysics, lie undertook, in 1709 , to teach all the various branches of philosophy, beginting with a small logical treatise in Latin, being Thoughts on the Powers of the Human U'uderstanding. He carried hinself through these great pursuits with atiazing assidetity and ardour: the king of Prussia rewarded bim with the office of counsellor to the court in 1721, and augmented the protits of that post by very considerable appointments: he was also chosen a member of the Royal Society of London ard of Prussin.

In the midst of all this prosperity however, Wolti raised an ecclesinstical storm against himsclf, by a Latin oration be delivered in praise of the Chinese philesophy: every pulput immediately resounded against his tenets; and the faculty of theology, who entered into a strict examination of his productions, resolving that the doctrine be taught was datigerous to the last degice, an order was obtained in 1723 for displacing him, and commanding hon to leese Halle in \(8+\) hours.

Woiff now retired to Cassel, where he obtaincd the profissorship of mathematics and philosophy in the university of Marbourg, with the title of Counsellor to the Landgrave of Ilesse; to which a profitable pension was antnexed. Here te renewed his labours with redoubled ardenr; and it was in this retreat that he published the greatest part of his numerous works.

In 1725 , he was declared an honorary professor of the academy of scienccs at Petetsburg, and in 1733 was ad-

W HE
[
mitted into that of Paris. The king of Sweden also declared bim one of the council of regency; but the plcasing situation of his new abode, and the mulitude of honours which he had received, were too alluring to permit him to accept ot many advantageous offers; among which it has been said, was the office of president of the academy at Petersburg.

The king of Prussia too, who was now recovered from the prejudices he bad been made to conceive aganst Wolff, wanted to re-establish him in the university of Halle in 1733, and made another attempt to effect it in 1739 ; which Wolff for a time thought proper to decline, but at last submitted: he returned theretore in 1741, invested with the characters of privy counsellor, sice-chatcellor, and professor of the law of nature and of nations. The king afterwards, on a vacancy, raised him to the dignity of chancellor of the university; and the elector of Bavaria created him abo a baron of the empire. He died at Halle in Saxony, of the gout in his stomach, in 1754, in the 76 th year of his age, nfter a life filled up with a train of actions as wise and systematical as his wrotings, of which be composed in Latin and German morc than 60 distinct pieces. The chief of bis mathetnatical compositions, is bis Elementa Matheseos Universac, the best edition of whick is that of 1732 at Geneva, in 3 vols \(4 t 0\); which does not bowever comprise his Mathematical Dictionary in the German language, in 1 vol. 8 vo , nor many other distinct works on different branches of the mathematics, nor bis System of Philosophy, in 23 vols. in 4 to.

WORKING to Windward, in Sea Language, is the operation by which a ship endeavours to make progress against the wind.

WREN (Sir Christopher), a great philosopher and mathematician, and one of the most learned and eminent architects of his age, was the son of the Rev. Cliristopher Wren, dean of Windsor, and was born at Knoyle in Wittshire in 1632 . He studied at Wadham college, Oaford; where he took the degree of master of arts in 1653, and was chosen fellow of Allsouls college there. Scon after, be became one of that ingeniuus and lewraed society, who then inet at Oxford for the improvement of natural and experimental philosophy, and which at length produced the Royal Socicty.
When very young, he discovered a surprising genius for the mathematics, in which science he made great advances before tie was 16 years of age.-In 1657 the was made professer of astronomy in Greshan college, Londan; and his lectures, which were much frequented, tended greatly to the promotion of real knowledge : in his inaugural oration, among other things, he proposed several neethods by which to account for the shadows returuing backward 10 idegrees on the dial of hitig Abaz, by the laws of wature. One subject of his lectures was upon telescopen, to the improsement of which he had greatly contributed; another was on certain properties of the air, and the barometer. In the year 1658 be read a description of the body and ditferent phases of the plawt Soturn ; which subject he propused to investigate while his colleague, Mr. Roohe, then profissor of geometry, was prosecuting his observations on the satellnes of Jupiter. The same year be contmunicated some demonstrations concerning cycloids to Dr. Wallis, which were afterwards published by the doctor at the end of bis treatise on that subject. About that time also, he resolved the probleta proposed by Pascal, under the figned name of John de Montford, wall the Englisb

Vol. 11.
mathematicians; and returned anotber to the mathematicians in France, formerly proposed by Kepler, and then resolved likewise by bimself, to which they bever gave any solution.-In 1660 , he invented a method for the construction of solar celipses; and in the latter part of the same year, he with ten other gentlemen formed theroselves into a socity, to mect weekly, for the improvement of natural and experimental philosopby; being the fomudation of the Royal Suciety.-In the beginning of 1661, he was chosen Savilian professor of astronomy at Oxford, in the room of Dr. Sell Ward; and where he was the same year created Doctor of Laws.

Among his other accomplishments, Dr. Wren had gained so considerable a skill in arehitecture, that he was sent for the same year, from Oxford, by order of king Charles the 2d, to assist sir John Denham, surveyor general of the works.-In 1663, he was chusen fellow of the Royal Society; bving one of those who were first appointed by the Councilafter the grant of their charter. Not long after, it being expected that the king would make the society a visit, the lord Brounker, then president, by a letter rcquested the advice of Dr. Wren, concerning the experiments which might be most proper op that uccasion: to whom the doctor recommended principally the Torricellian experiment, and the weather needle, as being not mere amusements, but uscful, and also neat in their operation. Indred on many occasions Dr. Wren did great honour to that illustrious body, by many curious and useful discoveries, in astronomy, natural philosoply, and other sciences, zelated in the History of the Royal Suciety, where \(D_{r}\). Sprat has inserted them from the registers and other books of the society to 1663, also in Birch's history. Among others of his productions there enumerated, is a lunar globe; representing the spots and various degrees of whiteness on the tuoon's surface, with the hills, eminences and cavities: the whole contrived so, that by turning it round to the light, it shows all the lunar phases, with the various appearances that happen from the shadows of the mountains and valleys, \&c: this lunar model wes placed in the king's cabinet. Another of tbese productoons, is a tract on the Dactrine of Motion that arises from the impact between two bedies, illustrated by experiments : also in the Philos. Trans, vol. 2, pa. 867. And a third is, The History of the Seasons, as to the temperature, weather, productions, diseases, \&c, \&c. For which purpose he devised also many curious machines, several of which kept their own registers, tracing out the lines of variations, so that a person might know what changes the weather had undergotw in bis absence: as windguges, thermometers, batoncters, hygrometers, raingages, \&c.-He made also great udditions to the new discoveries on pendulums; and among other things shoned, that there may be produced a natural slandard for measure from the pendulum for common usi.- He invented many ways to make antronomical observations more casy and accurate : he fitted and bung quadrants, sexiants, und radii more commodiously than formerly; and aloo consaructed two telescopes to open with a joint like a sector, by which obscrvers may inialibly take a distance to half minutes, \&c. He also inade variuus kinds of retes, screws, and other devices, for improving telescopes to take small distances, and apparent dianeters, to seconds: be made apertures to aduit more or less light, us the observer pleases, by opening and shutting, the better to fit glasses for crepusculine observations. - He added much to the theory of \(+18\)
dioptries ; and much also to the manufacture of grinding good glasses: he attempted, and not without success, the minking of glasses of other forms than spherical. He exactly measuted and belineated the spheres of the humours bf the ege, the proportions of which to one another were anly guessed at before: a discussion showing the rewsons Why we bee objects erect, and that reflection conduces as much to vision ts relitetron. He displayed a uatural and tasy theory of refractions, which exactly answered every experiment. He fully demonstrated the whole doctrine of dioptrics in a few propossitions, showing not only, as in Kepler's Dioptrics, the common propsities of glasses, but the proportions by which the individual myy cut the axis, athd each othet, on which the chargers of the teletcopes, or the proportion of the eye-glasses and apertures, are clearly discovered.- He made constant observations on Saturn, and a true theory of that planet, before the priuted discourse by lluygens on that subject apprared. -He also made maps of the Pleiarles and other teleacopic stars: and proposed methods to determine the great question as to the earth's motion or rest, by the small stars about the pole to be seen in large telescopes.-In navigation also our author made many improvements. He framed a magnetical terella, which he placed in the midst of a plane board with a hote, into which the terefla is half immersed, till it be like a glube with the poles in the horizon: the plane is shen dusted over with steel filings from a sieve: the dust, by the magnetical virtue, becomes immediately figared into furrows that bend like a sort of helix, proceeding as it were out at one pole, and returning in by the other ; the whule plane becoming figured like the circles of a planisphere,- It being a question in his time among the problems of navigation, to what mechantcal powers sailing against the wind was reducible; he showed it to be a wedge: be also demonstrated, how a transient force on an oblique plane woutd cause the motion of the plane against the first mover: and be made an instrument inechatically producing the same effiect, and showed the reason of saihng on aH winds. The grometrical mechansm of rowing, he showed to be a lever on a moving or cedent fulcrum : for this end, he mate instruments and experiments, to find the resistance to motion in a liquid medium ; with ohlier circumstances that are the necessary elements for laying down the geometry of suiling, swimming, ruwing, flying, and constructing of ships.-He invented a very speedy and curious way of etclung. He started many things towards the vmentation of water-works. He likewise made some instruments for respiration, and for straining the brouth from fuliginous vapours, to try whether the same breath, so purified, will serve ugain.- He was the first inventor of drawing pictures by microscopical glasses. He invented prerpetual, or at leastlong-lived lamps, for keeping a perpetual mgular heat, in order to varions uses, as hatching of egga and insects, proluction of plants, chernical preparations, imitating nature in producing fossils and minerats, beeping the motion of watehes equal, for the longitude and astronomical uses. He was also the first author of the anatomical experiment of injecting litguor into the veim of animals. By this operation, divers creatures were immediately purged, vomited, intoxicated, killed, or revived, according to the quality of the fluid injected. Hence arose many other new experiments, particularly that of transfusing blood, which has been prosecuted in many curious intances. This is a short account of the principal discoveries which Dr.

Wren presented, or suggrated, to the Royal Society, or were improved by him.

With respect to his architectural works: it has before been observed that he bad been sent for to assist sir John Denhatin. In 1663 be tratelled into France, to examine the most beautilul edifices and carious mechanical works there, when be made many useful observations. On his return home, he was appointed architect, and one of the commissioners for repairing St. Paul's cathedral. Withn a few days after the fire of London, 1666 , he drew a noble plan for a new city, nond presmend it to the king; butit was not approved of by the partiament. In this mortel, the chici streets weve tir cross each other at right angles, with lesser streets between them; the churches, public buildings, \&c, so disposed as not to interfere with the streets, and four piazzas placed at proper distances.-On the death of sir John Denbum in 1608 , our author succeeded him in the office of sorveyor-gineral of the king's works; and from this tifne he had the direction of a great many pabtic edifices, by which he accuired the most distingutshed reputation. He built the magnificent theatre ut Oxford, St. Paul's cathedral, the Monament, the modem part of Harnpton Court, Chelses-cellige, one of the wings of Greenwich hospital, the cturclees of St . Stephen Walbrook, and St. Mary-le-bow, with upwards of 60 other churches and public works, which thet dreadful fire remdered necessary. In the managetzent of which business, he was assisted in the measurements, and laying out of private property, by the ingenious Dr. Robutt Hinoke. The variety of business in which lre was by this means engaged, requiriag bis constant aftendance and concern, he resigned his Savilian professorship at Oxford in 1673 ; and the ygar folfowing he ruceived frum the king the honotr of knight-hood.-He was one of the commissioners who, on the motion of sir Jonas Moore, surveyor-general of the ordnance, had bern appointed to select a proper place for enecting an observatory; and he proposed Greenwich, which was accordingly approved of; the foundation stone of whech was laid the 10 th of August 1675 , and the building was presently finished under the direction of sir Jonas, with the adsice and assistance of sir Christopher.
In 1680 our author was chosen piesident of the Royal Society; afterwarils appointed architect and commissionet of Chelsea-college; and in 1684, principal officer or comptroller of the works in Windsor-castle. Sir Christopher sat twice in Parliament, as a representative for two different boroughs. While he continued surveyor-general, his residence was in Scotland-yard; but after his removal from that office, in 1718, be lived in St. Jamers's-street, Westminster. He died the 25th of February 1723, at 91 years of age; and was interred with great solemnity in St. Paul's cathedral, in the vaule under the south wing of the choir, near the cast end.

The person of Sir Christopher Wren was of a low stature, and thin frame of body; but by temperance and skilful management be enjoyed a good state of health, to a very unusual length of life. He was modest, devont, strictly virtuous, and very commonicative of his knowledge. Besitles his preuliar eminence as an architect, bis learning and knowledge were very extensive in all the arts and sciences, and especially in the mathematirs.

Sir Christopher never printed any thing himself, but several of his works have been published by others: sotne in the Pbilosophical 'Transactions, and some by Dr. Wallis

W R I
and other friends.-His posthumous works and draughts were published by his sin.

WRIGHIC (EDWARp), a distinguished English mathematician, who flourished in the latter part of the lith century, and begisning of the 17th; dying in the yar 1615. He was contemporary with Mr. Briges, and much concernal wibl him in the tusiness of the logarnthms, the sbort time they were publisised before bis death. He also coutributed gicatly to the improvertient of navigation and astronomy. The foflowing themoirs of him are iranslated from a Laton praper in the annals of Gonville and Caiuscollege in Cambridge, vis, "This yrar ( 1615 ) died at London, Edward Wright of Garveston in Norfolk, formerly a fellow of this cullege; a man respected by all for the integrity and simplicity of his mamers, and also famous for his skill in the mathematical sciences: so that be was not undeservedly styled a most excellent mathematician by Richard Hackluyt, the author of an original treatise of our English navigations. What knowledge he had acquired in the science of mechanics, and how usefully lie employed that knowledge to the public as well as private advantage, abundantly appear both from the writings he publishod, and fron the many mechanical operations still extant, which are standing monuments of his great industry and ingenuity. He was the first undertaker of that difficult but useful work, by which a litele river is brought from the town of Ware in a new canal, to smpply the city of London with water; but by the tricks of others he was hindered from completing the work he had begun. He was excellent both in contrivance and execution, nor was he inferior to the most ingenious mechanic in the making of instruments, either of brass or any other matter. To his invention is owing whatever advantage Hondius's geographical charts have above others; for it was Wright who taught Jodocus Hondius the method of constructing them, which was till then unknown: but the ungrateful Hondius concealed the name of the true author, and arrogated the glory of the invention to himself. Of this fraudulent juractice the good inan could not help complaining, and justly cnough, in the preface to his treatise of the Correction of Eirrors in the Art of Navigation; which he composed with excellent judgment, and after long experience, to the great advancetnent of naval affairs. For the improvement of this art he was appointed mathematical lecturer by the Fast-India Company; and read lectures in the house of that worthy knight sir Thomas Smith, for which he had a yearly salary of 50 pounds. This office he discharged with great reputation, and much to the satisfaction of his hearers. He published in English a book on the doctrine of the sphere, and another concerning the construction of sun dials. He also prefixed an ingenious preface to the learned Gilbert's book on the loadstone. By these and other his writings, be has transmitted his fame to latest posterity. While he was yet a fellow of this college, be could not be concealed in bis private study, but was called forth to the public business of the nation, by the queen, about the year 1593 . [Other accounts say 1589.] He was ordered to attend the earl of Cumberland in some maritime expeditions. One of these he has given a faithful account of, in the manner of a journal or ephemeris, to which be has prefixed an elegant hydrographical chart of bis own contrivance. A little before his death be employed bimself about an English translation of the book
of logarithms, then lately discovercd by lord Napier, a Scotcliman, who had a great affection for him. 'This punthumous work of liis was published socn atiter, by his only sun Samuel Wright, who was also a scholar of this coliege. Ite had formed many other usefu) desigus, but was hindered by death from bringing them to perfection. Of ham it may iruly be said, that he studied mure to serve the public than himself; and though be was rich in fame, and in the promises of the great, yet he died poor, to the scandal of an ungrateful age." So far the memoir; other particulars concerning him, are as follow.

Mr. Wright first discovered the true method of dividing the meridinn line, according to which the Mercator's charts are constructed, and upon which Mercator's sailing is founded. An account of this he sent from Caius-college, Caunbridge, where lee was then a fellow, to his friend Mr. Blondeville, containing a short table for that purpose, with a specionen of a chart so divided, together with the manner of dividingit. All which Blondevilie publshed, in 1594, among his Exercisix. Aud, in 1597, the reserend Mr. William Barlowe, in his Navigator's Supply, gave a demonstration of this division as communacated by a friend.

At length, in I599, our author bimself printed his celebrated treatise, entitled, The Correction of certain Eirrors In Navigation, which had been written many years before; where he shows the reason of tbis division of the meridian, the manner of constructing his table, and its uses in navigation, with other improvements. In 1610 a second edition of Mr. Wright's book was publisbed, and dedicated to his royal pupil, prince Henry; in which the author inserted farther improvements; particularly, he proposed an excellent way of determining the mugnitude of the earth; at the same time, recommending very judiciously, the making our common measures in some certain proportion to thut of a degree on its surface, that they might not depend on the uncertain length of a barleycorn. Seme of his otber improvements were ; The Table of Latitudes for dividing the meridian, computed as far as to minutes: An instrument, he calls the Sea-rings, by which the variation of the compass, the altitude of the sun, and the time of the day, may be readily determined at once in any place, provided the latitude be known: The correcting of the errors arising trom the excentricity of the eye in observing by the cross-staff: A total amendment in the tables of the declinations and places of the sun and stars, from his own observations, made with a six-foot quadrant, in the years \(1594,95,06,97\) : A sea-quadrant, to take altitudes by a forward or backward observation; having also a contrivance for the ready tinding the latitude by the height of the pole-star, when it is not on the meridian. And that this book might be the better understood by beginners, to this edition is subjuined a translation of Zamurano's Compendium; and he added a large table of the variation of the compass as observed in wery different parts of the world, to show that it is not occasioned by any magnetical pole. The work bas gone through several other editions since. Descripion and Use of the Sphere, in 1618. And, besides the books above mentioned, be published another on navigation, entitled, The Haven-finding Art, translated from the Dutch. Uther accounts of our author state also, that it was in the year 1589 that he first began to attend the earl of Cumberland in his voyages. It is also said that be made, for his pupil, \(4 K 2\)
prince Henry, a large sphere with curious movements, which, by the belp of spring-work, not only represented the inotions of the whole celestial sphere, but showed also the particular symems of the sun and moon, and their circular motions, together with their place, and possibilities of eclipsing each other: there are in this machine works for a mothon of 17100 years, if it should not be stopt, or the unaternals fail. This sphere, though thus made at a great expense of money and ingentous industry, was after-
wards in the time of the civil wars thrown aside, among dust and rubbish, where it was found, in the year 1646, by sir Jonas Moore, who at his own expense restored it to its first state of periection, and deposited it at his own house in the Tower, among his other mathematical instruments and curiositics.

See Rubertson's Navigation, Introd. pa.12. Also the Pbilos. Magazine, vol. 21, pa. 164.

\section*{X.}

X E N

XENOCRATES, an eminent philosopher among the ancient Greeks, was born at Chalcedon, and died 514 years before Chnst, at about 90 years of age. He beoume early a disciple of Plato, studying under this great inaster at the same time with Aristotle, though he was not possessed of equal talents; the former wanting a spur, and the latter a bridle. He was fond of the mathematics; and permitted none of his scholars to be ignorant of them. There was something slovenly in the behaviour of Xenocrates; for which reason Plato frequently exborted him to sacritice to the graces. Seriousuess and severity were always seen in his deportment: yet notwithstanding this severe cast of mind, be was very compassionate. There was also something very extraordmary in the rectitude of his morals: lie was absolute master of his passiuns; and was not fond of pleasure, riches, or applausc. Indeed, so great was his reputation for sincerity and probity, that he was the only person wliom the magistrates of Athens dispensed from confirming his testimony with an cath: and yet he was so ill treated by then, us to be sold because be could not pay the pill-tax laid upon foreigners. Demetrius Phalcreus bought Xenucratus, paid the debt to the Athenians, and immediately guve him his liberty. At Alexander's request, be composed a treatise on the Art of Reigning ; 6 books on Nature; 6 brohs on Philosoply ; one on Riches, \&c; but none of them have descended to the present times.-His theology it seems was but poor stuff: Cicero refutes him in the first book of the Nisture of the Gods.

XENOPHANES, a Greek philosopher, born in Culophon, was, according to some authors, the disciple of Archelaus; in which case he must have been contemporary with Socrates. Others relate that he was quite an autodidact, being entirely self-taught, and that he lived at the same time with Anaximander: according to which account be nust have flourished before Socrates, and about the 60th Olymipiad, as Diogenes Lacrius affirms. He founded the Eleatic sect; and wrote several poems on philosophical subjects; as also a great many on the foundation of Culophon, and on that of the colony of Elea. He wrote also against Homer and Hesiod. He

\section*{\(X\) I \(P\)}
was banished from his country, withdrew to Sicily, and lived in Zanche and Casana. His opmion with regard to the nature of God differs not much trom that of Spinoza. When he saw the Enyptians pour forth lanentations during their festivals, he thus advised thein: "If the objects of your worship are Gods, do not weep: if they are men, ofier not sacrifices to them." The answer he made to a man with whom he refused to play at dice, is highly worthy of a philosopher: This man calling him a coward, "Yes," replicd be, "I am excessivily so with regard to all shametul actions."

XENOPHON, a celebrated Greek general, philoso pher, and historian, was burn at Athens, and became carly a disciple of Socrates, who, says Strabo, saved his life in battle. A bout the 50th year of his age be engaged in the expedition of Cyrus, and accomplished his immortal retreat in the space of 15 months. The jealousy of the Athenians banished him from his native city, for engaging in the service of Sparta and Cyrus. On his return therefore be retired to Scillus, a tuwn of Elis, where he built a temple to Diana, which be mentions in his epistles, and devoted his leisure to philosuphy and rural sports. But commotions atising in that country, be removed to Corinth, where it seems be wrote his Giecian History, and died at the age of 90 , in the year \(\mathbf{3 6 0}\) before Cbrist.

Ey his wife Philesia he had two sons, Diodorus and Gryllus. The latter rendered hinself immortal by killing Epaminotidas in the famous battle of Mantinca, but perished in thut exploit, which his father lived to record.
'The best editions of his works are those of Franchfurt in 1674, and of Osford, in Gravk and Latin, in 1703, 5 vols. Svo. Separately have been publisthed bis Cyropaedia, Oxon. 1727, 4to, and 1736,8vo. Cyri Auabasis, Oxun. 1735,4 to, and \(1747,8 v o\). Memorabislia Socratı, Oxon. 1741, 8vo.-llis Cy ni Anabasis has becn admirably translated into Implish by Spelman.

XIPHIAS, in Astronamy, is she borado or Swordfish, a constellation of the southern hemisphere; being one of the thew constellations added by modern astronomers; and consisting of 6 stars odly. See Dorado.

YARD, a lineal measure, or measure of length, used in Eingland and Spain, chiefly to measure cloth, staffs, \&c. The yard was setted by Heury the 1st, from the lingth of his own arm.

The English yard contnins 3 feet; and it is equal to 4 -5the of the Finglish ell,
to 7 -9the of the Paris ell,
to \(4-3 d s\) of the Elemish ell,
to 56-51sts of the Spanish vara or yard.
Yard, or Golden la kid, is also a popular name given to the 3 stars which compose the belt of Orion.

1 EAR, in the full extent of the word, is a system or cycle of seseral months, usually 12. Others define ycar, in the general, a period or space of time, measured by the revolution of some celcstial body in its orbit. Thus, the time in which the fised stars make \(n\) revolution, is called the great year; and the times in which Jupiter, Saturn, the Sun, Moon, \& c complete their conrses, and return to the same point of the zudiac, are reopectively called the yrars of Jupiter, and Saturn, and the Solar, and Lunar years, \& co.

As year deu at originally a revolution, and was not limited to that of the sun; accordingly we find by the oldest acconnts, that people bave, at diffirent times, expressed other revolutions by it, particularly that of the moon; and consquently that the years of some accounts, are to be reckened unly months, and sometimes periods of 2, er 3, or 4 mituths. This will assist us greatly in tuderstanding the accounts that certain nations give of their own antiquity, and perhaps also of the age of men. We read expressly, in several of the old Greek writers, that the Eqyptian ycar, at one period, was only a month; and we are fartior told that at other periods it was 3 months, or 4 months: and it is prolable that the cbitdren of Isratel followed the Egyptiait account of their years. The Fizyptians borsted, alnost 2000 years ago, of having accounts of events 48 thousand years distance. A great dial inust be allowed to fallacy, on the above account; but besides this, the Egypzians liad, in the time of the Greeks, the sime ambition which the Chinese have at present, and wanted to pass themselves on that people, as these do upon us, for the oldest inhabitants of the earth. They had recourse also to the same means, and both the preseltt and the early impostors bave pretended to ancient oberervations of the heavenly bodies, and recounted eclipses in purticular, to vouch for the truth of their accounts. Sillce the time in which the solar year, or jpriod of the earth's revolution round the sun, has been received, we may account with certainty; but for thase remote agos, in which we do not proclsely know what is theant by the term gear, it is inpossible to form any satisfactory conjecture of the duration of time in the accounts. The Babylonians pretend to an antrquity of the sante romantic kind; they boast of \(47^{\circ}\) thousund years in which they had kept olnservations; but we may judge of these as of the others, and of the obmeriations as of the years. The Eqyptians speak of the stars having four times altered their courses in that period which they claim for their history, and that the sun set twice in the east. They were not such perfect
astronomers, but, after a round-about voyage, they might perhaps mistake the east for the west, when they carne in again.

Year, or Solar Year, properly, and ly way of eminence so called, is the space of time in which the sun moves through the 12 signs of the ecliptic. This, by the observations of the best modern astronomers, contains 365 dayb. 5 hours, \(48 \mathrm{~min} .45 \frac{1}{4}\) seconds: the quantity assumed by the anthors of the Gregorian calendar is 365 days, 5 hours, 4.9 min . But in the civil or popular account, this year only contains 365 days; except every 4th year, which contains 366 .

The vicissitude of spasons seem to have given occasion to the first instutution of the year. Man, naturally curious to know the cullse of that diversity, soon fround it was the proximity and distance of the sun; and therefore gave the name year to the space of time in which that Inminary performed his whole course, by returming to the sume point of bis orbit. According to the saccuracy of their observations, the gear of some nations was more perfect than that of otbers, but none of them quite exact, nor whose parts did not vary woth regard to the parts of the sun's course.

Herodotus informs us that it was the Eeyptians who first formed the ytar, making it to contain 360 days, which they subdivided into 12 months, of 30 days each. Mercury 'Trismegistus added 5 days more to the account. And on this footing it is said that Thales instituted the year among the Greeks; thongh that form of the year* did not ubtain through all Grecce. Also, the Jewish, Syrian, Roman, Pcrstan, Ethiopic, Arabic, \&c years, were all different. In fact, considering the imperfect state of astronomy in those ages, it is no wonder that different people should disagree in the calculation of the sun's course. We are even assured by Diod. Siculus, lib. 1. Plutarch, in Numa, and Pliny, lib. 7, cap. 48, that the Egyptian year itself was at first very different frum that now represented.

The solar year is either astronomical or civil.
The Astronomical Solar Year, is that which is determined precisely by astronomical ubservations; and is of two kinds, tropical, and sidereal or astral.

Tropical, or Natural Yeare, is the time the sun takes in passing through the zodiac; which, as before observed, is \(365 \mathrm{~d}, 5 \mathrm{~h}, 48 \mathrm{~m}, 45 \frac{3}{3} \mathrm{scc}\). This is the only proper or natural year, because it always keeps the same seasons to the same months.

Sidereal or Astral Year, is the space of time the sun takes in passing from any fixed star, till bis return to it again. This consists of 365 d . 6 h .9 m .17 sec .; being \(20 \mathrm{~m} .21 \frac{1}{2} \mathrm{sec}\). longer than the true solar year.

Lunar Yeas, is the space of 12 lunar months. Hence, from the two kinds of synodical lunar months, there arise two kinds of lunar years; the one astronomical, the other civil.

Lunar. Astronomical Year, consists of 12 lunar synodicul months; and contains \(3.5+\mathrm{d}, 8 \mathrm{~h} .48 \mathrm{~m} .38 \mathrm{sec}\). and is therefore 10 d .21 h .0 m .7 s , shorter then the solar year. A difference which is the foundation of the epact.

Lanar Cival Yeal, is cither common or embolismic.

The Common Lumar Year consists of 12 lunar civil snouths ; and sherefore contains 354 days. And
The Embolismic or Intercalary Lanar Yean, consists of 13 lunar cisil months, and therefore contains 384 days.

Thus far we bave considered years and months, with regard to astronomical principles, upon which the division is founded. By this, the varions forms of civil years that have formerly obtained, or that do still obtasa, in divers mattons, are to be examined.

Civil Yean, is that form of year which every nation has contrived or adopted, for computing their nise by. Or the cisil is the tropical year, considered as only consisting of a cerraiu number of whole days: the odd hours and minutes being set aside, to render the computation of time, in the common occasions of life, mere easy. As the tropical year is 3635 d .5 h .49 m . or almost 365 d . 6 h , which is 365 days and a quarter; theretore if the civil year be made 365 days, every th year it must be 366 days, to keep nearly to the course of the sun. And hence the civil year is either common or bissextile. The

Common Civil Year, is that consisting of 363 days; having seven months of 31 days each, four of 30 days, and one of 28 days; as indicated by the following well known memorial verses :

Thirty days hath September,
April, June, and November;
Febroary twenty-eight alone,
And all the hest have thirty-one.
Bissertile or Leap Yeaf, consists of 366 days; having one day extraordinary; called the intercalary, or bissextile day; and takes place every 4 h year. This additional day to every 4th year, was first introduced by Julius Cassar; who, to make the civil years keep pace with the tropical ones, contrived that the 6 hours which the latter exceeded the former, should make one day in 4 years, and be added between the gid and 23 d of February, which was their bth of the calends of March; and as they then counted this day twice over, or had bis sexto calendas, hence the year itself came to be called bis sextus, and bissxtile.

However, among us, ihe intercalary day is not introduced by counting the 23d of February twice over, but by adding a day at the end of thw month, which therefore in that year contains 29 days, - A farther rutortnation was made in this year by Pope Gregory. See Grrgorian Year, Calendab, Bissextile, und Leap-Year.

The covil or lagal yerar, in England, formerly commenced on the day of the Annunciaion, or 25th of March; though the historical year began on the day of the Circumcision, or lst of January; on which day the German and Italian year alsu commences. The part of the year between these two terms was usually expressed boih ways: as \(1745-6\), or \(174 \frac{1}{8}\). But by the act fur altering the stile, the civil year now conunences with the 1st of January.

Ancient Roman Year. 'This was the lunar yeur, which, as first settled by Rumulus, contained only ten months, of unequal numbers of days in the following order: viz, March 31; April 30; May 31; June 30; Quintilis 31; Sextilis 30 ; September 30 ; Uctober 31 ; November 30 ; December 30 ; in all 304 days; which came shore of the true lunar year by 50 days; and of the solar by 61 days. Hence, the beginning of Romulus's year was vague, and unfixed with regard to any precise season; to remove which inconvenience, that pince ordered so many days
to be added yearly as would make the state of the heavens correspond to the first munth, without cailing them by the name of any month.

Numa Pompilius corrected this irregular constitution of the year, composing two new months, January and February, of the days that were used to be auded to the former ycar. Thus Numa's year consistell of 12 months, of different days, as follow ; viz,

January - 29; February - 28; March - - 31;
April .-29; Nay.... 31; Junc. .- 29;
Quintilis 31; Sextilis - . - 29; Scptember 29;
October - 31; Novenber - 29; December 29; in all 355 days; therefore exceeding the quantity of a lunar civil year by one day; that of a lunar asm rononical year by \(15^{\mathrm{h}} 11^{-0} 22^{\prime}\); but falling short of the conumon solar year by 10 days; so thatits beginning was still vague and unstabic.

Numa, however, desiring to bave it begin at the winter solstice, ordered 22 days to be intercalated in Februmary every 2 d year, 23 every \(41 \mathrm{~h}, 22\) every 6 th, and 23 every 8 th year. But this rule failing to keep matters even, recourse was had to a new way of intercalating; and instead of 23 days every 8 th year, only 15 were to be adjed. The care of the whole was committed to the pontiex maximus; who however, neglecting the trust, sufiered things to iun to great confuston. And thus the Roman year slond ull Julius Casar reformed in. Sec Calekdar. And lor the manner of reckoning the days of the Romanmonths, ace Calends, Nones, and Ides.

Julian Year. This is in effect a solar year, commonly containing 365 days; though every 4th year, called bissextile, it contains \(\$ 66\). The months of the Juliau year, with the number of theirdays, steod thus:

January - - 31; Frbruary - 28; March - - 31;
Apral ... 30; May ... 31; June - - 30;
July . . . 31; August - . 31; September 30;
October - 31; November 30; December 31. But every bissextile year had a day added in February, making it then to contain 29 days.
The mean quanlity therefore of the Julian year is \(365 \frac{1}{2}\) days, of \(365^{4} \mathrm{t}^{\mathrm{h}}\); excerding the true solar year by somewhit nore than 11 minutes; an excess which amounts to a whole day in ulnost 131 years. Hence the times of the equinoxrs \({ }^{\circ} \mathrm{o}\) hackward, and fall rarlier by one day in about 130 or 131 years. And thus the Roman yearstood, till it was farther currected by pope Gregory.

For settling this year, Julius Casar brought over from Egypt, Sosigenes, a cele-brated insthematician; who, to supply the defect of 67 days, which had been lost through the neglect of the priests, and to bring the beginning of the year to the winter solbtice, made one ycar to consist of 15 months, or 245 days; on which account that year was used to be called aunus confusionis, the jear of confusion. See Jution Calendar.

Gregorian Year. This is the Julian year corrected by this rule, viz, that instead of every secular or 100th year being a bissextule, as it would be in the former mode, in the new way three of them are common years, and only the 4th is bissexuile.

The error of 11 minutes in the Julian year, by continual repetition, had accumulated to an error of is daya from the time when Cosar made his correction; by which means the equinoaes were greatly disturbed. In the year 1582, the equinoxes were fallen back 10 days, and the full moons 4 days, more backward than they were in the time
of the Nicene council, which was in the year 325 ; viz, the former from the goth of March to the 10th, and the latter from the sth to the lst of April. To remedy this increasmg irregularity, pope Gregory tbe 13th, in the year 1582, called t-gether the chicf astronomers of his tiue, and concerted this correction, umitting the 10 days above mentiuned. He exchanged the lanar cycle for that of the epacts, and made the 5 th of Octuber of that year to be the 15th; by that means restunng the wrmil equinox to the zlist of March. It was also provided, by the omission of 3 intercalary days, in \(\mathbf{4 0 0}\) years, to make the civil year keep pace nearly with the solar year, for the time to come. See Clalendar.

In the gear 1700, the error of 10 days was increased to 11 ; upen which, the protestant states of Germany, to prevent farther confustin, adopted the Gregorian correction. "And the same was accepted also in England in the year 1752, when 11 days were thrown out atter the 2 d of September that year, by accounting the Sd to be the 14th day of the month: calling this the new style, and the former the old style. And the Gregorian, or new style, is now in like thanaer used in most coumtries of turope.

Yet this last correction is still not quite perfect; for as it has been shown that, in 4 centurics, the Julian year gains \(3^{4} 2^{h} 40^{\mathrm{m}}\); and as it is only the 3 days that are kept out in tive Gregorian yenr; there is still an excess of \(2^{\text {h }} 40^{\mathrm{mm}}\) in 4 centuries, which amounts to a whole day in 36 enturies, or in 3600 years. SeeCalendan, New or Gregorien Srile, \& C .

Egyptian Yean, caHed also the year of Nabonassar, on accoust of the epoch of Nabonassar, is the solar year of 365 days, divided into 12 menths, of 50 days each, beside 5 intercalary days, added at the end. The order and names of thre months are as follow:
1. Thoth;
2. Paophi;
3. Athyr ;
4. Chojac;
7. Pharnenoth ;
5. Tybi ;
8. Pharmurhi;
6. Mecheir ;
9. Pachon;
10. Pauri;
11. Epiphi;
12. Mesori.

As the Egyptian year, by neglecting the 6 bours, in every 4 years loses a whule day of the Julan year, its beginning runs through every part of the Julian year in the space of 1460 years; after which, they meet again; fur which reason it is called the erratic year. And because this return to the same day of the Julian year, is performed in the space of 1460 Julian years, this circle is called the Sothic period.

This year was applied by the Egyptians to civil uses, till Anthuny and Cleopatra were defeated; but the mathematicians and astronomers used it till the time of Ptolemy, who made use of it in his Alinagest; so that the knowledge of it is of great service in astronomy, for comparing the ancient obscrvations with the modern.

The ancient E.gyptians, we are informed by Diodorus Siculus. (Plutarch, lib. 1, in the life of Numa ; and Pliny, Jib. 7, cap. 48) measured their years by the course of the moon. At first they were only one month, then 3 , then 4, like that of the Arcadians; and then 6, like that of the people of Acarnania. Those authors add, that it is on this account that they reckon such a vast number of years from the beginning of the world; and that in the bistory of their kings, we meet with some who lived 1000, or 1200 years. The same thing is maintained by Kircher; Oedip. Egypt. tom. 2, pa. 259. And a late authur observes, that Varro has affirmed the same of all nations, that has been quoted of the Egyptians. By which means
many account for the great ages of the more ancient patriarchs; expounding the gradual decrease in their ages, by the successive increase of the number of months in their years.

On the Fgyptians being subdued by the Romans, they recrived the Julian year, though with some alteration: for they still retained their ancient months, with the five additional days, and every 4 th year they intercalated another day, for the 6 hours, at the end of the year, or between the 28th and 29th of August. Also, the beginning of their year, or the first day of the month Thoth, answered to the 29th of August of the Julian year, or to the Sorth if it happened to be leap year.

The Ancienc Greek Iear.-This was a lunar year, consisting of 12 months, which at first had each 30 days, then alternately 29 and 30 days, computed from the first appearance of the new moun; with the addition of an embolismic month of 30 days, every \(3 \mathrm{~J}, 5\) th, 8 th, 11 th, \(1+\mathrm{th}, 16 \mathrm{th}\), and 19 th year of a cycle of 19 years; in order to keep the new and full moons to the same terms or seasons of the year.

Their year commenced with that new moon which was nearest to the summer solstice. And the order of the months, with the number of their days, were as follow:
 Borifouluv2 29; 4. Maıpaxtrfiav 30; 3. Iluavediav 29;

 29 ; 12. Exifeprqiay 30.-But many of the Greek nations had other names for their months.

The Ancient Jewish Year.-This is a lunar ycar, usually consisting of 11 monthis, containing alternately 30 and 29 days. And it was made to agree with the solar year, by adding 11 , and sometimes 12 days, at the end of the year, or by an embolismic month. The order and quantitics of the months were as follow: 1. Nisan or Abib 30 days; 2. Jiar or Zius 29; 3. Siluan or Sievan S0; 4. Thamuz or Tumus 29; 5. Ab 90 ; 6. Elul 29 ; 7. Tifri or Ethanim 30; 6. Marchesvan or Bul \(29 ; 9\). Civleu 30; 10. Tebeth 29 ; 11. Sabat or Schebeth \(30 ; 12\). Adar 30 in the embolismic year, but 29 in the common year.-In the defective year, Cisleu was only 29 days; and in the redundant year, Marchesvall wes so.

The Modern Jewish Year is likewise lumar, consisting of 12 tnonths in commen years, but of 13 in cmisulismic years; which, in a cycle of 19 years, are the \(3 \mathrm{~d}, 6\) th, 8th, 11 th, 14 th, 17 th , and 19 th. Sts begiming is fixed to the new moon neat after the autumnal equinox. The names and order of the months, with the number of the days, are as follow: 1. Tisri 30 days; 2. Marchisvan 29 ; 3. Cisleu 30; 4. Tebeth 29 ; 5. Schebeth \(30 ; 6\). Acar \(29 ; 7\). Veadar, in the embolismic year, \(30 ; 8\). Nisan 30 ; 9. Ilar 29 ; 10. Sivan 30 ; 11. Thamuz 29 ; 12. Ab 30 ; 13. Elul 29.

The Syrian Year, is a solar one, having its commencement fixed to the beginning of October in the Julian year ; from which it only differs in the names of the months, the quantities being the same; as follow: 1. Tishrin, answering to our October, and contaming 31 days; 2. Latter Tishrin, containing, like Noveraber, 30 duys; 3. Chnun 31 ; 4. Latter Conun 31 ; 5, Shabat 28 , or 29 in a leapyear; 6. Adar 31; 7. Nisan 30; 8. Aiyar 31; 9. Haziram 30; 10. Thamux 31 ; 11. Ab 31 ; 12. Elul 30.
The Persion Year, is also a solar onc, of 365 days, consisting of 12 months of 90 days each, with 5 interca-
lary days added at the end. The moniths are as follow : 1. Asrurlia meh; 2. Ardibascht meh; 3. Cardi meh; 4. Thir meh; 5. Merded meh; 6. Schabarir meh ; 7. Mehar meh; 8. Aben meh; 9. Adar meh; 10. Di Meh; 11. Behen meh; 12. Assurer meh. This year is the same as the Egyptian Nabonassarean, and is called the Vezalegerdic yaur, to distinguish it from the fixed solar year, called the Gielalean yrar, which the Persians began to use in the year 1079, and which was formed by an intercalathon, made six or seven times in 4 years, and then once every 5 th ycar.

The Arabic, Mahometan, and Turkish Year, called ala, the year of the Hegina, is a lunar ytar, equal to \(357^{4}\) \(8^{6} 48^{m}\), und consaxts of 12 months, containing alternately 30 and 29 days. Though sometimes it contains 13 munths; the names \&e being as follow: 1. Mubarram of 30 days; 2. Saphar 29 ; 3. Rabia 30; 4. Latter Rabia 29; 5. Jomada 30; 6. Latter Jomada 29; 7. Iixjab 30; 8. Shaaban \(29 ; 9\). Ramalan 30; 10. Shawal 29 ; 11. Dulkaadah \(30 ; 12\). Dulheggia 29, but in the embolismic year 30. An intercalary day is added every 2 d , 3 th, 7 th, 10th, 18th, 15 th, \(18 \mathrm{th}, 21 \mathrm{st}\), 24 th, \(26 \mathrm{th}, 29 \mathrm{th}\), in a cycle of 29 years. The months commence with the first appearance of the new noons after the conjunction.

Ethopic IEAn, is a solar year perfectly agreeing with the Actiac, except in the names of the mouths, which are; 1. Mascaram ; 8. Tykympt ; 3. Hydar ; 4. Tyshas; 5. Tyr; 6. Jacatil; 7. Magabit; 8. Mijazia; 9.Ginbat; 10. Syne; 11. Ilamel; 12. Hahase. Intercalary days 5. It commences with the Egyptian year, on the 29th of August of the Julian year.

The Year of the Nutive Americans.-In Humboldt's Researches, concerning the institutions and monuments of the ancient inhabitants of America, among many osher things concerning the Mexican nation, \&ce, we find several particulars relating to their year and computation of time. It seems that the Mexican calendar pussesses a degree of accuracy and refinement, that rises considerably ubove all the other mark of theircivilization. It appears that a stone of porphyry, of an enormous bulk, dug up in the year 1790, and covered with sculpture, evidently relative to the culendar, has thrown considerable light on this curious subject. The sculpture is in relievo, and well polished; the concentic circles, with their numerous tivisions and aubdivisions, are traced with mathematical exactness. In the centre of the stone is sculptured the biernglyphic of the sun, surrounded by eight triangular radii. The god Tonatith is ligured, opening his large mouth, armed with teeth, which reminds us of a figure of a divimty in Hindustan, the image of Kala, or Time.

It appears that the civil year of the Mexicans, was a solar year of 365 days, and divided into 18 nouths, of 20 days each, with 5 days added at she end. The beginling of the day was reckoned, like that of the Persians and k.gyptians, from sun-rising. It was divided into 4 intervals, determined by the rising and setting of the sun, and its tuo passages over the meridian circle. The bieroglyphic of the day was a circle divided into 4 equal parts. Fach month, of 20 days, was divided into 4 weeks, or peziods of 5 days. The Murscas, a nation south of the Isthmus, hatl weeks of 3 days; but it does nut appear that any nation of the new continent was acquainted with the werk or cycle of 7 days; which, with a few exceptions, is found all over the old world.

Thirteen Mexican years formed a cycle, to which they gave a particular name; and 4 of these, constituting a period of 52 years, was denoted by another term; and two of these perriods of 52 years formed what they called an old age. At the end of 52 years, 13 days were added, which makes the Mexican year agrue with the Julian, of 364 days. But Gama, an astronomes very learned in the chronology and history of the Mexicans, is of opinion that they intercalated only 25 days in 104 years; and this would give the length of the year \(=365^{\circ} 24\) days, which is very near the truth; being more accurate than tbat of Hipparchus, and is nearly the same as that which was deternined by the astronomers of the caliph Almamoun.

The Mexicans were in possession of annals which went bach \(8 \frac{1}{2}\) centuries befote the arrival of Cortes in the country of Anahuac. 'Thereckoning of time was according to periods of 52 or 104 years; and along with the s'ries ol years and days, expressed by hieroglyphica, the migration of the nations, the battles and remarkable events of each reign, were represented in the paintings of which these annals were composed. In the reckoning of titne, however, a particular artifice was employed; for though the numbering of the years and months, from a given era, would have sufficiently asceriained the date of any event, just as with uz, this simple method was rejected, and in its stead was substituted a contrivance, by which the name of the year determined its relative situation. This device, M. Humboldt thinks, was the work of the priests, and was effected by dividing the cycle of 13 years into amaller cycles of 4 years cach, and distinguishing these years by particular names.

The symbolical writing of the Mexican nations exhibited simple signs for the number 20, and for its 2 d and 3d powers, 400 and 8000 . A small staudard, or flag, represented 20 units; 400, the square of 20 , was figured by a feather, because grains of guld, inclosed in a guill, were used in some places as money, or a sign for the purposes of exchange. The figure of a sack indicated 8000 , or the cube of 20 , and had the naine that was given to a kind of purse that contained 8000 grains of cocua. A flag. divided by two cross lines, and balf coloured, denoted 10; and when three quarters were coloured, it deaoted 15. The Mexican vocabulary afforded names for numbers as fur as 48 millions, nad derived, according to the strictest rules of analogy, from the decimal mode of reckoning. The units, as far as 10 , or 20 sometimes, were marked by dots or points; thus, 23 was expressed by a llag followed by 3 dots, \&e.
M. Ilumboldt remarks, that several of the names by which the Mexicans denoted the 20 days of their month, are those of the signs of a zodiac. in use from the remotest antiquity ameng the nations of eastern Asia. He compares the names of the Mexican syimbols for the days, with the Tartarean, Japanese, and Thbetan names of the 12 signo, and also with the names of the lunar houses of the Hindus. In 8 of the heroglyphics the analogy is very striking. Thus, Ash, the name of the first day, as also of water, is indicated by an hicroglyphic, the parallel or undulating lines of which remind us of the sign Aquarius. It the Tibetan zodiac this sign is marked by a rat, which is also used as an emblem of water. The rat is likewise an asterism in the Chimse zodiac. Seven other of the names or characters stand related uearly in the same manner. M. Humboldt also justly considers it
a remarkable circurastance, that the ape is a character used in the Mexican calendar, as it is in the Tibetan zodiac, and in the lunar houses of the Hindus, though this animal does not exist in the high country of the Andes.

It appears that the Mexicans made astronomical obecrvations by means of the gnomon; and knew from them, that in the first year of the cycle, the equinoxes fell on certain days of the 4 th and 13 th month. The Peruvians and Cousko regulated their intercalation, not by the shadow of the gnomons, which they however very assiduously'measured, bat, hy marks placed in the borizon, to denute where the sun rose and set on the days of the solstices and equinoxes.

For the Hindu year, see the Philos. Trans. Abridg, vol. 16 , pa. \(749, \& c\), and vol. 17, pa. 250, \&c; also our article Chronology.

YELLOW, one of the primary or original colours of light.
yesdegerdic Year. See Persiam Year.
YOUNG (Matthew) d. D., the very learned bishop of Clonfert and Kilmacduach, was of a respectable family in the county of Roscommon, was born in 1750, and died Nov. 28, 1800, at Whitworth in Lancashire, of a lingering and painful malady, a cancer in the tongue. He was admitted into the university of Dublin in 1766, and elected fellow of the college in 1775 . In the prosecution of that object, his attention was necessarily directed to the Newionian philosophy, of which he early became an enthusiastic admirer; and displayed, at the examination for his fellowship, an unexampled knowledge and comprehension of it. It continued to be his favourite study, but not his only one. His active mind embraced in rapid succession the most dissimilar objects; and these he pursued with unceasing ardour, atnidst his various duties as a fellow and tutor, and the freest intercourse with society, which he was formed at once to delight and instruct. His love of literary conversation, and the advantages he experienced from it in the pursuit of science, led him early to engage in forming a society whose chief object was the improvement of its members in theological learning. It consisted of a small number of his most intimate college frients, and continued to exist for a series of years, with equal reputation and advantage. Out of this association grew another, somewhat more extensive, whose labours were directed to philosophical researches, and in the formation of which Mr. Young was also actively engaged: and this itself became the germ of the Royal Irish Academy; which owes its existence to the zeal and exertions of the members of that society, among whom Mr. Young was particularly distinguished. In the intervals of his severer studies, he applied himself to modern languages; and the result of his labours may be seen in the Transactions of the R.I. A., to which he also contributed largely on mathematical and philosophical subjects.

In the first volume of their Transactions; A Synthetical Demonstration of the Rule for the Quadrature of Simple

Curves per aqquationes terminorum numero infinitas; On the Extraction of Cubic and other Roots; Anciont Gaelic poems respecting the rece of the Frians collected in the Highlands. In vol. 2nd; An Enquiry into the different modes of Demonstration by whicli the Velocity of Spouning Fluids has been investigated a priori. In vul. 3rd; The Urigin and Theory of the Gothic Arch. In vol. 4th; Demonstration of Newton's Theorems for the Correction of spherical Errors in the Object-glasses of 'Telescopes. In the 5 th and 6 th volumes, nothing. Besidies these, Dr. Young published the following learned and ingenious works: The Phenomena of Sounds and Musical Strings, 8vo, 1784: The Force of Testimony, \&c, 4to: The Nuraber of Primitive Culours in Solar Light : On the Precession of the Equinoxes : Principles of Na tural Philosophy, 8vo, 1800 , being his last publicntion, and containing the substance of his lectures in the college.

In 1786, when the professorship of philosophy in Tri-nity-college became vacant, he had attained so high reputation in that branch of science, that he was elected to the office without opposition. Ilis Essay on Sounds had been published some years; and it was known be was engaged in the arduous task of illustrating the Principia of Newton. He now devoted himself to the duties of his professorship; and the college having been enricbed with the excellent spparatus of Mr. Atwood, Dr. Y. improved the fortunate occasion of carrying bis lectures to a degree of perfection unknown in the university of Dublin, and never perhaps exceeded in any other. He proceeded in the mean time in his great work, "The Method of Prime and Ultimate Ratios, illustrated by a Commentary on the first two books of the Principis," and bad nearly completed it in English, when he was advised by his friends to publish it in Latin. He readily acquiesced, and thus had an opportunily, while translating it, of revising the whole, and rendering it fuller and more perfect. It was finished a year or two before his appointment to the see of Clonfert, at which time be was engaged in preparing for its publication. His attention was unavoidahly diverted from it by the occupations attending so important a change ; and, before he could return to it, the dreadful malady had commenced, under which he languished for 15 months, before its fatal termination; though in the midst of his sufferings his ardour for science was not abated.

The circumstances of bis promotion to the episcopal bench reflect equal honour on himself and the noble person (lord Cornwallis) who conferred it. It was a favour as unsolicited as unexpected, unless the report made to bis Excellency by his principal secretary, on being consulted as to the propercst person to fill the vacunt see, may be called solicitation. His report was, that "he believed Dr. Young to be the most distinguished literary character in the kingdom;" and be was recommended accordingly.

ZAMORANO (Rerico), a goord Spanish mathematician, in the 16 th century, being the royal lecturer on that science, at Seville, where he published an excelIent cumpendiuin of navigation, in \(1 \dot{3} 55\); beng a treatise writtell clearly and with brevity, not being encumbered with such idie speculations as abround in Medina and Contes. Yamorano, it seemy, contributed much to the reforming the sea charts, as we are iniormed by his successor, Anares (iarcia de Cespedes, who bimself also published a treatise un navigation at Madrid, in 1606.

ZENITH, in Astronomy, the vertical point, or point in the heavens directly overhead. Or, the zenith is a point in the surface of the sphere, from which a right line drawn through the place of any spectator, passes through the centre of the earth. The zenith of any place, is also the pole of the horizon, being 90 degrees distant from every point of it. And through the zenith pass all the azimuths, or vertical circles.

The point diametrically opposite to the senith. is called the undir, being the point in the sphere direc:ly under our feet: and it is the zenith to our antupodes, as our zenith is their uadir.
Zexith Distance, is the distance of the sun or star from our zenith; and is the complement of the aititude, or what it wants of 90 degrecs.

ZENO, Eleates, or of biea, one of the greatest philosophers amung ile ancient, flouristied aboat 500 years before the Christian rera. He was the disciple of Parmenides, and even, according to some writers, his adopted son. Aristotle asserts that he was the inventor of logic: but his logic seems to have been calculated and employed to perplex rather than to illustrate and decide any thing; for Zeno employed it only to dispute against all comers, and to silence his opponents, whetber they argued right or wrong. Among many other subbletis and embarrassing arguments, he proposed some with regard to motion, denying that there was any such thing in nature; and Aristotle, in the 6ith book of his physics, has preserved some of them, which are extremely subtile, capecially the famus argument nanoed Achilles; which was to prove this proposition; that the swiftest animn! could never overtalic the slowest, as a greyhound a tortois', if the later ect out a little before the former: for supprisc the tortuise to be 100 yards befure the dog, and that this rungs 100 timers as fast as the other; then while the dog runs the first 100 yards, the tortoise runs 1 , and is therefore 1 yard before the dog; ngain, while the dog runs over this yard, the tortoiso will rull the 100th part of a yard, and will be so much before the dog; and again, while the dog runs over this 100th part of a yard, the tortoise will have got the 100th part of that 100th part before him; and so on continually, says he, the dog will always be sone small part bebisid the tortoise. But the fallacy will soon be detected, by considering where the tortoise will be when the dog bas run over 200 yards; for as the fornier can bave run only two yards in the same time, and theretore must then be 98 yards bebind the dog, he cunsequently must have uvertuken and passed the tortoise. It has been suid that, to prove to him, or some disciple of his, that there is such a thing as motion, Diogenes the Cynic rose
up and walked over the floor.-Zeno showed great courage in suffering pain; for baving joined with others to endeavour to restore liberty to his country, which groaned under the oppression of a tyrant, and the euterprise being discovered, be supported with extraordinary firmness the sharpest tortures. It is even said that be had the courage to bite off his tongue, and spit it in the tyrant's face, for fear of being forced, by the violence of his torments, to discover his accoraplices. Some relate that be was pounded to death in a mortar.
Zeno, a celebrated Greek philosopher, was born at Citium, in the lsle of Cyprus, and was the founder of the Stuics; a sect which bad its name from that of a porticu at Athens, where this philosopher chose to hold his discourses. He was cast on that coast by shipwreck; and be ever after regarded this as a great happiacss, praising the winds for baving so bappily driven him into the port of Piraum.-Zeno was the disciple of Crates, and had a great number of followers. He made the susereign good to consist in dying in conformity to mature, guided by the dictates of right reason. He ucknow ledged but one God; and admitted an inevitable destiny weer alt events. His servant taking advantage of this last opinian, cried, while he was beating him for dishonesty, "1 was destined to stral;" to which Zeno replied, "Yes, and to be beaten too." This philosopher used to say, "That if a wise man ought not to be in love, as some pretend. ed, none would be more miserable than beautiful and virtuous women, since they would have none for their admirers but fools." He also said, "That a part of knowledge consists in being ignorant of such things as ought not to be known: that a friend is another self: that a little matter gives perfection to a work, thougb perfection is not a liute matter." He compared those who spoke well and lived ill, to the money of Alexandria, which was beautiful, but composed of bad metal,-1t is said that being burt by a fall, he took that as a sign be was then to quit this life, and laid violent hands on himself, about 264 years before Christ.
Cleanthes, Crysippus, and the other successors of \(\mathrm{Z}_{\mathrm{cn}} \mathrm{no}\) maintained, that with virtue we might be happy in the midst cven of disgrace aad the most dreadful torments. They admitted the existence of but one God, the soul of the world, which they considered as bis body, and both together forming a perfect being. It is remarked that, of all the sects of the ancient philosophers, this was one of those which produced the greatest men. We ought not to confound the two Zenos above mentioned, with
Zexo, a celebruted Epicurean philosopher, born at Sidon, who had Cicero and Pomponius Atticus for his disciples, and who wrote a book against the mathennatics, which, as well as that of Possidonius's refutation of it, is lost: nor yet with several other Zenos mentioned in bistory.
ZENSUS, or Zenzus, in Arithmetic and Algebra, a name used by some of the older authors, especially in Geimany, for a square number, or the 2d power: being a corruption from the Italic censi, of Pacioli, Tartalea, \(\& c\), or the Latin census, which signified the same thing.
Zetetice, or Zetetic Method, in Mathematics, was
the method made use of to investigate, or find out the solution of a problem; and was much the same thing as analytics, or the analyuic method. Viena has an ingenious work of this kind in 5 books; Ziteticurum libri quiaques.

ZuCCO, Zoccolo, Zocle, or Socle, in Architecture, a square booly, less in leight than in breadth, placed under the bases of pedestals, statues, wases, \&c. See Socere and Plinth.

ZODIAC, in Astrunomy, an imaginary ring or broad circle, in the heavens, in form of a belt or girdle, within which the planets all make tbeir excursions. In the very middle of it runs the ecliptic, or path of the sun in his annual course; and its breadith, comprehending the deviations or latitudes of the planets, is by some authors accounted \(16^{\circ}\), some 18, and others 20 degrees.

The zodiac, cutting the equator obliquely, makes with it the same angle as the echptic, which is its middle line, which angle, continually varying, is now mearly equal to \(23^{\circ} 27^{\prime} 46^{\prime \prime \prime}\); which is called the obliquity of the zodiac or ecliptic, and is also the sun's greatest declination.
The andinc is divided into 12 equal parts, of 30 degrees each, called the signs of the zodiac, beng so named from the constellations which anciently passed through them. But, the stars having an apparent motion from west to cast, arising from the precession of the equinoxes, those constellations do not now correspond to their proper signs. And therefore, when a star is said to be in such a sign of the zodiac, it is not to be understood of that constellation, but only of that dodecatemory or 12 th part of it.

The zodiac appears to be very ancient, and to have passed from the ancient Hindus, successively westward, through Persia, Arabia, Assyria, Egypt, \&cc, to Europe; as specimens of the same kind of zodiac have been found in all those countries, with only some small variation in the figures of some of the constellations; accompanied also with appropriate emblematical figures of the sun and moon, with those of the planets, in their order.

Cassini has also observed a tract in the beavens, within whose bounds most of the comets, though not all of them, are observed to keep, and which he therefore calls the Zodiac of the comets. This he makes as broad as the other zodiac, and marks it with signs or constellations, like that; as Antinous, Pegasus, Andromeda, Taurus, Orion, the Lesser Dog, Hydra, the Centaur, Scorpion, and Sagittary.

ZOD1ACAL. Light, a brightness sometimes observed in the zodiac, resembling that of the galaxy or milky way. It appears at certain seasons, viz, towards the end of winter and in spring, after sunset, or before his rising, in autumn and beginning of winter, resembling the form of a pyramid, lying lengthwise with its axis along the sodiac, its base being placed obliquely with respect to the horizon. This phenomenon was first described and named by the elder Cassini, in 1683. It was afterwards observed by Fatio, in 1684, 1685, and 1686; also by Kirch and Eimmart, in 1688, 1689, 1691, 1693 , and 1694. See Mniran, Suite des Mem. de l'Acad. Royale des Sciences 1731, pa. 3.

The zodiacal light, according to Mairan, is the solar ntmosphere, a rare and subtile fluid, either luminous by itself, or madeso by the rays of the sun surrounding its globe; but in a grenter quantity, and more extensively, about his equator, than any other part. Mairan observes also that it may be proved from many observations, that
the sun's atmospbere sometimes reaches as fur as the earth's orbit, and there meeting with our atmorphere, produces the appearance of an aurora borealis. The length of the zudiacal light varies sometines in reality; and sometimes in appearance only, from various causes,

Cassini ofien mentions the great resemblance between the zodiacal light and the tails of comets. The same observation has been made by Fatio: and Euler endeavoured to prove that they were owing to similar causcs. See Découverte de la Lumière Celeste que parait dans le Zodiaque, art. 41. Lettre a M. Cassini, printed at Amsucrdam in 1686. Euler, in Mem. de l'Acad. de Berlin, tom. 9.

This light seems to have no other motion than that of the sun itself: and its extent from the sun to its point, is seldom less than 50 or 60 degrees in length, and more than 20 degrees in breadth: but it has been known to extend to 100 or \(103^{\circ}\), and from 8 to \(9^{\circ}\) broad.

It is now generally acknowledged, that the electric fluid is the cause of the aurora borcalis, ascribed by Mairan to the solar atmosphere, which produces the zodiacal light, and which is thrown off chicfly and to the greatest distance from the equatorial parts of the sun, by means of the rotation on bis axis, atcd entending visibly as far as the orbit of the earth, where it falls into the upper regions of our atrosphere, and is collicted chiefly towards the polar parts of the earth, in consequence of the diurnal revolution, where it forms the aurora borealis. And hence it has becn suggested, as a probable conjecture, that the sun may be the fountain of the electrical fluid, and that the zodiacal light, and the tails of comets, as well as the aurora borealis, the lightning, and artificial electricity, are its various and not very dissimilar modifications.

ZONE, in Geography and Astronomy, a division of the earth's surface, by'means of parallel circles, chiefly with respect to the degree of beat in the different parts of that surface.
The ancient astronomers used the term Zone, to explain the different appearances of the sun and other heavenly bodies, with the length of the days and niphts; and the geographers, as they used the climates, to mark the situation of places; using the term clumute when they were able to be more exact, and the term znne when less so.

The zones were commonly accounted five in number; one a broad belt round the middle of the earth, having the equator in the very middle of it, and bounded, towarils the north and south, by parallel circles passing hirough the tropics of Cancer and Capricorn. This they called the torrid zone, which they supposed not habitable, on account of its extreme beat. Though sometimes they divided this into two equal torrid zones, by the equator, one to the norih, and the other scuth; and then the: whole number of zones was accounted 6 .

Next, from the tropics of Cancer and Capricorn to the two polar circles, were two other spaces celled temperate zones, as being moderately warm ; and these they supposed to be thic only habitable parts of the carth.

Lastly, the two spaces beyond the temperate zones, about either pole, bounded within the polar circles, and having the poles in the middle of them, are the two frigid or frozen zones, and which they supposed not hubitable, on account of the exireme cold there.

Hence, the breadth of the torrid zone is rqual to twice the greatest declination of the stin, or obliquiny of the ecliptic, equal to \(46^{\circ} 56^{\circ}\), or twice \(23^{\circ} 28^{\prime}\). Each frigud
ZO N
\(\left[\begin{array}{ll}683\end{array}\right]\)
20 N
zone is also of the same breadth, the distance from the pole to the polar circle being equal to the same obliquity \(93^{\circ} 28^{\prime}\). And the breadth of ench temperate zone is equal to \(43^{\circ} 4^{\prime}\), the complement of twice the same obliquity. See these zones exhibitod in plate 40, fig. 16.

The difference of zowes is attended with a great diversity of phenomena. 1. In the torrid zone, the sun passes through the zenith of every place in it twice a year; making as it were two surnmers in the year; and the inhabitants of this zone are called amphiscians, because they have their noon-day shadows projected different ways in different times of the year, northward at one season, and southward at the other.
2. In the temperate and frigid zones, the sun rises and sets every natural day of 24 hours. Yet every where, but
under the equator, the artificial days are of unequal lengths, nnd the inequality is the greater, as the place is farther from the equator. The inhabitants of the temperate zones are called beteroscians, because their noon-day shadow is cast the same way all the year round, viz, those in the north zone toward the north pole, and those in the south zone toward the south pole.
3. Within the frigid zones, the inhabitants bave their artificial days and nights extended to a great length ; the sun sometimes skirting round a little above the horizon for many days together: and at another senson never rising above the horizon at all, but making continual night for a considerable time. The inhabitants of these zones are called periscians, because sometimes they have their shadows going quite round them in the space of \(2 \$\) hours.

ERRATA IN VOL H.
Page 154, col. 1, tine 39, for 393'7, read 3957.
- 233, - 1, line 3, for 2 , read -2 .
- 248, -2 , line 37 , drle and.
- 400, - 1, line 21 , read 2 cos a.
- so3, - 2, line is from the botion, reed plate 29.
- 357, - 1, line 9 from the bottom, for \(+\dot{\mathbf{y}}\), read \(\dot{y}\).
- 382, - s, line 2, for Celti, rrad Cetii.
- 39s, - 1, line 34, for lievt-gorernor \&cc, read inspector-grenerst of the R. Mil.

College, and commandant of the senior deparment of
that institurion, noe exrablished et Farnhem.

FINIS.

Fig. 1.
MAGIC Square of Squares.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 270 & 28.3 & 18 & 15 & 4042 & 221 & ,50 & 47 & 162 & 198 & \(8_{2}\) & 29 & 130 & 4.59 & 114 & \(12 t\) \\
\hline 32 & \(t\) & 240 & 241 & 64 & 38 & 208. & 20p & \(\rho b^{\prime}\) & 6.5 & \(r_{7} 6\) & 77 & 178 & 97 & 4.3 & 14 \\
\hline 230 & 24 & 31 & 2 & 2072 & 210 & \(0 \cdot 3\) & 34 & 17. & 170 & 0.5 & 66 & 243 & 146 & I2 & 08 \\
\hline 17 & 10 & 72 & 356 & 49 & \(s d\) & 103 & 224 & 81 & 80 & \(4{ }^{1}\) & 402 & 125 & 12\% & 129 & 16 \\
\hline & 25 & 30 & 43 & 1.067 & 721 & 58 & 45 & 164 & 2 Bg & \(i_{4}\) & 77 & 132 & & & \\
\hline & 3 & & & 02 & 3 & 200 & \(2 \boldsymbol{1 2}\) & a & 0 & & \%\% & 126 & 90 & 3.4 & \\
\hline & & 20 & 1 & & 212 & 0 & 36 & 173 & 180 & 93 & 6 & 14 & & 12 & \\
\hline 40 & 1.4 & 27 & 254 & . 5 & & 10,5 & 222 & \(\mathrm{B}_{1}\) & 78 & 163 & 40 O & 125 & f1o & 134 & 469 \\
\hline & 25 & T8 & 4 & & 220 & 54 & 43 & & \({ }^{8} 7\) & 80 & 75 & 134 & 15.3 & & 107 \\
\hline & 5 & & & bo & 37 & 20 & 213 & 90 & 69 & 172 & 184 & 124 & 101 & & \\
\hline & 2.8 & \% 7 & 6 & 203 & 21.1 & so & \(3{ }^{8}\) & 127 & & o & 70 & 4 & & & \\
\hline 2 & 12 & & 37 & 63 & 4 & & 220 & 85 & 76 & & 288 & 177 & Nof & 4. & 15 \\
\hline & & 24 & \({ }_{9} 9\) & & 47 & 56 & 4 H & \(16{ }^{4}\) & LS 5 & 88 & 73 & 4,36 & 45 & & \(0_{0}\) \\
\hline & 7 & & 247 & 58 & 4.3 & & 45 & ao & 71 & 170 & \({ }^{2} 3\) & 122 & 10 & 138 & 151 \\
\hline & & 25 & 8 & cot & 216 & 37 & 10 & 169 & 易4 & 8 & 72 & 137 & & & Ras \\
\hline 2 & n & 73 & 260 & 55 & 42 & 199 & \(\pm 8\) & 87 & 74 & \(16 \%\) & 6 & 149 & 106 & 4 & 1 \\
\hline
\end{tabular}


Fig. 3.


Firre: If the MoO.v.





Danze by Google

\section*{GEOGRAPHICAI．MAPS}


ドダタ 3


\section*{MICROSCOPES}

\[
-\infty
\]
\[
1
\]
\[
17
\]
I
\[
1
\]


+3

\section*{Ancient Arithmetical (harnetens.}

 Nomer \(\}\)


\(\begin{array}{lllllllllllll} & \text { Mitan } & 10 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\)


Sonesis Nry Misiet Micrrarype.



TinIII.
Plate IITV.


\footnotetext{
4
}


Dhankeo Goy Gogle

\(\frac{1}{2}\)
!
i

1
4
7

1
-rnerm
:
\(\Sigma\)

PLANETARICH by Imes.


PLANE DH.AGONAL SCALES,


Fig. 3.

)
\(\stackrel{4}{4}\)
i. .
*



ritclesmpine: tupicusumers, if the Westerm itlíarizen, in, theree different. Pertas of Ilie. Hemenpilierer, lubten from thee liúrel. Mount, al ETraine, in. Morlluery il aromshire?


Pidisury oz cammane . Ififientaner.

- Sppreatuner momerehint elevuted liy_Mrpinertions.

- Sppicumancer whirn meree comsideriblly elremeded.



 - Mrafiaction on thi fienometice. h. Unuthis ont if Yisers in thic EPrish?



-










.


```

